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Abstract

We present a multi-grid method for a class of structured generalized Lya-

punov matrix equations. Such equations need to be solved in each step of

the Newton method for algebraic Riccati equations, which arise from linear-

quadratic optimal control problems governed by partial di�erential equations.

We prove the rate of convergence of the two-grid method to be bounded in-

dependent of the dimension of the problem under certain assumptions. The

multi-grid method is based on matrix-matrix multiplications and thus it of-

fers a great potential for a parallelization. The e�ciency of the method is

demonstrated by numerical experiments.
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multi-grid methods, multi-level methods, Newton method.
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1 Introduction

In this paper we present a multi-grid method for a class of generalized Lyapunov

equations resulting from the discretization of a certain model problem. Essentially,

our method is based on an adaptation of the principles used in multi-grid methods

for systems of linear equations arising from the discretization of partial di�erential

equations [Fed61, Fed64, Hac85] to linear matrix equations.

A multi-grid method for the approximate solution of the model problem consid-

ered here has already been proposed by Rosen and Wang [RW95]. The di�erences

and advantages of our method compared to that by Rosen and Wang are highlighted

in Section 9.

We consider the linear-quadratic control problem with the cost functional

1

2

Z

1

0

y(� )

2

+ u(� )

2

d� �! Min ! (1)

and the constraints

_
x(�; � ) = Ax(�; � ) + b(�)u(� ) for � 2 
 = (0; 1) (2)

y(� ) =

Z

1

0

c(�)x(�; � )d� (3)

x(�; � ) = 0 for � 2 @
 = f0; 1g (4)

x(�; 0) = x

0

(�) for � 2 
 = (0; 1) (5)
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with � 2 [0;1). The quantities b, c, x, u, and y are real functions. Dotted

quantities are the partial derivatives w.r.t. � , e.g.,
_
x(�; � ) = @x(�; � )=@� . Here, A

is the di�erential operator

Ax(�; � ) :=

@

@�

�

�(�)

@

@�

x(�; � )

�

(6)

with a function � 2 L

1

(
), for which a constant �

0

> 0 exists such that �(�) � �

0

a.e. in 
.

A physical problem corresponding to such a model problem is, for example,

the optimal control of the distribution of heat in a thin rod. In this case, x, �,

and � denote the temperature, the space component, and the time component,

respectively.

We discretize the constraints (2)-(5) using the �nite element method (FEM)

with a partitioning of the interval 
 into n + 1 subintervals (�

i

; �

i+1

) of length

h = 1=(n+1) with �

i

= ih for i = 0; : : : ; n+1. FEM ansatz functions p

i

(�) de�ned

as

p

i

(�) :=

8

<

:

(n+ 1)(� � �

i�1

) : � 2 (�

i�1

; �

i

)

(n+ 1)(�

i+1

� �) : � 2 (�

i

; �

i+1

)

0 : otherwise

are utilized. We pursue the Galerkin approach with an ansatz

x(�; � ) =

n

X

j=1

x

j

(� )p

j

(�);

which results in

n

X

j=1

< p

j

(�);p

i

(�) >

| {z }

=:(E)

ij

( _x(� ))

j

=

n

X

j=1

< Ap

j

(�);p

i

(�) >

| {z }

=:�(A)

ij

(x(� ))

j

+< b(�);p

i

(�) >

| {z }

=:(B)

i

(u(� ))

j

(7)

y(� ) =

n

X

j=1

< c(�);p

j

(�) >

| {z }

=:(C)

j

(x(� ))

j

n

X

j=1

< p

j

(�);p

i

(�) >

| {z }

=:(E)

ij

(x(0))

j

= < x

0

(�);p

i

(�) >

| {z }

=:(x

0

)

i

for i = 1; : : : ; n. Here < �; � > designates the L

2

(
) scalar product. Obviously, the

discretization generates a descriptor system

E _x(� ) = �Ax(� ) + Bu(� )

y(� ) = Cx(� ) (8)

Ex(0) = x

0

with a column vector B, a row vector C, and the symmetric positive de�nite ma-

trices A and E. In fact, A is the sti�ness matrix and E is the mass matrix, which

usually result from the discretization of the one-dimensional Poisson equation.

The solution of the discretized optimal control problem (1) and (8) is determined

by the linear feedback

u(� ) = �B

T

PEx(� );
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where P is the symmetric positive de�nite stabilizing solution of the algebraic Riccati

equation (ARE)

0 = R(P ) := C

T

C � L

A;E

P �E

T

PBB

T

PE; (9)

see [BL87, Meh91]. The generalized Lyapunov operator L

A;E

forming the linear

part of the Riccati equation is de�ned as

L

A;E

X := A

T

XE + E

T

XA:

A solution of the Riccati equation (9) is stabilizing i� each eigenvalue of the matrix

E

�1

(�A�BB

T

PE) has a negative real part. Under certain assumptions, a unique

stabilizing solution of (9) exists, e.g., [LR95, Meh91].

One of the most popular methods for solving algebraic Riccati equations is the

Newton method [Kle68, LR95, Meh91].

Algorithm 1 (Newton method for ARE (9))

FOR i = 0; 1; 2; : : :

1. K

i

= B

T

P

i

E

2. Solve L

A+BK

i

;E

X

i

= R(P

i

) for X

i

.

3. P

i+1

= P

i

+X

i

END FOR

This method produces a sequence of stabilizing iterates P

i

, provided that the initial

guess P

0

is stabilizing, which is ful�lled when P

0

= 0. The convergence of the New-

ton method is quadratic. After the �rst step the method converges monotonically,

see, e.g., [Ben97, LR95, Meh91].

In the following sections we focus on the solution of the structured generalized

Lyapunov equation in Step 2 of Algorithm 1.

2 Analysis of the Operator L

A;E

We study the eigenstructure of the operator L

A;E

under the assumption �(�) � 1,

which is valid throughout this section. In case of a constant function �(�) 6� 1, the

eigenvalue problem can be reduced by scaling to the case �(�) � 1. In the general

case, where � is a non-constant function, the matrices A and E do not commute

and the following analysis is no longer applicable.

Under the above assumption, the matrices A;E 2 R

n;n

are given as:

A = (n+ 1) tridiag(�1; 2;�1); (10)

E =

1

6(n+ 1)

tridiag(1; 4; 1): (11)

The matrix A possesses the orthogonal eigenvectors [Hac85]

v

k

=

 

r

2

n+ 1

sin

ik�

n+ 1

!

n

i=1

(12)

and the corresponding eigenvalues

�

A

k

= 4(n+ 1)s

2

k
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with s

k

:= sin

k�

2(n+1)

for k = 1; : : : ; n. Since E =

1

n+1

I �

1

6(n+1)

2

A, the matrix E

has the same eigenvectors and the eigenvalues

�

E

k

=

1�

2

3

s

2

k

n+ 1

:

Hence, the matrices v

i

v

T

j

are \eigenmatrices" of the operator L

A;E

corresponding

to the eigenvalues

�

ij

:= �

L

A;E

ij

= �

A

i

�

E

j

+ �

A

j

�

E

i

= 4s

2

i

+ 4s

2

j

�

16

3

s

2

i

s

2

j

(13)

for i; j = 1; : : : ; n. The following lemma is useful for a characterization of the

eigenvalues.

Lemma 1 Let the function

r(�; �) = 4� + 4� �

16

3

��

be de�ned on [0; 1]

2

. Then r(�; �) is monotonically (strictly monotonically) in-

creasing in � if � � 3=4 (� < 3=4). Otherwise, r(�; �) is strictly monotonically

(monotonically) decreasing in �. Moreover, r(�; �) = 0 i� � = � = 0.

Proof. The �rst part is proved immediately by estimating the partial derivatives of

r, e.g.,

@r(�; �)

@�

= 4�

16

3

� > 0 ()

3

4

> �:

From r(1; 1) > 0 and the monotonicity of r it follows that r(�; �) = 0 i� � = � = 0.

Obviously, the �rst statement remains valid if the rolls of � and � are exchanged.

Taking account of the monotonicity of the sine function in the interval [0; �=2], the

substitution of � and � by s

2

i

and s

2

j

, respectively, leads to the following corollary.

Corollary 1 Let �

ij

(i; j = 1; : : : ; n) be the eigenvalues of the Lyapunov operator

L

A;E

according to (13). For j � 2(n + 1)=3 (j < 2(n + 1)=3) the eigenvalues �

ij

increase monotonically (strictly monotonically) in i. Otherwise, the eigenvalues �

ij

decrease strictly monotonically (monotonically) in i.

Again, Corollary 1 holds if the rolls of the indices i and j are exchanged. From

the equation

s

2

n

= sin

2

�

�

2

�

�

2(n+ 1)

�

= cos

2

�

�

2(n+ 1)

�

= 1� s

2

1

;

the assumption n � 2, and Corollary 1 we gain the following characterization of the

spectrum. The maximal eigenvalues are

max

i;j

�

ij

= �

1n

= �

n1

= 4�

16

3

s

2

1

+

16

3

s

4

1

< 4: (14)

Moreover, the estimates

0 < �

11

= 8s

2

1

�

16

3

s

4

1

< 8s

2

1

(15)

and

�

nn

=

8

3

+

8

3

s

2

1

�

16

3

s

4

1

>

8

3

4



result in

0 < min

i;j

�

ij

= minf�

11

; �

nn

g = �

11

: (16)

Hence, the operator L

A;E

is nonsingular.

In context with multi-grid methods the limits of the \oscillating" subset of the

spectrum

�

osc

:= f�

ij

: maxfi; jgg � (n + 1)=2g

are of interest. Obviously,

max�

osc

= max� = �

n1

< 4: (17)

By Lemma 1 and Corollary 1,

min�

osc

� min

n

�

nn

; r(s

2

(n+1)=2

; s

2

1

)

o

:

From s

2

(n+1)=2

= 1=2 and s

2

1

� 1=2, we obtain the inequality

min�

osc

� min

�

8

3

+

8

3

s

2

1

�

16

3

s

4

1

; 2 +

4

3

s

2

1

�

= 2 +

4

3

s

2

1

> 2: (18)

The bounds (14), (16), (17), and (18) are asymptotically sharp for n �!1.

For estimating the speed of convergence of certain iterative methods for symmet-

ric positive de�nite linear systems, the condition number and, of course, its depen-

dence on the dimension of the problem are of importance, cf. [GV89, Saa96, Var62].

From (14), (15), and (16) we obtain for n >> 1

condL

A;E

=

�

n1

�

11

=

1

2s

2

1

+

2s

2

1

+ 4s

4

1

6s

2

1

� 4s

4

1

| {z }

�! 1=3

for n �!1

�

2

�

n

2

(19)

as an estimate for the condition number.

3 Multi-Grid Components

In this section we introduce the grid hierarchy, the smoothing method, the restriction

operator, and the interpolation operator which are utilized in our multi-gridmethod.

Grid hierarchy. The elements of the grid hierarchy are labelled by a level

index l. They are produced by starting with an equidistant initial distribution of the

grid points in the interval 
 (Level 1) and by successively halving the subintervals

l

max

� 1 times. The quantities corresponding to a certain level are provided with

the superscript (l), e.g., X

(l)

. As long as there is no danger of confusion, we neglect

the level index for l = l

max

.

The grid hierarchy is determined by the number of the inner grid points n

(1)

on the coarsest grid and by the number of levels l

max

. By recursion we obtain

n

(l+1)

= 2n

(l)

+ 1 for l = 1; : : : ; l

max

� 1. The spacing between neighbouring grid

points is h

(l)

= 1=(n

(l)

+ 1). The matrices A

(l)

, B

(l)

, and E

(l)

are provided by (7)

with n = n

(l)

.

Smoothing method. Frequently, simple stationary iterative methods are used

in multi-grid methods for \smoothing", or more precisely, for the reduction of the

component in the error corresponding to �

osc

. In the sequel we utilize the Richard-

son iteration, which is the simplest of these methods. This choice is advantageous
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in view of the convergence analysis in Section 5. Nevertheless, better rates of con-

vergence may be achieved using other smoothing methods. Algorithm 2 realizes �

steps of the Richardson iteration for L

A;E

X = Y with the relaxation parameter !

X

�

 � RICHARDSON(X

0

; Y; A;E; �; !):

Algorithm 2 (Richardson iteration for L

A;E

X = Y )

FOR k = 1; : : : ; �

1. X

k

= X

k�1

+ ! (Y � L

A;E

X

k�1

)

END FOR

The following simple analysis gives an insight into the convergence and the

smoothing properties of the Richardson iteration. A more detailed discussion can

be found in [Hac85, Var62], for example. Since the solution L

�1

A;E

Y is a stationary

point of the mapping X �! X + !(Y �L

A;E

X), the equation

Z

k

= (I � !L

A;E

)Z

k�1

= SZ

k�1

(20)

applies to the error Z

k

= L

�1

A;E

Y �X

k

, where S is the error transfer operator. Thus,

the error component corresponding to v

i

v

T

j

, which is an eigenmatrix of S, is reduced

by a factor j1� !�

ij

j per iteration step. For smoothing,

! = argmin

!2R

max

�

ij

2�

osc

j1� !�

ij

j =

2

min�

osc

+max�

osc

is a proper choice for the relaxation parameter !. Because of the asymptotically

sharp estimates (17) and (18), the choice ! = 1=3 is asymptotically optimal for

n �! 1. This guarantees the damping of the oscillatory error components to be

independent of n, since

max

�

ij

2�

osc

j1� !�

ij

j �

1

3

holds.

Restriction operator. Mappings from Level l + 1 to Level l are realized by

this operator. The restriction operator I

(l)

(l+1)

: R

n

(l+1)

;n

(l+1)

�! R

n

(l)

;n

(l)

is de�ned

as

I

(l)

(l+1)

X

(l+1)

= I

(l)

(l+1)

X

(l+1)

�

I

(l)

(l+1)

�

T

;

where I

(l)

(l+1)

is the n

(l)

� n

(l+1)

-matrix with the entries

�

I

(l)

(l+1)

�

ij

=

8

<

:

1 : if j = 2i

1

2

: if j = 2i� 1

0 : otherwise

:

Interpolation operator. This operator maps matrices from Level l to Level

l + 1. The interpolation operator I

(l+1)

(l)

: R

n

(l)

;n

(l)

�! R

n

(l+1)

;n

(l+1)

is de�ned as

I

(l+1)

(l)

X

(l)

=

�

I

(l)

(l+1)

�

T

X

(l)

I

(l)

(l+1)

:

4 A Two-Grid Method

In the sequel we present a two-grid method (i.e., l

max

= 2) for the generalized

Lyapunov equation

L

A;E

X = A

T

XE +E

T

XA = Y (21)

6



with the selfadjoint Operator L

A;E

. This equation is to be solved in the �rst step

of the Newton method with the initial guess P

0

= 0, but it also arises in other

applications, e.g., [Fra87, LL61, SC89].

First, we give a brief motivation for the method. Multi-grid methods in the con-

text of partial di�erential equations are motivated in more detail in [Bri87, Hac85,

McC87], for example. The Richardson method greatly damps the error component

related to the invariant subspace of L

A;E

corresponding to �

osc

if the relaxation pa-

rameter ! is properly chosen (presmoothing). The eigenmatrices of eigenvalues not

contained in �

osc

are outer products of vectors v

i

and v

j

which are both smooth.

According to (12), these vectors are generated by low-frequent sine functions, which

motivates the coarse grid correction for reducing of the smooth error component.

The coarse grid correction consists of the projection (restriction) of the smoothed

residual, the solution of the resulting error equation on the coarse grid, and the

correction of the current iterate on the �ne grid by the interpolated solution of the

coarse grid equation. The coarse grid equation has a double advantage over the �ne

grid equation. It is reduced in size and its condition number is smaller, cf. (19).

In a �fth step oscillations in the error caused by the interpolation are damped by

postsmoothing.

Algorithm 3 realizes one iteration sweep of the two-grid method

X

(2)

 � TG(X

(2)

; Y

(2)

)

applied to equation (21).

Algorithm 3 (Two-grid cycle)

1. X

(2)

 � RICHARDSON(X

(2)

; A

(2)

; E

(2)

; Y

(2)

; �

1

; !)

(Presmoothing)

2. Y

(1)

 � I

(1)

(2)

�

Y

(2)

�L

A

(2)

;E

(2)
X

(2)

�

(Restriction of the residual)

3. Solve L

A

(1)

;E

(1)
X

(1)

= Y

(1)

for X

(1)

.

(Coarse grid equation)

4. X

(2)

 � X

(2)

+ I

(2)

(1)

X

(1)

(Coarse grid correction)

5. X

(2)

 � RICHARDSON(X

(2)

; A

(2)

; E

(2)

; Y

(2)

; �

2

; !)

(Postsmoothing)

Actually, the two-gridmethod is a sequence of two-grid cycles, i.e.,X

i+1

= TG(X

i

; Y )

for i = 0; 1; 2; : : : .

5 Convergence of the Two-Grid Method

Assuming �(�) � 1 throughout this section we analyze the convergence of the

sequence of approximations fX

i

g

1

i=0

generated by Algorithm 3. For simplicity we

partially neglect the level superscripts. Furthermore, we make use of the notation

L

(l)

= L

A

(l)

;E

(l)
and �

(l)

ij

= �

L

(l)

ij

for l = 1; 2.

The convergence of the method is characterized by the reduction of the error

Z

i

=

�

L

(2)

�

�1

Y � X

i

, which is governed by the error transfer operator M of the

two-grid cycle:

Z

i+1

=MZ

i

:

This operator can be split up into the error transfer operators for presmoothing S

�

1

(cf. (20)), coarse grid correction (Steps 2{4 in Algorithm 3) C, and postsmoothing

7



S

�

2

:

M = S

�

2

CS

�

1

: (22)

First, we analyze the operator C and afterwards the operator S. To this end, we

consider the decomposition of the error into components related to the eigenmatrices

v

(2)

i

v

(2)

j

T

of the operator L

(2)

. We restrict ourself to studying the mapping of the

single eigenmatrices by the operators C and S.

Operator C. Steps 2{4 of Algorithm 3 generate the mapping

X �! X + I

(2)

(1)

�

L

(1)

�

�1

I

(1)

(2)

�

Y � L

(2)

X

�

with the corresponding error transfer operator

C = I � I

(2)

(1)

�

L

(1)

�

�1

I

(1)

(2)

L

(2)

: (23)

It has been shown (e.g. [Hac85]) that

I

(1)

(2)

v

(2)

i

=

8

>

<

>

:

�

i

v

(1)

i

: i < n

(1)

+ 1

0 : i = n

(1)

+ 1

�

n

(2)

+1�i

v

(1)

n

(2)

+1�i

: i > n

(1)

+ 1

for i = 1; : : : ; n

(2)

and

I

(2)

(1)

v

(1)

i

= �

i

v

(2)

i

+ �

i

v

(2)

n

(2)

+1�i

for i = 1; : : : ; n

(1)

, where

�

i

=

p

2(1� s

2

i

);

�

i

= �

p

2s

2

i

;

with s

i

:= s

(2)

i

= sin

i�

2(n

(2)

+1)

. Setting

t

i

:=

�

i : i = 1; : : : ; n

(1)

n

(2)

+ 1� i : i = n

(1)

+ 2; : : : ; n

(2)

; (24)



i

:=

�

�

i

: i = 1; : : : ; n

(1)

�

n

(2)

+1�i

: i = n

(1)

+ 2; : : : ; n

(2)

(25)

we obtain from (23) the equations

Cv

(2)

i

v

(2)

j

T

= v

(2)

i

v

(2)

j

T

� �

(2)

ij

I

(2)

(1)

�

L

(1)

�

�1

I

(1)

(2)

�

v

(2)

i

v

(2)

j

T

�

= v

(2)

i

v

(2)

j

T

� �

(2)

ij

I

(2)

(1)

�

L

(1)

�

�1

(I

(1)

(2)

v

(2)

i

)(I

(1)

(2)

v

(2)

j

)

T

(26)

= v

(2)

i

v

(2)

j

T

�

�

(2)

ij



i



j

�

(1)

t

i

;t

j

�

�

t

i

v

(2)

t

i

+ �

t

i

v

(2)

n

(2)

+1�t

i

��

�

t

j

v

(2)

t

j

+ �

t

j

v

(2)

n

(2)

+1�t

j

�

: (27)

Here, the last equation is valid only for i; j � n

(1)

, but it follows from (26) that

Cv

(2)

i

v

(2)

j

T

= v

(2)

i

v

(2)

j

T

holds for maxfi; jg = n

(1)

+1. For i; j � n

(1)

, the quadruples

V

[ij]

:=

�

v

(2)

i

v

(2)

j

T

; v

(2)

i

v

(2)

n

(2)

+1�j

T

; v

(2)

n

(2)

+1�i

v

(2)

j

T

; v

(2)

i

v

(2)

n

(2)

+1�j

T

�

8



span four-dimensional invariant subspaces of the operator C. Completing V

[ij]

:=

�

v

(2)

i

v

(2)

j

T

�

for maxfi; jg = n

(1)

+ 1 we obtain an orthogonal basis in R

n

(2)

;n

(2)

(w.r.t. the scalar product < M;N >= trace(N

T

M )), and we have

CV

[ij]

= V

[ij]

C

[ij]

(28)

for i; j = 1; : : : ; n

(1)

+ 1. Choosing the indices in (27) properly and taking account

of (24) and (25) we get the columns of the 4�4-matrices C

[ij]

for i; j � n

(1)

. In

summary we have

C

[ij]

=

(

I

4

�

1

�

(1)

ij

c

[ij]

c

T

[ij]

�

[ij]

: i; j � n

(1)

1 : maxfi; jg = n

(1)

+ 1

; (29)

where

c

[ij]

= [�

i

�

j

; �

i

�

j

; �

i

�

j

; �

i

�

j

]

T

;

�

[ij]

= diag

�

�

(2)

ij

; �

(2)

i;n

(2)

+1�j

; �

(2)

n

(2)

+1�i;j

; �

(2)

n

(2)

+1�i;n

(2)

+1�j

�

; (30)

�

(1)

ij

= 4s

2

2i

+ 4s

2

2j

�

16

3

s

2

2i

s

2

2j

= 16s

2

i

(1� s

2

i

) + 16s

2

j

(1� s

2

j

)�

256

3

s

2

i

(1� s

2

i

)s

2

j

(1� s

2

j

):

Operator S. It follows from (20) that

Sv

(2)

i

v

(2)

j

T

= (1� !�

(2)

ij

)v

(2)

i

v

(2)

j

T

;

which leads to

SV

[ij]

= V

[ij]

S

[ij]

(31)

with

S

[ij]

=

(

I

4

� !�

[ij]

: i; j � n

(1)

1� !�

(2)

ij

: maxfi; jg = n

(1)

+ 1

: (32)

From (22), (28), and (31) we obtain the following lemma.

Lemma 2 Let �(�) � 1 in (6). Then

MV

[ij]

= V

[ij]

M

[ij]

(33)

for i; j = 1; : : : ; n

(1)

+ 1 with M

[ij]

= S

�

2

[ij]

C

[ij]

S

�

1

[ij]

, where C

[ij]

and S

[ij]

are given

by (29) and (32), respectively.

As a consequence of Lemma 2, the operatorM represents a block diagonal matrix

bdiag(C

[ij]

) with block size at most 4�4 in the basis of the eigenmatrices of the

operator L

(2)

.

The convergence of the two-grid method depends on the spectral radius �(M)

and the operator norm jjMjj, which is generated by the Frobenius norm. Because

of (33) these quantities are given by

�(M) = max

1�i;j�n

(1)

+1

�(M

[ij]

);

jjMjj = max

1�i;j�n

(1)

+1

�

�

�

�

M

[ij]

�

�

�

�

: (34)

9



Both depend on the parameters n

(2)

; !; �

1

; �

2

. In the sequel we show that there are

�xed values for !; �

1

; �

2

such that an upper bound for the norm and the spectral

radius of the operatorM exists, which is independent of n

(2)

and less than 1.

For simplicity we set ! = 1=3, although this is not necessary for the following

analysis. Since �(M) � jjMjj, we restrict ourself to estimating the norm ofM. We

distinguish between two cases.

Case 1 (maxfi; jg = n

(1)

+1). Assuming �

1

+�

2

� 1 we conclude from ! = 1=3

and �

(2)

ij

2 (2; 4), which results from (17) and (18), that

�

�

�

�

M

[ij]

�

�

�

�

=

�

�

�

�

1� !�

(2)

ij

�

�

�

�

�

1

+�

2

�

1

3

:

Case 2 (i; j � n

(1)

). In this case, we partition the matrices S

[ij]

and C

[ij]

such

that S

[ij]11

and C

[ij]11

are scalars:

S

[ij]

=

�

S

[ij]11

0

0 S

[ij]22

�

;

C

[ij]

=

�

C

[ij]11

C

[ij]12

C

[ij]21

C

[ij]22

�

:

Thus,

�

�

�

�

M

[ij]

�

�

�

�

� jC

[ij]11

j

�

�

�

1� !�

(2)

ij

�

�

�

�

1

+�

2

+

�

�

�

�

�

�

�

�

�

�

0 S

�

2

[ij]11

C

[ij]12

S

�

1

[ij]22

S

�

2

[ij]22

C

[ij]21

S

�

1

[ij]11

S

�

2

[ij]22

C

[ij]22

S

�

1

[ij]22

�

�

�

�

�

�

�

�

�

�

: (35)

What follows is the estimation of the terms on the right hand side. When considering

the matrix C

[ij]

, we make use of the fact that each of its entries is a function of s

2

i

and s

2

j

, i.e., C

[ij]

=: C(s

2

i

; s

2

j

). This, taken together with 0 < s

2

i

; s

2

j

< 1=2, allows us

to deduce estimates for C(�; �) with �; � 2 (0; 1=2) instead of C

[ij]

itself.

1. We show that

0 < C

11

(�; �) = 1 +

(1� �)

2

(1� �)

2

(4�� � 3� � 3�)

3�(1� �) + 3�(1 � �) � 16�(1� �)�(1 � �)

< 3=4; (36)

where the left inequality holds i�

0 < 3�(1� �) + 3�(1� �) � 16�(1� �)�(1 � �)

+(1 � �)

2

(1� �)

2

(�3� � 3� + 4��)

= �(1 � �)

�

3� 8�(1� �) + (1� �)(1� �)

2

(2� � 3)

�

| {z }

(i)

+�(1 � �)

�

3� 8�(1� �) + (1� �)(1 � �)

2

(2� � 3)

�

| {z }

(ii)

: (37)

For Term (i) we have

3� 8�(1� �) + (1� �)(1� �)

2

(2� � 3) > 3� 8�(1 � �) + (1� �)

2

(2� � 3)

= �

2

(1 + 2�) > 0: (38)

The �rst part of the proposition follows from (38) and the analogous estimate of

Term (ii).

10



Furthermore, C

11

(�; �) < 3=4 i�

0 < 16�(1� �)�(1 � �) + 4(1� �)

2

(1� �)

2

(3� + 3� � 4��)

�3�(1 � �) � 3�(1 � �)

= �(1 � �)

�

8�(1 � �) + 4(1� �)(1 � �)

2

(3� 2�) � 3

�

| {z }

(iii)

+�(1 � �)

�

8�(1� �) + 4(1� �)(1 � �)

2

(3� 2�)� 3

�

| {z }

(iv)

:

Term (iii) is positive, since

8�(1��)+4(1��)(1��)

2

(3�2�)�3 > 8�(1��)+(1��)(3�2�)�3 = 3�(1�2�) > 0:

Similarly, Term (iv) can be proved to be positive. Therefore, the right inequality in

(36) holds as well.

2. As a consequence of ! = 1=3, �

1

+ �

2

� 1, and �

(2)

ij

2 (0; 4), where the latter

results from (14) and (16), we obtain

�

�

�

1� !�

(2)

ij

�

�

�

�

1

+�

2

< 1.

3. We show that the entries of C

12

(�; �), C

21

(�; �), and C

22

(�; �) are bounded.

Because of (29), we can write for r; s = 1; : : : ; 4, (r; s) 6= (1; 1)

(C(�; �))

rs

=

�p

rs1

(�; �) + �p

rs2

(�; �)

�

(1)

(�; �)

=

p

rs1

(�; �)

1

�

�

(1)

(�; �)

| {z }

(v)

+

p

rs2

(�; �)

1

�

�

(1)

(�; �)

| {z }

(vi)

with certain polynomials p

rs1

(�; �) and p

rs2

(�; �). Due to Lemma 1 (applied to

r (4�(1� �); 4�(1 � �)) ),

�

(1)

(�; �) := 16�(1� �) + 16�(1 � �) �

256

3

�(1� �)�(1 � �)

is non-negative on [0; 1=2]

2

and equal to zero i� � = � = 0. Splitting the denomi-

nator in Term (v)

1

�

�

(1)

(�; �) = 16(1� �)

| {z }

�! 16

for � �! +0

+ 16

�(1� �)

�

| {z }

> 0

for (�; �) 2 (0; 1=2)

2

�

256

3

(1 � �)�(1 � �)

| {z }

�! 0

for � �! +0

shows that a set U

�

=

�

(�; �) : 0 < �; �; �

2

+ �

2

< �

2

	

with 0 < � < 1=2 and a con-

stant c

1

2 (0; 16) exist such that

1

�

�

(1)

(�; �) � c

1

. The denominator is continuous

and positive on the closed set [0; 1=2]

2

nU

�

. Therefore, a constant c

2

exists such that

1

�

�

(1)

(�; �) � c

2

> 0. The numerator of Term (v) is continuous and thus bounded

on [0; 1=2]

2

, and consequently, an upper bound for the absolute value of Term (v)

exists. This and the analogous argumentation for Term (vi) proves the proposition.

4. It follows from ! = 1=3 and �

(2)

ij

2 (0; 4) that S

[ij]11

=

�

�

�

1� !�

(2)

ij

�

�

�

< 1.

5. The absolute values of the main diagonal elements of the matrix S

[ij]22

are less

than 1=3, since (30), (32), and �

(2)

i;n

(2)

+1�j

, �

(2)

n

(2)

+1�i;j

, �

(2)

n

(2)

+1�i;n

(2)

+1�j

2 (2; 4),

where the latter results from (17) and (18).

As a consequence of Points 3{5, the right term on the right hand side in (35)

is less than any small, but positive constant, if �

1

and �

2

are chosen su�ciently

11



�

1

= 1 �

1

= 1 �

1

= 2

n

(1)

n

(2)

�

2

= 0 �

2

= 1 �

2

= 0

31 63 0.333066 0.110933 0.110933

63 127 0.333266 0.111067 0.111067

127 255 0.333317 0.111100 0.111100

255 511 0.333329 0.111108 0.111108

511 1023 0.333332 0.111110 0.111110

Table 1: Spectral radius � (M) (with ! = 1=3).

�

1

= 1 �

1

= 1 �

1

= 2

n

(1)

n

(2)

�

2

= 0 �

2

= 1 �

2

= 0

31 63 0.437640 0.312489 0.156721

63 127 0.453964 0.331048 0.157033

127 255 0.462473 0.341048 0.157109

255 511 0.466885 0.346166 0.157128

511 1023 0.469129 0.348746 0.157133

Table 2: Norm jjMjj (with ! = 1=3).

large. Notice that this estimate is independent of n

(2)

. Points 1 and 2 imply

that the absolute value of the left term on the right hand side in (35) is less than

3=4. Because of these two facts a constant c

3

independent of n

(2)

exists such that

�

�

�

�

M

[ij]

�

�

�

�

� c

3

< 1 for i; j � n

(1)

.

Combining the results of Case 1 and 2, we obtain the following

Theorem 1 Let �(�) � 1 in (6). Then there exist constants !, �

1

, �

2

, and c, which

are independent of n

(2)

, such that

�(M(!; �

1

; �

2

)) � jjM(!; �

1

; �

2

)jj � c < 1

for the error transfer operatorM of the two-grid method (Algorithm 3).

This theorem reects the convergence only qualitatively. Tables 1 and 2 suggest

that the rate of convergence is bounded independently of n

(2)

even if only one

presmoothing sweep and no postsmoothing sweeps are performed.

Of course, a quantitative convergence analysis seems to be desirable, but we

expect such an analysis to be much more complicated compared to the qualitative

analysis presented here. Whereas the �rst part of our analysis (up to Lemma 2)

is formally similar to the Fourier analysis of the two-grid method for the two-

dimensional Poisson equation on the unit square [Hac85], in the second part, which

is essentially the analysis of the 4�4-blocksM

[ij]

, serious problems are caused by the

more complicated structure of the matrix entries. Estimating the spectral radius

or the norm of M

[ij]

turns out to be much harder than deriving the corresponding

estimates for the Poisson equation (cf. [Hac85]).

6 A Multi-Grid Method

The recursive application of the two-grid method leads to a multi-grid method.

More precisely, the coarse grid equation in Step 3 of Algorithm 3 is solved approx-

imately by a two-grid or a multi-grid method involving further coarse grids. In the

end, the dimension of the Lyapunov equations on the coarsest grid is su�ciently

12



small to solve these equations by direct methods [BS72, GLAM92, Ham82, Pen97].

Alternatively, these equations can be solved by standard iteration methods [Smi68,

Sta89, SN91, Sta91, Wac92]. In this section we consider the type of equation

L

A+BK;E

X = (A+ BK)

T

XE +E

T

X(A + BK) = Y; (39)

which is to be solved in each sweep of the Newton method (Algorithm 1).

For simplicity we de�ne the multi-grid method recursively. On Level l, the

matrices A

(l)

, B

(l)

, and E

(l)

are provided by the discretization. The matrices K

(l)

are de�ned recursively as

K

(l)

:= K

(l+1)

�

I

(l)

(l+1)

�

T

(40)

for l = l

max

�1; : : : ; 1. In contrast to the two-grid method, steering parameters �

(l)

are included, which determine the number of multi-grid sweeps starting on Level

l�1 for solving the Lyapunov equation of this level approximately. If these numbers

are equal on each level, i.e., �

(l)

= � for l = 2; : : : ; l

max

, we get a V-cycle for � = 1

and a W-cycle for � = 2 [Hac85].

Algorithm 4 realizes one sweep of the multi-grid method

X

(l)

 �MG

(l)

(Y

(l)

; X

(l)

)

starting on Level l.

Algorithm 4 (Multi-grid cycle on Level l � 2)

1. X

(l)

 �RICHARDSON(X

(l)

; Y

(l)

; A

(l)

+ B

(l)

K

(l)

; E

(l)

; �

(l)

1

; !

(l)

)

2. Y

(l�1)

 � I

(l�1)

(l)

(Y

(l)

� L

A

(l)

+B

(l)

K

(l)

;E

(l)

X

(l)

)

IF l � 1 = 1

3. X

(1)

 � L

�1

A

(1)

+B

(1)

K

(1)

;E

(1)

Y

(1)

.

(Exact solution on the coarsest grid)

ELSE

4. X

(l�1)

 � 0

FOR i = 1; : : : ; �

(l)

5. X

(l�1)

 �MG

(l�1)

(X

(l�1)

; Y

(l�1)

)

END FOR

(Approximate solution)

END IF

6. X

(l)

 � X

(l)

+ I

(l)

(l�1)

X

(l�1)

7. X

(l)

 � RICHARDSON(X

(l)

; Y

(l)

; A

(l)

+ B

(l)

K

(l)

; E

(l)

; �

(l)

2

; !

(l)

)

7 Complexity of the Multi-Grid Cycle

We provide estimates for the computational cost and the storage cost of the multi-

grid cycle. For simplicity we assume �

(l)

1

= �

1

, �

(l)

2

= �

2

, and �

(l)

= � � 3 for

l = 2; : : : ; l

max

Taking sparsity into account the computational cost of Algorithm 4 without

Steps 4 and 5 is c

4

�

n

(l)

�

2

+ O

�

n

(l)

�

, where c

4

is a constant depending on �

1

and

13



�

2

. Since n

(l+1)

� 2n

(l)

for n

(l)

>> 1, the cost for performing one multi-grid cycle

is about

c

4

n

2

�

1 +

�

�

4

�

+

�

�

4

�

2

+ : : :

�

=

4c

4

4� �

n

2

:

The memory requirement for the matrices on Level l is c

5

�

n

(l)

�

2

+O

�

n

(l)

�

with

a constant c

5

depending on the implementation. This yields

c

5

n

2

 

1 +

�

1

4

�

+

�

1

4

�

2

+ : : :

!

=

4c

5

3

n

2

as an estimate for the total memory cost.

In summary the computational cost and the memory requirement of the multi-

grid method are of order the number of unknowns in the equation on the �nest

grid.

8 Numerical Experiments

The convergence of the two-grid method has been investigated in Section 4. There-

fore, in this section we focus on the multi-grid method.

Concerning the choice of the parameters in the model problem (1)-(5) we con-

sider the following two examples.

Example 1. �(�) � 1,

b(�) =

�

100 : � 2 (1=6; 2=6)

0 : otherwise

; and c(�) =

�

10 : � 2 (4=6; 5=6)

0 : otherwise

:

Example 2. Here,

�(�) =

�

1 : � 2 (0; 1=3)

1=3 : otherwise

;

whereas the other parameters coincide with Example 1.

We have performed numerical experiments for the following two problems.

Problem 1. Solution of the equation L

A;E

X = Y . The right hand side is chosen

as Y = (1=n)ee

T

with e = (1; : : : ; 1)

T

2 R

n

, and the zero matrix is used as initial

guess.

Problem 2. Solution of the sequence of equations L

A+BK

i

;E

X = Y , which arise

from the Newton method. The right hand side Y is provided by the outer Newton

iteration. Again, the initial guesses are zero matrices.

The steering parameters of the multi-grid method are chosen independently of the

level index, i.e., �

(l)

= �, �

(l)

1

= �

1

, �

(l)

2

= �

2

, and !

(l)

= ! for l = 2; : : : ; l

max

. If

not mentioned otherwise, we set � = 1 (V-cycle) and �

1

= �

2

= 1. We set ! = 1=3

for Example 1, which has been motivated heuristically in Section 3. For Example

2 an approximation ! = 0:4212 for the optimal relaxation parameter is gained

from Test 1. Depending on the kind of test, we use either the maximal number

of iterations maxit or the relative residual norm (jjY �L

A;E

X

i

jj

F

= jjY jj

F

� tol) as

stopping criterion.

In the tests described below several aspects of the multi-grid method are con-

sidered such as the inuence of the relaxation parameter and the dependence of the

number of iterations on the dimension of the problem.
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In Test 1 we investigate the impact of the relaxation parameter ! on the con-

vergence of the multi-grid method. We use the norm of the residual after a certain

number maxit of iterations to characterize the speed of convergence. This criterion

is sensible, since the convergence is asymptotically linear, which can be explained

by the fact that the multi-grid iteration operator is stationary, in contrast to, for

example, CG-like methods.

Test 1 Problem 1; n

(1)

= 2, l

max

= 7, n = 191; stopping criterion: maxit = 10.

See Figure 1.
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Figure 1: Test 1. Norm of the residual jjY �L

A;E

X

i

jj

F

after i = 10 iterations

depending on !.

Test 1 indicates that the multi-grid method converges for values of ! varying over

a relatively wide range, although the choice of ! is crucial for attaining a (nearly)

optimal speed of convergence.

Test 2 shows the dependence of the number of multi-grid iterations on the num-

ber of levels involved. We start with a �xed initial partitioning of the interval 


and increase the number of levels l

max

successively.

Test 2 Problem 1; n

(1)

= 2; stopping criterion: tol = 10

�10

. See Table 3.

Ex.1 Ex.2

�

1

= 1 �

1

= 1 �

1

= 2 �

1

= 1 �

1

= 1 �

1

= 2

l

max

n

�

2

= 0 �

2

= 1 �

2

= 0 �

2

= 0 �

2

= 1 �

2

= 0

4 23 21 13 15 65 33 34

5 47 22 14 16 68 34 36

6 95 23 14 17 70 35 37

7 191 24 14 18 72 35 38

8 383 25 15 19 74 36 39

Table 3: Test 2. Numbers of iterations depending on l

max

for di�erent numbers of

smoothing steps.

Test 2 shows that the V-cycle of the multi-grid method converges, even if only one

presmoothing step per multi-grid cycle is performed. Although the dimension of
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the problem is increasing relatively fast, the number of iterations remains nearly

constant in each of the three cases. This indicates the existence of a bound for the

rate of convergence that is independent of the dimension of the problem.

In Test 3 we consider the Lyapunov equations to be solved within the Newton

method, where the dimension of the problem varies. We investigate the dependence

of the number of multi-grid iterations on l

max

in the Newton method. To this end,

the number of levels is increased analogously to Test 2.

Test 3 Problem 2; n

(1)

= 2; stopping criterion: tol = 10

�10

. In each case, the

norm of the Riccati residual jjR(P

i

)jj

F

has been reduced by a factor 10

�12

within 5

Newton steps (NS). See Table 4.

l

max

n NS 1 NS 2 NS 3 NS 4 NS 5 Total

4 23 13 22 21 20 20 96

5 47 14 22 20 20 20 96

Example 1 6 95 14 22 20 20 20 96

7 191 14 22 20 20 20 96

8 383 15 22 20 20 20 97

4 23 34 41 39 38 37 189

5 47 35 40 39 37 37 188

Example 2 6 95 36 40 39 37 37 189

7 191 36 40 39 37 37 189

8 383 37 40 39 37 37 190

Table 4: Test 3. Numbers of multi-grid iterations depending on l

max

in Newton

Steps 1{5.

Although the dimension of the problem is increasing relatively fast, the number

of multi-grid iterations remains nearly constant in each Newton step. It might

be possible to solve the Riccati equation with less multi-grid iterates using other

stopping criteria for the multi-grid iterations within the Newton iteration. For

example, we could solve the Lyapunov equations in the �rst Newton steps less

accurate than those in the last steps. Unfortunately, this involves the danger of

a convergence in the Newton method towards one of the non-stabilizing solutions

of the Riccati equation. However, this has not been observed in our numerical

experiments.

9 Comparison with the Method by Rosen andWang

Algorithm 4 di�ers in a number of points from the multi-grid method due to Rosen

and Wang [RW95].

The �rst essential di�erence is that our method is based on the generalized

Lyapunov equation L

A;E

X = Y , which results immediately from the discretiza-

tion. In contrast, this equation is transformed into a standard Lyapunov equation

L

AE

�1

;I

n

X = E

�T

Y E

�1

in the Rosen-Wang method involving the matrixE

�1

. Al-

though this matrix is well-conditioned, this may cause problems for a parallelization

and it produces �ll-in when the method is extended to the two- or three-dimensional

case. As a consequence, both multi-grid methods di�er in the components used,

e.g., the interpolation and restriction operators.

A second basic di�erence lies in the choice of the smoothing method. Whereas

we make use of basic iterative methods for systems of linear equations, the Smith

iteration [Smi68] is utilized in the Rosen-Wang method. The main drawback of
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the Smith iteration is that the inverses of sparse matrices are involved into the

computation, which again leads to �ll-in and problems for parallelization.

In contrast, our multi-grid method is free of matrix factorizations and �ll-in. Its

implementation is comparatively simple and it is based on matrix-matrix-products,

which can be e�ciently computed in parallel. The spectral properties of the Lya-

punov operator and the convergence analysis of the two-grid method are strongly

a�ected by the aforementioned di�erences in the choice of the components. More-

over, we have proved a convergence result for Algorithm 3, whereas the analysis

for the Rosen-Wang method is restricted to the derivation of the structure of the

two-grid error transfer operator, which is comparable to Lemma 2.

The rates of convergence of both methods are almost identical. This is shown

in Table 5, which compares the spectral radii of the error transfer operators of both

two-grid methods.

n

(2)

Rosen/Wang Algorithm 3

19 0.31834 0.33060

39 0.32957 0.33265

59 0.33165 0.33303

79 0.33239 0.33316

99 0.33273 0.33322

Table 5: Spectral radii of the error transfer operators of the two-grid method by

Rosen and Wang [RW95] and Algorithm 3 (! = 1=3, �

1

= 1, �

2

= 0).

10 Conclusions

In this paper we have proposed a multi-grid method for the solution of a certain

class of structured Lyapunov equations. The e�ciency of the method has been

demonstrated by numerical experiments.

The essential advantage of our method is that no matrices are factorized. Except

for the Lyapunov solver on the coarsest grid, the algorithm consists of additions and

multiplications of matrices by (sparse) matrices and thus o�ers a great potential

for a parallelization. Like for most other iterative methods, the computational cost

per iteration is of order the number of unknowns in the equation. For the two-

grid method we have proved that the number of iterations required to attain a

prescribed accuracy is O(1). Numerical experiments (Tests 2 and 3 in Section 8)

indicate that this is also the case for the multi-grid method. This is an important

advantage over most other iterative methods, e.g., Richardson iteration [Var62] or

CG method [HS52], where, as a consequence of (19), the order of the number of

iterations depends on n.

An intrinsic disadvantage of multi-grid methods is their dependence on steering

parameters. In particular, the choice of the relaxation parameter ! is crucial with

respect to the speed of convergence. On the other hand, (nearly) optimal values can

be gained analytically only for simple model problems, e.g., �(�) � 1,K = 0. Multi-

grid methods are closely coupled to the structure of the underlying problem and thus

they are applicable to a restricted class of problems. Moreover, its implementation is

relatively complicated compared to other iterative methods, e.g., CG-like methods.

As we have mentioned, it is still an open question which stopping strategy for the

multi-grid iterations within the outer Newton iteration is optimal. More precisely,

it is not known which accuracy is required for the solution of the Lyapunov equation

to make sure the Newton method converges to the stabilizing solution of the Riccati
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equation. Another problem, which may occur in context with the Newton method,

is the dominance of the rank-1-term in the term A+BK in (39). This may a�ect the

symmetry and spectral properties of the operator L

A;E

by a degree, which makes

the multi-grid method converge slowly or even diverge. From the analytical point

of view, the question for rigorous bounds for the rate of the convergence of the

two-grid and multi-grid methods remains open.
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