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Dedicated to Ludwig Elsner on the occasion of his sixtieth birthday

Abstract

We describe canonical forms for elements of a classical Lie group of matrices under

similarity transformations in the group. Matrices in the associated Lie algebra and

Jordan algebra of matrices inherit related forms under these similarity transforma-

tions. In general, one cannot achieve diagonal or Schur form, but the form that can

be achieved displays the eigenvalues of the matrix. We also discuss matrices in in-

tersections of these classes and their Schur-like forms. Such multistructered matrices

arise in applications from quantum physics and quantum chemistry.

1 Introduction

Many problems that arise in applications have structures that give rise to eigenvalue prob-

lems for matrices that are members of a classical Lie group, its Lie algebra, or an associated

Jordan algebra of matrices.

Any nonsingular matrix K 2 C

m;m

de�nes a nondegenerate sesquilinear form < �; � >

on C

m

by

< x; y >= x

H

Ky for x; y 2 C

m

;

where x

H

denotes the conjugate transpose of the column vector x. It is natural to restrict

ourselves to the case that

< x; y >= 0 if and only if < y; x >= 0:

This condition implies that K is either Hermitian or skew-Hermitian [2].

If K is Hermitian, we can perform a change of basis on C

m

so that the sesquilinear form

is represented by the matrix

�

p;q

=

"

�I

p

0

0 I

q

#

;

where p+ q = m, p � 0, and q � 0. On the other hand, if K is skew Hermitian, then the

only interesting case is that m is even, and that after a change of basis, the skew Hermitian

form is represented by the matrix

J =

"

0 I

n

�I

n

0

#

;

where m = 2n.

The classical Lie groups we consider here are the matrices that are unitary with respect

to J or �

p;q

[15]. We will discuss only classes of complex matrices here, but analogous

results also exist for the real case.
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De�nition 1

1) The Lie group O

p;q

of �

p;q

-unitary matrices is de�ned by

O

p;q

= fG 2 C

p+q;p+q

: G

H

�

p;q

G = �

p;q

g:

An important special case is the unitary group O

n

= O

0;n

.

2) The Lie group Sp

2n

of symplectic matrices is de�ned by

Sp

2n

= fG 2 C

2n;2n

: G

H

JG = Jg:

Developing structure-preserving numerical methods for solving eigenvalue problems for

matrices in these groups remains an active area of recent research [7, 9, 10, 23], motivated

by applications arising in signal processing [1] and optimal control for discrete-time or

continuous-time linear systems, see [23] and the references therein.

Of equal importance are the Lie algebras A

p;q

and H

2n

corresponding to the Lie groups

O

p;q

and Sp

2n

.

De�nition 2

1') The Lie algebra of �

p;q

-skew Hermitian matrices is de�ned by

A

p;q

=fA 2 C

p+q;p+q

: �

p;q

A + A

H

�

p;q

= 0g

=

("

F G

G

H

H

#

: F = �F

H

2 C

p;p

; H = �H

H

2 C

q;q

; G 2 C

p;q

)

:

A special case is the Lie algebra of skew Hermitian matrices A

n

= A

0;n

.

2') The Lie algebra of J-Hermitian matrices (also called Hamiltonian matrices or in�nites-

imally symplectic matrices) is de�ned by

H

2n

=fA 2 C

2n;2n

: JA+ A

H

J = 0g

=

("

F G

H �F

H

#

: F;G;H 2 C

n;n

; G = G

H

; H = H

H

)

:

These Lie algebras also have great importance in practical applications, see [4, 5, 25] for

applications of �

p;q

-skew symmetric matrices and [8, 23, 20] for applications of Hamiltonian

matrices.

The third class of matrices we consider plays a role similar to that of the Lie algebras.

These are the Jordan algebras [3, 16] associated with the two Lie groups.

2



De�nition 3

1") C

p;q

=fC 2 C

p+q;p+q

: �

p;q

C � C

H

�

p;q

= 0g

=

("

F G

�G

H

H

#

: F = F

H

2 C

p;p

; H = H

H

2 C

q;q

; G 2 C

p;q

)

;

is the Jordan algebra of �

p;q

-Hermitian matrices. A special case is the Jordan algebra

of Hermitian matrices C

n

= C

0;n

.

2") SH

2n

=fC 2 C

2n;2n

: JC � C

H

J = 0g

=

("

F G

H F

H

#

: F;G;H 2 C

n;n

; G = �G

H

; H = �H

H

)

;

is the Jordan algebra of J-skew Hermitian matrices or skew Hamiltonian matrices.

For applications of these classes see, for example, [5, 26, 27].

In this paper we discuss structure-preserving similarity transformations to condensed

forms from which the eigenvalues of the matrices can be read o� in a simple way. For

general matrices these are the Jordan canonical form (under similarity transformations

with nonsingular matrices), see e.g. [13], and the Schur form (under similarity with unitary

matrices), see e.g. [14]. While both the Jordan form and Schur form display all the

eigenvalues, the transformation to Jordan form gives the eigenvectors and principle vectors,

and the transformation to Schur form displays one eigenvector and a nested set of invariant

subspaces. However, the numerical computation of the Schur form is a well-conditioned

problem, while the reduction to Jordan canonical from is in general an ill-conditioned

problem, see e.g. [14].

The Jordan structure of a matrix can be computed, with considerably more e�ort than

computing the Schur form, by computing the Wyer characteristics, which are invariants

under unitary similarity transformations, see [17]. But if the matrix has an extra symmetry

structure, for example if it is Hermitian, skew Hermitian or unitary, then the matrix

is normal, and the Jordan form and the Schur form coincide. Consequently, complete

eigenstructure information can be obtained via a numerically stable procedure [14, 26, 28]

for matrices in these classes.

We may expect that between the general case and these special cases there are more

re�ned condensed forms for matrices from the classes de�ned above. For the classes de�ned

via the skew-symmetric matrix J such forms have been discussed in detail in the context of

the solution of algebraic Riccati equations [8, 23]. We will review these results in Section 3.

In Section 4 we will then discuss analogous condensed forms for the classes de�ned by the

symmetric matrix �

p;q

.

In Section 5 we then discuss condensed forms for matrices which lie in the intersection

of two of the classes de�ned above. Our main motivation to work on this topic arose from

a class of matrices that occur in quantum chemistry [11, 12, 24]. In linear response theory

one needs to compute eigenvalues and eigenvectors of matrices of the form

"

A B

�B �A

#

; A; B 2 C

n;n

; A = A

H

; B = B

H

: (1)
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Such matrices are clearly in H

2n

\ C

n;n

. A di�culty in computing the eigenstructure of

such matrices was observed in [11, 12], where the structure-preserving methods sometimes

had convergence di�culties. As we will show, these di�culties arise from the fact that the

reduction to a structured Schur form is not always possible, essentially because nonzero

vectors may have zero \length" in the inde�nite form de�ned by the matrix �

p;q

. Moreover,

we will see that the eigenvalues and invariant subspaces of the matrix are already available

in this situation, even though the matrix has not yet been reduced to a triangular-like

structure.

2 Preliminaries

In this section we give some preliminary results.

Proposition 4

1. Let M 2 O

p;q

and Mx = �x with x 6= 0. Then �

�1

is also an eigenvalue of M , and

M

H

(�

p;q

x) = �

�1

(�

p;q

x). If x

H

�

p;q

x 6= 0 then j�j = 1.

2. Let M 2 A

p;q

and Mx = �x with x 6= 0. Then �� is also an eigenvalue of M , and

M

H

(�

p;q

x) = ��(�

p;q

x). If x

H

�

p;q

x 6= 0 then � = ��.

3. Let M 2 C

p;q

and Mx = �x with x 6= 0. Then � is also an eigenvalue of M , and

M

H

(�

p;q

x) = �(�

p;q

x). If x

H

�

p;q

x 6= 0 then � = �.

Proof. The proof follows directly from the de�nitions of the Lie group, Lie algebra, and

Jordan algebra.

Similar results are also known for the Lie group of symplectic matrices and the corre-

sponding Lie algebra and Jordan algebra, see e.g. [23, 20].

There exist a vector space isomorphism between the Lie algebras and the associated

Jordan algebras:

Proposition 5 The map A 7! iA is a vector space isomorphism between the Lie algebra

A

p;q

(or H

2n

) and the associated Jordan algebra C

p;q

(or SH

2n

, respectively).

Proof. The proof follows directly from the de�nitions.

We will use similarity transformations that retain the structure to transform the ma-

trices from the Lie groups, Lie algebras and Jordan algebras to a condensed form from

which the eigenvalues can be read o� in a simple way. These are symplectic similarity

transformations for Sp

2n

, H

2n

and SH

2n

and the �

p;q

-unitary matrices for O

p;q

, A

p;q

and

C

p;q

. In order to use such transformations for numerical computation, we would prefer that

these transformation matrices also be unitary, since then the methods can be implemented

as numerically backwards stable procedures. These classes are characterized as follows.
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Proposition 6

1. Unitary symplectic matrices, i.e., matrices in Sp

2n

\ O

2n

, are of the form

"

U

1

U

2

�U

2

U

1

#

;

with U

1

U

H

1

+ U

2

U

H

2

= I

n

and U

1

U

H

2

� U

2

U

H

1

= 0.

2. Matrices in O

p;q

\ O

n

(n = p+ q) have the form

"

Q

11

0

0 Q

22

#

;

where Q

11

2 O

p

and Q

22

2 O

q

.

Matrices in all the Lie groups and their intersections can be generated as products of

elementary matrices in these classes, see e.g. [2, 5, 23]. Unfortunately, the class of matrices

O

p;q

\ O

n

is not big enough to perform the reduction to the condensed forms. As an

extra class of elementary �

p;q

-unitary transformations, the hyperbolic rotations H

p

(c; s)

are needed. These matrices are equal to the identity matrix except for the 2� 2 submatrix

in rows and columns 1 and p+ 1, given by

"

c s

s c

#

, with jcj

2

� jsj

2

= 1.

3 J-Schur-like forms

In this section we recall some of the known results concerning Schur-like forms for matrices

in the classes de�ned by J . We will call these J-Schur-like forms.

Theorem 7

i) Let M 2 H

2n

. Then there exists a symplectic matrix Q 2 Sp

2n

such that

Q

�1

MQ =

"

T

1

0

T

2

�T

H

1

#

; (2)

where T

1

; T

2

2 C

n;n

, T

1

is upper triangular and T

2

is Hermitian, if and only if every

purely imaginary eigenvalue � of M has even algebraic multiplicity, say 2k, and any basis

X

k

2 C

2n;2k

of the maximal invariant subspace for M corresponding to � satis�es

X

H

k

JX

k

�

c

�

0

�I

k

I

k

0

�

: (3)

Here '�

c

' denotes congruence.

ii) Let M 2 SH

2n

. Then there exists a symplectic matrix Q 2 Sp

2n

such that

Q

�1

MQ =

"

T

1

T

2

0 T

H

1

#

; (4)
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where T

1

; T

2

2 C

n;n

, T

1

is upper triangular and T

2

is skew Hermitian, if and only if every

real eigenvalue � of M has even algebraic multiplicity, say 2k, and any basis X

k

2 C

2n;2k

of the maximal invariant subspace for M corresponding to � satis�es (3).

iii) Let M 2 Sp

2n

. Then there exists a symplectic matrix Q 2 Sp

2n

such that

Q

�1

MQ =

"

T

1

T

2

0 T

�H

1

#

; (5)

where T

1

; T

2

2 C

n;n

, T

1

is upper triangular and T

2

is Hermitian, if and only if every

unimodular eigenvalue � of M has even algebraic multiplicity, say 2k, and any basis X

k

2

C

2n;2k

of the maximal invariant subspace for M corresponding to � satis�es (3).

Proof. This result was �rst stated and proved in [22].

Note that there are also more re�ned Jordan-like forms for matrices in H

2n

;SH

2n

and

Sp

2n

, which do not have a triangular structure, see [21].

It follows from a result in [6] that the matrices Q in each part of Theorem 7 can

be chosen to be unitary symplectic. However, matrices in the J classes exist for which

the forms (2){(5) can be achieved only via non-symplectic transformations or not at all.

For example, for the matrix

"

0 I

2

�I

2

0

#

a J-Schur-like form can only be achieved with

non-symplectic matrices, while for the matrix

"

0 1

�1 0

#

no J-Schur-like form exists.

4 �

p;q

-Schur-like forms

In this section we present results analogous to Theorem 7 concerning Schur-like forms for

matrices in the classes de�ned by �

p;q

under similarity transformations from the group

O

p;q

. We will call these forms �

p;q

-Schur-like forms.

Of course, if p = 0 or q = 0, then the matrices in question (unitary, Skew-Hermitian,

and Hermitian matrices) are all normal, and their Schur forms under unitary similarity

transformations are diagonal. So, unless explicitly mentioned, we will assume that p and

q are both positive (and m = p+ q � 2).

We describe the �

p;q

-Schur-like forms in terms of a block 2� 2 matrix

Q

�1

MQ =

"

p q

p A C

q D B

#

; (6)

6



with the partitioning

2

6

6

6

6

6

6

6

6

6

6

6

6

6

6

6

6

6

6

6

6

6

6

6

6

6

6

4

p

1

p

2

p

3

p

4

: : : p

s

q

1

q

2

q

3

q

4

: : : q

l

p

1

A

11

0 0 0 : : : 0 0 0 0 0 : : : 0

p

2

0 A

22

A

23

A

24

: : : A

2s

0 C

22

C

23

C

24

: : : C

2l

p

3

0 A

32

A

33

0 : : : 0 0 C

32

0 0 : : : 0

p

4

0 A

42

0 A

44

: : : A

4s

0 C

42

0 C

44

: : : C

4l

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

p

s

0 A

s2

0 A

s4

: : : A

ss

0 C

s2

0 C

s4

: : : C

sl

q

1

0 0 0 0 : : : 0 B

11

0 0 0 : : : 0

q

2

0 D

22

D

23

D

24

: : : D

2s

0 B

22

B

23

B

24

: : : B

2l

q

3

0 D

32

0 0 : : : 0 B

32

B

33

0 : : : 0

q

4

0 D

42

0 D

44

: : : D

4s

0 B

42

0 B

44

: : : B

4l

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

q

l

0 D

l2

0 D

l4

: : : D

ls

0 B

l2

0 B

l4

: : : B

ll

3

7

7

7

7

7

7

7

7

7

7

7

7

7

7

7

7

7

7

7

7

7

7

7

7

7

7

5

; (7)

where

P

s

j=1

p

j

= p,

P

l

k=1

q

k

= q, and such that

1. For odd i, p

i

� 0, q

i

� 0, and the blocks A

ii

and B

ii

are each either diagonal or void;

2. for even i, p

i

= q

i

2 f0; 1g.

Theorem 8

i) Let M 2 O

p;q

, then there exists Q 2 O

p;q

such that

Q

�1

MQ =

"

p q

p A C

q D B

#

is in the form (7). For odd indicies i, the blocks A

ii

2 O

p

i

and B

ii

2 O

q

i

are either void or

diagonal (with eigenvalues of modulus 1). For the even indicies i, the blocks A

ii

, B

ii

are

either both void or both 1� 1. Furthermore, if these blocks are not void, then

A

2i;2i

+ C

2i;2i

= D

2i;2i

+B

2i;2i

= �;

A

2i;2i

�D

2i;2i

= B

2i;2i

� C

2i;2i

= �

�1

;

(8)

and

2

6

6

4

A

2i+1;2i

.

.

.

A

s;2i

3

7

7

5

= �

2

6

6

4

C

2i+1;2i

.

.

.

C

s;2i

3

7

7

5

;

2

6

6

4

B

2i+1;2i

.

.

.

B

l;2i

3

7

7

5

= �

2

6

6

4

D

2i+1;2i

.

.

.

D

l;2i

3

7

7

5

;

h

A

2i;2i+1

� � � A

2i;s

i

=

h

D

2i;2i+1

� � � D

2i;s

i

;

h

B

2i;2i+1

� � � B

2i;l

i

=

h

C

2i;2i+1

� � � C

2i;l

i

:

(9)

7



Moreover the eigenvalues of M are the eigenvalues of the matrix obtained by deleting

all the o�-diagonal blocks in A;B;C;D.

ii) Let M 2 A

p;q

. Then there exists Q 2 O

p;q

such that

Q

�1

MQ =

"

A C

C

H

B

#

; (10)

with B = �B

H

, A = �A

H

, and A;B;C structured as in (7), where for the blocks with

odd numbered indices, A

ii

2 A

p

i

and B

ii

2 A

q

i

are diagonal with purely imaginary eigen-

values or void and the even numbered blocks A

ii

; B

ii

are either both 1� 1 or are both void.

Furthermore, if these blocks are not void, then

A

2i;2i

+ C

2i;2i

= C

2i;2i

+B

2i;2i

= �: (11)

Again the eigenvalues of M are the eigenvalues of the matrix obtained by deleting all the

o�-diagonal blocks in A, B, and C.

iii) Let M 2 C

p;q

. Then there exists Q 2 O

p;q

such that

Q

�1

MQ =

"

A C

�C

H

B

#

; (12)

with B = B

H

, A = A

H

, and A;B;C structured as in (7), where for the blocks with odd

numbered indices, A

ii

2 C

p

i

; B

ii

2 C

q

i

are diagonal with real eigenvalues or void and the

even numbered blocks A

ii

; B

ii

are either both 1� 1 or are both void. Furthermore, if these

blocks are not void, then

A

2i;2i

+ C

2i;2i

= �C

2i;2i

+B

2i;2i

= �: (13)

Again the eigenvalues of M are the eigenvalues of the matrix obtained by deleting all the

o�-diagonal blocks in A, B and C.

Proof. i) The proof proceeds via induction on the dimension m = p + q. The case

m = 1 is trivial, since in this case p = 0 or q = 0. Assume that p and q are both positive.

Let � be an eigenvalue of M , and let x =

"

x

1

x

2

#

6= 0 be an associated eigenvector, with

x

1

2 C

p

and x

2

2 C

q

, and let Q

11

2 O

p

, Q

22

2 O

q

be such that

Q

H

11

x

1

= �

1

e

1

; Q

H

22

x

2

= �

2

e

p+1

;

where �

1

= kx

1

k, �

2

= kx

2

k are real and nonnegative and e

i

denotes the i-th unit vector,

e.g. [14].

If �

1

and �

2

are both nonzero, then we cannot eliminate another element using a matrix

in O

p;q

\O

m

. So if we wish to retain that the matrix remains in the group, we have to use

hyperbolic rotations.
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If �

1

6= �

2

, then a hyperbolic transformation can be applied to further reduce the

transformed vector. We then have to consider the three cases �

1

> �

2

, �

1

= �

2

6= 0 and

�

1

< �

2

. The case that both parameters are 0 cannot happen, since x 6= 0.

If �

1

> �

2

, then there exists a hyperbolic rotation

"

c s

s c

#

2 O

1;1

such that

"

c s

s c

# "

�

1

�

2

#

=

"

�

1

0

#

;

with �

1

= (�

2

1

� �

2

2

)

1=2

> 0.

If �

1

< �

2

, then there exists a hyperbolic rotation such that

"

c s

s c

# "

�

1

�

2

#

=

"

0

�

2

#

;

with �

2

= (�

2

2

� �

2

1

)

1=2

> 0.

In the third case, �

1

= �

2

, no hyperbolic rotation exists that eliminates either of the

two elements. Then we set c = 1; s = 0.

Having chosen c and s, set

Q

�1

1

:= H

p

(c; s)

"

Q

H

11

0

0 Q

H

22

#

2 O

p;q

:

It follows that

Q

�1

1

x =

8

>

>

>

>

<

>

>

>

>

:

h

�

1

0 : : : 0 0 0 : : : 0

i

T

; �

1

> �

2

;

h

0 0 : : : 0 �

2

0 : : : 0

i

T

; �

1

< �

2

;

h

�

1

0 : : : 0 �

2

0 : : : 0

i

T

; �

1

= �

2

6= 0:

In the �rst case, we see that

Q

�1

1

MQ

1

e

1

= �e

1

;

so that

~

M := Q

�1

1

MQ

1

=

"

� w

H

0 M

0

#

(14)

and since

~

M 2 O

p;q

, we obtain j�j = 1, w = 0, p

1

= 1, q

1

= 0, and M

0

2 O

p�1;q

.

In the second case, we have

Q

�1

1

MQ

1

e

p+1

= �e

p+1

;

so the transformed matrix takes the form

~

M = Q

�1

1

MQ

1

=

2

6

4

M

11

0 M

13

w

H

1

� w

H

3

M

31

0 M

33

3

7

5

; (15)

9



and since

~

M 2 O

p;q

, we obtain j�j = 1, w

1

= 0, w

3

= 0, p

1

= 0, q

1

= 1, and M

0

=

"

M

11

M

13

M

31

M

33

#

2 O

p;q�1

.

In the third case no further reduction of the vector Q

�1

1

x = �

1

e

1

+ �

2

e

p+1

is possible

with a hyperbolic rotation. In this case we have

~

M = Q

�1

1

MQ

1

=

2

6

6

6

4

m

11

w

H

12

m

1;p+1

w

H

14

y

21

M

22

y

23

M

24

m

p+1;1

w

H

32

m

p+1;p+1

w

H

34

y

41

M

42

y

43

M

44

3

7

7

7

5

(16)

and

~

M(�

1

e

1

+ �

2

e

p+1

) = (�

1

e

1

+ �

2

e

p+1

)�. From �

1

= �

2

we obtain that

m

11

+m

1;p+1

= �; m

p+1;1

+m

p+1;p+1

= � (17)

and

y

41

+ y

43

= 0; y

21

+ y

23

= 0: (18)

By Proposition 4 we have that �

p;q

(e

1

+ e

p+1

) = e

1

� e

p+1

is a left eigenvector associated

with the eigenvalue �

�1

. Hence we obtain

m

11

�m

p+1;1

= �

�1

; m

1;p+1

+m

p+1;p+1

= �

�1

(19)

and

w

12

� w

32

= 0; w

14

� w

34

= 0: (20)

We immediately obtain that the submatrix

"

m

11

m

1;p+1

m

p+1;1

m

p+1;p+1

#

has the eigenvalues �; �

�1

.

If we consider the unitary matrix

U =

2

6

6

6

6

6

6

6

6

6

6

6

6

6

6

6

6

4

p

2

�1

p

2

�1

1

.

.

.

1

�

p

2

�1

p

2

�1

1

.

.

.

1

3

7

7

7

7

7

7

7

7

7

7

7

7

7

7

7

7

5

; (21)

then we obtain from the identities (17) through (20) that

U

~

MU

H

=

2

6

6

6

6

4

� w

H

12

0 w

H

14

0 M

22

y

23

M

24

0 0 �

�1

0

0 M

42

y

43

M

44

3

7

7

7

7

5

: (22)

10



As a consequence we obtain that the spectrum ofM is equal to the union of the spectra of

"

m

11

m

1;p+1

m

p+1;1

m

p+1;p+1

#

and M

0

=

"

M

22

M

24

M

42

M

44

#

. Furthermore, from (18) and (20) it is easy

to see that M

0

2 O

p�1;q�1

. In this case, p

1

= q

1

= 0 and p

2

= q

2

= 1.

The proof now follows by induction. In each of the above three cases, we perform

a similarity transformation based on the given eigenvector, and produce a matrix in a

smaller group whose eigenvalues are the remaining eigenvalues of the original matrix. By

induction, there is a �

p

0

;q

0

-unitary matrix V such that V

�1

M

0

V is in the form of (7){(9).

Partitioning V compatibly with (14), (15) or (16), and embedding the partitioned matrix

into a �

p;q

-unitary matrix Q

2

in the obvious fashion, we see that Q

�1

MQ has the desired

form, where Q = Q

1

Q

2

.

The proof for ii) is analogous while iii) follows from ii) using Proposition 5.

Remark 9 We see from the fact that we have to use a unitary transformation U 62 O

p;q

to obtain appropriate 0-blocks that the class of transformation matrices O

p;q

is too small

to bring every matrix in O

p;q

, (in A

p;q

or C

p;q

) to upper triangular form via similarity. On

the other hand, the form (7) displays all the eigenvalue information. The columns of the

part of the matrix that cannot be eliminated have length 0 in the inde�nite scalar product

de�ned as < u; v >

p;q

= u

H

�

p;q

v.

We also see that, in contrast with the symplectic case, we cannot obtain the condensed

form using transformations in O

p;q

\O

m

, again since this class is too small to perform the

necessary reductions.

Remark 10 In some cases we can reduce the form (7) further if subparts in the o�-

diagonal blocks of the top and bottom part do not have equal length. But since we can

never eliminate in these blocks completely and since the eigenvalues are displayed, we may

as well avoid further reduction.

Analogous results can also be obtained in the case of real matrices in all three classes. To

obtain these results, we always combine complex conjugate pairs of eigenvalues and the

associated eigenvectors.

We have presented structured condensed forms from which the eigenvalues can be read

o� in a simple way. These results simplify considerably in the case that the matrices have

multiple structures. We will discuss Schur forms for such matrices in the next section.

5 Schur-like forms for multi-structured matrices.

In some applications one needs the computation of eigenvalues of matrices that have more

than one structure. In this section we present Schur-like forms for matrices from intersec-

tions of two of the classes introduced in Section 1.

11



5.1 Intersections of two �

p;q

classes.

Let us �rst consider the intersections of classes de�ned by �

p;q

and �

~p;~q

, where p + q =

~p + ~q = m and, w.l.o.g., p > ~p. Directly from the de�nitions we obtain the following

structures.

Proposition 11

i) Matrices in A

p;q

\ A

~p;~q

have the form

2

6

6

6

4

A

1

A

2

0 C

1

�A

H

2

A

3

0 C

2

0 0 B

1

0

C

H

1

C

H

2

0 B

2

3

7

7

7

5

(23)

with

2

6

4

A

1

A

2

C

1

�A

H

2

A

3

C

2

C

H

1

C

H

2

B

2

3

7

5

2 A

~p;q

and B

1

2 A

~q�q

.

ii) Matrices in C

p;q

\ C

~p;~q

have the form

2

6

6

6

4

A

1

A

2

0 C

1

A

H

2

A

3

0 C

2

0 0 B

1

0

�C

H

1

�C

H

2

0 B

2

3

7

7

7

5

(24)

with

2

6

4

A

1

A

2

C

1

A

H

2

A

3

C

2

�C

H

1

�C

H

2

B

2

3

7

5

2 C

~p;q

and B

1

2 C

~q�q

.

iii) Matrices in O

p;q

\ O

~p;~q

have the form

2

6

6

6

4

A

11

A

12

0 C

1

A

21

A

22

0 C

2

0 0 B

1

0

D

1

D

2

0 B

2

3

7

7

7

5

(25)

with

2

6

4

A

11

A

12

C

1

A

21

A

22

C

2

D

1

D

2

B

2

3

7

5

2 O

~p;q

and B

1

2 O

~q�q

.

iv) Matrices in A

p;q

\ C

~p;~q

have the form

2

6

6

6

4

0 0 C

1

0

0 0 C

2

0

C

H

1

C

H

2

0 B

0 0 �B

H

0

3

7

7

7

5

: (26)
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The intersection of a group with one of the algebras does not show any obvious structure.

In cases i){iii), the problem reduces to two smaller problems, each having a single structure

for which the results of Section 4 apply. For case iv) the computation of the eigenvalues

reduces to the computation of the singular values of the matrix

h

C

H

1

C

H

2

B

i

. An

important special case that arises in particle physics [18, 19], is the case p = q and ~p = 0.

In this case the matrices have the form

"

0 C

�C

H

0

#

; (27)

where C 2 C

p�p

. Again, the eigenvalues can be determined via the singular values of C.

5.2 Intersections of a J class and a �

p;q

class, p 6= n.

In this subsection we consider matrices with a multiple structure related to both J and

�

p;q

, with p+ q = 2n and w.l.o.g. p > n. We obtain the following obvious structures which

follow directly from the de�nitions.

Proposition 12

i) Matrices in H

2n

\ A

p;q

have the form

2

6

6

6

4

A

1

0 C

1

0

0 A

2

0 C

2

�C

1

0 A

1

0

0 C

2

0 A

2

3

7

7

7

5

; (28)

with

"

A

1

C

1

�C

1

A

1

#

2 H

2(n�q)

\ A

2(n�q)

and

"

A

2

C

2

C

2

A

2

#

2 H

2q

\ A

q;q

.

ii) Matrices in H

2n

\ C

p;q

have the form

2

6

6

6

4

A

1

0 C

1

0

0 A

2

0 C

2

C

1

0 �A

1

0

0 �C

2

0 �A

2

3

7

7

7

5

; (29)

with

"

A

1

C

1

C

1

�A

1

#

2 H

2(n�q)

\ C

2(n�q)

and

"

A

2

C

2

�C

2

�A

2

#

2 H

2q

\ C

q;q

.

iii) Matrices in SH

2n

\ A

p;q

have the form

2

6

6

6

4

A

1

0 C

1

0

0 A

2

0 C

2

C

1

0 �A

1

0

0 �C

2

0 �A

2

3

7

7

7

5

; (30)

with

"

A

1

C

1

C

1

�A

1

#

2 SH

2(n�q)

\ A

2(n�q)

and

"

A

2

C

2

�C

2

�A

2

#

2 SH

2q

\ A

q;q

.

13



iv) Matrices in SH

2n

\ C

p;q

have the form

2

6

6

6

4

A

1

0 C

1

0

0 A

2

0 C

2

�C

1

0 A

1

0

0 C

2

0 A

2

3

7

7

7

5

; (31)

with

"

A

1

C

1

�C

1

A

1

#

2 SH

2(n�q)

\ C

2(n�q)

and

"

A

2

C

2

C

2

A

2

#

2 SH

2q

\ C

q;q

.

No obvious simpli�ed structure occurs in intersections of A

p;q

or C

p;q

with Sp

2n

or of

H

2n

or SH

2n

with O

p;q

. In all four cases of Proposition 12 the treatment of the smaller

matrices is relatively easy. The �rst submatrices in each of the cases are discussed in detail

in [8] while the second submatrices will be discussed in the next section.

5.3 Intersections of a J class and a �

p;q

class, p = q = n.

In this section we discuss the most important multi-structured case in applications, p =

q = n.

Theorem 13

i) Let

M 2 O

n;n

\ Sp

2n

=

("

U V

V U

#

: UU

H

� V V

H

= I

n

; UV

H

= V U

H

)

Then there exists

^

Q 2 O

n;n

\ Sp

2n

, such that the eigenvalues of

^

Q

�1

M

^

Q =

"

^

U

^

V

^

V

^

U

#

: (32)

are given by u

ii

� v

ii

, where u

ii

and v

ii

denote the i-th diagonal element of

^

U and

^

V ,

respectively. Furthermore we have (u

ii

+ v

ii

)(u

ii

� v

ii

) = 1.

ii) Let

M 2 A

n;n

\ H

2n

=

("

A B

B A

#

: A = �A

H

; B = B

H

)

:

Then there exists Q 2 O

n;n

\ Sp

2n

, such that the eigenvalues of

Q

�1

MQ =

"

A B

B A

#

: (33)

are given by a

ii

� b

ii

, where a

ii

and b

ii

denote the i-th diagonal element of A and B, respec-

tively, Furthermore �b

ii

is the real part and �i � a

ii

the imaginary part of the eigenvalue

a

ii

� b

ii

.

14



iii) Let

M 2 C

n;n

\ SH

2n

=

("

A B

B A

#

: A = A

H

; B = �B

H

)

:

Then there exists Q 2 O

n;n

\ Sp

2n

, such that the eigenvalues of

Q

�1

MQ =

"

A B

B A

#

: (34)

are given by a

ii

� b

ii

, where a

ii

and b

ii

denote the i-th diagonal element of A and B,

respectively. Furthermore a

ii

is the real part and �i�b

ii

the imaginary part of the eigenvalue

a

ii

� b

ii

.

Proof. i) Let M =

"

U V

V U

#

2 O

n;n

\Sp

2n

, and let

"

x

1

x

2

#

6= 0, with x

1

; x

2

2 C

n

, be an

eigenvector associated with the eigenvalue � ofM . It follows immediately that

"

x

1

+ x

2

x

1

+ x

2

#

is also an eigenvector of M associated with the eigenvalue �. Let Q 2 O

n

be such that

Q

H

(x

1

+ x

2

) = �e

(n)

1

, where � 6= 0. If we form

~

M =

"

Q

H

0

0 Q

H

#

M

"

Q 0

0 Q

#

=

2

6

6

6

4

u

11

z

H

u

v

11

z

H

v

y

u

M

u

y

v

M

v

v

11

z

H

v

u

11

z

H

u

y

v

M

v

y

u

M

u

3

7

7

7

5

;

where u

11

; v

11

2 C andM

u

;M

v

2 C

(n�1)�(n�1)

, then we see that e

(2n)

1

+e

(2n)

n+1

is an eigenvector

of

~

M associated with the eigenvalue �, i.e., we have

"

u

11

v

11

v

11

u

11

# "

1

1

#

= �

"

1

1

#

:

The eigenvalues of

"

u

11

v

11

v

11

u

11

#

are u

11

�v

11

. Furthermore we have y

u

+y

v

= 0. Similarly, by

Proposition 4 the vector e

(2n)

1

�e

(2n)

n+1

is a left eigenvector of

~

M associated with the eigenvalue

�

�1

, so that z

H

u

� z

H

v

= 0 as well. Hence we obtain

"

M

u

M

v

M

v

M

u

#

2 O

n�1;n�1

\Sp

2(n�1)

and

"

u

11

v

11

v

11

u

11

#

2 O

1;1

\ Sp

2

: Since the latter matrix is symplectic, we have

(u

ii

+ v

ii

)(u

ii

� v

ii

) = 1:

If we consider

S :=

2

6

6

6

4

1 0 0 0

0 I

n�1

0 0

1 0 1 0

0 0 0 I

n�1

3

7

7

7

5

;

15



then we obtain

S

�1

~

MS =

2

6

6

6

4

0 z

H

u

v

11

z

H

v

0 M

u

y

v

M

v

0 0 0 0

0 M

v

y

u

M

u

3

7

7

7

5

;

i.e., the spectrum of

~

M is equal to the union of the spectra of

"

u

11

v

11

v

11

u

11

#

and

"

M

u

M

v

M

v

M

v

#

.

The rest of the proof follows by induction.

The proof of ii) is analogous to the proof of i) noting that A is skew-Hermitian and

that B is Hermitian. The proof of iii) follows from ii) and Proposition 5.

The intersections of algebras with groups again does not give any particular structure,

so it remains to discuss the �nal class which motivated our interest in analyzing multi-

structured matrices. Matrices from the set

H

2n

\ C

n;n

=

("

A B

�B �A

#

: A = A

H

; B = B

H

)

(35)

arise in linear response theory in quantum chemistry [11, 12, 24]. By de�nition, similarity

transformations with matrices from O

n;n

\ Sp

2n

will preserve the structure. The elements

of H

2n

have the eigenvalue-symmetry '�;��' while we �nd the eigenvalue-symmetry '�; �'

for the matrices from C

n;n

. Therefore the eigenvalues of M 2 H

2n

\ C

n;n

will occur in

quadruples '�;��; �;��' unless � is real or purely imaginary. So we expect 4 � 4-blocks

to occur in Schur-like forms for these matrices. Before we formulate the main result let us

state some properties of the matrices under consideration.

Proposition 14 LetM =

"

A B

�B �A

#

2 H

2n

\C

n;n

, let x =

"

x

1

x

2

#

6= 0, with x

1

; x

2

2 C

n

,

be an eigenvector of M associated with the eigenvalue � of M and let y :=

"

x

2

x

1

#

. Then

1. y is an eigenvector of M associated with the eigenvalue ��.

2.

h

x

H

2

�x

H

1

i

is a left eigenvector of M associated with the eigenvalue ��.

3. If � is not purely imaginary, then x

H

2

x

1

� x

H

1

x

2

= 0.

4. M(x + y) = �(x� y) and M(x� y) = �(x+ y).

5.

"

ix

1

+ x

2

ix

2

+ x

1

#

is an eigenvector of

"

B A

�A �B

#

associated with the eigenvalue i�.

Proof. 1., 2., 4. and 5. are easy to verify. Furthermore we have by 2. that

�(x

H

2

x

1

� x

H

1

x

2

) = �

h

x

H

2

�x

H

1

i

"

x

1

x

2

#

16



=

h

x

H

2

�x

H

1

i

"

A B

�B �A

# "

x

1

x

2

#

= ��

h

x

H

2

�x

H

1

i

"

x

1

x

2

#

= ��(x

H

2

x

1

� x

H

1

x

2

);

i.e., (�+ �)(x

H

2

x

1

� x

H

1

x

2

) = 0.

Theorem 15

i) For each M 2 H

2n

\ C

n;n

, there exists

^

Q 2 Sp

2n

\ O

n;n

such that the matrix

^

Q

�1

M

^

Q =

2

6

6

6

6

6

6

6

6

6

6

6

6

6

6

6

4

A

11

A

12

� � � A

1k

B

11

B

12

� � � B

1k

A

21

A

22

� � � A

2k

B

21

B

22

� � � B

2k

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

A

k1

A

k2

� � � A

kk

B

k1

B

k2

� � � B

kk

�B

11

�B

12

� � � �B

1k

�A

11

�A

12

� � � �A

1k

�B

21

�B

22

� � � �B

2k

�A

21

�A

22

� � � �A

2k

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

�B

k1

�B

k2

� � � �B

kk

�A

k1

�A

k2

� � � �A

kk

3

7

7

7

7

7

7

7

7

7

7

7

7

7

7

7

5

;

with A

ij

; B

ij

2 C

n

i

�n

j

and n

i

; n

j

2 f1; 2g, has the following properties:

1. The eigenvalues of M are the eigenvalues of the matrix obtained by deleting all the

o�-diagonal blocks in A = [A

ij

] and B = [B

ij

].

2. If n

i

= 1, then the eigenvalues of

"

A

ii

B

ii

�B

ii

�A

ii

#

are �

q

A

2

ii

� B

2

ii

. In particular

these eigenvalues are both real or both purely imaginary.

3. If n

i

= 2, let m

a

denote the (1; 2) element of A

ii

and m

b

denote the (1; 2) element

of B

ii

. Then the eigenvalues of

"

A

ii

B

ii

�B

ii

�A

ii

#

are either m

a

�m

b

and �m

a

�m

b

,

where m

a

is real and m

b

is purely imaginary, or �im

b

, where m

b

is real.

ii) Let M 2 SH

2n

\ A

n;n

= f

"

A B

�B �A

#

: A = �A

H

; B = �B

H

g. Then there exists

^

Q 2 Sp

2n

\ O

n;n

, such that the matrix

^

Q

�1

M

^

Q =

2

6

6

6

6

6

6

6

6

6

6

6

6

6

6

6

4

A

11

A

12

� � � A

1k

B

11

B

12

� � � B

1k

A

21

A

22

� � � A

2k

B

21

B

22

� � � B

2k

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

A

k1

A

k2

� � � A

kk

B

k1

B

k2

� � � B

kk

�B

11

�B

12

� � � �B

1k

�A

11

�A

12

� � � �A

1k

�B

21

�B

22

� � � �B

2k

�A

21

�A

22

� � � �A

2k

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

�B

k1

�B

k2

� � � �B

kk

�A

k1

�A

k2

� � � �A

kk

3

7

7

7

7

7

7

7

7

7

7

7

7

7

7

7

5

;
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with A

ij

; B

ij

2 C

n

i

�n

j

and n

i

; n

j

2 f1; 2g, has the following properties:

1. The eigenvalues of M are the eigenvalues of the matrix obtained by deleting all the

o�-diagonal blocks in A = [A

ij

] and B = [B

ij

].

2. If n

i

= 1, then the eigenvalues of

"

A

ii

B

ii

�B

ii

�A

ii

#

are A

ii

� B

ii

. In particular these

eigenvalues are both purely imaginary or both real.

3. If n

i

= 2, let m

a

and m

b

denote the (1; 2)-element of A

ii

and B

ii

, respectively. Then

the eigenvalues of

"

A

ii

B

ii

�B

ii

�A

ii

#

are either m

a

�m

b

and �m

a

�m

b

, where m

a

is

purely imaginary and m

b

is real, or �m

b

, where m

b

is real.

Proof. i) Let M =

"

A B

�B �A

#

with A

H

= A;B

H

= B 2 C

n�n

and let

"

x

1

x

2

#

6= 0,

with x

1

; x

2

2 C

n

, be an eigenvector of M associated with the eigenvalue �. We will use

transformation matrices that are either of the form

"

Q 0

0 Q

#

with Q 2 O

n

or hyperbolic

rotations H

n

(c; s) with c; s 2 R. We have to distinguish two cases:

1. x

1

and x

2

are linearly dependent. If we assume w.l.o.g. that x

1

6= 0, then there exists

 2 C such that x

2

= x

1

. (In the case x

1

= 0 we consider

"

x

2

x

1

#

and ��, according

to Proposition 14.1.)

Let e

(n)

i

denote the i-th unit vector in C

n

, and choose a unitary matrix Q 2 O

n

such

that Q

H

x

1

= �e

(n)

1

, where � 6= 0. Then we obtain

Q

H

x

2

= �e

(n)

1

;

and hence we have

~

M =

"

Q 0

0 Q

#

H

M

"

Q 0

0 Q

#

=

2

6

6

6

4

m

a

y

H

a

m

b

y

H

b

y

a

M

a

y

b

M

b

�m

b

�y

H

b

�m

a

�y

H

a

�y

b

�M

b

�y

a

�M

a

3

7

7

7

5

where m

a

; m

b

2 C and M

a

;M

b

2 C

(n�1)�(n�1)

. Since e

(2n)

1

+ e

(2n)

n+1

is an eigenvector of

~

M associated with the eigenvalue �, we have

m

a

(1� 

2

) = (1 + 

2

)� and (1� 

2

)y

a

= 0:

(a) If 

2

= 1, i.e.,  = �1, then � = 0 and

m

a

+ m

b

= 0 and y

a

+ y

b

= 0:
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Hence, using

S :=

2

6

6

6

4

1 0 0 0

0 I

n�1

0 0

 0 1 0

0 0 0 I

n�1

3

7

7

7

5

we obtain

S

�1

~

MS =

2

6

6

6

4

0 y

H

a

m

b

y

H

b

0 M

a

y

b

M

b

0 0 0 0

0 �M

b

�y

a

�M

a

3

7

7

7

5

;

i.e., the spectrum of

~

M is the union of the spectra of

"

m

a

m

b

�m

b

�m

a

#

and

"

M

a

M

b

�M

b

�M

a

#

:

(b) If 

2

6= 1, then

"

1



#

and

"



1

#

are linearly independent and by Proposition 14.1

they are eigenvectors of

"

m

a

m

b

�m

b

�m

a

#

associated with the eigenvalues � and

��. Forming

S :=

2

6

6

6

4

1 0  0

0 I

n�1

0 0

 0 1 0

0 0 0 I

n�1

3

7

7

7

5

;

we obtain

S

�1

~

MS =

2

6

6

6

4

� � 0 �

0 M

a

0 M

b

0 � �� �

0 �M

b

0 �M

a

3

7

7

7

5

;

i.e., the spectrum of

~

M is the union of the spectra of

"

m

a

m

b

�m

b

�m

a

#

and

"

M

a

M

b

�M

b

�M

a

#

: Since

"

m

a

m

b

�m

b

�m

a

#

2 H

2

\ C

1;1

, we �nd by symmetry that

� must be real or purely imaginary.

2. If x

1

and x

2

are linearly independent, (i.e., in particular n � 2), then this also holds

for x

1

+ �x

2

and x

1

� �x

2

, where � 6= 0.

(a) If � is not purely imaginary then we have by Proposition 14.3. that x

H

2

x

1

�

x

H

1

x

2

= 0. Therefore, � =

r

x

H

1

x

1

x

H

2

x

2

2 R yields

(x

1

+ �x

2

)

H

(x

1

� �x

2

) = x

H

1

x

1

� �

2

x

H

2

x

2

+ �(x

H

2

x

1

� x

H

1

x

2

) = 0:
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Consequently there exists Q 2 O

n

such that

Q

H

(x

1

+ �x

2

) = �

1

e

(n)

1

and Q

H

(x

1

� �x

2

) = �

2

e

(n)

2

;

where �

1

and �

2

are positive and w.l.o.g. �

1

� �

2

(otherwise we exchange the

�rst two columns of Q). Considering

~

M =

"

Q 0

0 Q

#

H

M

"

Q 0

0 Q

#

=

2

6

6

6

4

m

a

� m

b

�

� M

a

� M

b

�m

b

� �m

a

�

� �M

b

� �M

a

3

7

7

7

5

;

with m

a

; m

b

2 C

2�2

and M

a

;M

b

2 C

(n�2)�(n�2)

, we see that �

1

e

1

+ �

2

e

2

+

�

1

�

e

n+1

�

�

2

�

e

n+2

is an eigenvector of

~

M associated with the eigenvalue �:

~

M(�

1

e

1

+ �

2

e

2

+

�

1

�

e

n+1

�

�

2

�

e

n+2

)

=

"

Q 0

0 Q

#

H

M

"

x

1

+ �x

2

+ x

1

� �x

2

1

�

x

1

+ x

2

�

1

�

x

1

+ x

2

#

=

"

Q 0

0 Q

#

H

M

"

2x

1

2x

2

#

= �

"

Q 0

0 Q

#

H

"

2x

1

2x

2

#

= �(�

1

e

1

+ �

2

e

2

+

�

1

�

e

n+1

�

�

2

�

e

n+2

):

i. If � 6= 1, there are hyperbolic rotations

"

c

i

s

i

s

i

c

i

#

, i = 1; 2, such that

"

c

1

s

1

s

1

c

1

# "

�

1

�

1

�

#

=

"

~�

1

0

#

and

"

c

2

s

2

s

2

c

2

# "

�

2

�

�

2

�

#

=

"

~�

2

0

#

:

Since �

1

; �

2

; � 2 R, we can choose c

i

and s

i

to be real. Transforming

~

M and

the eigenvector associated with � analogously, we have reduced the problem

to the case 1.(b). In particular it follows that � is real or purely imaginary.

ii. If � = 1, there exist no hyperbolic rotation as before. Then let m

a

:=

"

m

a1

m

a2

m

a2

m

a3

#

and m

b

:=

"

m

b1

m

b2

m

b2

m

b3

#

: The relevant eigenvector is e

1

+

e

2

+e

n+1

�e

n+2

, because � = 1 yields �

1

= �

2

. Thus, using Proposition 14.4

we obtain:

2

6

6

6

4

m

a1

m

a2

m

b1

m

b2

m

a2

m

a3

m

b2

m

b3

�m

b1

�m

b2

�m

a1

�m

a2

�m

b2

�m

b3

�m

a2

�m

a3

3

7

7

7

5

2

6

6

6

4

1

0

1

0

3

7

7

7

5

= �

2

6

6

6

4

0

1

0

�1

3

7

7

7

5
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and

2

6

6

6

4

m

a1

m

a2

m

b1

m

b2

m

a2

m

a3

m

b2

m

b3

�m

b1

�m

b2

�m

a1

�m

a2

�m

b2

�m

b3

�m

a2

�m

a3

3

7

7

7

5

2

6

6

6

4

0

1

0

�1

3

7

7

7

5

= �

2

6

6

6

4

1

0

1

0

3

7

7

7

5

:

In particular we have m

a2

+m

b2

= � and m

a2

�m

b2

= �, i.e., m

a2

is real

and m

b2

is purely imaginary. If m

a2

m

b2

6= 0 it follows that � is neither

real nor purely imaginary, so the eigenvalues of

"

m

a

�m

b

m

b

�m

a

#

are �;��; �

and ��. This also holds in the case that m

a2

m

b2

= 0, since the eigenvalues

depend continuously on the entries of a matrix and, and replacing m

a2

by

m

a2

+ "

a

and m

b2

by m

b2

+ i � "

b

, respectively, where "

a

; "

b

2 R, does not

change the eigenvector

h

1 1 1 �1

i

H

. Forming the unitary matrix

S := [s

1

� � � s

2

n

] =

1

2

2

6

6

6

6

6

6

6

6

4

1 1 0 1 �1 0

1 1 0 �1 1 0

0 0 I

n�2

0 0 0

1 �1 0 1 1 0

�1 1 0 1 1 0

0 0 0 0 0 I

n�2

3

7

7

7

7

7

7

7

7

5

and noting that according to Proposition 14 1. the columns s

1

and s

n+1

are right eigenvectors of

~

M associated with the eigenvalues � resp. �� and

according to Proposition 14 2. the columns s

2

and s

n+2

are left eigenvectors

of

~

M associated with the eigenvalues �� and �, we obtain

S

�1

~

MS =

2

6

6

6

6

6

6

6

6

6

6

6

6

6

4

� �
� �

0 �
� �

0 ��
0 0

0 0
0 0

0

0

�

�

M

a

0

0

�

�

M

b

0 �
� �

�� �
� �

0 0
0 0

0 �
0 0

0

0

�

�

�M

b

0

0

�

�

�M

a

3

7

7

7

7

7

7

7

7

7

7

7

7

7

5

;

i.e., the spectrum of

~

M is the union of the spectra of the 4 � 4 matrix

"

m

a

m

b

�m

b

m

a

#

and

"

M

a

M

b

�M

a

�M

b

#

.

(b) If � = �i� is purely imaginary, then it follows from Proposition 14 5. that

"

ix

1

+ x

2

ix

2

+ x

1

#

is an eigenvector of

"

B A

�A �B

#

associated with the eigenvalue �.

Transforming this matrix as in the case 2.(a), yields analogous results for M ,
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since we have for all transformations

"

U V

V U

#

2 O

n;n

\ Sp

2n

that

"

U V

V U

# "

A B

�B �A

# "

U

H

�V

H

�V

H

U

H

#

=

"

S �T

T S

#

,

"

U V

V U

# "

B A

�A �B

# "

U

H

�V

H

�V

H

U

H

#

=

"

T �S

S T

#

:

Note that the element m

b

in the case 2.(a) is now real.

In all cases we have

"

M

a

M

b

�M

b

�M

a

#

2 H

2k

\ C

k;k

with k = n � 1 or k = n � 2. So the

proof follows by induction.

The proof for ii) follows directly from Proposition 5.

Remark 16 In general the remaining 4�4-blocks in Theorem 15 cannot be divided further

into two 2� 2-blocks. This is possible only if the eigenvalues are real or purely imaginary.

Remark 17 As we see from the proof of Theorem 15, the only time we need hyperbolic

rotations is when we want to split certain 4� 4-blocks into two 2� 2-blocks. That means

that we are able to achieve a Schur-like form whose eigenvalues are displayed by at most

4 � 4-blocks by using only unitary transformations. This result does not hold in the real

case.

6 Conclusions

We have discussed Schur-like forms for matrices with one or more algebraic structures

arising from a classical Lie group, Lie algebra or Jordan algebra. In all cases we obtain a

structured Schur-like form that displays all the eigenvalues. In particular, we have obtained

such Schur-like forms for multi-structured matrices which arise in quantum chemistry.
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