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Abstract

Continuing the previous work in [4] done for the 2D-approach in this paper we

describe the Yserentant preconditioned conjugate gradient method as well as the

BPX{preconditioned cg{iteration fastly solving 3D-elliptic boundary value problems

on unstructured quasi uniform grids. These arti�cially constructed hierarchical meth-

ods have optimal computational costs. In the case of the sequential computing

several numerical examples demonstrate their e�ciency not depending on the �nite

element types used for the discretiziation of the original potential problem. More-

over, implementing the methods in parallel �rst results are given. Our solution

strategy can be of enormous importance in the industrial engineering, when often

only the nodal coordinates and the element connectivity of the underlying (�ne)

discretization are available.
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1 Introduction

We want to solve the following threedimensional boundary value problem having the

formally selfadjoint di�erential operator L in the domain 
, where Dirichlet as well as

Neumann boundary conditions may be imposed on its boundary @
.

L u = f in 
 � R

3

l u = g on @
 = �

Discretizing the problem e.g. by means of the �nite element method �nally we get a large

scale system of linear algebraic equations

K u = f ;

where K is the symmetric and positive de�nite sti�ness matrix and f the given right hand

side vector.

Our aim is the e�cient numerical solution of the system by hierarchical methods,

although, in practice, we have its unstructured discretization available only. For the 2D-

case, in [4, 8] we determined the structured auxiliary problem into which the original one

can be embedded. Introducing an operator R we de�ned the one-to-one correspondence

between the N nodes of the unstructured quasiuniform mesh 


h

and the nodes of the

hierarchically discretized square �

h

de�ning the �ctitious space. It is easy to see that

the approach can be straightforwardly transfered to 3D-problems. Here, we embed the

unstructured threedimensional mesh into the hierarchically discretized cube �

h

consisting

of 2

3J

congruent subcubes D

ijk

; i; j; k = 1; 2; : : : ; 2

J

which belong to the level J , where

J = 0; 1; 2; : : : is a positive integer to be �xed. Hence, this structured hexahedral grid has

L

3

nodal points, where L = 2

J

+ 1 is valid. The side length

�

h of the subcubes D

ijk

is

chosen appropriately such that every subcube contains at least one vertex of the original

grid 


h

consisting of N grid points. We set

�

h < (2

p

3)

�1

min(d

i

) ; i = 1; 2; : : : ; N , where

d

i

represents the maximum of the radii of balls that may be inscribed into the union of

�nite elements having the i-th node in common. The side length l of the cube � which

must contain the grid 


h

ful�ls

�

h = l 2

�J

chosing the depth J as small as possible. The

minimum union of subcubes D

ijk

� �

h

encompassing the unstructured grid 


h

is called

the step form approximation Q

h

. Using the grids 


h

and Q

h

, now we are able to de�ne

corresponding �nite element spaces for applying the �ctitious space lemma. Finally, by

means of this lemma we derive the corresponding spectral equivalence inequality describ-

ing the preconditioning property of the arti�cially constructed hierarchical preconditioner

belonging to the auxiliary grid points.

Considering the e�ect of our preconditioning we get the following result which was

proved in [8] taking distinct boundary conditions imposed on the approximate boundary

�

h

of the domain 
 into account. There are positive constants c

1

and c

2

independent of

the mesh size parameter h such that

c

1

(K

�1

u; u) � (C

�1

�

h

;bc(�

h

)

R

�

u;R

�

u) � c

2

(K

�1

u; u)

is ful�lled for all vectors u 2 R

N

belonging to the original discretization. For simplicity

here we identify the number of unknowns (dof) with the number N of vertices in the

unstructured grid 


h

. The underlying theory is presented in detail e.g. in [7, 9] and the

references therein. Provided that scalar computing runs the mentioned papers prove the

convergence rate of the iterative process to be as fast as it is the case for the conventional

hierarchical solution method, i.e., it is (nearly) independent of the mesh size. Performing
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the BPX{preconditioning arti�cially within the cg{iteration process the condition number

of the operator RC

�1

�

h

R

�

K is of order O(1). In the case of the arti�cially constructed

Yserentant preconditioning we may have the condition number �(RC

�1

�

h

R

�

K) = O(2

J

).

In the next section we discuss essential aspects of the numerical implementation

of the new hierarchical methods arti�cially constructed. We do it in the case of the

Yserentant preconditioning (artYs) as well as in the more important case of the arti�cial

BPX-preconditioner (artBPX).

In the last section we illustrate the e�cient implementation of the two hierarchical

preconditioners computing several 3D{potential problems discretized using unstructured

tetrahedral and hexahedral grids. Moreover, in the case of the tetrahedral grids we are

able to compare the arti�cially constructed hierarchical iteration based on the canoni-

cally performed re�nement of the coarse and structured user triangulation with the same

method using really unstructured �ne grids generated by an advancing front mesh gen-

erator described in [3]. Finally, �rst numerical results of the parallel implementation of

our approach are given, where the corresponding numerical analysis is yet under consid-

eration. The iteration numbers are satisfactory although the unfair comparison with the

parallelized structured methods is rather bad. The basis of the implementation of the

unstructured parallel solvers is a non-overlapping domain decomposition data structure

(see e.g. [5]) such that they are well-suited for parallel machines with MIMD{architecture.

This section is also an impressive performance to demonstrate the practical importance

of the designed methods. Often in the industrial engineering boundary value problems

have to be solved, where a (rather) �ne mesh of the domain and the discretization concept

are given sometimes already resulting in the corresponding system of equations. But no

fast hierarchical solver can be applied because nothing is known about the grid structure.

Using our approach this bottleneck isn't any more.

To do it in advance the following survey sums up both the advantages (marked by "+")

and the shortcomings (marked by "-") of the method.

+ Concerning the iteration number we got a robust approach for solving partial dif-

ferential equations e�ciently on sequential computers having the good convergence

property of the preconditioned cg-iteration.

+ Based on the modular toolkit the implementation of the method into available

software packages is easy, especially in comparison with algebraic multigrid.

+ The solution strategy is also of considerably practical importance in engineering.

+ The discretization of the original problem can be performed independent of the

method. Above all, various types of �nite elements can be used.

- The memory size additionally required for the method is not negligible especially in

the case when the unstructured mesh tends to lose the quasiuniformity. Moreover,

the more the quasiuniformity is deteriorated progressively the more the iteration

number of our method does increase.

- The computation of the step form approximation and the construction of long BPX-

lists do substantially enlarge the CPU-time really needed.

- Having interface problems the fast convergence speed is injured.

- Up to now the convergence property of the implemented parallel version of our

method is not satisfactory enough.
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2 Aspects of the numerical implementation

Using the number marks in the following commando tool picture we describe the new

algorithmic components and their cooperation. Furthermore, we get insight into the

handling with our method completing the program package SPC-PMPo 3D, see [1, 2].

run -f2 2 2 tet.ppc

run : Creating 2 * 2 descriptor by calling mkdesc.

run : Starting D-Server at mordred link 2.

# ############################################################# #

# #

# SSSS PPPPP CCCC PPPPP M M PPPPP 333 #

# SS SS PP PP CC CC PP PP MM MM PP PP 33 33 #

# SS PP PP CC PP PP MMM MMM PP PP 33 #

# SSSS PPPPP CC ### PPPPP MM MMM MM PPPPP OOO 333 #

# SS PP CC PP MM M MM PP OO OO 33 #

# SS SS PP CC CC PP MM MM PP OO OO 33 33 #

# SSSS PP CCCC PP MM MM PP OOO 333 #

# #

# ############################################################# #

# #

# Programm-Modul 3D-Potentialprobleme #

# Version: 3.20 #

# #

# DFG-Forschergruppe "SPC" #

# TU Chemnitz-Zwickau, Fakultaet fuer Mathematik #

# #

# Th.Apel, A.Meyer, M.Meyer, F.Milde, M.Pester, M.Thess #

# #

# 16-MB-Variante ( 3500000 Worte) - bis zu 1024 Prozessoren #

# in Benutzung: 4 Prozessor(en) #

# Gelinkt mit bsp.z #

# #

# ############################################################# #

****************************************************

* Belegung der Steuerparameter *

* (kann mittels File control.tet angepasst werden) *

****************************************************

* *

* vertvar = 2 lin_quad = 1 *

* nen2d = 3 nen3d = 4 *

* femakkvar = 3 loesvar = 5 *

* nint2ass = 34 nint3ass = 121 *

* nint2error = 34 nint3error = 531 *

* iter = 500 epsilon = 0.10E-05 *

* ion = 10 ndiag = 150 *

* *

* Verzeichnis fuer Netze : mesh3/ *

****************************************************

Filename: r1c48

GEWUENSCHTE ZAHL VON VERFEINERUNGSSCHRITTEN

-1 = NEUES NETZ

-2 = PROGRAMM BEENDEN

EINGABE : 2

EINLESEN DER NETZDATEN AUS : mesh3/r1c48.std

Version 2.0 files sind noch in der Testphase,

Bei Problemen bitte umgehend bei mir melden (Dag)

Wuerfel, Kantenlaenge 2, unten spring. Dirichlet
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Gerhard Globisch

24.02.1995

POISSON

XDB

3D

data_read done

No error

EINLESEN BEENDET, IER= 0

VERTEILUNG DER TETRAEDER DURCH REKURSIVE SPEKTRALBISEKTION.

Anzahl der Elemente in den Prozessoren:

24 24 24 24

12 12 12 12

==> in 4 Tetr. 4-mal Flaechen getauscht.

NETZ VERFEINERT VFS=1

NETZ VERFEINERT VFS=2

************************************************************

** AUSGABEMENUE **

************************************************************

* 0 : WEITER *

* 4 : AUSGABE DER NETZDATEN *

* 5 : AUSGABE DER RANDKETTENDATEN *

* 8 : AUSGABE DER NETZDATEN IN STANDARDFILE *

************************************************************

-> EINGABE : 0

***********************************************************

Wollen Sie das Globisch-Nepomnyaschikh-Verfahren? (1)

(Geben Sie j/J/y/Y oder n/N ein) ----->j

1: full auxiliary hexahedral grid version?

2: auxiliary tetrahedral grid version?

(Bitte geben Sie 1 oder 2 ein) ------->1

Mehrprocessorverarbeitung: Wollen Sie viele Ausgaben? (2)

(Geben Sie j/J/y/Y oder n/N ein) ----->n

***********************************************************

ICH = 0: h_max / h_min = 1.732051

Faktor > 0 eingeben ( = 1 ?) --->2 (3)

ICH = 0 distmin = 0.250000E+00 J = 3 L = 9

ICH = 0 xedge = 0.000000E+00 0.000000E+00 0.000000E+00

Statt Hilfswuerfel ein Hilfsquader gewuenscht? (4)

(Geben Sie j/J/y/Y oder n/N ein) ----->n

************************************************************

** AUSGABEMENUE **

************************************************************

* 0 : WEITER *

* 1 : 3D-GRAFIK MIT GRAPE *

* 2 : 2D-GRAFIK SCHNITT/OBERFLAECHE *

* 4 : AUSGABE DER NETZDATEN *

* 5 : AUSGABE DER RANDKETTENDATEN *

************************************************************

-> EINGABE : 0

START GENERIEREN/ASSEMBLIEREN

Zeiten fuer Warten+Kommunikation [s]
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Prozessor

log. /phys. input : in % : output: in % : gesamt:

0 0 0 0.00 0.00 0.00 0.00 0.15

1 1 0 0.00 0.00 0.00 0.00 0.15

2 0 1 0.00 0.00 0.00 0.00 0.15

3 1 1 0.00 0.00 0.00 0.00 0.15

reine Arithmetikzeit (max): 0.15

Display: PseudoColor *** 0 colors allocated ***

ASSEMBLIEREN BEENDET

* Probleminformationen (lokal Prozessor P):

- globale Anzahl Crosspoints : 27

- Anzahl der Knoten (lokal) : 225

- davon: lok. Crosspoints : 12

Summe der Randketten : 201

Koppelknoten : 213

innere Knoten : 12

- Anzahl der Koppelkanten : 33

- Anzahl der Koppelflaechen : 34

* Probleminformationen ( global ):

- Anzahl der Prozessoren: 4

- Anzahl der Knoten : 729

- davon : Koppelknoten : 681

- interne Knoten : 48

-> Gesamtanzahl der Freiheitsgrade : 729

* Start der Simulation: Vorkonditionierung Nr. 5

<enter> v (5)

neue Variante=2

<enter>

Wuenschen Sie die Betrachtung der BC im Traeger? (6)

(Geben Sie j/J/y/Y oder n/N ein (=n?)) -->n

Geben Sie rmult fuer R^T ein (=0?) --->0 (7)

Aufbau der Stufenapproximation; bitte warten. (8)

ICH: 0 card(Q^h) = 235 card(eps) = 628

Schichtvisualisierung der Stufenapproximation. (9)

(weiter bei Eingabe von ilevel <=0)

Eingabe Prozessornummer; ilevel ======> 0 0

L^3 = 2916 Sigma[card(Q^h)] = 920 (10)

dof(L^3) = 2916

IT (r,w) (As,s) ALFA BETA Eta

1 3.235708E+06 7.707548E+06 -4.198103E-01 0.000000E+00 1.00

10 1.187671E+05 2.297546E+05 -5.169301E-01 7.359730E-01 0.69

20 5.360262E+02 8.915826E+02 -6.012076E-01 6.089517E-01 0.63

30 1.877404E+00 2.250594E+00 -8.341817E-01 6.308484E-01 0.61

40 2.859391E-03 4.739238E-03 -6.033442E-01 5.265399E-01 0.59

50 4.064511E-06 5.393838E-06 -7.535470E-01 4.730400E-01 0.57

IT= 51

Zeiten fuer Warten+Kommunikation [s]

Prozessor

log. /phys. input : in % : output: in % : gesamt:

0 0 0 0.40 28.32 0.30 21.35 1.41

1 1 0 0.36 25.43 0.57 40.01 1.41

2 0 1 0.35 24.60 0.59 41.87 1.41

3 1 1 0.41 28.77 0.66 47.00 1.41

reine Arithmetikzeit (max): 0.71
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************************************************************

** AUSGABEMENUE **

************************************************************

* 0 : WEITER *

* 1 : 3D-GRAFIK MIT GRAPE *

* 2 : 2D-GRAFIK SCHNITT/OBERFLAECHE *

* 4 : AUSGABE DER NETZDATEN *

* 5 : AUSGABE DER RANDKETTENDATEN *

* 6 : AUSGABE DER LOESUNG *

* 7 : AUSGABE VON FEHLERNORMEN *

************************************************************

-> EINGABE : 0

GEWUENSCHTE ZAHL VON VERFEINERUNGSSCHRITTEN

-1 = NEUES NETZ

-2 = PROGRAMM BEENDEN

EINGABE : -2

(1) After the method for performing the hierarchical preconditioning arti�cially is or-

dered at the beginning the user is asked for determining the structure of the auxiliary

hierarchical grid. The option "1" is used for generating the hierarchical list of the

hexahedral grid later having the mesh size

�

h, where the parameter LC DAT included

by the �le net3ddat.inc is equal to zero. The option "2" produces the hierarchi-

cal list of the correspondingly de�ned auxiliary tetrahedral grid. In this case the

parameter LC DAT is equal to one. The numerical results belonging to the "2"{

option are always a bit worser than in the "1"{case. Furthermore, regarding the

iteration numbers sometimes the "1"-results were even better than the results got

by the conventionally hierarchical method on tetrahedral grids used for the unfair

bracket{comparison given in the tables of the last section.

The points of the grids �

h

are numbered linewise from the left to the right starting

from the plane below in front going backwards ending at the plane above. The

memory size needed to store their auxiliary hexahedral Yserentant{list is equal

to L

3

+ 3L

2

J�1

(L

J�1

� 1) � 3 + 3L

J�1

(L

J�1

� 1)

2

� 5 + 2

3(J�1)

� 9 and L

3

+ L

3

� 4

otherwise, where L

J�1

= 2

(J�1)

+1. In both cases the above memory size is consisted

of the description vector with L

3

components and the entries de�ned by son{father{

relations. Having the auxiliary hexahedral mesh there are grid points possessing 2

and 4 and 8 fathers, respectively, whereas in the tetrahedral mesh the grid point

has at least 2 fathers. The corresponding BPX{lists have equivalent lenghts. When

the user gives standard input or v = 4 at stage (5) the BPX{list is automatically

generated from the Yserentant{list. The message about the corresponding process

in action is delivered near the stage (9).

(2) When the parallel version of the program runs a lot of output information belonging

to that what happens at each of the used processors can be avoided.

(3) By this real value input the user manipulates the computed depth J of the auxiliary

grid. Stretching the corresponding parameter

�

h by the given factor the default is

equal to one. Computing in parallel the formal zero input does allow to set sin-

gle input speci�cally for each processor. Sometimes factors equal to two or to other

powers of two help to reduce the required memory size. If the factor was de�ned too

large at the stage (8) the program will warn of violating the one{to{one correspon-

dence between the points in the unstructered and the auxiliary structured grid. The

given output distmin is equal to the parameter

�

h, where the corresponding depth J is

added. The tripel (x

m

; y

m

; z

m

) of real values listed here using the denotation xedge

is de�ned as follows: (x

m

; y

m

; z

m

) = f(min(x);min(y);min(z)) ; (x; y; z) 2 �g,

where the auxiliary cube / cuboid � is already centered w.r.t. the domain 
.
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(4) Instead of the hierarchical cube �

h

the user may order an auxiliary cuboid, which

can be useful especially in such cases when the three coordinate range expansions

of the domain 
 di�er from each other considerably, where the unstructered grid




h

inside is correspondingly discretized by relatively longish and thin elements,

respectively. In this case three output parameter distx, disty distz describing the

edge lengths of the cell cuboid are given.

(5) Because no coarsest grid is available when the unstructured method is applied in

parallel, the types v = 3 and v = 5 which initialize the preconditioning at the cross

points directly solving the corresponding system are automatically switched to 2

(artYs-method) and 4 (artBPX-method), respectively.

(6) According to the theoretical approach given in [4, 8] the hierarchical preconditioner

is de�ned distinctly taking the boundary conditions into account when throughout

the auxiliary constructed grid hierarchy the supports of the corresponding grid func-

tions are considered w.r.t. the discrete boundary �

h

. At the given stage the user

may order the option which is numerically expensive. Doing so, often it does not

improve the convergence behaviour. However, the corresponding subroutine is not

yet fully developed for the general case of having arbitrary shape of 
 including the

boundary.

(7) The input value in
uences the construction of the step form approximation. More-

over, it weights the Jacobi- preconditioning matrix speci�cally. The default (rmult

=0) gives order for performing the Jacobi-preconditioning as well known, cf. [4]. In

most cases by this option we get a good result. However, computing linear elasticity

problems often rmult = 2.2 was the better parameter especially in the case of the

artBPX-method.

(8) Here, using the arti�cial grid �

h

the step form approximation Q

h

encompassing the

unstructured mesh 


h

is computed for de�ning the Jacobi- preconditioning matrix,

cf. [4]. Relating it to the corresponding processor the output information includes

the number card(Q

h

) of points in Q

h

and the total number card(eps) of "critical"

decisions made in the immediate neighbourhood of the element boundaries @e

h

.

(9) By means of the little tool behind the given stage the user can get insight into the

step form approximation of the domain 
 visualizing cross sections of �

h

vertically

de�ned throughout this auxiliary grid inside the cube. The �rst integer input is the

number of the processor containing parts of the discretization when we do compute

in parallel. The second number k ; k = 1; 2; : : : ; L determines the location of the

cross section through �

h

de�ned from below to above w.r.t. the z-direction. When

this number is speci�ed less than zero the program is continued.

(10) The number L

3

of grid points in �

h

as well as the total number of points in Q

h

are

given. In the case of the artBPX-method the number L

3

(BPX) of list{components

is added. The corresponding number of unknowns dof(L

3

) included in the long

correction vector v completes the output data. In the parallel case these values

are the corresponding maxima after the cubedo-operation is done throughout the

processors.

Additionally considering the algoritmic description in the next section the number of

numerical operations hidden in (1){(10) is equivalent to the number N of unknowns be-

longing to the original discretization. Thus, we may conclude as follows: In the case of

"artYs" as well as in the case of "artBPX" the preconditioner has an optimal computa-

tional cost, i.e. the number of arithmetic operations required for their implementation is

proportional to the number of unknowns in the problem.
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3 Short description of the modular toolkit

The picture gives the connexion of the new subroutines included in the libraries of the

program package SPC-PMPo 3D to make the "Globisch-Nepomnyaschikh"-preconditioner

available. Most of them complete the source code in the subdirectory Solve, cf. [1, 2].

Sometimes the presented subroutine calls further subroutines which are not outlined since

their task is not so essential.

PFEM

GGINPUT

DISTDEFfT,Qg

CUBEDEF

LOCPRE3D

ASSLOES

PPCGV PPCGN

GLOVOR

POINTLOCfT,Qg

DIPOINT3

EXTRDEF + SGESV

CDEFfA,fT,QgIg

QHCLOSED

NEPVOR

SUPPORT

HB2BPXGG

SETBCINC

CWEIGHT

NEPLOES

GLOCOM RTRANSFER RREVERS

Figure 1: Scheme of new routines called by the main program PFEM and by ASSLOES

In the following the short decription of the new routines let be given. The subroutine

GGINPUT asks for the "Globisch-Nepomnyaschikh"-preconditioner and reads a

few initial input for if it is selected. The user may specify whether the auxiliary grid

hierarchy should be either of hexahedral (input 1) or tetrahedral (input 2) kind.

DISTDEFfT,Qg computes the mesh size parameter

�

h both in the case T of an

unstructured tetrahedral grid and in the caseQ of an unstructured hexahedral mesh.

Taking the vertices of the tetrahedron the perpendiculars w.r.t. the opposite face

are used for de�ning the distance between the vertex and the face in each case. For

all of the tetrahedra searching the minimum d of the distances the parameter

�

h is

de�ned to be

�

h =

p

3 d=2. Having unstructured hexahedral meshes at �rst each of

the hexahedra is devided up into six auxiliary tetrahedra to be concerned as above

for computing the parameter

�

h. To become more robust manipulating with the
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auxiliary grid size parameter the user can specify a factor for multiplying

�

h with.

For saving memory size, often the factor may be larger than one without disturbing

the one to one correspondence between the grid points of the unstructured mesh

and those of the auxiliary hexahedral mesh. Running the program we get notice

when the factor is too large and the mapping is violated.

CUBEDEF de�nes the auxiliary cube encompassing the unstructured mesh. The

length l of the cube side is calculated taking the parameter

�

h and the appropriately

chosen depth J of the auxiliary hexahedral grid inside into account such that we

have

�

h = l 2

�J

. Moreover, the location of the cube is centered w.r.t. the x, y, and

z ranges of the original domain. Instead of the cube, the user is asked for a cuboid

encompassing the mesh as above and having the maximum side length l. The side

lengths of the cuboid are set according to the coordinate ranges of the domain,

where no centering is made.

LOCPRE3D de�nes the hierarchy inside of the auxiliary hexahedral grid meshing

the cube as well as the cuboid having the hierarchical depth J . Finally, this results

in computing the auxiliary hierarchical lists in the case "1" and "2" correspondingly.

PPCGV asks for two input data and prepares corresponding actions depending

on the (in)homogeneity of the problem to be solved. The �rst input is the ques-

tion whether the boundary conditions of the problem must be incorporated into

the de�nition of the auxiliary preconditioner (yes or no), and the second input is

a non-negative real value rmult (default = 0.) speci�cally weighting the Jacobi-

preconditioning.

PPCGN is the adapter-module for performing the preconditioned conjugate gradi-

ent method using the arti�cially constructed approach as the subroutine PPCGM

does it conventionally in the case of the original method.

GLOVOR extracts and modi�es the main diagonal of the original sti�ness ma-

trix K appropriately for the auxiliary preconditioning, where also some previously

needed steps are performed.

POINTLOCfT,Qg performes the one-to-one correspondence between the grid

points in the original mesh and the points of the auxiliary grid uniquely chosen

according to the adopted mapping principle. Finally, this results in setting the vec-

tor R

�

as well as in de�ning the auxiliary closure Q

h

. Here, step by step, all of

the tetrahedral elements (T) as well as hexahedral elements (Q) belonging to the

corresponding unstructured mesh are considered.

DIPOINT3 helps to compute R

�

locating the grid point of the original unstruc-

tured mesh w.r.t. the corresponding cell-cube of the auxiliary structured hexahedral

grid.

EXTRDEF de�nes the minimumhull-cuboid consisting of cells of �

h

and contain-

ing the tetrahedron/hexahedron of the original mesh, where the four/eight vertices

of the element are taken into account.

SGESV performes the decision whether a grid point Z of the above hull-cuboid

is outside or inside of the tetrahedron under consideration. Provided that x

i

are

9



the coordinates of the four vertices of the tetrahedron, we test the tetrahedral rep-

resentation of Z =

P

4

i=1

�

i

x

i

, where

P

4

i=1

�

i

= 1 checking �

i

� 0; i = 1; 2; 3; 4 for

being an interior point. The 4 � 4 systems of linear equations are solved by the

implemented LU{decomposition.

CDEFfA,fT,QgIg computes the auxiliary main diagonal of the auxiliary opera-

tor A

Q

h (see [4]) which is designed to perform the interior Jacobi-preconditioning

implemented between the two hierarchical multiplications provided that we have a

potential problem without jumping coe�cient functions. Otherwise, in most cases

we must use the outer Jacobi{preconditioning merely multiplying with the diagonal

matrix derived from the main diagonal of the sti�ness matrix K as usually. The

subroutine marked by A and fT,QgI implements the arithmetical mean approxi-

mation (input: rmult 2 [0; 2] and the weigted distance approximation (input: rmult

2 (2; 2:5) in the case of tetrahedral and hexahedral grids, respectively (cf. [4]).

QHCLOSED is called when the closure of the step form approximation Q

h

is

ordered by the user giving the input rmult = 2.

NEPVOR calculates the square root of the auxiliary main diagonal diag(A

Q

) to be

speci�cally inverted according to the chosen method artYs and artBPX, respectively.

SUPPORTmarkes nodal points in the arti�cially constructed hierarchical list when

the support of the corresponding grid function is specially in
uenced by the kind of

the boundary condition imposed on @
. When doing so, according to user's input

red by PPCGV a lot of additional computational e�ort is required, which hardly

results in improving the convergence speed.

HB2BPXGG computes the hierarchical BPX{list from the arti�cially constructed

hierarchical Yserentant-list belonging to the hierarchical grid �

h

in the cube.

SETBCINC de�nes �nally the auxiliary preconditioner C

�1

�

h

;bc(�

h

)

in the case of

considering the boundary conditions calling the subroutine SUPPORT.

CWEIGHT weights the interior Jacobi-preconditioning speci�cally according to

the given input rmult. In most cases the default rmult = 0 de�ning no weighting is

recommendable.

NEPLOES solves the preconditioning system, i.e. w := R[C

�1

�

h

]R

�

r distinctly

applying the artYs-method and the artBPX-method, respectively.

GLOCOM performes the communication step w.r.t. the correction values belong-

ing to the coupling nodes. In the parallel version of the method the routine is called

before applying the hierarchical multiplication using the long vector v as well as

afterwards.

RTRANSFER performes the mapping v := R

�

r.

RREVERS performes the revers mapping w := Rv

p

, where the long vector v

p

already contains the solution of the auxiliary hierarchical preconditioning.
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4 Numerical results

The two subsections present the numerical tests computing potential problems sequen-

tially on a large HP workstation, and, in parallel using the GCPowerPlus multiprocessor

computer, respectively.

The tables contain the results for the cg{algorithm preconditioned by the "artYs"{method

as well as by the "artBPX"{method computing the itemized test example. Chosing the

option "1" for all of the examples the used auxiliary hierarchical grid is consisted of hex-

ahedra. The subcolumn marked by "struct. grid" means that we perform computations

using a coarse structured initial grid successively re�ned canonically as the level depth J

increases but embedded in the corresponding auxiliary grid �

h

consisting of L

3

points.

1

For comparison the subcolumn marked by "unstr. grid" contains the results belonging to

really unstructured grids generated by the mesh generator given in [3] having (nearly) the

same number N of degrees of freedom. Here, both the number of cg{iterations and the

corresponding CPU{time (in sec) are given which were needed to get the relative error of

the cg{iteration less than the previously de�ned accuracy � = 10

�6

.

2

The relative error

was measured in the KC

�1

K-norm. In the �rst column indicating the depth J sometimes

two numbers divided by the symbol "/" are given which di�er from each other. Then, the

�rst number belongs to the auxiliary grid depth due to the canonical re�nement of the

structured initial mesh and the second one is the depth of the auxiliary grid having some

inhomogeneities causing the di�erent J by means of the computation of the tetrahedron

heights. Naturally, here we have also the corresponding other number of L

3

given below.

The percentages of the CPU{time which are needed for performing the operations indicated

by R

�

and R do not exceed 12% in each case such that the corresponding part for the

preconditioning C

�1

�

h

within the cg{iteration including the amount of the cg{iteration

itself is the main one being of near 80%, see also [4]. The percentages are measured on

an average w.r.t. the given depths J of the auxiliary grids. Taking this percentages into

account we �nally discover that the arti�cially constructed hierarchical methods using

only the nodal coordinates and the element connexion need the numerical e�ort which is

approximately 1.6 times more than the e�ort of the original hierarchical approach having

a lot of additional mesh data information to be input. Therefore the application of our

new methods is a good practice, especially, for the industrial engineering.

4.1 Sequential Computing

The results are computed by means of the HP 9000/889 K460-workstation using large

memory size (1GigaByte) and on an average 7MFlop performance. The executable pro-

grams are called "tet.HPPA" in the case of tetrahedral meshes and "quad.HPPA" in the

case of using the hexahedral discretization, respectively. Having UNIX for making the pro-

grams available the user has to specify the "make�le"-operation by the options ggtet and

ggquad, respectively. The information about the background of the underlying software

package including tools of the pre- and postprocessing is contained e.g. in [1, 2].

1

In every table changed, in the columns marked by "struct. grid", using scriptsize the added brack-

ets include the iteration number and the corresponding CPU-time for the real structured hierarchical

methods.

2

In the given CPU-time neither the times for computing the hierarchical lists of the auxiliary grid �

h

and the step form approximationQ

h

inside nor the time for considering the support of the corresponding

grid functions w.r.t. the boundary conditions on �

h

are incorporated. In practice this hidden amount

does enlarge the real CPU-time substantially.
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1. Laplace equation in the cube:

��u = 0 in 
 = (0; 10) � (0; 10) � (0; 10)

u =

(

0 ; on �

01

= fx = (x

1

; x

2

; x

3

)

T

: x

3

= 0g

1 ; on �

02

= fx : x

3

= 10g ;

where �

0

= �

01

[ �

02

; and @u=@N = 0 on �

1

= @
n�

0

:

CUBUS1(N=27) - Level 1 -   1 proc.

SFB 393 - TU Chemnitz

cubus5(N=145) - Level 0 -   1 proc.

SFB 393 - TU Chemnitz

Figure 2: structured and unstructured terahedral grid in the cube

Tetrahedral grids :

artYs artBPX

J N L

3

struct. grid unstr. grid struct. grid unstr. grid

1/2 27/ 39 27

[10 (0:00)]

10 (0:00) 13 (0.01)

[10 (0:00)]

10 (0:00) 11 (0.02)

2/3 125/ 145 125

[27 (0:01)]

23 (0:01) 32 (0.10)

[19 (0:01)]

16 (0:01) 17 (0.06)

3/4 729/ 783 729

[48 (0:13)]

33 (0:14) 47 (1.21)

[24 (0:07)]

16 (0:07) 23 (0.54)

4/5 4913/ 5321 4913

[75 (1:30)]

46 (1:42) 64 (11.83)

[27 (0:51)]

15 (0:88) 26 (5.10)

5/6 35937/ 39105 35937

[106 (18:15)]

61 (22:10) 87 (141.04)

[28 (5:10)]

15 (4:22) 27 (43.12)

6/7 274625/ 299585 274625

[144 (218:93)]

77 (181:70) 116 (1396.3)

[29 (46:46)]

14 (34:38) 27 (352.20)

Hexahedral grids:

artYs artBPX

J N L

3

struct. grid unstr. grid struct. grid unstr. grid

2 27 125

[ 2 (0:00)]

5 (0:00)

[ 2 (0:00)]

5 (0:01)

3 125 729

[ 2 (0:00)]

25 (0:08) no mesh

[ 2 (0:00)]

13 (0:05) no mesh

4 729 4913

[ 2 (0:00)]

39 (0:82) generator

[ 2 (0:02)]

17 (0:43) generator

5 4913 35937

[ 2 (0:05)]

49 (8:75) available

[ 2 (0:07)]

19 (3:56) available

6 35937 274625

[ 3 (0:73)]

63 (105:24)

[ 3 (0:77)]

19 (54:11)

7 274625 2146689

[ 4 (8:42)]

77 (1205:8)

[ 4 (8:58)]

19 (255:05)
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2. Material depending potential problem in the cube:

�div(a(x)grad(u)) = 0 in 
 = (0; 2)

3

; where a(x) =

10

6

in (0; 1) � (0; 1)� (0; 2)

1 in 
 n (0; 1)

3

;

u =

(

0 ; on �

01

= fx = (x

1

; x

2

; x

3

)

T

: 0 < x

1

< 1 ; x

2

= 0 ; 0 < x

3

< 1g

1 ; on �

02

= fx : (x

1

; x

2

; x

3

)

T

2 (0; 2) � f0g � (0; 2) n �

01

g ; and

@u=@N = 0 on �

1

= @
 n �

0

; where �

0

= �

01

[ �

02

:

r1mat5(N=684)- Level 0 -   1 proc.

SFB 393 - TU Chemnitz

r1mat3(N=128) - Level 0 -   1 proc.

SFB 393 - TU Chemnitz

Figure 3: subsequence of unstructured tetrahedral grids in the material cube

Tetrahedral grids :

artYs artBPX

J N L

3

struct. grid unstr. grid struct. grid unstr. grid

1/3 27/ 39 27

[11 (0:00)]

16 (0:00) 20 (0.07)

[11 (0:00)]

12 (0:00) 17 (0.06)

2/4 125/128 125

[25 (0:02)]

27 (0:02) 29 (0.58)

[19 (0:02)]

21 (0:02) 27 (0.65)

3/4 729/684 729

[50 (0:16)]

42 (0:20) 40 (0.88)

[25 (0:09)]

25 (0:13) 32 (0.73)

4/5 4913/ 5280 4913

[76 (1:56)]

73 (2:64) 71 (13.10)

[26 (0:59)]

27 (1:00) 37 (7.79)

5/6 35937/38843 35937

[109 (21:76)]

138 (39:73) 144 (267.92)

[28 (5:43)]

29 (17:21) 44 (98.27)

6/7 274625/297741 274625

[144 (245:35)]

143 (607:88) 208 (3216.5)

[30 (63:92)]

32 (89:10) 50 (637.73)

Hexahedral grids:

artYs artBPX

J N L

3

struct. grid unstr. grid struct. grid unstr. grid

2 27 125

[ 7 (0:00)]

13 (0:02)

[ 7 (0:00)]

8 (0:00)

3 125 729

[ 18 (0:02)]

29 (0:10) no mesh

[ 10 (0:05)]

17 (0:09) no mesh

4 729 4913

[ 30 (0:13)]

47 (1:08) generator

[ 13 (0:05)]

22 (0:57) generator

5 4913 35937

[ 41 (1:23)]

83 (16:59) available

[ 14 (0:48)]

25 (6:63) available

6 35937 274625

[ 59 (28:91)]

123 (232:07)

[ 14 (6:48)]

30 (49:17)

7 274625 2146689

[ 83 (197:20)]

165 (2917:0)

[ 15 (32:35)]

33 (411:52)
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3. Poisson equation in the FEM-domain resulting in the variational problem:

Find u 2 V

0

such that

Z




r

T

v(x)ru(x) dx =

Z




(�6x

3

) v(x) dx 8 v 2 V

0

holds with V

0

= fu 2 H

1

(
) : u = 0 on �

0

g.

�

0

= fx = (x

1

; x

2

; x

3

) : x

3

= 0g (reverse basis)

Figure 4: struct. tetr. grid (N=122) in the FEM-domain tends to lose the quasiuniformity

Tetrahedral grids:

artYs artBPX

J N L

3

struct. grid unstr. grid struct. grid unstr. grid

4 122 4913

[37 (0:01)]

54 (1:19) {

[37 (0:01)]

34 (0:98) {

5 631/648 35937

[64 (0:13)]

84 (15:72) 72 (11.79)

[49 (0:12)]

58 (12:16) 50 (9.44)

6 3848/4032 274625

[95 (1:36)]

141 (256:89) 141 (211.25)

[59 (0:94)]

85 (138:86) 71 (180.99)

7 26386/28026 2146689

[143 (18:16)]

198 (3599:4) 252 (3318.5)

[65 (9:00)]

122 (1694:8) 96 (1253.1)
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4. Laplace equation in a speci�c radiator slab:

��u = 0 in 


u =

z

10

on �

0

(both front ends marked by F)

@u=@N = 0 on �

1

= @
n�

0

:

platte2(N=2040) - Level 1 -   128 proc.

SFB 393 - TU Chemnitz

F

F

@

@

@

@

@

@

@

@

Figure 5: unstructured tetrahedral grid in the slab-domain losing the quasiuniformity

Tetrahedral grids:

artYs artBPX

J N L

3

struct. grid unstr. grid struct. grid unstr. grid

6 2040 35937

[166 (0:58)]

�� 180 (288.39)

[131 (0:90)]

�� 140 (233.55)

7 12391 274625

[214 (12:05)]

�� 289 (3221.8)

[193 (22:69)]

�� 254 (2874.3)

For comparison here: Parallel computing (data distr.) using 128 proc.:

artYs artBPX

J N L

3

struct. grid unstr. grid struct. grid unstr. grid

6 2040 35937

[176 (36:58)]

�� 230 (168.65)

[136 (31:76)]

�� 171 (64.09)
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5. Problem of linear elasticity in the edge{block domain:

�E[

1

2+2�

�~u�

2(1+�)

1�2�

grad(div ~u)] = 0 in 
 ;

where E = 200000 and � = 0:3

~u = (

z

10

;

z

10

;

z

10

)

T

on @


lame11d(N=45) - Level 1 -   1 proc.

SFB 393 - TU Chemnitz

lame11d5(N=1359) - Level 0 -   1 proc.

SFB 393 - TU Chemnitz

Figure 6: structured and unstructured tetrahedral grid in the edge{block domain

Tetrahedral grids:

artYs artBPX

J 3 �N 3 � L

3

struct. grid unstr. grid struct. grid unstr. grid

3 135 3*729

[ 9 (0:00)]

10 (0:06) 8 (0.06)

[ 9 (0:01)]

9(0:06) 8 (0.06)

4 675 3*4913

[28 (0:07)]

33 (1:77) 32 (1.55)

[21 (0:06)]

19 (1:04) 19 (1.10)

5 4131/4077 3*35937

[55 (1:11)]

51 (20:75) 42 (22.27)

[31 (0:67)]

25 (20:97) 25 (20.29)

6 28611/28203 3* 274625

[84 (26:59)]

83 (458:40) 59 (208.26)

[38 (7:50)]

30 (114:83) 29 (101.84)

7 212355/209187 3*2146689

[124 (185:31)]

134 (4090:4) 80 (2263.8)

[42 (61:39)]

36 (1034:7) 36 (1019.2)

Hexahedral grids:

artYs artBPX

J 3 �N 3 � L

3

struct. grid unstr. grid struct. grid unstr. grid

3 135 3*729

[ 6 (0:00)]

8 (0:05)

[ 6 (0:01)]

8 (0:06)

4 675 3*4913

[26 (0:10)]

26 (1:19) no mesh

[18 (0:07)]

17 (0:81) no mesh

5 4131 3*35937

[47 (1:28)]

51 (19:37) generator

[27 (0:77)]

21 (11:02) generator

6 28611 3* 274625

[73 (17:45)]

60 (189:32) available

[32 (7:84)]

28 (93:47) available

7 212355 3*2146689

[103 (225:48)]

115 (2924:3)

[36 (72:87)]

37 (957:38)
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6. Problem of linear elasticity in the block domain with drill hole:

�E[

1

2+2�

�~u�

2(1+�)

1�2�

grad(div ~u)] = 0 in 


where E = 200000 and � = 0:3 ;

~u = (0; 0; 0)

T

on �

0

(basis below);

@~u

@N

= (0; 0;�1)

T

on �

11

(basis above)

@~u

@N

= (0; 0; 0)

T

on �

12

= � n (�

0

[ �

11

) (rest of the surface)

bohrung(N=144) - Level 1 -   1 proc.

SFB 393 - TU Chemnitz

bohrung2(N=123) - Level 0 -   1 proc.

SFB 393 - TU Chemnitz

Figure 7: struct. hexahedral and unstruct. tetrahedral grid in the drilled domain

Tetrahedral grids:

artYs artBPX

J 3 �N 3 � L

3

struct. grid unstr. grid struct. grid unstr. grid

3 84 3*125

[ 27 (0:00)]

30 (0:20)

[ 27 (0:01)]

26 (0:22)

4 378/369 3*729

[57 (0:09)]

70 (3:87) 66 (3.30)

[44 (0:07)]

51 (3:05) 49 (2.70)

5 2100/2130 3*35937

[97 (0:96)]

120 (58:42) 106 (47.73)

[60 (0:64)]

80 (40:88) 71 (32.92)

6 13608/14148 3*274625

[103 (13:20)]

106 (674:38) 170 (750.02)

[82 (12:51)]

119 (463:89) 87 (414.30)

8 97104/102408 3*2146689

[277 (210:39)]

mem:ex: mem. ex.

[118 (92:82)]

mem:ex: mem. ex.

Hexahedral grids:

artYs artBPX

J 3 �N 3 � L

3

struct. grid unstr. grid struct. grid unstr. grid

2 96 3*125

[ 8 (0:00)]

20 (0:03)

[ 8 (0:00)]

18 (0:04)

3 432 3*729

[33 (0:07)]

49 (0:40) no mesh

[22 (0:05)]

30 (0:25) no mesh

5 2400 3*35937

[63 (0:85)]

93 (39:21) generator

[31 (0:45)]

44 (18:25) generator

6 15552 3*274625

[103 (13:20)]

152 (487:10) available

[38 (5:03)]

55 (183:26) available

7 110976 3*2146689

[155 (203:20)]

236 (7051:3)

[43 (87:16)]

62 (3314:2)
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4.2 First results of the Parallel Computing

As already discussed in [4] for the 2D{case we get a parallelizable preconditioner per-

forming one communication before applying the hierarchical multiplication Q

T

and one

communication after Q was completed. Thus, e.g. for the Yserentant hierarchical pre-

conditioning we have

w

s

= jj C

�1

s

jj r

s

:=

p

X

s=1

H

s

[R

s

C

�1

�

h

s

R

�

s

(

p

X

s=1

H

T

s

r

s

) ] ;

where the accumulation matrices H

s

symbolically handle the communication w.r.t. the

residual vectors r

s

; s = 1; : : : ; p, distributed to p processors having L

3

s

components there.

To get the results of the subsection we used the well known Parsytec parallel computer

GCPowerPlus having 32MByte memory at each processor node and a peak performance of

80MFlop. The executable programs are called "tet.ppc" having tetrahedral meshes and

"quad.ppc" when hexahedral grids are used. For installing the programs using PARIX the

make�le must have the options ggtet and ggquad, respectively. For more details describing

the related software tools see also [1, 2, 6]. For the parallelization the FEM{mesh{data

are distributed to the 8 processors used for computing the next examples. The parameters

J and L

3

in the following tables are the maxima J = max

s=1;8

(J

s

) and L

3

= max

s=1;8

(L

3

s

),

respectively.

7. Laplace equation in the cube (problem no. 1) using 8 processors:

Tetrahedral grids :

artYs artBPX

J N L

3

struct. grid unstr. grid struct. grid unstr. grid

1/2 27/ 39 27

[10 (0:10)]

10 (0:14) 14 (0.19)

[10 (0:12)]

10 (0:17) 14 (0.19)

2/3 125/ 145 125

[27 (0:26)]

32 (0:53) 35 (0.75)

[19 (0:27)]

24 (0:36) 27 (0.56)

3/4 729/ 783 729

[48 (0:53)]

49 (1:01) 56 (4.50)

[24 (0:45)]

37 (0:49) 36 (2.81)

4/5 4913/ 5321 4913

[75 (1:73)]

74 (4:90) 72 (23.87)

[27 (0:93)]

61 (3:78) 47 (16.44)

5/{ 35937/{ 35937

[107 (11:30)]

128 (42:42) mem. ex.

[28 (3:61)]

114 (49:30) mem. ex.

Hexahedral grids:

artYs artBPX

J N L

3

struct. grid unstr. grid struct. grid unstr. grid

2 125 125

[ 2 (0:03)]

23 (0:39) no mesh

[ 2 (0:07)]

21 (0:40) no mesh

3 729 729

[ 2 (0:05)]

45 (1:09) generator

[ 2 (0:12)]

36 (0:85) generator

4 4913 4913

[ 2 (0:22)]

74 (4:82) available

[ 2 (1:96)]

56 (3:43) available

5 35937 35937

[ 3 (0:38)]

128 (46:38)

[ 3 (0:43)]

97 (34:59)
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8. Material depending problem no. 2 in the cube using 8 processors:

Tetrahedral grids :

artYs artBPX

J N L

3

struct. grid unstr. grid struct. grid unstr. grid

1/3 27/ 39 27

[11 (0:14)]

10 (0:11) 28 (0.48)

[11 (0:00)]

21 (0:28) 26 (0.53)

2/4 125/128 125

[27 (0:34)]

31 (0:59) 78 (4.12)

[19 (0:30)]

31 (0:66) 52 (1.24)

3/4 729/684 729

[50 (0:71)]

51 (1:31) 149 (10.75)

[25 (0:09)]

48 (1:21) 114 (8.44)

4/5 4913/ 5280 4913

[76 (1:78)]

98 (6:38) 348 (122.80)

[26 (0:91)]

86 (5:45) 175 (57.04)

5/{ 35937/{ 35937

[108 (9:46)]

212 (78:85) mem. ex.

[28 (3:09)]

184 (64:65) mem. ex.

Hexahedral grids:

artYs artBPX

J N L

3

struct. grid unstr. grid struct. grid unstr. grid

1 27 27

[ 7 (0:06)]

11 (0:16)

[ 7 (0:07)]

11 (0:19)

2 125 125

[ 18 (0:19)]

30 (0:46) no mesh

[ 10 (0:13)]

23 (0:37) no mesh

3 729 729

[ 29 (0:40)]

51 (1:17) generator

[ 13 (0:25)]

36 (0:94) generator

4 4913 4913

[ 40 (0:90)]

91 (5:04) available

[ 14 (0:46)]

56 (3:39) available

5 35937 35937

[ 59 (6:41)]

188 (67:51)

[ 14 (1:73)]

109 (39:69)

9. Linear elasticity problem no. 4 in the drill hole domain using 8 processors:

Tetrahedral grids:

artYs artBPX

J 3 �N 3 � L

3

struct. grid unstr. grid struct. grid unstr. grid

2 84 3*125

[ 27 (0:25)]

39 (0:58)

[ 23 (0:25)]

32 (0:50)

3 378/369 3*729

[57 (0:76)]

79 (2:41) 66 (2.18)

[44 (0:74)]

60 (1:86) 49 (1.68)

5/4 2100/2130 3*4913

[95 (2:35)]

134 (78:36) 121 (12.65)

[60 (0:64)]

90 (57:24) 79 (8.65)

{/5 13608/14148 3*35937

[166 (10:67)]

mem:ex: 264 (161.09)

[82 (6:57)]

mem:ex: 156 (102.88)

Using the parallelization of the method the subhull{cubes may have a speci�c grid size

parameter

�

h

s

; s = 1; : : : ; 8. The corresponding input of factors can be made especially

when this example is computed.
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Hexahedral grids:

artYs artBPX

J 3 �N 3 � L

3

struct. grid unstr. grid struct. grid unstr. grid

1 96 3*27

[ 8 (0:08)]

8 (0:11)

[ 8 (0:10)]

8 (0:12)

2 432 3*125

[33 (0:49)]

51 (1:08) no mesh

[22 (0:41)]

44 (0:93) no mesh

3 2400 3*729

[63 (1:48)]

97 (10:11) generator

[31 (0:99)]

68 (7:03) generator

4 15552 3*4913

[104 (9:20)]

184 (116:49) available

[38 (4:02)]

115 (78:48) available

5 110976 3*35937

[155 (87:49)]

264 (164:61)

[43 (24:89)]

mem:ex:
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