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Abstract

We study two interacting particles in a random potential chain by a transfer

matrix method which allows a correct handling of the symmetry of the two-

particle wave function, but introduces an arti�cial \bag" interaction. The

dependence of the two-particle localization length �

2

on disorder, interaction

strength and range is investigated. Our results demonstrate that the recently

proposed enhancement of �

2

as compared to the results for single particles is

vanishingly small for a Hubbard interaction. For longer-range interactions, we

observe a small enhancement but with a di�erent disorder dependence than

proposed previously.

71.55.Jv, 72.15.Rn, 72.10.Bg

Typeset using REVT

E

X

1



Shepelyansky [1] recently argued that the Hubbard interaction between two particles

in a random potential chain would reduce the localization in comparison with independent

particles. In particular, he obtained an enhancement of the two-interacting-particle (TIP)

localization length �

2

independent of the statistics of the particles and of the sign of the

interaction such that

�

2

=�

1

� U

2

�

1

=32 (1)

in the band center. Here �

1

(� 105=W

2

for small W [14]) is the single-particle (SP) lo-

calization length in one dimension (1D) and U the Hubbard interaction in units of the

nearest-neighbor hopping strength. A Gaussian form was assumed for the distribution of

the interaction matrix elements thereby ignoring possible correlations between these.

Support for this result was given by Imry [2] with the help of a Thouless-type block-

scaling argument. Frahm et al. [3] used the transfer matrix method (TMM) to study the

TIP problem without any approximations and found numerically that �

2

=�

1

� �

0:65

1

. They

also measured the distribution of the matrix elements of the Hubbard interaction in the

disorder-diagonal basis of localized SP eigenstates and found a strongly non-Gaussian be-

havior contrary to Shepelyansky's assumption. An approximate calculation of �

2

with a

Green function method lead Oppen et al. [4] to the hypothesis �

2

=�

1

= 1 + C

jU j

�

�

1

, with

C � 0:34 for bosons and 0:36 for fermions. They also identi�ed a scaling parameter U�

1

.

Weinmann et al. [5] obtained delocalized states with �

2

� 25 > �

1

� 11 by an exact

diagonalization study of the TIP Hamiltonian for disorder W = 3.

Following the approach of [3], we recently studied the TIP problem by a di�erent TMM

[6] and found that (i) the enhancement �

2

(U)=�

1

decreases with increasing system size M ,

(ii) the enhancement �

2

(1)=�

2

(0) is constant for given M and small W , (iii) �

2

(0) = �

1

in the limit M ! 1 only, and (iv) �

2

� �

1

for M ! 1, i.e. the enhancement also

vanishes completely in this limit. Unfortunately, the symmetry of the wave function remains

unspeci�ed in this TMM. Also, reconsidering the original approach of Shepelyansky [1]

and Imry's block-scaling picture [2], we have recently shown [7] that the neglect of phase

correlations leads to erroneous results in well-understood similar problems and thus may

not capture the relevant physics of TIP. In this Letter, we �rst briey review an alternative

TMM also introduced already in [3] which allows a correct treatment of the symmetry of

the electron wave function. We �nd in agreement with [6] that the enhancement �

2

(1)=�

2

(0)

is vanishingly small for a Hubbard interacting system. Finite- and long-range interactions

lead to a somewhat larger enhancement, but the data nevertheless suggests that as before

�

2

(1)=�

2

(0) � const. for small disorder.

The Schr�odinger equation for the TIP problem with Hubbard interaction is written in a

suggestive form as

 

n+1;m

= [E � (�

n

+ �

m

)� U�

n;m

] 

n;m

�  

n;m+1

�  

n;m�1

�  

n�1;m

; (2)

where n;m = 1; : : : ;M are the two site indices of the particles, E is the total energy of both

particles, and �

n

is the random potential at site n. In the following, we use a box distribution

[�W=2;W=2] for the �

n

. If one interprets (n;m) as Cartesian coordinates on a �nite lattice

withM�M sites, the problem becomes identical to a non-interacting Anderson model in 2D

[8] but with a disorder potential symmetric with respect to the diagonal n = m and hard-wall

boundary conditions [3]. However, the symmetry of the fermionic electron wave function
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remains unspeci�ed. Therefore, we now de�ne the center-of-mass coordinate R = n + m

and the particle distance r = n�m and study the transfer in the R direction, that is along

the diagonal, with a �nite maximal two-particle distance r

max

. By the additional restriction

r � 0, the symmetry  

n;m

=  

m;n

of the spatial part of the electron wave function is now

included. Unfortunately, the �nite r

max

introduces an arti�cial \bag" interaction [1,3]: the

particles feel an in�nite attractive force whenever they are a distance r

max

apart. Obviously,

the present task includes the distinction of any true interaction e�ect from the e�ects of the

\bag". As the latter occurs also for U = 0, we propose that �

2

(1)=�

2

(0) and not �

2

(1)=�

1

measures the enhancement due to U .

Applying the Hamiltonian to the wave function on the rth site of the Rth layer in order

to determine the amplitudes at the ~rth site in the (R + 1)th layer, one has also to consider

the as yet unknown amplitude at the (~r � 1)th site. This behavior can be encoded into a

matrix I(R). The explicit form of I(R) for the present TIP problem is the same as for a

SP Anderson model de�ned on a triangular lattice [12] but with hard-wall boundaries. We

have to distinguish further between odd and even R, since the onsite Hubbard interaction

at r = 0 occurs only for R even. The TIP problem (2) then reads

I(R+ 1)	(R + 1) = [E1� �(R)�H

?

]	(R) � I(R� 1)	(R � 1); (3)

where 	(R) = ( 

R;1

; : : : ;  

R;r

; : : : ;  

R;r

max

) is the wave vector of layer R, H

?

is the SP

hopping term for the transverse (r) direction and [�(R)]

i;r

= [�

n(R;r)

+ �

m(R;r)

+U�(s� jrj+

1

2

)]�

i;r

codes the random potentials and the interaction [3]. The step function � reects the

range s of the interaction. E.g., s = 0 corresponds to a Hubbard onsite interaction, s = 1 to

a nearest-neighbor interaction for R odd and onsite interaction for R even, and so on. The

transfer matrices T (R) are then given by

T (R) =

 

I(R)

�1

[E1� �(R)�H

?

] �1

1 0

!

; (4)

and the evolution of the state is determined by the matrix product � (N) =

Q

N

R=1

T (R)

applied to an orthonormal set of initial vectors [	(1);	(0)]

T

. In order to avoid numerical

rounding errors, these vectors have to be reorthonormalized after about every 10th matrix

multiplication as usual [8]. The eigenvalues exp[�2

i

(N)] of [�

y

(N)� (N)]

1=N

exist for N !

1 due to Oseledec's theorem [9] and are obtained by summing the norms calculated in each

orthonormalization. The smallest Lyapunov exponent 

min

determines the slowest possible

decay of the wave function and thus the largest localization length �

max

= 1=

min

. We

now de�ne the TIP localization length �

2

= �

max

=

p

2. The factor accounts for the distance

between successive layers in the R direction [10]. As usual, the accuracy of the numerical

estimates for �

2

is obtained not from the statistics of the exponents, but rather from the

statistics of the changes [8].

In Fig. 1 we show results obtained by the present TMM to an accuracy of 5% for W � 2

and r

max

= 600 and at least 2% otherwise. We �rst note that the data for r

max

= 600 and

s = 20 agree well with the results obtained [3] for W � 4 [10]. A simple power-law �t for

1:5 � W � 4 yields �

2

� W

�3:4�0:4

. The �

2

data for r

max

= 200 and s = 0 are smaller

than the results obtained [6] by the TMM for unsymmetrized particles. Fitting a power-law

behavior to these data for 1:4 � W � 4, we �nd �

2

� W

�3:9�0:2

. We can also �t these
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data reasonably well by �

2

= �

1

+ A�

�

1

=(B +W ) with � = 2, A = 0:5 and B = 1:3 and

1:4 � W � 10. Without W dependence or with an exponent � = 3=2 as suggested in [13]

the �ts become considerably worse.

In Fig. 1 we have also plotted the behavior for U = 0, where the system reduces to

two non-interacting particles in 1D. The following could be expected: For U = 0, the SP

will localize independently at two arbitrary sites, say n

0

, m

0

, with localization length �

1

.

The wave function can then be written as a symmetrized product of two SP wave functions

with exponentially decaying envelope, i.e.  

(0)

n;m

� exp[�jn� n

0

j=�

1

] exp[�jm�m

0

j=�

1

)] +

exp[�jm� n

0

j=�

1

] exp[�jn�m

0

j=�

1

]. Here, the SP eigenenergies �E

0

are chosen such that

E = 0; then �

1

� �

1

(E

0

) = �

1

(�E

0

). Two points are worth mentioning: (i) Suppose

that m < m

0

< n

0

< n and thus r > r

0

= n

0

� m

0

. Then we have  

(0)

n(R;r);m(R;r)

=

exp[(r

0

� r)=�

1

] + exp[�(r

0

+ r)=�

1

] independent of R. The same happens for m

0

< m <

n < n

0

(r < r

0

). Thus the TMM in the R direction will necessarily encounter regions

where the wave function is constant. This will lead to an overestimation of �

2

(0) and

thus an apparent enhancement already for U = 0. (ii) The non-interacting two-particle

wave function  

(0)

n(R;r);m(R;r)

is not isotropic in the 2D plane (R; r). Since the TMM will

not necessarily measure the decay directly in the R direction, we expect that 

min

will also

contain information about the decay in other directions. These decay lengths of  

(0)

n(R;r);m(R;r)

are longer and thus we again expect �

2

(0) � �

1

.

Fig. 1 shows that the TMM indeed overestimates �

2

(0). Consequently, the interaction-

caused enhancement �

2

(1)=�

2

(0) is much smaller than the previously [3] reported �

2

(1)=�

1

and there is hardly any enhancement visible beyond the statistical uctuations.

From Fig. 1 we see that for W � 6, the present data for U = 0 and U = 1 coincide with

the SP TMM data already quite well. An enhancement �

2

=�

1

shows only for small disorder

(W � 4). However, in this region, the computed values of �

2

become comparable to the size

of the system such that an increasing part of the wave function reaches the \bag" boundary.

We therefore studied the size dependence of the enhancement �

2

(1)=�

2

(0) for various W and

s. Typical data are presented in Fig. 2. For Hubbard interaction s = 0 and r

max

� 200 there

is only a vanishingly small, if any enhancement within the numerical accuracy. Our data

show nearly no dependence on the bag size for r

max

� 200, which con�rms that the results in

Fig. 1 are not inuenced by the choice r

max

= 200. For r

max

� 200 we obtained �

2

(0) � 22

independent of r

max

. Thus �

2

does not approach �

1

for larger systems. We attribute this

discrepancy from [6] to the arti�cial \bag" because the regions in which  

(0)

n;m

is independent

of R as discussed above grow with increasing r

max

. Thus the decreasing inuence of the

hard-wall boundary conditions [6] is counterbalanced.

In [3] it was argued that a (constant) �nite-range interaction gives a strong enhancement.

Indeed, Figs. 1 and 2 show an enhancement for s > 0 independent of r

max

, but it is rather

weak. In [11] it was argued that long-range interaction also leads to a strong enhancement.

Our results for a Hubbard interaction with a tail U=jrj > for r 6= 0 in Fig. 2 show an

enhancement, but it is also only weak. It is comparable to the case s = 8 also for other

W � 4.

The W dependence of our data for small W < 4 is the same within the numerical

accuracy for all s and also for the long-range case. Thus the enhancement �

2

(1)=�

2

(0) is

the same for all such W , i.e., it does not grow with further decreasing W as suggested by

Eq. 1. The case W = 3 shown in Fig. 2 is representative.
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In summary, we have studied the interaction-induced enhancement of the localization

length for two fermions in a 1D random potential by a TMM which appropriately takes into

account the symmetry of the wave function. For a Hubbard interacting system we �nd a

vanishingly small enhancement already for small system sizes r

max

� 200. Finite- and long-

range interactions lead to a weak enhancement which persists even for large system sizes.

However, this enhancement is much smaller than previously proposed. It is important that

we compare with the localization length �

2

(0) in the bag model and not with the SP result

�

1

as in [3], because only in this way we can account for the arti�cial \bag" interaction

inherent in the symmetrized TMM. We note that similar results for the bag model have

recently been obtained in Ref. [15]. Furthermore, the results of Ref. [15] suggest that after

a discretization of the Schr�odinger equation in more suitable center-of-mass and relative

coordinates the enhancement vanishes completely even for longer range interactions.
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FIGURES
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FIG. 1. Two-particle localization length �

2

at energy E = 0. We also show TMM data (�) for

SP. The U = 0 data for r

max

= 600 and r

max

= 200 are so close that we only show the latter.

7



0 100 200 300
rmax

1.0

1.2

1.4

λ
2(

1
)/

λ
2(

0
)

s=20
s=8
LR
s=2
s=0

FIG. 2. TIP enhancement as a function of the \bag" size at W = 3 and E = 0 for various

�nite-range interactions and also a long-range interaction (LR).
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