
Technische Universit�at Chemnitz

Sonderforschungsbereich 393

Numerische Simulation auf massiv parallelen Rechnern

Peter Benner Enrique S. Quintana-Ort��

Solving Stable Generalized

Lyapunov Equations

with the Matrix Sign Function

Preprint SFB393/97-23

Preprint-Reihe des Chemnitzer SFB 393

SFB393/97-23 October 1997

Solving Stable Generalized Lyapunov Equations

with the Matrix Sign Function

�

Peter Benner

y

Enrique S. Quintana-Ort��

z

Abstract

We investigate the numerical solution of the stable generalized Lyapunov equation

via the sign function method. This approach has already been proposed to solve stan-

dard Lyapunov equations in several publications. The extension to the generalized

case is straightforward. We consider some modi�cations and discuss how to solve

generalized Lyapunov equations with semide�nite constant term for the Cholesky

factor. The basic computational tools of the method are basic linear algebra oper-

ations that can be implemented e�ciently on modern computer architectures and

in particular on parallel computers. Hence, a considerable speed-up as compared to

the Bartels-Stewart and Hammarling's methods is to be expected. We compare the

algorithms by performing a variety of numerical tests.

Key words: Generalized Lyapunov matrix equations, mathematical software, matrix sign

function, condition estimation.

AMS(MOS) subject classi�cations: 65F10, 93B40, 93B51.

1 Introduction

The generalized Lyapunov equation

0 = Q+ A

T

XE + E

T

XA; (1.1)

where A;E;X;Q 2 IR

n�n

, Q = Q

T

, and X = X

T

is the sought-after solution, plays a

fundamental role in control theory and the stability analysis of linear systems; see, e.g.,

[2, 28, 31, 35] and the references given therein. (Note that everything in this paper also

�

The work on this paper was partially supported by the Sonderforschungsbereich 393 \Numerische

Simulation auf massiv parallelen Rechnern" of the Technische Universit

�

at Chemnitz, Germany, and

by the Deutsche Forschungsgemeinschaft, research grant Me 790/7-1 \Singul

�

are Steuerungsprobleme".

Enrique S. Quintana-Ort�� was partially supported by the CICYT project No. TIC96-1062-C03-C03.

y

Zentrum f

�

ur Technomathematik, Fachbereich 3/Mathematik und Informatik, Universit

�

at Bremen, D{

28334 Bremen, Germany. E-mail: benner@numerik.uni-bremen.de

z

Departamento de Inform�atica, Universidad Jaime I, Campus Penyeta Roja, 12.071{Castell�on, Spain.

E-mail: quintana@inf.uji.es

1

holds for the complex case, i.e., A;E;X;Q 2 C

n�n

.) In linear control problems governed

by �rst-order ordinary di�erential equations (ODE), usually E = I

n

, where I

n

denotes the

identity of order n. The case E 6= I

n

appears if the control problem is governed by a

second-order ODE (e.g., [12]) or a descriptor system (e.g., [28]), or if the underlying �rst-

order ODE comes from the �nite-element discretization of a partial di�erential equation

(PDE) (e.g., [7, 33]).

Here, we assume that E is nonsingular and hence, A��E is a regular matrix pencil, i.e.,

det(A� �E) 6� 0 for � 2 C. Additionally, we assume �

i

+ �

j

6= 0 for all �

i

; �

j

2 � (A;E),

where

� (A;E) := f� 2 C[f1g : � =

�

�

; det(�A� �E) = 0; with � =1 if � = 0g

denotes the generalized spectrum of a regular matrix pencil. These assumptions guarantee

(and are necessary) that (1.1) has a unique solution (see, e.g., [26, 30], and the references

given therein). The nonsingularity of E implies that all eigenvalues of the matrix pencil

A� �E are �nite while the condition �

i

+ �

j

6= 0 implies that �

j

6= 0 for all �

j

2 � (A;E)

and hence the nonsingularity of A. Note that the roles of A and E can be swapped as they

appear in a symmetric way in (1.1).

The matrix pencil A��E is called stable if all its eigenvalues are contained in the open

left half plane, denoted by � (A;E) � C

�

. This property will be assumed throughout this

paper and the associated Lyapunov equation will be called stable Lyapunov equation. We

will provide reasons why the proposed sign function approach is not feasible for matrix

pencils A��E having eigenvalues on or on both sides of the imaginary axis. But note that

everything derived in this paper also holds if A��E is antistable, i.e., has all its eigenvalues

in the open right half plane. Either one (stable/antistable) of these two assumptions

guarantees that �

i

+ �

j

6= 0 for all �

i

; �

j

2 � (A;E).

Furthermore, ifQ is positive/negative (semi-)de�nite, then the solutionX of (1.1) is also

positive/negative (semi-)de�nite. See, e.g., [26, 30] and the references given therein. We

will call a generalized Lyapunov equation (semi-)de�nite if A��E is stable (or antistable)

and the constant term Q is (semi-)de�nite.

As E and A are both invertible, (1.1) is equivalent to either one of the standard Lya-

punov equations

0 =

~

Q+

~

A

T

X +X

~

A;

~

A := AE

�1

;

~

Q := E

�T

QE

�1

;

0 =

^

Q+

^

A

T

X +X

^

A;

^

A := EA

�1

;

^

Q := A

�T

QA

�1

:

But if any of these transformations is performed, the subsequent solution of the standard

Lyapunov equations is a�ected by the errors made which are essentially determined by

the condition numbers of E or A, respectively. Also, the condition number of

~

A or

^

A can

be signi�cantly worse than that of A which may a�ect the iterative schemes employed in

our algorithms. Moreover, in many of the above-mentioned applications, E is a sparse

matrix while its inverse may be full. As we will see in Section 2, the additional cost for our

algorithm caused by using the generalized form (1.1) rather than the standard form given

2

above basically comes from matrix multiplications with E, this additional cost is negligible

if E has only O(n) nonzero entries.

Numerical solution methods for generalized Lyapunov equations are studied in [14, 15,

30]. The methods investigated there are generalizations of the Bartels-Stewart method [5]

and Hammarling's algorithm [18, 36] introduced for standard Lyapunov equations (E =

I

n

). The initial step in all these methods is the application of the QZ algorithm (see,

e.g., [16] and the references given therein) to the matrix pencil A � �E. This is followed

by a back substitution process. Note that Hammarling's algorithm is only applicable for

(semi-)de�nite Lyapunov equations.

The condition of the Lyapunov equation (1.1) is given by the condition number of the

Lyapunov operator (see, e.g., [14, 15, 30])

 : S

n

�! S

n

: Z �! A

T

ZE + E

T

ZA;

where S

n

denotes the set of symmetric matrices in IR

n�n

. This condition number can easily

be derived observing that (1.1) is equivalent to the linear system

�

(E

T

 A

T

) + (A

T

 E

T

)

�

vec (X) = �vec (Q) :

Here,
 denotes the Kronecker product (see, e.g., [26]) and vec (:) denotes the operation

of stacking the columns of an n�m matrix into an n �m vector. Consequently, (1.1) has

a unique solution if and only if the matrix representation of
, given by W := (E

T

A

T

)+ (A

T

E

T

), is nonsingular which in turn is guaranteed by the above assumptions on

the coe�cients of (1.1). The condition number of the Lyapunov operator is therefore the

standard condition number for linear systems, given by

cond

2

(
) := cond

2

(W) = kWk

2

kW

�1

k

2

: (1.2)

The separation of the Lyapunov operator is given by

sep

F

(
) := min

kZk

F

=1

kA

T

ZE + E

T

ZAk

F

(1.3)

and it can be shown that sep

F

(
) = 1=kW

�1

k

2

(see, e.g., [30]). Hence,

cond

2

(
) =

kWk

2

sep

F

(
)

�

2kAk

2

kEk

2

sep

F

(
)

:

The condition number and separation of the Lyapunov operator will be used in Section 5 to

judge the quality of the approximate solutions computed by the tested numerical methods.

In Section 2 we will show how to solve the generalized Lyapunov equation (1.1) using

the sign function iteration. This part is a specialization and simpli�cation of the method

derived in [13] for the numerical solution of generalized algebraic Riccati equations using

that (1.1) is a special case of such an equation. The application to semide�nite Lyapunov

equations will be analyzed in Section 3. An algorithmic presentation of the proposed meth-

ods and implementation details will be discussed in Section 4. The Lyapunov solvers based

on the sign function iteration will then be compared to the Bartels-Stewart algorithm and

Hammarling's algorithm with respect to accuracy of computed solutions and computation

time in Section 5.

3

2 The Matrix Sign Function and Lyapunov Equations

The sign function method was �rst introduced in 1971 by Roberts [32] to solve algebraic

Riccati equations of the form

0 = Q+ A

T

X +XA�XGX (2.4)

where A;G;Q;X 2 IR

n�n

, G = G

T

, Q = Q

T

, and X = X

T

is the unknown solution matrix.

Roberts also shows how to solve stable Sylvester and Lyapunov equations via the matrix

sign function. These ideas will be used and extended in the sequel.

The matrix sign function of a matrix Z 2 IR

n�n

can be de�ned as follows. Let �(Z) \

{IR = ; ({ :=

p

�1) and denote the Jordan decomposition of Z by

Z = S

"

J

�

0

0 J

+

#

S

�1

;

where the Jordan blocks corresponding to the, say, k eigenvalues in the open left half plane

are collected in J

�

and the Jordan blocks corresponding to the remaining n�k eigenvalues

in the open right half plane are collected in J

+

. Then

sign (Z) := S

"

�I

k

0

0 I

n�k

#

S

�1

: (2.5)

Note that sign (Z) is unique and independent of the order of the eigenvalues in the Jordan

decomposition of Z (see, e.g., [25, Section 22.1]). Many other equivalent de�nitions for

sign (Z) can be given; see, e.g., the recent survey papers [24, 23].

It is well-known (see, e.g., [32, 23]) that (I

n

� sign (Z))=2 de�nes the skew projection

onto the stable Z-invariant subspace parallel to the antistable Z-invariant subspace whereas

(I

n

+ sign (Z))=2 de�nes the skew projection onto the antistable Z-invariant subspace

parallel to the stable Z-invariant subspace.

The sign function can be computed via the Newton iteration for the equation Z

2

= I

where the starting point is chosen as Z, i.e.,

Z

0

 Z; Z

k+1

�

Z

k

+ Z

�1

k

�

=2; for k = 0; 1; 2; : : : : (2.6)

It is shown in [32] that sign (Z) = lim

k!1

Z

k

.

Although the convergence of the Newton iteration is globally quadratic, the initial

convergence may be slow. There have been several proposals to accelerate this iteration

by scaling, e.g., in [8], the determinantal scaling

Z

k

1

j det (Z

k

)j

1=n

Z

k

is introduced. Other scalings are given in [32, 4, 19, 22] and a comparison of these strategies

for accelerating the convergence of the Newton iteration can be found in [3]. Several other

4

schemes have been developed for computing the sign function of a matrix. For a summary

see [23].

A generalization of the matrix sign function method to a matrix pencil Z � �Y was

given by Gardiner and Laub [13] in case Z and Y are nonsingular. They consider the

iteration

Z

0

 Z;

c

k

j det(Z

k

)j

j det(Y)j

!

1

n

Z

k+1

1

2c

k

(Z

k

+ c

2

k

Y Z

�1

k

Y):

for k = 0; 1; 2; : : :

(2.7)

It is easy to see that this iteration is equivalent to computing the sign function of the

matrix Y

�1

Z via the standard Newton iteration as given in (2.6). If Z

1

:= lim

j!1

Z

j

,

then Z

1

�Y de�nes the skew projection onto the stable right de
ating subspace of Z��Y

parallel to the antistable de
ating subspace and Z

1

+ Y de�nes the skew projection onto

the antistable right de
ating subspace of Z � �Y parallel to the stable de
ating subspace.

In [13] the iteration (2.7) is used to compute the stabilizing solution of the generalized

continuous-time algebraic Riccati equation

0 = Q+ A

T

XE + E

T

XA� E

T

XGXE; (2.8)

where A;G;Q;X are as in (2.4) and E 2 IR

n�n

is nonsingular. Here, X is stabilizing in

the sense that � (A � GXE;E) � C

�

. It is known [13, 25, 28] that if such a stabilizing

solution exists, then it is unique and the columns of [I

n

; E

T

X]

T

span the stable de
ating

subspace of the matrix pencil

H � �K :=

"

A G

Q �A

T

#

� �

"

E 0

0 E

T

#

: (2.9)

Therefore, (2.8) can be solved by applying (2.7) to H��K and then forming the resulting

projector H

1

�K onto the stable de
ating subspace of H � �K. A basis of this subspace

is then given by the range of that projector. If this basis is given by the columns of

[U

T

; V

T

]

T

, U; V 2 IR

n�n

, then U is invertible and the solution of (2.8) is given by the

solution of the linear matrix equation

XEU = �V: (2.10)

It can also be shown that it is not necessary to compute explicitly a basis of the stable

de
ating subspace ofH��K butX can be obtained from the overdetermined but consistent

set of linear equations

(H

1

+K)

"

I

n

XE

#

= 0: (2.11)

As the columns of [I

n

; E

T

X]

T

span the range of H

1

�K, they are contained in the null

space of any projector onto the antistable de
ating subspace of H � �K from (2.9). As

5

H

1

+K de�nes such a projector, equation (2.11) follows immediately. If

H

1

:=

"

W

11

W

12

W

21

W

22

#

;

then (2.11) is equivalent to

"

W

12

W

22

+ E

T

#

XE = �

"

W

11

+ E

W

21

#

: (2.12)

Using di�erent motivations, (2.12) is derived in [32] for E = I

n

and for E 6= I

n

in [13]. We

also have the following result:

Proposition 2.1 The generalized continuous-time algebraic Riccati equation (2.8) has a

stabilizing solution if and only if H � �K has no eigenvalues on the imaginary axis and

"

W

12

W

22

+ E

T

#

has full column rank.

Proof By the equivalence transformation

"

E

�1

0

0 I

n

#

(H � �K)

"

I

n

0

0 E

�T

#

=:

~

H � �I

2n

;

the generalized equation (2.8) is equivalent to

0 = Q+

~

A

T

~

X +

~

X

~

A�

~

X

~

G

~

X; (2.13)

where

~

A = E

�1

A,

~

G = E

�1

GE

�T

, and

~

X = E

T

XE. Equation (2.13) has a stabilizing

solution

~

X if and only if (2.8) has a stabilizing solutionX. Furthermore, � (H;K) = � (

~

H).

De�ning

"

~

W

11

~

W

12

~

W

21

~

W

22

#

:= sign

�

~

H

�

;

it follows (see [13])

"

E 0

0 I

n

#

sign

�

~

H

�

"

I

n

0

0 E

T

#

= H

1

:

Applying Theorem 22.4.1 of [25] to

~

H we obtain that

rank

 "

~

W

12

~

W

22

+ I

n

#!

= n

if and only if (2.13) has a stabilizing solution and

~

H has no eigenvalues on the imaginary

axis, i.e., by the above considerations, if and only if (2.8) has a stabilizing solution and

6

H��K has no eigenvalues on the imaginary axis. Now the theorem follows by noting that

E is nonsingular and hence

n = rank

 "

~

W

12

~

W

22

+ I

n

#!

= rank

 "

E 0

0 I

n

"

~

W

12

~

W

22

+ I

n

#

E

T

!

= rank

 "

W

12

W

22

+ E

T

#!

:

The Lyapunov equation (1.1) is a special case of the generalized continuous-time alge-

braic Riccati equation (2.8). This implies that one can solve (1.1) by means of the sign

function method applied to the matrix pencil in (2.9) which then takes the form

H � �K =

"

A 0

Q �A

T

#

� �

"

E 0

0 E

T

#

: (2.14)

Under the given assumptions, this matrix pencil is regular andH��K has an n-dimensional

stable de
ating subspace. If this subspace is spanned by the columns of [U

T

; V

T

]

T

, then U

is nonsingular and X = �V U

�1

E

�1

is the solution of the generalized Lyapunov equation

(1.1). Note that X can be computed via (2.12) rather than by forming the de
ating

subspace explicitly. Theorem 2.1 implies that for Lyapunov equations where � (A;E) is

not contained in either the open left or open right half plane, the linear system (2.12)

is not consistent as it does not have full column rank and the Lyapunov equation can

in general not be solved via this approach. In order to solve (1.1) via the sign function

applied to H � �K it would be necessary to �nd an expression for the projector onto the

de
ating subspace corresponding to � (A;E) \ � (H;K) in terms of the sign function. At

this writing, we are not aware of such an expression.

The solution of (1.1) in case E = I

n

and A stable by means of the sign function method

was already suggested by Roberts [32] using the identity

1

2

I + sign

 "

A 0

Q �A

T

#!!

=

"

0 0

X I

#

(2.15)

(Note that our notation slightly di�ers from [32].) This shows that it is neither necessary to

compute [U

T

; V

T

]

T

explicitly nor to solve (2.12). The solution of the Lyapunov equation

can be read o� from (2.15) directly.

The computation of the sign function is rather expensive compared to solving the

Lyapunov equation by the Bartels-Stewart algorithm [5] or its generalizations [14, 15, 30].

We will therefore show how to simplify these computations.

Let us �rst consider the solution of the Lyapunov equation (1.1) in case E = I

n

using

the Newton iteration (2.6) to compute the sign function of H as given in (2.14). Roberts

shows in [32] that the Newton iteration boils down to

A

0

 A; A

k+1

1

2

�

A

k

+ A

�1

k

�

;

Q

0

 Q; Q

k+1

1

2

�

Q

k

+ A

�T

k

Q

k

A

�1

k

�

;

for k = 0; 1; 2; : : : (2.16)

7

and from (2.15) it is easy to see that X = (lim

k!1

Q

k

)=2. The same procedure is

re-derived a couple of times in the literature; see [6, 21, 11].

If E 6= I

n

and A � �E is stable we can use the generalized Newton iteration (2.7)

applied to the matrix pencil H � �K to obtain

A

0

 A; A

k+1

1

2

�

A

k

+ EA

�1

k

E

�

;

Q

0

 Q; Q

k+1

1

2

�

Q

k

+ E

T

A

�T

k

Q

k

A

�1

k

E

�

;

for k = 0; 1; 2; : : : (2.17)

and

X =

1

2

E

�T

�

lim

k!1

Q

k

�

E

�1

:

Although (2.17) is a straightforward generalization of (2.16), we were not able to locate

a reference for this approach to solve generalized Lyapunov equations. In the following,

we will denote the limits in iterations (2.16) and (2.17) by A

1

:= lim

k!1

A

k

and Q

1

:=

lim

k!1

Q

k

, respectively. Note that for (2.16), A

1

= �I

n

while for (2.17) we have A

1

=

�E. These relations can be used to design simple stopping criteria; see Section 4.

The iterations (2.16) and (2.17) save a lot of workspace and computational cost com-

pared to applying the (generalized) Newton iteration to H (or H � �K). A complete

account of the computational cost of the resulting algorithm and a comparison to the

Bartels-Stewart method as presented in [15, 30] are given in Section 4. Roughly speaking,

we will see there that ten steps of (2.17) are about as expensive as solving (1.1) by the

generalized Bartels-Stewart algorithm. It can be observed that convergence of (2.17) of-

ten requires 7{10 iterations such that the computational cost of both methods is usually

similar. Note also that both methods require the same amount of work space.

Some of the computational work can be saved by computing an initial QR or QL

factorization of E, E = UR

E

. We may then set

A

0

� �E

0

:= U

T

(A� �E) = U

T

A� �R

E

and apply the iteration (2.17) to A

0

� �E

0

. This only requires an additional update of

the computed solution X by X UXU

T

. With this transformation, the matrix multipli-

cations with E in (2.17) require only multiplication by a triangular matrix and the linear

systems to be solved in order to obtain X from Q

1

are triangular systems. Also note that

in case determinantal scaling is used, det(E) is needed which also requires a factorization

of E so that an initial QR or QL factorization does not cause (signi�cant) extra work.

Moreover, quite frequently E is the result of an a priori transformation of the underlying

system. It is then often the case that E is already upper or lower triangular; see, e.g.,

[7, 28, 29, 37].

A complete description of the resulting algorithms and their computational cost will be

given in Section 4.

The following remark does not replace a thorough error analysis but provides an expla-

nation why our method usually provides Lyapunov solutions with an accuracy as predicted

by the condition number of the corresponding Lyapunov operator.

8

Remark 2.2 In [9] it is shown that invariant subspaces computed via the sign function

iteration are essentially as accurate as those computed by the QR algorithm, provided the

sign function of a matrix can be computed with su�cient accuracy. The same arguments

also show that a de
ating subspace of a matrix pencil obtained via the generalized sign func-

tion method will be essentially as accurate as computed by the QZ algorithm. In Section 2

we saw that XE is determined by the stable de
ating subspace of H � �K. Moreover, the

condition number of this subspace is in our case given by 1=sep

F

(
).

Remark 2.2 shows that the accuracy to which X is computed by our algorithm is

basically determined by sep

F

(
) and the condition of E. If E is well-conditioned, this

is basically equivalent to cond

2

(
). Moreover, in some applications, E

T

XE = Q

1

=2

or XE = E

�T

Q

1

=2 are required such that the �nal inversions of E can (partially) be

circumvented. For instance, the observability Gramian of a linear time-invariant system in

generalized state-space form,

E _x(t) = Ax(t) +Bu(t); t � t

0

; x(t

0

) = x

0

;

y(t) = Cx(t); t � t

0

;

is given by the solution Y of the standard Lyapunov equation

(E

�1

A)

T

Y + Y (E

�1

A) + CC

T

= 0: (2.18)

Equation (2.18) is equivalent to (1.1) with X = E

�T

Y E

�1

and Q = CC

T

. Solving (1.1)

using (2.17), the observability Gramian is given by Y = E

T

XE = Q

1

=2. The matrix

XE = E

�T

Q

1

=2 is required, e.g., when computing J{inner{outer factorizations of rational

matrices by the algorithm given in [38].

3 The Semide�nite Lyapunov Equation

The semide�nite generalized Lyapunov equation can be written as

A

T

XE + E

T

XA� C

T

C = 0; (3.19)

where C 2 IR

p�n

. In this case, the solution matrix X can also be written in factored form

asX = �Y

T

Y asX is semide�nite. In the following we will only consider the \+"-case, the

other case follows analogously. Also, if A� �E is antistable, everything remains the same,

just if the constant term is positive (negative) semide�nite, then X is negative (positive)

semide�nite such that C

T

C and Y

T

Y have opposite signs.

In many applications, the Cholesky factor Y of X is required rather than the solution

X itself, e.g., [17, 34]. Hammarling's method [18, 36, 30] computes this factor without

forming the product C

T

C and the solution X explicitly. The advantage of this approach

is that the condition number of X can be up to the square of that of its Cholesky factor

Y . Hence, a signi�cant increase in accuracy can be observed using this approach if X is

ill-conditioned.

9

We will see that the method presented in the previous section can be modi�ed to

compute the Cholesky factor of X directly similar to Hammarling's algorithm.

Setting Q = C

T

C, the iteration for Q in (2.17) can be re-written as

C

0

 C; (3.20)

C

T

k+1

C

k+1

1

2

�

C

T

k

C

k

+ E

T

A

�T

k

(C

T

k

C

k

)A

�1

k

E

�

(3.21)

=

1

2

"

C

k

C

k

A

�1

k

E

#

T

"

C

k

C

k

A

�1

k

E

#

; for k = 0; 1; 2; : : : :

The resulting algorithm would in each step augment the current iterate C

k

by the product

C

k

A

�1

k

E such that

C

k+1

:=

1

p

2

"

C

k

C

k

A

�1

k

E

#

:

The computational cost for the k-th iteration step of such a procedure is 2(2

k

p)n

2

, where

p is the number of rows of C. This compares to 3n

3

ops for each iteration step for the Q

k

in (2.17). (The product A

�1

k

E is already formed for the iteration on A

k

!)

The above approach requires to double in each iteration step the workspace needed for

the iterates C

k

. As the rank of the solution X of (3.19) and hence of its Cholesky factor

Y can not be predicted by the rank of C, the implementation of Hammarling's algorithm

in [30] requires a work array of dimension at least n � n for C if it is supposed to be

overwritten by Y . This suggests to use (3.20) only as long as 2

k

p is less than n=2 which is

also the bound for which the original iteration (2.17) becomes cheaper than (3.20). This

bound is given by

k >

$

log

2

n

p

%

; (3.22)

where b x c denotes the integer part of x.

If k has reached the bound given above (which is the case for k = 0 if p > n=2),

we propose to form the augmented matrix

~

C

k+1

= [C

T

k

; (C

k

A

�1

k

E)

T

]

T

2 IR

2s

k

�n

, where

C

k

2 IR

s

k

�n

with s

0

= p. Then compute its QR factorization,

~

C

k+1

= U

k+1

~

R

k+1

= U

k+1

"

R

k+1

0

#

g r

k+1

g 2s

k

�r

k+1

;

where r

k+1

:= rank (

~

C

k+1

). It follows that C

T

k+1

C

k+1

:=

~

C

T

k+1

~

C

k+1

= R

T

k+1

R

k+1

=2 and

hence we can set C

k+1

:= R

k+1

=

p

2 and s

k+1

:= r

k+1

. Note that in order to obtain the

Cholesky factor of X, a QR factorization of C

k+1

has to be computed at convergence even

if k does not reach the bound in (3.22). In order to determine the rank of

~

C

k+1

correctly, it

may be more reasonable to employ a QR factorization with column pivoting (see, e.g., [16])

or even a rank-revealing QR factorization (see, e.g., [10]). In that case R

k+1

is obtained

as the upper r

k+1

� n part of the product of the upper triangular matrix

~

R

k+1

and a

permutation matrix �

k+1

, i.e.,

~

R

k+1

�

k+1

=

"

^

R

k+1

T

k+1

0 0

"

(�

k+1

)

11

(�

k+1

)

12

(�

k+1

)

21

(�

k+1

)

22

#

=

"

R

k+1

0

#

:

10

Another alternative is to compute the QR factorization of the augmented matrix in

each iteration step. As the rank of X may be up to n, this approach requires a work space

of size 2n � n. This approach was outlined for the case E = I

n

(without discussing any

implementation details) in [27].

The approaches to the solution of semide�nite Lyapunov equations described above can

of course be combined with an initial QR or QL factorization of E as proposed at the end

of Section 2.

4 Algorithms and Implementation Issues

Before presenting the methods described so far in an algorithmic fashion and discussing

their computational cost we make a few remarks on stopping criteria. In Section 2 it was

observed that A

1

= lim

k!1

A

k

= �E; see (2.11). This suggests the stopping criterion

kA

k

+ Ek � tol � kEk (4.23)

for a suitable norm and a user-de�ned tolerance tol. There are many suggestions for

choosing tol in algorithms based on (2.6) where usually stopping criteria like kA

k+1

�A

k

k �

tolkA

k+1

k or kA

2

k

� I

n

k � tol are used. It has been observed (see, e.g., [7]) that often a

choice like tol = c �n � ", where " denotes the machine precision, and usually the constant c

is chosen as 10 or 100, may lead to a stagnation in the iteration because the criterion can

not be satis�ed, e.g., due to ill-conditioning of the sign function matrix. This can usually

be overcome by using tol = c �n �

p

" and performing one (or two) additional iteration steps

after the stopping criterion is satis�ed. Due to the quadratic convergence of the Newton

iteration, this is usually enough to reach the attainable accuracy.

For our implementations we choose (4.23) using the 1{norm for ease of computation and

tol = 10 �n �

p

" and performed two additional iteration steps after reaching this tolerance.

All other stopping criteria suggested for (2.6) are also possible here. Our criterion (4.23)

has the advantage of being very easy to check and does not require additional computations

(like the ones based on kA

2

k

� Ik) or additional workspace (like the ones based on kA

k+1

�

A

k

k). In case A� �E is antistable, (4.23) has to be modi�ed to

kA

k

� Ek � tol � kEk: (4.24)

If an initial QR or QL factorization is performed, then in the stopping criteria (4.23) and

(4.24), E has to be replaced by its triangular factor.

We will start our description by the basic algorithm obtained by the iterative scheme

given in (2.17) and determinantal scaling.

Algorithm 4.1 [sige]

Input: A;E;Q 2 IR

n�n

with Q = Q

T

, � (A;E) � C

�

.

Output: Solution X 2 IR

n�n

of (1.1).

11

1. Compute

E

= jdet(E)j

1

n

by LU factorization of E.

V = A; X = Q.

2. WHILE kV + Ek

1

> tol � kEk

1

2.1 A = LUP by LU factorization with partial pivoting.

2.2

A

= j det(A)j

1

n

=

Q

n

k=1

ju

kk

j

1

n

.

2.3 W = P

T

U

�1

L

�1

E by forward and backward substitution.

2.4
 =

A

=

E

.

2.5 A =

1

2

�

1

V +
EW

�

.

2.6 X =

1

2

�

1

X +
W

T

XW

�

.

2.7 V = A.

END WHILE

3. E = LUP by LU factorization with partial pivoting.

X =

1

2

L

�T

U

�T

PXP

T

U

�1

L

�1

by forward and backward substitution.

END

In Step 1, E is not overwritten by its LU decomposition and in the iteration, the original

E is used to avoid the introduction of rounding errors resulting from Gaussian elimination.

Therefore, the LU factorization has to be repeated in Step 3 unless there is an additional

workspace of order n

2

available. As the computational cost of one LU factorization is

usually cheap compared to the rest of computations we choose to repeat it in Step 3.

In each iteration step, A is overwritten by its LU decomposition and a workspace of

dimension n

2

is thus required to store the current iterate A

k

. Another workspace of size

n

2

is required to store A

�1

E in order to re-use this product during the update of Q

k

. In

Step 2.6, the computation of W

T

XW can use V as workspace such that no additional

workspace is required. Altogether Algorithm 4.1 requires a workspace of size 5n

2

. This

is the same workspace required by the implementation of the generalized Bartels-Stewart

method described in [30].

The next algorithm employs an initial QL factorization of E as described at the end of

Section 2.

Algorithm 4.2 [sitr]

Input: A;E;Q 2 IR

n�n

with Q = Q

T

, � (A;E) � C

�

.

Output: Solution X 2 IR

n�n

of (1.1).

1. E = U

E

L

E

by QL factorization.

E

= jdet(E)j

1

n

=

Q

n

k=1

j(l

E

)

kk

j

1

n

.

A = U

T

E

A; V = A; X = Q.

12

2. WHILE kV + L

E

k

1

> tol � kL

E

k

1

2.1 A = LUP by LU factorization with partial pivoting.

2.2

A

= j det(A)j

1

n

=

Q

n

k=1

ju

kk

j

1

n

.

2.3 W = P

T

U

�1

L

�1

L

E

by forward and backward substitution.

2.4
 =

A

=

E

.

2.5 A =

1

2

�

1

V +
L

E

W

�

.

2.6 X =

1

2

�

1

X +
W

T

XW

�

.

2.7 V = A.

END WHILE

3. X =

1

2

L

�T

E

XL

�1

E

by forward substitution.

X = U

E

XU

T

E

.

END

Note that the forward substitution process in Step 2.3, expressed by the product L

�1

L

E

,

yields again a lower triangular matrix which saves about 2n

3

=3
ops as compared to a

forward substitution process with a full (or upper triangular) matrix R

E

. For this reason

we choose the QL factorization in Step 1 rather than a QR factorization. The matrix E is

overwritten by its QL decomposition such that the matrix U is kept in factored form.

Since the constant term Q in (1.1) is symmetric, all iterates Q

k

in (2.17) are sym-

metric, too. This symmetry can be exploited in the above algorithms by storing only the

upper or lower triangular part of X, thus saving workspace of size n

2

=2. The equivalence

transformation W

T

XW can then be computed using only 3n

3

ops rather than 4n

3

ops.

Taking into account all these considerations, we obtain the computational costs given

in Table 4.1 for the above algorithms (counting only the dominant terms).

sige sitr

Step 1

2

3

n

3

ops

10

3

n

3

ops

Step 2 (one iteration)

23

3

n

3

ops

17

3

n

3

ops

Step 3

11

3

n

3

ops

9

2

n

3

ops

Table 4.1: Flop counts for sige and sitr.

These
op counts are based on the ones given in [16] for the LU and Householder

QR/QL decompositions and the exploitation of all the available structure, i.e., symmetry

and triangularity.

13

It can be seen that the overhead in Steps 1 and 3 of Algorithm sitr is higher than for

sige. This is compensated by the savings during two iteration steps such that usually, i.e.,

if the iteration requires more than two iterations, Algorithm sitr is slightly cheaper than

Algorithm sige.

Based on the
op counts given in [30] we can conclude that Algorithm sige (sitr) is

cheaper than the Bartels-Stewart method for up to 9 (11) iterations required in Step 2. We

will see that the savings in computation time are usually higher than predicted by these

op counts due to the e�cient implementation of the necessary basic linear algebra tools.

Next, we will present the analogues to Algorithms 4.1 and 4.2 for positive semide�nite

Lyapunov equations based on Section 3.

Algorithm 4.3 [sigs]

Input: A;E 2 IR

n�n

, C 2 IR

p�n

, � (A;E) � C

�

.

Output: Cholesky factor Y of the solution X 2 IR

n�n

of (1.1).

1. Compute

E

= jdet(E)j

1

n

by LU factorization of E.

V = A; Y = C; k = 0.

2. WHILE kV + Ek

1

> tol � kEk

1

2.1 k = k + 1.

2.2 A = LUP by LU factorization with partial pivoting.

2.3

A

= j det(A)j

1

n

=

Q

n

k=1

ju

kk

j

1

n

.

2.4 W = P

T

U

�1

L

�1

E by forward and backward substitution.

2.5
 =

A

=

E

.

2.6 A =

1

2

�

1

V +
EW

�

.

2.7
 =

p

.

2.8 IF k �

j

log

2

n

p

k

THEN

Y =

1

p

2

"

1

Y

YW

#

.

ELSE

"

1

Y

YW

#

= U

"

Y

0

#

by QR factorization.

Y =

1

p

2

Y .

END IF

2.9 V = A.

END WHILE

14

3. E = LUP by LU factorization with partial pivoting.

Y =

1

p

2

Y P

T

U

�1

L

�1

by forward and backward substitution.

END

As outlined in Section 3, the QR factorization in Step 2.8 can be replaced by a QR

factorization with column pivoting or even a rank-revealing QR factorization.

By sits we denote a version of Algorithm 4.3 employing the initial QL factorization of

E as in Algorithm sitr. We avoid reproducing this algorithm here as it is a straightforward

combination of Algorithms 4.2 and 4.3.

The computational costs for Algorithms sigs and sits are given in Table 4.2 where

r = rank (X) = rank (Y). The only di�erence in the
op counts compared to Algorithms

sige and sitr comes from the di�erent updating of the approximate solution X or its

Cholesky factor Y .

sigs sits

Step 1

2

3

n

3

ops

10

3

n

3

ops

Step 2 (kth iteration, k �

j

log

2

n

p

k

)

14

3

n

3

+ 2

k

pn

2

ops

8

3

n

3

+ 2

k

pn

2

ops

Step 2 (kth iteration, k >

j

log

2

n

p

k

)

24

3

n

3

ops

18

3

n

3

ops

Step 3

2

3

n

3

+ 2rn

2

ops 3rn

2

ops

Table 4.2: Flop counts for sigs and sits.

The �gures given in Table 4.2 are based on the assumption that after k has reached the

value

j

log

2

n

p

k

, the Cholesky factor Y is a square n� n matrix for all subsequent iteration

steps. If this is not the case (in particular, if rank (X) < n), then these iteration steps are

slightly cheaper. It is di�cult to compare the costs for Algorithms sigs and sits to that of

Algorithms sige and sitr or to the cost for the generalization of Hammarling's algorithm

presented in [30].

If we only compare those parts of the WHILE-loops di�erent in sige/sitr and sigs/sits,

then we have the following result: if t =

j

log

2

n

p

k

, then the updates of X for the �rst t

iterations of sige and sitr cost about 3tn

3

ops while the corresponding cost for the

updates of Y in sigs and sits is only n

3

� 2pn

2

. Therefore, the algorithms computing

the Cholesky factor of X save a large amount of
oating point operations during the �rst

iterations if the ratio n=p is large. This may be compensated by the slightly more expensive

�nal steps (i.e., Steps t+ 1; t+ 2; : : :).

The main reason for using the Cholesky factor approach is the expected higher accuracy

in case that X is ill-conditioned. Therefore, we propose to use Algorithms sigs and sitr

even in case they are more expensive than their correspondents sige and sitr, in particular

also if p > n=2. (Note that in case p > n, workspace of dimension 2p � n is required for

the updates of Y !)

15

Remark 4.4 In all algorithms presented in this section, instead of determinantal scaling

we may use any of the scaling schemes suggested in [32, 4, 19, 22].

5 Numerical Results

In this section we compare the methods for solving generalized Lyapunov equations based

on the matrix sign function. We include in the comparison two direct methods: the

Bartels-Stewart algorithm [5] and Hammarling's algorithm [18], hereafter btst and hamm,

respectively. The codes for these algorithms are those described in [30].

We have employed the iterative scheme for the matrix sign function described in Sec-

tion 4 in Algorithm sige, and its triangular version in Algorithm sitr. We have also

used the iterative schemes for computing the Cholesky factor in Algorithms sigs and sits

(triangular version). In all iterative schemes we have used the stopping criterion proposed

in Section 4, i.e.,

kA

k+1

+ Ek

1

� 10 � n �

p

" � kEk

1

;

plus two additional iterations once the stopping criterion is satis�ed.

In our experimental analysis, the backward accuracy of the algorithms is estimated by

means of the normalized residual:

kQ + A

T

XE + E

T

XAk

1

=kXk

1

: (5.25)

Moreover, the numerical results are compared to the separation of the Lyapunov oper-

ator given in (1.3) and denoted by sep

F

(
), and the condition number of the problem, i.e.,

cond

2

(
) as given in (1.2). These values are estimated using algorithm btst from [30].

All experiments were performed using Fortran 77 and ieee double precision arithmetic

(" � 2:2 � 10

�16

), on a sun UltraSparc-167mhz platform. The appropriate compiler

optimization options were used in the algorithms to optimize performance. We also made

extensive use of vendor supplied blas (sun performance library) and the computational

kernels in lapack [1].

We have performed two sets of experiments. The �rst set is designed to evaluate the

numerical reliability of the solvers, while in the second set we evaluate the performance.

5.1 Numerical reliability

Example 5.1 [14] The coe�cient matrices in this example are de�ned as:

A = �((2

��

� 1)I

n

+ diag(1; 2; : : : ; n) + U

T

n

); E = I

n

+ 2

��

U

n

;

where U

n

is an n � n strictly lower triangular matrix with all nonzero entries equal to 1.

The right-hand side matrix Q is computed from

Q := �(A

T

XE + E

T

XA); (5.26)

16

with X set to a matrix with all unit entries.

The condition number cond

2

(
) is controlled by the parameter � . When � is increased,

one of the generalized eigenvalues of the matrix pencil A � �E approaches zero and the

Lyapunov equation becomes more ill-conditioned. Table 5.1 reports the separation and the

reciprocal of the condition number for Example 5.1 and matrices of dimension n = 100.

As expected, the table shows a constant increase in the ill-conditioning of the problem as

� is increased.

� sep

F

(
) 1=cond

2

(
)

10 4:9�10

�4

4:2�10

�8

20 4:3�10

�7

3:7�10

�11

30 4:2�10

�10

3:6�10

�14

40 4:1�10

�13

3:6�10

�17

Table 5.1: Separation and reciprocal of the condition number for Example 5.1 (n = 100).

Table 5.2 reports the normalized residuals (5.25) obtained by the solvers for Exam-

ple 5.1, n = 100, and increasing values of � .

� btst sige (iter.) sitr (iter.)

10 3:1�10

�12

1:1�10

�10

(19) 7:6�10

�11

(19)

20 6:3�10

�12

5:4�10

�8

(27) 4:5�10

�8

(27)

30 1:3�10

�12

5:8�10

�5

(34) 4:4�10

�5

(34)

40 7:7�10

�13

2:6�10

�2

(41) 3:1�10

�2

(41)

Table 5.2: Normalized residuals and number of matrix sign function iterations (inside

parentheses) for Example 5.1 (n = 100).

The matrix sign function solvers obtain a normalized residual which agrees with the

condition number of the problem. Both, sige and sitr solvers obtain similar results.

On the other hand, the solver based on the Bartels-Stewart method achieves a highly

remarkable accuracy. Actually, the results are much better than expected from the condi-

tioning of the corresponding problems, as measured by cond

2

(
). This can be explained

as follows: in the �rst stage of the Bartels-Stewart algorithm, A � �E is reduced to gen-

eralized real Schur form (quasi-triangular form) by means of the QZ algorithm. Since all

generalized eigenvalues of the matrix pencil A� �E are real, both matrices are reduced to

triangular form. Then, the triangular Lyapunov equation is solved by back substitution.

The �rst stage reveals a small eigenvalue of A � �E which appears as a 1 � 1 block on

the top diagonal entry of the generalized real Schur form. Although the back substitution

stage is ill-conditioned due to the existence of this small element, the triangular Lyapunov

17

equation is solved with high accuracy. Thus, it seems that this back substitution process

shares the high accuracy of the solution of triangular linear systems [20, Chapter 8], [39].

Example 5.2 Consider the following modi�cation of the matrix A from Example 5.1,

A = �((2

��

� 1)I

n

+ diag(n; n� 1; : : : ; 1) + U

T

n

):

Table 5.3 reports the normalized residuals for this variant of Example 5.1. The table shows

that a simple reordering of the diagonal elements of A produced remarkable di�erences in

the results for the matrix sign function solvers. Here, similar results are obtained both with

the Bartels-Stewart method and the solvers based on the matrix sign function although

sep

F

(
) and cond

2

(
) are the same as in Example 5.1.

� btst sige (iter.) sitr (iter.)

10 1:6�10

�12

2:8�10

�12

(19) 2:8�10

�11

(19)

20 1:7�10

�12

1:0�10

�12

(27) 2:0�10

�12

(27)

30 4:9�10

�12

9:8�10

�13

(34) 1:4�10

�12

(34)

40 3:6�10

�12

1:1�10

�12

(41) 4:9�10

�13

(41)

Table 5.3: Normalized residuals and number of matrix sign function iterations (inside

parentheses) for Example 5.2 (n = 100).

Example 5.3 [30] The coe�cient matrices in this example are de�ned for n = 3q as

follows:

A = V

n

diag(A

1

; : : : ; A

q

)W

n

; A

i

=

0

B

@

�

i

0 0

0 �

i

�

i

0 ��

i

�

i

1

C

A

; E = V

n

W

n

;

where W

n

is an n � n lower triangular matrix with all unit entries, and V

n

is an n � n

matrix with unit entries on and below the anti-diagonal, and all other entries equal to zero.

The positive semide�nite right-hand side Q is de�ned by

Q := C

T

C; C = [1; 2; : : : ; n]: (5.27)

Here, A � �E has real and complex eigenvalues �

i

and �

i

� �

i

{, respectively, where

{ :=

p

�1. Table 5.4 reports the separation and the reciprocal of the condition number for

Example 5.3, with �

i

= �

i

:= �

i

. As the table shows, the separation is not altered much as

� is increased. However, the problem becomes more ill-conditioned due to the increase in

kAk

F

.

Table 5.5 reports the normalized residuals achieved by the compared solvers for Exam-

ple 5.3, n = 99, and various values of � .

This table shows very similar results for all the solvers, which agree with the condition

number of the problem.

18

� sep

F

(
) 1=cond

2

(
)

1.0 6:0�10

�1

1:8�10

�9

1.2 6:2�10

�2

1:4�10

�11

1.4 1:0�10

�1

2:0�10

�13

1.6 1:2�10

�1

3:6�10

�15

1.8 1:3�10

�1

9:9�10

�17

Table 5.4: Separation and reciprocal of the condition number for Example 5.3 (n = 99).

� btst sige (iter.) sitr (iter.)

1.0 2:5�10

�11

5:9�10

�12

(6) 2:8�10

�10

(6)

1.2 9:2�10

�9

1:7�10

�9

(8) 1:3�10

�8

(8)

1.4 1:7�10

�6

3:1�10

�7

(9) 4:5�10

�6

(8)

1.6 7:0�10

�5

2:8�10

�5

(9) 1:2�10

�4

(9)

1.8 3:9�10

�3

6:4�10

�4

(10) 2:0�10

�3

(9)

� hamm sigs (iter.) sits (iter.)

1.0 3:4�10

�11

2:9�10

�12

(6) 3:6�10

�11

(6)

1.2 1:2�10

�8

5:0�10

�9

(8) 1:2�10

�8

(8)

1.4 9:6�10

�7

6:9�10

�7

(9) 7:5�10

�7

(8)

1.6 2:8�10

�5

5:7�10

�5

(9) 5:4�10

�5

(9)

1.8 2:9�10

�3

8:1�10

�4

(10) 3:4�10

�4

(9)

Table 5.5: Normalized residuals and number of matrix sign function iterations (inside

parentheses) for Example 5.3 (n = 99).

Example 5.4 We have also generated coe�cient matrices A;E with random entries using

uniform distribution, and random stable generalized eigenvalues, uniformly distributed in

[�1; 0). X was set to a matrix with all unit entries, and the right-hand side was then

generated as in (5.27). The numerical results, though not reported, show closely similar

accuracies for all solvers.

5.2 Computing performance

Example 5.5 In this example we generated the following coe�cient matrices:

A� �E = V

n

(diag(�

1

; : : : ; �

n

)� �I

n

)W

n

;

19

where the scalars �

1

; : : : ; �

n

are uniformly distributed in [�10; 0) and V

n

, W

n

are de�ned

as in Example 5.3. Then, C was constructed as a random p� n matrix and Q was set to

C

T

C. We only used integer entries for C to avoid the loss of numerical accuracy when Q

is constructed. In all �gures we report the execution time (in seconds), averaged for �ve

executions on di�erent matrices.

Our �rst experiment is designed to analyze the performance of the solvers based on

the matrix sign function when the number of rows of C is increased from p = 1 to p = n.

Thus, we keep n constant and carry out a �xed number of iterations in all solvers based

on the matrix sign function, say 10. We also included two direct methods, speci�cally

Bartels-Stewart method and Hammarling's algorithm, in the experiment. The results are

given in Figures 5.1{5.3.

0 5 10 15 20 25 30 35 40 45 50
0

0.05

0.1

0.15

0.2

0.25

Problem size (p)

E
x
e

c
u

ti
o

n
 t

im
e

0 10 20 30 40 50 60 70 80 90 100
0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

2

Problem size (p)

E
x
e

c
u

ti
o

n
 t

im
e

Figure 5.1: Execution times of the tested solvers on the SUN UltraSparc for n = 50 (left),

n = 100 (right), and varying sizes of p. Legend: \|" = btst, \- - -" = hamm, \� � �+ � � �"

= sige, \� � � � � � �" = sitr, \� � � � � � �" = sigs, \� � � � � � �" = sits.

As expected, the performances of the Bartels-Stewart method and Algorithms sige and

sitr are independent of p, since all these methods make explicit use of the n�n matrix Q.

It is also worth noting that the cost of Hammarling's algorithm is always smaller than the

cost of Bartels-Stewart method, and as p is increased the cost of Hammarling's algorithm

only becomes slightly larger. On the other hand, the performance of those methods based

on the matrix sign function that compute the Cholesky factor strongly depend on p. The

computational cost of these algorithms rapidly increases as p becomes larger and, for large-

scale problems (n � 300), 10 iterations of these methods are even more expensive than

direct methods. Comparing the
op counts given in Table 4.2 and [30], Algorithms sigs

and sits are faster than Hammarling's algorithm for p � n=8. This can also be observed

in Figures 5.1{5.3. As in many control applications, p � n, Algorithms sigs and sits

will show good performance for such problems. From the point of view of performance,

20

0 20 40 60 80 100 120 140 160 180 200
0

2

4

6

8

10

12

14

16

18

Problem size (p)

E
xe

cu
tio

n
 t

im
e

0 50 100 150 200 250 300
0

10

20

30

40

50

60

Problem size (p)

E
x
e

c
u

ti
o

n
 t

im
e

Figure 5.2: Execution times of the tested solvers on the SUN UltraSparc for n = 200 (left),

n = 300 (right), and various sizes for p. Same legend as in Figure 5.1.

0 50 100 150 200 250 300 350 400
0

50

100

150

Problem size (p)

E
x
e
c
u
ti
o
n
 t
im

e

0 50 100 150 200 250 300 350 400 450 500
0

50

100

150

200

250

Problem size (p)

E
x
e

c
u

ti
o

n
 t

im
e

Figure 5.3: Execution times of the tested solvers on the SUN UltraSparc for n = 400 (left),

n = 500 (right), and various sizes for p Same legend as in Figure 5.1.

21

Algorithms sige and sitr are more e�cient than Algorithms sigs and sits unless p is

very small. But if the Cholesky factor of the solution is required, one may sacri�ce some

execution time for higher accuracy.

A somewhat surprising observation is that solvers that initially transform the matrix

pair (A;E) to reduce the cost of the iteration (Algorithms sitr and sits) obtain higher

execution times. Better performances of algorithms sige and sigs are basically due to

the highly e�cient implementation of the dense matrix product kernels in most current

computer architectures. Algorithms sitr and sits rely on cheaper matrix products (one

matrix is triangular), but these matrix kernels are not as e�cient as the ones for the \full

times full" matrix product.

Our next experiment is designed to evaluate the performances of the iterative solvers

compared to the direct methods. Thus, we only report the execution time of the best

iterative solver and the best direct method. Since the number of iterations of the iterative

solvers depends on the problem, we show the results for a �xed number of iterations: 5, 10,

15, and 20. In practice it can be observed that 8{12 iterations are often enough to achieve

convergence if the problem is fairly well-conditioned.

Figures 5.4 and 5.5 report two di�erent extreme cases, p = 1 and p = n. Figure 5.4

shows that, when p = 1, even with 20 iterations, the iterative solvers require smaller

execution times than the direct solvers. Actually, the di�erence between both methods

gets larger as n increases. Hence, for p = 1, the matrix sign function solvers present much

better results.

When p = n the situation is quite di�erent (see Figure 5.5). In this case, the direct

method requires similar execution time as 20 iterations of the iterative algorithms. The

tendency holds as n is increased since the direct method only obtains slightly better results

than 20 iterations of the matrix sign function.

Note that from the
op counts, roughly speaking, already 10 iterations of the sign func-

tion based solvers should be as expensive as the direct methods. The better performance

of the sign function based methods is caused by the highly e�cient computational kernels

they are composed of.

22

50 100 150 200 250
0

5

10

15

20

25

30

35

Problem size (n, p=1)

E
x
e

c
u

ti
o

n
 t

im
e

300 320 340 360 380 400 420 440 460 480 500
0

50

100

150

200

250

300

350

400

Problem size (n, p=1)

E
x
e

c
u

ti
o

n
 t

im
e

Figure 5.4: Execution times of the tested solvers on the SUN UltraSparc for small (left)

and large (right) problems (p = 1). Legend: \|" = best direct solver, \� � �" = best

iterative solver, where \� � � � � � �" = 1 iteration, \� � �+ � � �" = 10 iterations, \� � � � � � �" =

15 iterations, \� � � � � � �" = 20 iterations.

50 100 150 200 250
0

5

10

15

20

25

30

Problem size (n, p=n)

E
x
e

c
u

ti
o

n
 t

im
e

300 320 340 360 380 400 420 440 460 480 500
0

50

100

150

200

250

Problem size (n, p=n)

E
x
e

c
u

ti
o

n
 t

im
e

Figure 5.5: Execution times of the tested solvers on the SUN UltraSparc for small (left)

and large (right) problems (p = n). Same legend as in Figure 5.3.

23

6 Concluding Remarks

We have presented methods for the numerical solution of stable generalized Lyapunov

equations, based on the iterative schemes for the matrix sign function. Several results

from the standard case are extended to the generalized case. The derived methods can be

split in two classes: methods for computing the solution matrix explicitly and methods for

computing its Cholesky factor directly in case of semide�nite Lyapunov equations.

We have also discussed several implementation issues: a new stopping criterion is intro-

duced which saves computational cost/work space compared to existing stopping criteria

for sign function iterations, and an initial reduction of the matrix pair results in cheaper

iterations (in terms of
oating point operations).

The numerical results show that the matrix sign function solvers obtain results which

are as accurate as could be expected from the conditioning of the problem. Furthermore,

the new stopping criteria is revealed as an appropriate and e�cient tool for our solvers.

From the point of view of execution time, the matrix sign function solvers consistently out-

perform those methods based on the QZ algorithm. Although not reported, similar results

were obtained on other platforms (e.g., SGI R10000-200MHz, IBM RS/6000, HP9000/715,

etc.). These results will be enhanced on parallel distributed architectures, where the com-

putational kernels involved in the matrix sign function solvers have already shown their

high performance.

Acknowledgments

We thank T. Penzl for some helpful discussions and for providing the codes implement-

ing the generalized Bartels-Stewart method and Hammarling's algorithm. We also thank

Volker Mehrmann for providing some helpful suggestions.

References

[1] E. Anderson, Z. Bai, C. Bischof, J. Demmel, J.Dongarra, J. DuCroz, A. Greenbaum,

S. Hammerling, A. McKenney, S. Ostrouchov, and D. Sorensen, LAPACK Users'

Guide Release 2.0. SIAM, Philadelphia, 1994.

[2] B. D. O. Anderson and J. B. Moore. Linear Optimal Control. Prentice-Hall, Englewood

Cli�s, NJ, 1971.

[3] Z. Bai and J. Demmel. Design of a parallel nonsymmetric eigenroutine toolbox, Part

I. In R.F. Sincovec et al, editor, Proceedings of the Sixth SIAM Conference on Parallel

Processing for Scienti�c Computing, 1993.

[4] L. Balzer. Accelerated convergence of the matrix sign function. Internat. J. Control,

32:1057{1078, 1980.

24

[5] R.H. Bartels and G.W. Stewart. Solution of the matrix equation AX + XB = C:

Algorithm 432. Comm. ACM, 15:820{826, 1972.

[6] A. N. Beavers and E. D. Denman. A new solution method for the Lyapunov matrix

equations. SIAM J. Appl. Math., 29:416{421, 1975.

[7] P. Benner. Contributions to the Numerical Solution of Algebraic Riccati Equations and

Related Eigenvalue Problems. Dissertation, Fakult�at f�ur Mathematik, TU Chemnitz{

Zwickau, 09107 Chemnitz, Germany, February 1997.

[8] R. Byers. Solving the algebraic Riccati equation with the matrix sign function. Linear

Algebra Appl., 85:267{279, 1987.

[9] R. Byers, C. He, and V. Mehrmann. The matrix sign function method and the com-

putation of invariant subspaces. SIAM J. Matrix Anal. Appl., 18(3):615{632, 1997.

[10] T. Chan. Rank revealing QR factorizations. Linear Algebra Appl., 88/89:67{82, 1987.

[11] E.D. Denman and A.N. Beavers. The matrix sign function and computations in

systems. Appl. Math. Comput., 2:63{94, 1976.

[12] J. D. Gardiner. Stabilizing control for second-order models and positive real systems.

AIAA J. Guidance, Dynamics and Control, 15(1):280{282, 1992.

[13] J.D. Gardiner and A.J. Laub. A generalization of the matrix-sign-function solution

for algebraic Riccati equations. Internat. J. Control, 44:823{832, 1986.

[14] J.D. Gardiner, A.J. Laub, J.J. Amato, and C.B. Moler. Solution of the Sylvester

matrix equation AXB +CXD = E. ACM Trans. Math. Software, 18:223{231, 1992.

[15] J.D. Gardiner, M.R. Wette, A.J. Laub, J.J. Amato, and C.B. Moler. Algorithm 705:

A Fortran-77 software package for solving the Sylvester matrix equation AXB

T

+

CXD

T

= E. ACM Trans. Math. Software, 18:232{238, 1992.

[16] G.H. Golub and C.F. Van Loan. Matrix Computations. Johns Hopkins University

Press, Baltimore, second edition, 1989.

[17] S. J. Hammarling. Newton's method for solving the algebraic Riccati equation. NPL

Report DITC 12/82, National Physical Laboratory, Teddington, Middlesex TW11

OLW, U.K., 1982.

[18] S.J. Hammarling. Numerical solution of the stable, non-negative de�nite Lyapunov

equation. IMA J. Numer. Anal., 2:303{323, 1982.

[19] N. J. Higham. Newton's method for the matrix square root. Math. Comp., 46:537{549,

1986.

25

[20] N. J. Higham. Accuracy and Stability of Numerical Algorithms. SIAM, Philadelphia,

PA, 1996.

[21] W. D. Hoskins, D. S. Meek, and D. J. Walton. The numerical solution of A

0

Q+QA =

�C. IEEE Trans. Automat. Control, AC-22:882{883, 1977.

[22] C. Kenney and A.J. Laub. On scaling Newton's method for polar decomposition and

the matrix sign function. SIAM J. Matrix Anal. Appl., 13:688{706, 1992.

[23] C. Kenney and A.J. Laub. The matrix sign function. IEEE Trans. Automat. Control,

40(8):1330{1348, 1995.

[24] C. Kenney, A.J. Laub, and P.M. Papadopoulos. Matrix-sign algorithms for Riccati

equations. IMA J. Math. Contr. Info., 3:331{344, 1992.

[25] P. Lancaster and L. Rodman. The Algebraic Riccati Equation. Oxford University

Press, Oxford, 1995.

[26] P. Lancaster and M. Tismenetsky. The Theory of Matrices. Academic Press, Orlando,

2nd edition, 1985.

[27] V.B. Larin and F.A. Aliev. Construction of square root factor for solution of the

Lyapunov matrix equation. Sys. Control Lett., 20:109{112, 1993.

[28] V. Mehrmann. The Autonomous Linear Quadratic Control Problem, Theory and Nu-

merical Solution. Number 163 in Lecture Notes in Control and Information Sciences.

Springer-Verlag, Heidelberg, July 1991.

[29] P. Misra, P. Van Dooren, and A. Varga. Computation of structural invariants of

generalized state-space systems. Automatica, 30(12):1921{1936, 1994.

[30] T. Penzl. Numerical solution of generalized Lyapunov equations. Technical Report

SFB393/96-02, Fak. f. Mathematik, TU Chemnitz-Zwickau, 09107 Chemnitz, FRG,

1996.

[31] P.H. Petkov, N.D. Christov, and M.M. Konstantinov. Computational Methods for

Linear Control Systems. Prentice-Hall, Hertfordshire, UK, 1991.

[32] J.D. Roberts. Linear model reduction and solution of the algebraic Riccati equation

by use of the sign function. Internat. J. Control, 32:677{687, 1980. (Reprint of

Technical Report No. TR-13, CUED/B-Control, Cambridge University, Engineering

Department, 1971).

[33] I.G. Rosen and C. Wang. A multi{level technique for the approximate solution of oper-

ator Lyapunov and algebraic Riccati equations. SIAM J. Numer. Anal., 32(2):514{541,

1995.

26

[34] M. G. Safonov and R. Y. Chiang. Model reduction for robust control: A Schur relative

error method. Int. J. Adapt. Cont. and Sign. Proc., 2:259{272, 1988.

[35] V. Sima. Algorithms for Linear-Quadratic Optimization, volume 200 of Pure and

Applied Mathematics. Marcel Dekker, Inc., New York, NY, 1996.

[36] A. Varga. A note on Hammarling's algorithm for the discrete Lyapunov equation.

Sys. Control Lett., 15(3):273{275, 1990.

[37] A. Varga. Computation of Kronecker-like forms of a system pencil: Applications,

algorithms and software. In Proc. CACSD'96 Symposium, Dearborn, MI, pages 77{

82, 1996.

[38] A. Varga and T. Katayama. Computation of j{inner{outer factorizations of rational

matrices. Internat. J. Robust and Nonlinear Cont., 7, 1997.

[39] J.H. Wilkinson. Rounding Errors in Algebraic Processes. Prentice-Hall, Englewood

Cli�s, NJ, 1963.

27

28

Other titles in the SFB393 series:

97-01 P. Benner, V. Mehrmann, H. Xu. A new method for computing the stable invariant sub-

space of a real Hamiltonian matrix or Breaking Van Loan's curse? January 1997.

97-02 B. Benhammouda. Rank-revealing 'top-down' ULV factorizations. January 1997.

97-03 U. Schrader. Convergence of Asynchronous Jacobi-Newton-Iterations. January 1997.

97-04 U.-J. G�orke, R. Krei�ig. Ein
u�faktoren bei der Identi�kation von Materialparametern

elastisch-plastischer Deformationsgesetze aus inhomogenen Verschiebungsfeldern. March

1997.

97-05 U. Groh. FEM auf irregul�aren hierarchischen Dreiecksnetzen. March 1997.

97-06 Th. Apel. Interpolation of non-smooth functions on anisotropic �nite element meshes.

March 1997

97-07 Th. Apel, S. Nicaise. The �nite element method with anisotropic mesh grading for elliptic

problems in domains with corners and edges.

97-08 L. Grabowsky, Th. Ermer, J. Werner. Nutzung von MPI f�ur parallele FEM-Systeme.

March 1997.

97-09 T. Wappler, Th. Vojta, M. Schreiber. Monte-Carlo simulations of the dynamical behavior

of the Coulomb glass. March 1997.

97-10 M. Pester. Behandlung gekr�ummter Ober
�achen in einem 3D-FEM-Programm f�ur Paral-

lelrechner. April 1997.

97-11 G. Globisch, S. V. Nepomnyaschikh. The hierarchical preconditioning having unstructured

grids. April 1997.

97-12 R. V. Pai, A. Punnoose, R. A. R�omer. The Mott-Anderson transition in the disordered

one-dimensional Hubbard model. April 1997.

97-13 M. Thess. Parallel Multilevel Preconditioners for Problems of Thin Smooth Shells. May

1997.

97-14 A. Eilmes, R. A. R�omer, M. Schreiber. The two-dimensional Anderson model of localization

with random hopping. June 1997.

97-15 M. Jung, J. F. Maitre. Some remarks on the constant in the strengthened C.B.S. inequality:

Application to h- and p-hierarchical �nite element discretizations of elasticity problems.

July 1997.

97-16 G. Kunert. Error estimation for anisotropic tetrahedral and triangular �nite element

meshes. August 1997.

97-17 L. Grabowsky. MPI-basierte Koppelrandkommunikation und Ein
u� der Partitionierung

im 3D-Fall. August 1997.

97-18 R. A. R�omer, M. Schreiber. Weak delocalization dueto long-range interaction for two

electrons in a random potential chain. August 1997.

97-19 A. Eilmes, R. A. R�omer, M. Schreiber. Critical behavior in the two-dimensional Anderson

model of localization with random hopping. August 1997.

97-20 M. Meisel, A. Meyer. Hierarchically preconditioned parallel CG-solvers with and without

coarse-matrix-solvers inside FEAP. September 1997.

97-21 J. X. Zhong, U. Grimm, R. A. R�omer, M. Schreiber. Level-Spacing Distributions of Planar

Quasiperiodic Tight-Binding Models. October 1997.

97-22 W. Rehm (Ed.). Ausgew�ahlte Beitr�age zum 1. Workshop Cluster-Computing. TU Chem-

nitz, 6./7. November 1997.

97-23 P. Benner, E. S. Quintana-Ort��. Solving Stable Generalized Lyapunov Equations with the

Matrix Sign Function. October 1997

The complete list of current and former preprints is available via

http://www.tu-chemnitz.de/sfb393/sfb97pr.html.

