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Abstract

We study a variant of the two-dimensional (2D) Anderson model of localiza-

tion in which the disorder is represented by randomly chosen hopping terms.

The density of states reveals an abnormally strong peak in the band center

and an analysis of multifractal properties indicates that localization is less

strong at E = 0 than at E 6= 0. A �nite-size-scaling analysis of localization

lengths as obtained from the transfer-matrix method, shows that the state at

E = 0 exhibits critical behaviour up to strip width M = 180. However, states

outside the band center are localized and the critical state vanishes already

for very small amounts of onsite potential disorder. Thus there is no violation

of the scaling theory of localization.
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In a recent paper [1], we studied a variant of the 2D Anderson model of localization in

which the nearest-neighbor hopping matrix elements are randomly distributed. This model

may be viewed as a 2D random ux model [2] with phase �xed at zero but random modulus.

We found that the density of states shows an unusual feature in the band center E = 0.

Investigating the participation numbers of eigenstates and also the Lifshitz-H�older exponents

�(q), we showed critical behavior for states at E = 0 up to the system size N = 200 � 200

considered. This was con�rmed by an analysis of localization lengths in quasi-1D strips with

the help of the transfer-matrix method (TMM). However, adding a very small additional

onsite potential disorder, we found that these critical states become again localized. In the

present work, we will present further evidence that the states in the center of the band

exhibit critical behavior.

The 2D Anderson Hamiltonian with random onsite potential energies �

i

2 [�W=2;W=2]

and random nearest-neighbor transfer integrals t

ij

2 [c� w=2; c + w=2] is given as

H =

N

X

i

�

i

jiihij+

N

X

i 6=j

t

ij

jiihjj: (1)

The sites i = (n;m) form a square lattice of size N = L � L and we use periodic boundary

conditions. We set the energy scale by w � 1, except for the case of pure diagonal disorder

with constant hopping (w = 0 and c = 1). For c!1, the o�-diagonal disorder width w is

negligible compared to its mean, and we get the usual Anderson model; when additionally

W remains �nite for c!1, the system becomes ordered. For c � 0:5, individual transfer

integrals may be zero thus giving a tendency towards localization.

The multifractal analysis of the eigenfunctions �

j

(n;m), j = 1; : : : ; N , used here is based

on a parametric expression ff(q); �(q)g of the singularity spectrum f(�) as explained in [1].

We also obtain a set of generalized dimensions D(q) = ff [�(q)]� q�(q)g=(1� q). Here D(0)

is the Hausdor� dimension of the support (and thus 2 in the 2D case) and D(2) represents

the correlation dimension [3]. For a truly extended 2D wave function, f(� = 2) = 2 and

D(0) = D(2) = 2. The more a state becomes localized, the more the f(�) spectrum widens

and theD(q) di�er from 2. In Fig. 1 we show f(�) and D(2) calculated by (moving) averages
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FIG. 1. (a) Singularity spectrum f(�) for c = 2:5 and W = 0. (b) Correlation dimension D(2)

versus the number j of the eigenstate (0 � E

j

� E

j+1

) for N = 96 � 96. Purely o�-diagonal

disorders are shown by thick lines, purely diagonal disorders by thin lines.

over 250 states. For large energies, the f(�) spectrum widens and the deviations of D(2)

from 2 are well pronounced. Close to the band edge, D(2) decreases drastically. Therefore

localization of states at the band edge is con�rmed by f(�) and D(2) in agreement with the

results [1] based on participation numbers and the Lifshitz-H�older exponents �(0) and �(1).

If localization would also be strong at the band center, we would expect a similar deviation

of the D(2) values from 2 as at the band edges. However, the di�erences between the D(2)

values for both weak disorders W and c are negligible. For stronger o�-diagonal disorder

even the opposite tendency can be observed: the D(2) values increase when getting close to

the band center, which suggests rather a tendency towards weaker localization.

In [1], we showed that it is essential to look at the scaling properties of the participation

numbers P

N

=

h

P

n;m

j�

j

(n;m)j

4

i

�1

� N

�

, in order to make reliable statements about the

localization properties. E.g., for a localized state � = 0, whereas for an extended state

� = 1. The connection to the multifractal properties is given by � = D(2)=D(0) [4]. The

values of D(2) at the band center then give 0:5 � � � 0:95 for 0 � c � 2. Therefore

the state at E = 0 is neither localized nor extended and has properties similar to critical

states, i.e. states at the metal-insulator transition in 3D. This observation is corroborated
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[1] by a comparison with typical values of D(2)=D(0) at the MIT in the 3D isotropic and

anisotropic Anderson models [3], and also for the Anderson model de�ned on two bifractals

[5]. We emphasize, however, that the non-zero � for E = 0 may be a �nite-size e�ect and

the D(2) values may become smaller for larger sizes.

We also calculated in [1] the localization lengths by means of the TMM [6,7]. The

reduced localization lengths �(M)=M for di�erent o�-diagonal disorders plus (i) di�erent

diagonal disorders W 6= 0 at E = 0 and (ii) di�erent energies with W = 0 scale onto a

scaling curve �(M)=M = F(�=M) in both cases. The absolute scale of � was obtained by

�tting �=M = �=M + b(�=M)

2

for the smallest localization lengths [7]. Only one branch of

F was shown [1] to exist in both cases corresponding to localized behavior [6,7]. We now

�rst turn to the state at E = 0 for purely o�-diagonal disorder (W = 0). As reproduced in

Fig. 2 from [1], the reduced localization lengths �=M are constant vs. 1=M and scaling is

impossible. This is typical for the critical behavior observed at the MIT in the 3D Anderson

model [7]. We next show in Fig. 2 that �=M for o�-diagonal disorder w = 1, 0 � c � 1

and (i) various small diagonal disorder strengths W 6= 0 in the band center E = 0 and (ii)

various energies E 6= 0 but with W = 0 can in fact be scaled onto a single scaling curve

F(�=M). The strip widths wereM = 10; 20; : : : ; 90. This further con�rms the validity of the

scaling hypothesis for the present variant of the Anderson model. Moreover, we obtain only

one branch of the scaling function corresponding to localization. In Fig. 2 (inset), we show

the dependence of the scaling parameter � on c. It exhibits a minimum close to c = 0:25.

This shows in agreement with [1] that the maximum strength of the o�-diagonal disorder

appears for c = 0:25. Thus the presence of the critical state is restricted to E = 0 for all

o�-diagonal disorders and calculations for other energies indicate localized states only.

In summary, we have studied the 2D Anderson Hamiltonian with o�-diagonal disorder

and shown from the behavior of the correlation dimension D(2) that states in the band

center have properties similar to critical states at the MIT. Reanalysing the localization

lengths computed in [1], we have shown that they can all be scaled onto a single scaling

curve except for purely o�-diagonal disorder at E = 0, where �=M behaves similar (up to
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FIG. 2. (a) Reduced localization lengths �(M)=M vs. 1=M for purely random hopping (W = 0)

at E = 0. The o�-diagonal disorder strengths c = 0; 0:05; : : : ; 1 are indicated by A, B, : : :, U,

respectively. (b) Scaling plot of �(M)=M for (i) random hopping at E = 0 and W = 0:001 (+),

0:01 (�) and 0:1 (�) and (ii) purely random hopping (W = 0) at E = 0:005 (2), E = 0:01 (�) and

E = 0:1 (3). Small deviations from scaling are due to data for W = 0:001 and M = 10. Inset:

Scaling parameters �(c).

strip width M = 180 at 1% accuracy) to reduced localization lengths at the MIT in 3D.
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FIG. 1. (a) A. Eilmes et al., \Critical behavior . . . ".
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FIG. 1. (b) A. Eilmes et al., \Critical behavior . . . ".
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FIG. 2. (a) A. Eilmes et al., \Critical behavior . . . ".
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FIG. 2. (b) A. Eilmes et al., \Critical behavior . . . ".
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