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Abstract

In the last years multilevel preconditioners like BPX became more and more

popular for solving second-order elliptic �nite element discretizations by iterative

methods. P. Oswald has adapted these methods for discretizations of the fourth or-

der biharmonic problem by rectangular conforming Bogner-Fox-Schmidt elements

and nonconforming Adini elements and has derived optimal estimates for the con-

dition numbers of the preconditioned linear systems. In this paper we generalize

the results from Oswald to the construction of BPX and Multilevel Diagonal Scal-

ing (MDS-BPX) preconditioners for the elasticity problem of thin smooth shells of

arbitrary forms where we use Koiter's equations of equilibrium for an homogeneous

and isotropic thin shell, clamped on a part of its boundary and loaded by a resul-

tant on its middle surface. We use the two discretizations mentioned above and the

preconditioned conjugate gradient method as iterative method. The parallelization

concept is based on a non-overlapping domain decomposition data structure. We

describe the implementations of the multilevel preconditioners. Finally, we show

numerical results for some classes of shells like plates, cylinders, and hyperboloids.
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1 Introduction

The BPX-like multilevel preconditioners are very e�cient for second-order elliptic �nite

element (FE) discretizations, since they have a convergence rate which is independent

of the discretization parameter, and the cost of arithmetical work per iteration step is

proportional to the number of unknowns. In [14] Oswald has adapted these methods for

discretizations of the fourth order biharmonic problem by rectangular conforming Bogner-

Fox-Schmidt (BFS) elements and nonconforming Adini elements and has derived optimal

estimates for the condition numbers of the preconditioned linear systems. Using these

results, in [10] Matthes developed BPX and Multilevel Diagonal Scaling (MDS-BPX)

preconditioners for discretizations of problems of cylindrical shells by BFS elements.

In this paper we generalize the results of [14], [10] to the construction of BPX-like

preconditioners for the elasticity problem of smooth, thin shells of arbitrary form where

we use Koiter's equations of equilibrium for an homogeneous and isotropic thin shell,

clamped on a part of its boundary and loaded by a resultant on its middle surface. We

also use BFS and Adini elements for the discretization.

We discuss the implementation of the multilevel preconditioners on parallel computers

with MIMD architecture and a message passing communication handling. The implemen-

tation of all algorithms is based on a non-overlapping domain decomposition (DD) data

structure (cf. [7]).

The paper is organized as follows: In Section 2 we describe the geometry of an ar-

bitrary smooth, thin shell in the tensorial form following [6] and mention some basic

properties of the tensors used. In accordance to [3], in Section 3 we give the variational

formulation of Koiter's model, using the two basic hypotheses of this model for reducing

the study of the strain of a thin shell to the determination of the displacement �eld of

the middle surface. In Section 4 we introduce the �nite element discretization of the vari-

ational problem by BFS and Adini elements. Section 5 is devoted to the construction of

multilevel precondioners by stable subspace splittings of the BFS element space and the

transformation of the preconditioner to the Adini element space. For this, we use Oswald's

theory of [13]. The parallelization and implementation of the algorithms is described in

Section 6, which contains three subsections. In the �rst subsection we present the DD

parallelization concept which is used in the second and third subsection to describe the

algorithms for the assemblation of the sti�ness matrix and for the parallelization of the

preconditioned conjugate gradient (PPCG) method. In Section 7, the results of the MDS-

BPX preconditioner for plates, arches rsp. cylinders, and hyperbolids are presented by

means of di�erent numerical examples. Finally, we give some conclusions.

2 Description of the geometry of a thin shell

2.1 De�nition of the middle surface

First we introduce some notations. Vectors are always denoted by bold typed letters. In

the three-dimensional Euclidian space R

3

with the orthonormal basis (e

i

) the Euclidian

product of two vectors u;v 2 R

3

is denoted by u �v, j � j denotes the associated Euclidian

norm, and the vector product of two vectors u;v 2 R

3

is denoted by u�v. We consider the

bounded open connected domain 
 in the two-dimensional Euclidian space, its boundary

� is assumed to be Lipschitz-continuous. The points of

�


 are denoted by (x

1

; x

2

). Greek

indices always belong to the set f1; 2g, Latin indices always belong to the set f1; 2; 3g,

1



and we use the summation convention. Finally, we write the partial derivations in the

form @

�

= @=@x

�

, @

��

= @

2

=@x

�

@x

�

.

Let S be the middle surface of the shell C. Then S is the image of the set

�


 through

a mapping � = �

i

(x

1

; x

2

)e

i

:

�


! R

3

where the mapping � is of the class C

3

.

Now we de�ne the basis vectors

a

�

= @

�

� =

@�

@x

�

; � = 1; 2 (2.1)

which span the tangent plane to the surface S = �(

�


) at the point �(x

1

; x

2

) (cf. Fig.1),

if they are linearly independent at each point (x

1

; x

2

) 2

�


. The last, regularity condition

we take as a further assumption. The normal vector to the tangent plane is given by

a

3

=

a

1

� a

2

ja

1

� a

2

j

: (2.2)

x2

x1

a

S=

2

a2

a1

a3 = a3

a1

e2

1e

e3

�




u

�

�

0

�(

�


)

u

1

u

2

u

3

Figure 1: De�nition of the middle surface S.

Thus the three vectors a

i

de�ne the covariant basis at the point �(x

1

; x

2

). We also

de�ne the contravariant basis (a

i

) at the same point by the relations

a

i

� a

j

= �

i

j

; (2.3)

from which follows that a

3

= a

3

(cf. Fig.1).

The �rst fundamental form (a

��

) of the surface S is de�ned by

a

��

= a

�

� a

�

: (2.4)

Using the �rst fundamental form, or metric tensor, we can give the area element dS along

S by

dS =

p

adx

1

dx

2

;

2



where due to the regularity assumption the determinant

a = det(a

��

) (2.5)

does not vanish in the domain

�


. Now we de�ne the fundamental metric tensor (a

��

) by

a

��

= a

�

� a

�

(2.6)

Thus the vectors a

�

are related to the vectors a

�

by

a

�

= a

��

a

�

; a

�

= a

��

a

�

:

By the use of the fundamental metric tensors (a

��

) and (a

��

) we can associate the

covariant, contravariant and mixed components of a given surface tensor. Therefore, with

the covariant components t

��

of an arbitrary surface tensor of the order 2, we can associate

the corresponding mixed and contravariant components

t

�

�

= a

��

t

��

; t

��

= a

��

a

��

t

��

; (2.7)

and, conversely,

t

��

= a

��

t

�

�

= a

��

a

��

t

��

: (2.8)

The covariant components of the second fundamental form (b

��

) of the surface S are

de�ned by

b

��

= a

3

� @

�

a

�

; (2.9)

and with (2.7) its mixed components are

b

�

�

= a

��

b

��

: (2.10)

The covariant components of the third fundamental form (c

��

) of the surface S are

de�ned by

c

��

= b

��

b

�

�

: (2.11)

Remark. The three fundamental forms are symmetric with respect to their indices.

In general the bases (a

1

; a

2

; a

3

) and (a

1

; a

2

; a

3

) are neither normalized nor orthogonal.

In order to calculate the derivatives of the basis vectors, we introduce the Christo�el

symbols of the second type �

%

��

:

�

%

��

= �

%

��

= a

%

� @

�

a

�

: (2.12)

Using the Christo�el symbols we can give the rules of covariant di�erentiation for a surface

tensor. For a surface tensor of order 1, we obtain the covariant derivatives (denoted by a

vertical bar) from their ordinary derivatives (denoted by a comma) as follows:

(

t

�j

= t

�;

� �

�

�

t

�

;

t

�

j



= t

�

;

+ �

�

�

t

�

;

(2.13)

and for a tensor of order 2 we get:

8

>

>

<

>

>

:

t

��j

= t

��;

� �

�

�

t

��

� �

�

�

t

��

;

t

�

�j

= t

�

�;

+ �

�

�

t

�

�

� �

�

�

t

�

�

;

t

��

j



= t

��

;

+ �

�

�

t

��

+ �

�

�

t

��

:

(2.14)

We also need the following rule of covariant di�erentiation of the normal component t

3

:

n

t

3j�

= t

3;�

� �

�

�

t

3;�

:
(2.15)

3



2.2 Geometrical de�nition of the unstrained shell

We now de�ne a thin shell C, with the middle surface S, and with a constant thickness

" > 0, as a closed subset of R

3

by:

C = fr 2 R

3

; r = �(x

1

; x

2

) + x

3

a

3

(x

1

; x

2

); (x

1

; x

2

) 2

�


; jx

3

j �

"

2

g :

The derivatives of the vector r = �(x

1

; x

2

) + x

3

a

3

(x

1

; x

2

) de�ne the basis vectors of the

continous medium g

i

and satisfy

g

�

= @

�

r = (�

�

�

� x

3

b

�

�

)a

�

; g

3

= @

3

r = a

3

: (2.16)

While the vectors g

1

and g

2

are parallel to the tangent plane to the middle surface at the

point �(x

1

; x

2

), the vector g

3

is normal to this plane. We now de�ne the metric tensor

of the continuous medium (g

ij

)

g

ij

= g

i

� g

j

(2.17)

and the inverse (g

ij

). Because of (2.16) we get in particular:

g

�3

= g

3�

= 0; g

33

= 1 : (2.18)

We assume that the shell C is clamped at the part G

0

= �(�

0

) � [ �

"

2

;

"

2

] of its lateral

surface, where meas(�

0

) > 0. We further assume that there are no applied surface forces

on the remaining part of the lateral surface. Finally, we assume that there are surface

forces applying on the upper and lower faces of the shell and body forces applying in its

interior.

3 The linear model of Koiter

In the following we assume that the displacements and deformations are "small" so that

we can use linearized equations.

Koiter's approach for the thin shell theory [8] is based on the reduction of investigations

of the complete displacement �eld to the determination of a displacement �eld u = u

i

a

i

of the points of the middle surface S (this means that u(x

1

; x

2

) is the displacement of

the point �(x

1

; x

2

) for all points (x

1

; x

2

) 2

�


; cf. Fig. 1). For this, Koiter uses two basic

hypotheses:

(i) any point on a normal to the unstrained middle surface remains, after deformation,

on the normal to the deformed middle surface;

(ii) the stresses are approximately plane and the stresses parallel to the the middle

surface vary approximately linear across the thickness.

We use these hypotheses to get an approximation to the strain tensor �

ij

of the three-

dimensional medium which is de�ned by �

ij

=

1

2

(�g

ij

� g

ij

). Here �g

ij

and g

ij

are the metric

tensors of the continuous medium (2.17) in the strained and unstrained con�gurations for

the same parametrization (x

1

; x

2

; x

3

).

We now give a possible modelling according to [3]: The hypotheses of thin shells, small

displacements, and small strains together with the �rst hypothesis (i) lead to:

�

��

=

1

2

(�a

��

� a

��

)� x

3

(

�

b

��

� b

��

) ;

�

�3

= �

3�

= 0 :

4



Now we use Hooke's law: for an isotropic homogeneous elastic material we can write the

relation of the three-dimensional stress tensor �

ij

to the strain tensor as

�

ij

= C

ijkl

�

kl

(U) ; (3.1)

where the coe�cients of elasticity are given by

C

ijkl

=

E

2(1 + �)

(g

ik

g

jl

+ g

il

g

jk

+

2�

1 � 2�

g

ij

g

kl

) ; (3.2)

with Young's modulus E and the Poisson coe�cient � of the material. Using the equations

(2.18), expression (3.2) gives

C

333�

= C

3���

= 0 ;

C

33��

=

E�

(1 + �)(1� 2�)

g

��

;

C

3�3�

=

E

2(1 + �)

g

��

;

C

3333

=

E(1� �)

(1 + �)(1� 2�)

:

Hypothesis (ii) on plane stresses (�

33

� 0) then leads to:

�

33

= �

�

1� �

g

��

�

��

:

As these equations show, the shell strain tensor �

ij

is completely determined through the

following two surface tensors:

(i) the middle surface tensor 

��

=

1

2

(�a

��

� a

��

);

(ii) the middle surface change of curvature tensor ��

��

=

�

b

��

� b

��

.

On simplifying, we get the following expression for the tensor 

��

:



��

(u) =

1

2

(u

�j�

+ u

�j�

)� b

��

u

3

;

and for the tensor ��

��

we obtain:

��

��

(u) = u

3j��

+ b

�

�

u

�j�

+ b

�

�

u

�j�

+ b

�

�j�

u

�

� c

��

u

3

:

Using (2.13),(2.14) and (2.15) we �nally get the following expressions:



��

(u) =

1

2

(@

�

u

�

+ @

�

u

�

)� �

�

��

u

�

� b

��

u

3

(3.3)

��

��

(u) = @

��

u

3

� �

�

��

@

�

u

3

+ b

�

�

(@

�

u

�

� �

�

��

u

�

) + b

�

�

(@

�

u

�

� �

�

��

u

�

) +

(@

�

b

�

�

+ �

�

��

b

�

�

� �

�

��

b

�

�

)u

�

� c

��

u

3

: (3.4)

Putting the equations (3.1) and (3.2) into the formula of the strain energy (cf. [9]) and

using the properties of C

ijkl

mentioned above, the strain energy of the shell associated

with the �eld of displacement U is

F (U) =

1

2

Z

C

�

ij

�

ij

(U)dC

=

1

2

Z

C

C

ijkl

�

ij

(U)�

kl

(U)dC

F (U) =

1

2

Z

C

B

����

�

��

(U)�

��

(U)dC ;

5



where

B

����

=

E

2(1 + �)

(g

��

g

��

+ g

��

g

��

+

2�

1� �

g

��

g

��

) :

We integrate over the thickness and obtain the following approximation:

F (U) '

1

2

Z




"E

����

f

��

(u)

��

(u) +

"

2

12

��

��

(u)��

��

(u)g

p

adx

1

dx

2

;

where the elasticity coe�cients are

E

����

=

E

2(1 + �)

(a

��

a

��

+ a

��

a

��

+

2�

1� �

a

��

a

��

) : (3.5)

We associate the following bilinear form with this approximation:

a(u;v) =

Z




"E

����

f

��

(u)

��

(v) +

"

2

12

��

��

(u)��

��

(v)g

p

adx

1

dx

2

; (3.6)

The linear form f is given by

f(u) =

Z




p � u

p

adx

1

dx

2

; (3.7)

where p : 
! R

3

is the vector �eld that we can calculate from the applied surface forces

and by integration of the body forces over the thickness of the shell.

Then we obtain the following variational formulation for the unknown u:

Find u 2 V

�

such that a(u;v) = f(v) ;8v 2 V

�

; (3.8)

where the space V

�

is de�ned as

V

�

= fv=(v

�

; v

3

) 2 V : vj

�

0

= 0;

@v

3

@�

j

�

0

= 0g; (3.9)

V = (H

1

(
))

2

�H

2

(
) ;

therefore the corresponding norm is

kvk

V

= kvk

(H

1

(
))

2

�H

2

(
)

= f

2

X

�=1

kv

�

k

2

(H

1

(
))

2
+ kv

3

k

2

H

2

(
)

g

1

2

: (3.10)

The existence and uniqueness of a solution for the problem (3.8) is proved in e.g. [3]:

Theorem 3.1 Assume that � 2 (C

3

(

�


))

3

, meas(�

0

) > 0 and p 2 (L

2

(
))

3

. Then the

bilinear form (3.6) is continuous and V

�

-elliptic, the linear form (3.7) is continuous and

hence the problem (3.8) has a unique solution.

4 Finite element discretization

In this section we introduce one conforming and one nonconforming discretization for the

shell equations (3.8), which are based on rectangular �nite elements. We now suppose

that 
 � R

2

is a bounded domain equipped with an appropriate partition T

h

into a �nite

number of rectangles. We denote the corresponding set of nodes with N

h

.

6



4.1 Discretization by conforming Bogner-Fox-Schmidt elements

A conforming discretization requires the use of �nite elements of the class C

0

for the

approximation of the tangential displacement components u

1

; u

2

and �nite elements of

the class C

1

for the approximation of the normal displacement u

3

. In order to avoid the

e�ect of membran locking we use the bicubic Bogner-Fox-Schmidt (BFS) C

1

element (cf.

Fig. 2a) for all three displacement components. Such a procedure was proposed in [10].

Then we get the �nite element space

V

h

= V

h

� V

h

� V

h

; (4.1)

V

h

=

n

v

h

2 C

1

(

�


) : v

h

j

K

2 P

3

(K); 8K 2 T

h

o

;

P

3

(K) =

n

p(x) =

X

k

1

;k

2

�3



k

1

k

2

x

k

1

1

x

k

2

2

o

:

Let � denote the set � = f(0; 0); (1; 0); (0; 1); (1; 1)g where the index � = (�

1

; �

2

) 2 �

corresponds for � = 0 = (0; 0) with the value of the function, for � = e

1

= (1; 0) and

� = e

2

= (0; 1) with the values of the �rst derivatives, and for � = 1 = (1; 1) with the

value of the mixed derivative in the node. Using the �nite element nodal basis

�

h

= ('

(i;�;P )

)

(i;�;P )2f1;2;3g���N

h

;

@

�

1

1

@

�

2

2

'

(j;�;Q)

j

i;P

= �

ij

�

��

�

PQ

; 8(i; �; P ); (j; �;Q) 2 f1; 2; 3g � � �N

h

every function v

h

2 V

h

is uniquely de�ned from the vector of the nodal values v

h

2

R

3�4�jN

h

j

:

V

h

3 v

h

= �

h

v

h

 ! v

h

2 R

3�4�jN

h

j

: (4.2)

Now we replace the variational problem (3.8) by the discrete variational problem

Find u

h

2 V

h

such that a(u

h

;v

h

) = f(v

h

) ;8v

h

2 V

h

; (4.3)

where

V

h

= span(�

h

) � V

�

: (4.4)

The solution of the variational problem (4.3) in V

h

leads to a �nite element equation

system with a symmetric, positive de�nite sti�ness matrix K

h

for the calculation of the

vector of the nodal values of the approximate solution u

h

:

K

h

u

h

= f

h

: (4.5)

Due to [5] the discretization error can be estimated by the following theorem:

Theorem 4.1 Let u be the solution of of the variational problem (3.8) and u

h

be the

solution of the discrete variational problem (4.3).

Then for u 2 H

2

�H

2

�H

3

the discretization error ku� u

h

k

V

is of the order O(h

1

).

In addition, we assume that the geometry of the shell can be exactly approximated in the

�nite element space. Then for u 2 H

3

�H

3

�H

4

the discretization error ku� u

h

k

V

is

of the order O(h

2

).
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4.2 Discretization by nonconforming Adini elements

We now de�ne the nonconforming Adini element as a counterpart to the conforming BFS

element by decreasing the polynomial degree in such a way that every node contains

only three degrees of freedom. Since the Adini element (cf. Fig. 2b) is of the class

C

0

the resulting discretization is conforming according to the tangential displacement

components u

1

; u

2

and nonconforming according to the normal displacement component

u

3

. The resulting �nite element space is

~

V

h

=

~

V

h

�

~

V

h

�

~

V

h

; (4.6)

~

V

h

=

n

~v

h

2 C

0

(

�


) : ~v

h

j

K

2

~

P

3

(K); 8K 2 T

h

o

;

~

P

3

(K) =

n

p(x) =

X

k

1

;k

2

�3; min(k

1

;k

2

)�1



k

1

k

2

x

k

1

1

x

k

2

2

o

;

~� = f(0; 0); (1; 0); (0; 1); g = f0; e

1

; e

2

g :

We introduce the �nite element nodal basis

~

�

h

= ( ~'

(i;�;P )

)

(i;�;P )2f1;2;3g�~��N

h

;

which leads to the isomorphism

~

V

h

3
~
v

h

=

~

�

h

~
v

h

 !
~
v

h

2 R

3�3�jN

h

j

:

We replace the variational problem (3.8) by the discrete variational problem

Find
~
u

h

2

~

V

h

such that ~a(
~
u

h

;
~
v

h

) = f(
~
v

h

) ;8
~
v

h

2

~

V

h

; (4.7)

where the space

~

V

h

is modi�ed according to the Dirichlet boundary conditions:

~

V

h

= f
~
v

h

2

~

V

h

:
~
v

h

(P ) = 0;

@~v

h;3

@t

(P ) =

@~v

h;3

@�

(P ) = 0;8P 2 N

h

\ �

0

g : (4.8)

Since the space

~

V

h

is not a subspace of the Sobolev space H

2

(
) we introduce the following

seminorms:

j~v

h;i

j

�;T

h

=

n

X

K2T

h

j~v

h;i

j

2

H

�

(K)

o

1

2

; (4.9)

j
~
v

h

j

T

h

=

n

2

X

�=1

jv

h;�

j

2

1;T

h

+ jv

h;3

j

2

2;T

h

o

1

2

: (4.10)

In the formulation (4.7) the bilinear form (3.6) is replaced by

~a(
~
u

h

;
~
v

h

) =

X

K2T

h

Z

K

"E

����

f

��

(
~
u

h

)

��

(
~
v

h

) +

"

2

12

��

��

(
~
u

h

)��

��

(
~
v

h

)g

p

adx

1

dx

2

: (4.11)

Theorem 4.2 Assume that � 2 (C

3

(

�


))

3

. Then the bilinear form (4.11) is continuous

and elliptic in the space

~

V

h

with respect to the seminorm (4.10):

~a(
~
v

h

;
~
v

h

) � ~�

E

j
~
v

h

j

2

T

h

; (4.12)

j~a(
~
u

h

;
~
v

h

)j � ~�

C

j
~
u

h

j

T

h

j
~
v

h

j

T

h

: (4.13)
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In order to prove the theorem, we now use three lemmas which were shown in [3] to prove

Theorem 4.1.

Lemma 4.1 Suppose � 2 (C

3

(

�


))

3

. Then there exists a constant c

1

> 0 such that

a(v;v) � c

1

n

2

X

�;�=1

k

��

(v)k

2

L

2

(
)

+

2

X

�;�=1

k��

��

(v)k

2

L

2

(
)

o

(4.14)

for all v 2 V.

Lemma 4.2 Let E(
) be the space de�ned by the relation

(

E(
) = fv=(v

�

; v

3

) 2 (L

2

(
))

2

�H

1

(
) :



��

(v) 2 L

2

(
); ��

��

(v) 2 L

2

(
)g:

(4.15)

We assume � 2 (C

3

(

�


))

3

. Then E(
) = (H

1

(
))

2

�H

2

(
) = V.

Lemma 4.3 Assume that � 2 (C

3

(

�


))

3

. Then there exist two strictly positive constants

c

2

and c

3

such that

c

2

kvk

V

� kvk

E(
)

� c

3

kvk

V

; 8v 2 V; (4.16)

where

kvk

E(
)

=

n

2

X

�=1

kv

�

k

2

L

2

(
)

+kv

3

k

2

H

1

(
)

+

2

X

�;�=1

k

��

(v)k

2

L

2

(
)

+

2

X

�;�=1

k��

��

(v)k

2

L

2

(
)

o

1

2

: (4.17)

In other words, k � k

E(
)

and k � k

V

are equivalent norms on the space V.

Now we de�ne the following two seminorms in the spaces V rsp. E(
):

jvj

V

= jvj

(H

1

(
))

2

�H

2

(
)

= f

2

X

�=1

jv

�

j

2

(H

1

(
))

2 + jv

3

j

2

H

2

(
)

g

1

2

; (4.18)

jvj

E(
)

=

n

2

X

�;�=1

k

��

(v)k

2

L

2

(
)

+

2

X

�;�=1

k��

��

(v)k

2

L

2

(
)

o

1

2

: (4.19)

Then we obtain from Lemma 4.3

Lemma 4.4 Assume that � 2 (C

3

(

�


))

3

. Then the following two-sided inequality is guilty:

c

2

jvj

V

� jvj

E(
)

� c

3

jvj

V

; 8v 2 V; (4.20)

where the constants c

2

and c

3

are taken from Lemma 4.3.

Finally, using the seminorm (4.19) the following lemma can be shown.

Lemma 4.5 Assume that � 2 (C

3

(

�


))

3

. Then the following inequality holds:

ja(u;v)j � c

4

juj

E(
)

jvj

E(
)

; 8u; v 2 V ; (4.21)

where c

4

denotes a strictly positive constant.

Putting (4.20) into (4.14) and (4.21) we get the following lemma about the ellipticity and

continuitity of the bilinear form (3.6) in the space V:
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Lemma 4.6 Assume that � 2 (C

3

(

�


))

3

. Then the bilinear form (3.6) is continuous and

elliptic in the space V with respect to the seminorm (4.18):

a(v;v) � �

E

jvj

2

V

; (4.22)

ja(u;v)j � �

C

juj

V

jvj

V

: (4.23)

In order to prove Theorem 4.2 we have only to apply Lemma 4.6 to all rectangles K 2 T

h

,

i.e. 
 = K, and to take the sum over all of these rectangles.

Remark. We did not use the full norm in Theorem 4.2 because there are no Dirich-

let boundary conditions in the interior rectangles K of the triangulation T

h

and therefore

Theorem 3.1 is not applicable to these interior rectangles. So we had to show Lemma 4.6

which can be applied to all rectangles K 2 T

h

.

The solution of the variational problem (4.7) in the space

~

V

h

leads to a �nite element

equation system with the s.p.d. sti�ness matrix

~

K

h

for the calculation of the vector of

the nodal values of the approximate solution
~
u

h

:

~

K

h

~
u

h

= f

h

: (4.24)

Since we could not �nd a general estimation of the discretization error of the Adini

elements for Koiters model in the literature (for the plate such estimation is given in [5])

we leave this as an open problem. In practice (see Subsection 7.2) the discrete solution

~
u

h

of (4.7) seams to converge to the solution u of the initial problem (3.8).

4.3 Relations between the spaces of the BFS and Adini elements

Let us de�ne two mappings between the �nite element spaces of the BFS elements V

h

and the Adini elements

~

V

h

in the following natural way.

a) b)

P

1

P

4

P

1

P

2

P

2

h

1

h

1

P

3

P

3

P

4

h

2

h

2

Figure 2: Bogner-Fox-Schmidt element and Adini element.

First we de�ne the mapping E

h

:

~

V

h

! V

h

as

E

h

~
v

h

= fE

h

~v

h;i

g

i2f1;2;3g

; (4.25)
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where the mapping E

h

:

~

V

h

! V

h

is de�ned by

E

h

~v

h

j

P

= ~v

h

j

P

; (4.26)

rE

h

~v

h

j

P

= r~v

h

j

P

;

@

12

E

h

~v

h

j

P

= 0 ; 8P 2 N

h

:

Conversely, the mapping F

h

: V

h

!

~

V

h

is given by

F

h

v

h

= fF

h

v

h;i

g

i2f1;2;3g

; (4.27)

where the mapping F

h

: V

h

!

~

V

h

is the natural restriction

F

h

v

h

j

P

= v

h

j

P

; (4.28)

rF

h

v

h

j

P

= rv

h

j

P

; 8P 2 N

h

:

Obviously the operator E

h

is right-inverse to the operator F

h

:

F

h

E

h

~
v

h

=
~
v

h

: (4.29)

The following lemma was proved in [10].

Lemma 4.7 There exist such mesh size independent constants �

E

and �

F

that for all

~v

h

2

~

V

h

and v

h

2 V

h

we have

jE

h

~v

h

j

2

H

2

(
)

� �

E

j~v

h

j

2

2;T

h

; (4.30)

jF

h

v

h

j

2

2;T

h

� �

F

jv

h

j

2

H

2

(
)

: (4.31)

Using this lemma we can prove Lemma 4.8 which we will need in Subsection 5.2 for the

application of the �ctitious space lemma to the construction of multilevel preconditioners

for the �nite element space of the Adini elements.

Lemma 4.8 There exist such mesh size independent constants �

E

and �

F

that for all

~
v

h

2

~

V

h

and v

h

2 V

h

the following estimations hold:

jE

h

~
v

h

j

2

V

� �

E

j
~
v

h

j

2

T

h

; (4.32)

jF

h

v

h

j

2

T

h

� �

F

jv

h

j

2

V

: (4.33)

Proof: By the use of Lemma 4.7 together with the fact that the functions of

~

V

h

belong

to H

1

(
) we �nd:

jE

h

~
v

h

j

2

V

=

2

X

�=1

jE

h

~v

h;�

j

2

H

1

(
)

+ jE

h

~v

h;3

j

2

H

2

(
)

=

2

X

�=1

j~v

h;�

j

2

1;T

h

+ jE

h

~v

h;3

j

2

H

2

(
)

�

2

X

�=1

j~v

h;�

j

2

1;T

h

+ �

E

j~v

h;3

j

2

2;T

h

� �

E

(

2

X

�=1

j~v

h;�

j

2

1;T

h

+ j~v

h;3

j

2

2;T

h

)

| {z }

j~vj

2

T

h

:

Inequality (4.32) is established. Similary we can prove the inequatity (4.33).
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5 Multilevel preconditioning

Suppose that 
 is equipped with an initial partition T

0

into a �nite number of rectangles,

and generate T

1

; : : : ;T

J

= T

h

by dyadically re�ning the initial partition. Thus, T

l

consists

of rectangles similar to those contained in T

0

but scaled by a factor 2

�l

. The corrsponding

sets of nodal points are N

1

; : : : ;N

J

= N

h

.

5.1 Multilevel preconditioning for BFS elements

Using the BFS elements we obtain a sequence of �nite element spaces V

l

= span�

l

:

V

0

� V

1

� : : : � V

J

= V

h

: (5.1)

Now we choose the following additive splitting of the space V

h

V

h

=

J

X

l=0

3

X

i=1

X

�2�

X

P2N

l

V

l

(i;�;P )

(5.2)

into onedimensional subspaces V

l

(i;�;P )

= span('

l

(i;�;P )

) equipped with the scalar product

(u; v)

V

l

(i;�;P )

=

(

2

2l

(u; v)

L

2

; i = 1; 2

2

4l

(u; v)

L

2

; i = 3

; u; v 2 V

l

(i;�;P )

On the subspaces we choose auxilary bilinear forms. For the auxilary bilinear forms

di�erent choices are possible:

b

l

(i;�;P )

(u; v) = (u; v)

V

l

(i;�;P )

; u; v 2 V

l

(i;�;P )

; (5.3)

b

l

(i;�;P )

(u; v) = a(u; v) ; u; v 2 V

l

(i;�;P )

: (5.4)

The choice (5.3) leads to the BPX scheme [4] while (5.4) is called Multilevel Diagonal

Scaling (MDS-BPX) scheme [16]. In order to show that our subspace splitting is stable,

we will rewrite the subspace splitting in the following, more explicit way:

fV

h

; ag =

J

X

l=0

3

X

i=1

X

�2�

X

P2N

l

fV

l

(i;�;P )

; b

l

(i;�;P )

g : (5.5)

The following Lemma shows that our subspace splitting is stable:

Lemma 5.1 The splitting (5.5) is stable, i.e. the following inequality holds:

a(u

h

;u

h

) � kju

h

kj

2

� inf

J

X

l=0

3

X

i=1

X

�2�

X

P2N

l

b

l

(i;�;P )

(u

l

(i;�;P )

; u

l

(i;�;P )

); 8u

h

2 V

h

(5.6)

where the in�mum is taken over all splittings

u

h

=

J

X

l=0

3

X

i=1

X

�2�

X

P2N

l

u

l

(i;�;P )

; u

l

(i;�;P )

2 V

l

(i;�;P )

(5.7)

and where the following estimation for the spectrum of the splitting (5.5) by positive con-

stants c and c, which are independent of the mesh size, holds:

c � �

min

= min

u

h

2V

h

;u

h

6=0

a(u

h

;u

h

)

kju

h

kj

2

� �

max

= max

u

h

2V

h

;u

h

6=0

a(u

h

;u

h

)

kju

h

kj

2

� c : (5.8)
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Proof: The proof is similar to this of [10],[14]. It is based on the use of the decomposition

theorem (Theorem 15 in [13]). Since the bilinear form (3.6) is V

�

-elliptic and continuous

(Theorem 3.1) and V

h

is a subspace of V

�

, the bilinear form can be replaced through the

norm in V:

c

1

ku

h

k

2

V

� a(u

h

;u

h

) � c

2

ku

h

k

2

V

;8u

h

2 V

h

: (5.9)

For the auxilary bilinear forms the following estimation

c

3

ku

l

(i;�;P )

k

2

V

l

(i;�;P )

� b

l

(i;�;P )

(u

l

(i;�;P )

; u

l

(i;�;P )

) � c

4

ku

l

(i;�;P )

k

2

V

l

(i;�;P )

; (5.10)

with c

3

= c

4

= 1 for the bilinear form (5.3) and with geometric dependent constants for

the bilinear form (5.4), holds true, and hence the bilinear forms can be replaced by the

corresponding norms in V

l

(i;�;P )

. Therefore, it remains to show the norm equivalence

c

5

ku

h

k

2

V

� inf

J

X

l=0

3

X

i=1

X

�2�

X

P2N

l

ku

l

(i;�;P )

k

2

V

l

(i;�;P )

� c

6

ku

h

k

2

V

; (5.11)

where the in�mum is taken over all splittings (5.7). Obviously, then the constants are

c = c

1

� c

3

� c

5

and c = c

2

� c

4

� c

6

.

Denoting

u

l

=

3

X

i=1

X

�2�

X

P2N

l

u

l

(i;�;P )

and using the basis property of �

l

we have for each splitting (5.7) a corresponding unique

splitting with

u

h

=

J

X

l=0

u

l

; u

l

2 V

l

and vice versa. But from the L

2

stability of the basis �

l

, we have

ku

l

k

2

L

2

�

3

X

i=1

X

�2�

X

P2N

l

ku

l

(i;�;P )

k

2

L

2

; 8u

l

2 V

l

; (5.12)

with constants in the two-sided inequality that depend only on the initial partition T

0

.

Now we use the decomposition theorem with s = 1; 2; for the �nite element spaces fV

l

g

J

l=1

spanned by BFS elements and 0 < s <

5

2

it reads as follows:

ku

J

k

2

H

s

(
)

� inf

u

J

=

P

J

l=0

u

l

;u

l

2V

l

J

X

l=0

2

2sl

ku

l

k

2

L

2

; 8u

J

2 V

J

: (5.13)

Therefore, the constants c

5

and c

6

can be calculated from the L

2

-stability constants of

the basis and the constants of the decomposition theorem.

Now we introduce the additive Schwarz operator P associated with the splitting (5.5) and

consider the following operator equation:

Pu

h

= g

h

; (5.14)

Pu

h

=

J

X

l=0

3

X

i=1

X

�2�

X

P2N

l

a(u

h

; '

l

(i;�;P )

)

b

l

(i;�;P )

('

l

(i;�;P )

; '

l

(i;�;P )

)

� '

l

(i;�;P )

; (5.15)

g

h

=

J

X

l=0

3

X

i=1

X

�2�

X

P2N

l

f('

l

(i;�;P )

)

b

l

(i;�;P )

('

l

(i;�;P )

; '

l

(i;�;P )

)

� '

l

(i;�;P )

:

The theorem of the additive Schwarz preconditioner [13] together with Lemma 5.1 imme-

diatly leads to
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Theorem 5.1 The solution of the discrete variational problem (4.3) coincides with that

of the operator equation (5.14). The Schwarz operator P : V

h

! V

h

is symmetric and

positive de�nite. Moreover,

c � �

min

= �

min

(P) � �

max

(P) = �

max

� c : (5.16)

Especially, the spectral condition number �(P) is bounded by the mesh size independent

constant c=c.

Remarks. Note that

(i) the question of the robustness of the preconditioner according to the geometric

parameters remains to be open, because in the proof of the Lemma 5.1 the constants

c

1

; c

2

and in the case of multilevel diagonal scaling the constants c

3

; c

4

depend on the

geometry of the shell,

(ii) due to the clustering trick (cf. [13]) we can collect all subspaces with the level

number � j

0

into one subspace V

j

0

(0 � j

0

< J) and consider the modi�ed splitting

V

h

= V

j

0

+

J

X

l=j

0

3

X

i=1

X

�2�

X

P2N

l

V

l

(i;�;P )

: (5.17)

We equip the space V

j

0

with the scalar product (3.10) and the auxilary bilinear form b

j

0

=

a(:; :). Then the assertions of Theorem 5.1 remain true. In practice, the corresponding

preconditioners are often advantegous since they include the exact solution of a coarse

grid problem corresponding to the level j

0

.

How the expression Pu

h

in (5.15) can be interpreted? We can represent u

h

= u

J

2 V

h

by its nodal basis coe�cient vector u

h

, see (4.2). The �rst step, the calculation of the

values a(u

h

; '

J

(i;�;P )

), is equivalent to the the multiplication K

h

u

h

by the sti�ness matrix

K

h

. In the second step, for l = J � 1; : : : ; 0, we determine the remaining a(u

h

; '

l

(i;�;P )

)

recursivly by using the linear expressions of the basis functions from the next �ner level

(cf. Theorem (5.2)). In the third step we carry out the scaling in dependence on the

choice of the auxilary bilinear forms (5.3) or (5.4). The fourth step consists of evaluating

the nodal basis vector Pu

h

2 V

h

by taking the sum in (5.15). Obviously, this last

operation is adjoint to that in step 2. Steps 2-4 can be interpreted as a simple V-cycle;

they represent the symmetric preconditionerC

�1

h

(5.18). Therefore, the operator equation

(5.14) is equivalent to the preconditioned equation system

C

�1

h

K

h

u

h

= C

�1

h

f

h

and

C

�1

h

= SD

�1

S

T

: (5.18)

Here S is the transformation matrix between the �nite element basis �

J

and the generating

system 	 = (�

0

;�

1

; : : : ;�

J

) and D is the main diagonal of the scaled mass matrix rsp.

the sti�ness matrix of the generating system.

The matrix S can be written in the following form:

S = [I

J

0

jI

J

1

j � � � jI

J

J�1

jI

J

] ;

I

J

l

= I

J

J�1

I

J�1

J�2

� : : : � I

l+1

l

;

where the interpolation matrix I

l+1

l

is the transpose of the restriction matrix I

l

l+1

. In

order to explain the restriction matrix we consider one node P

1

2 N

l

of the discretization

level l with the discretization parameters h

1

in x-direction and h

2

in y-direction together

with its neighbouring nodes P

1

; : : : ; P

9

2 N

l+1

of the discretization level l + 1 (cf. Fig.

3a).
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Figure 3: Node P

1

with neighbouring nodes and the one dimensional basis functions of

two consecutive levels.

Theorem 5.2 The restriction w

l

= I

l

l+1

w

l+1

for all nodes of the level l + 1 is given by:

w

l

i;P

1

= B

T

(w

l+1

i;P

j

)

j=1;:::;9

8i 2 f1; 2; 3g ; (5.19)

with the basis transformation matrix

B =

0

B

B

B

B

B

B

B

B

B

B

B

B

B

B

B

@

I 
 I

A

+

1


 I

A

�

1


 I

I 
 A

+

2

I 
 A

�

2

A

+

1


 A

+

2

A

�

1


 A

+

2

A

+

2


 A

�

2

A

�

2


 A

�

2

1

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

A

; (5.20)

where 
 denotes the Kronecker product and the transformation matrices A

�

�

are:

A

+

�

=

 

1

2

h

�

8

�

3

2h

�

�

1

4

!

; A

�

�

=

 

1

2

�

h

�

8

3

2h

�

�

1

4

!

: (5.21)

Proof: According to an idea of A. Meyer we �rst �nd the basis transformation for the

corresponding one-dimensional basis functions and then - using the Kronecker product -

obtain the result of the theorem.

We de�ne the two functions

p

0

(x) =

(x� h)

2

(h+ 2x)

h

3

; (5.22)
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p

1

(x) =

(x� h)

2

x

h

2

: (5.23)

Now we give the one-dimensional basis functions of the point 0 for the two elements [0; h]

and [�h; 0], see Fig. 3b:

g

0

(x) =

(

p

0

(x) if x 2 [0; h]

p

0

(�x) if x 2 [�h; 0) ;

g

1

(x) =

(

p

1

(x) if x 2 [0; h]

�p

1

(�x) if x 2 [�h; 0) ;

we intoduce the basis 	(x) = (g

0

(x)jg

1

(x)). The corresponding basis functions of the next

level in the elements [�

h

2

; 0] and [0;

h

2

], see also Fig. 3b, are

f

0

(x) =

(

p

0

(2x) if x 2 [0;

h

2

]

p

0

(�2x) if x 2 [�

h

2

; 0) ;

f

1

(x) =

(

1

2

p

1

(2x) if x 2 [0;

h

2

]

�

1

2

p

1

(�2x) if x 2 [�

h

2

; 0) ;

the basis is F (x) = (f

0

(x)jf

1

(x)). In the element [0;

h

2

] the basis functions according to

the point

h

2

are

f

r0

(x) =

(

f

0

(

h

2

� x) if x 2 [0;

h

2

]

0 if x 2 [�

h

2

; 0) ;

f

r1

(x) =

(

�f

1

(

h

2

� x) if x 2 [0;

h

2

]

0 if x 2 [�

h

2

; 0) ;

the basis is R(x) = (f

r0

(x)jf

r1

(x)). In the element [�

h

2

; 0] the basis functions according

to the point �

h

2

are

f

l0

(x) =

(

0 if x 2 [0;

h

2

]

f

0

(

h

2

+ x) if x 2 [�

h

2

; 0) ;

f

l1

(x) =

(

0 if x 2 [0;

h

2

]

f

1

(

h

2

+ x) if x 2 [�

h

2

; 0) ;

the basis is L(x) = (f

l0

(x)jf

l1

(x)). Computations show, that in the elements [0;

h

2

] and

[�

h

2

; 0] the basis functions of 	 can expressed in the following way by the basis functions

of the next �ner level:

	(x) = (L(x)jF (x)jR(x))

0

B

@

A

�

I

A

+

1

C

A

; (5.24)

where the matrices A

�

are de�ned like in (5.21) with the mesh size h.

Using the Kronecker product, we can give the two-dimensional basis �

1

(x; y) according

to the point P

1

= (0; 0). In what follows, the upper index 1 (rsp. index 2) denotes

functions and matrices according to the x-direction (rsp. y-direction). Therefore, the

basis is:

�

1

(x; y) = 	

1

(x)
	

2

(y) = [g

1

0

(x)g

2

0

(y) g

1

0

(x)g

2

1

(y)g

1

1

(x)g

2

0

(y) g

1

1

(x)g

2

1

(y)] :
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Note, that due to the de�nition of the Kronecker product the second and third basis

functions are transposed in comparision to the usual BFS basis. We take this into consid-

eration when we enumerate the functions. Since the relations (5.24) are guilty for 	

1

(x)

and 	

2

(y) and using the properties of the Kronecker product

A
 (B + C) = A
B +A
C ;

(A
B)(C 
D) = AC 
BD

we can express the basis functions of �

1

(x; y) = 	

1

(x)
	

2

(y) from the two-dimensional

basis functions of the next �ner level:

�

1

= 	

1


	

2

= [L

1

A

�

1

+ F

1

I +R

1

A

+

1

]
 [L

2

A

�

2

+ F

2

I +R

2

A

+

2

]

= (L

1


 L

2

)

| {z }

�

9

(A

�

1


A

�

2

) + (L

1


 F

2

)

| {z }

�

3

(A

�

1


 I) + (L

1


R

2

)

| {z }

�

7

(A

�

1


A

+

2

) +

(F

1


 L

2

)

| {z }

�

5

(I 
A

�

2

) + (F

1


 F

2

)

| {z }

�

1

(I 
 I) + (F

1


R

2

)

| {z }

�

4

(I 
A

+

2

) +

(R

1


 L

2

)

| {z }

�

8

(A

+

1


A

�

2

) + (R

1


 F

2

)

| {z }

�

2

(A

+

1


 I) + (R

1


R

2

)

| {z }

�

6

(A

+

1


A

+

2

) +

�

1

= [�

1

�

2

�

3

�

4

�

5

�

6

�

7

�

8

�

9

]

0

B

B

B

B

B

B

B

B

B

B

B

B

B

B

B

@

I 
 I

A

+

1


 I

A

�

1


 I

I 
 A

+

2

I 
 A

�

2

A

+

1


 A

+

2

A

�

1


 A

+

2

A

+

2


 A

�

2

A

�

2


 A

�

2

1

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

A

| {z }

B

;

where �

i

are the two-dimensional bases of the next �ner level for the point P

i

(cf. Fig.

3a).

Remark. Note, that the matrices A

�

�

depend on the real mesh sizes h

1

and h

2

, what has

to be taken into account during the hierarchical preconditioning.

5.2 Multilevel preconditioning for Adini elements

Since for the sequence of �nite element spaces

~

V

l

= span

~

�

l

of the Adini elements the

monotonicity condition (5.1) is violeted, we cannot use the theory of the previous sub-

section (the decomposition theorem in the proof of Lemma 5.1 requires the monotonicity

condition).

On the other hand, in the previous subsection we have constructed an optimal precon-

ditioner for the space of the BFS elements and in Subsection 4.3 we have de�ned mappings

between the spaces of the BFS and Adini elements and proved some properties of these

mappings. Now we will use the �ctitious space lemma from Nepomnyaschikh (see [11])

to transfer the preconditioner from the space of the BFS elements into the space of the

Adini elements. The idea was proposed in [13] and used in [10] for plate problems. We

write the �ctitious space lemma in the following form:
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Lemma 5.2 Let H and H

0

be Hilbert spaces with the scalar products (�; �) and [�; �], re-

spectivly. Let A : H ! H and A

0

: H

0

! H

0

be linear, s.p.d., and continous operators

in the spaces H and H

0

. Further we assume, that there is a preconditioner B

0

: H

0

! H

0

for the operator A

0

which satis�es

�

0

[w;w]

A

0

� [B

�1

0

A

0

w;w] � �

1

[w;w]

A

0

; 8w 2 H

0

: (5.25)

Suppose that R is a linear operator such that R : H

0

! H and

kRwk

2

A

� c

R

kwk

2

A

0

(5.26)

is ful�lled for all w 2 H

0

. Moreover, there exists a linear operator Q such that Q : H !

H

0

for which the conditions RQv = v and

kQvk

2

A

0

� c

�1

Q

kvk

2

A

(5.27)

are valid for all v 2 H. Then for the preconditioner B : H ! H de�ned by B

�1

=

RB

�1

0

R

�

the following estimations of the eigenvalues hold:

�

max

(B

�1

A) � c

R

�

1

; (5.28)

�

min

(B

�1

A) � c

Q

�

0

:

The operator R

�

is adjoint to R w.r.t. the scalar products (�; �) and [�; �], i.e., we have

R

�

: H ! H

0

and [R

�

v;w] = (v;Rw); 8v 2 H; 8w 2 H

0

.

Using this lemma we can prove the following theorem.

Theorem 5.3 Let F

h

be the matrix representation of the mapping F

h

: V

h

!

~

V

h

de�ned in (4.27). Then for

~

C

�1

h

= F

h

C

�1

h

F

T

h

(5.29)

with C

h

from (5.18) there exist mesh size independent constants c and c which satisfy the

following spectral inequality:

c

~

C

�1

h

�

~

K

h

� c

~

C

�1

h

;

where

~

K

h

is the sti�ness matrix according to the variational problem (4.7).

Proof: The proof is similar to this in [10]. We use the �ctitious space lemma with the

mappings F

h

and E

h

between the spaces of the BFS and Adini elements. Together with

Lemma 4.6, Theorem 4.2, and Lemma 4.8 we obtain:

~a(F

h

v

h

;F

h

v

h

) � ~�

C

jF

h

v

h

j

2

T

h

� ~�

C

�

F

jv

h

j

2

V

� ~�

C

�

F

�

E

a(v

h

;v

h

); 8v

h

2 V

h

;

a(E

h

~
v

h

;E

h

~
v

h

) � �

C

�

E

~�

E

~a(
~
v

h

;
~
v

h

); 8
~
v

h

2

~

V

h

:

Using (5.28) we get

c = �

C

�

E

~�

E

�

min

(C

�1

h

K

h

);

c = ~�

C

�

F

�

E

�

max

(C

�1

h

K

h

);

where �

min

(C

�1

h

K

h

) and �

max

(C

�1

h

K

h

) are mesh size independent due to Theorem 5.1.
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6 Parallelization and implementation

6.1 The parallelization of the data structure

The parallelization concept of the program is based on the non-overlapping domain de-

composition data structure (cf. [7]) such that our implementations are well-suited for

MIMD parallel machines under message-passing. We use two types of vectors which we

call additive (type I) and overlapping (type II):

� type I : the solution vector u is represented locally on each processor P

i

by the

vector u

i

= A

i

u,

� type II : the load vector f is represented locally on each processor P

i

by f

i

with

f =

p

X

i=1

A

T

i

f

i

, where p is the number of processors.

A

i

is the super element connectivity matrix of the subdomain 


i

(located on the processor

P

i

) with the dimensionN

i

�N (N : number of unknowns of the global problem,N

i

: number

of unknowns on the subdomain 


i

) which maps a global vector g 2 R

N

on a local vector

g

i

2 R

N

i

. Using the Boolean matrix A

i

, we can write the sti�ness matrix K in the form

K =

p

X

i=1

A

T

i

K

i

A

i

; (6.1)

where K

i

is the super element sti�ness matrix belonging to 


i

.

6.2 Assembly of the sti�ness matrix and the load vector

Since we use the data structure of the previos subsection, the assembly of the super

element sti�ness matrix K

i

and the super element load vector f

i

can be carried out on

every processor without communication. This is an important advantage, because due to

the complicate bilinear form (3.6) with (3.3), (3.4) the assembly of the sti�ness matrix is

very expansive.

For the numerical integration we use the Gaussian quadrature formula. With the help

of a subroutine the mapping function � and its partial derivatives up to the second order

are included into the program. Then in every integration point the local basis vectors

(2.1), (2.2), and (2.3), the components (2.4), (2.6) of the �rst fundamental form, (2.9),

(2.10) of the second fundamental form, (2.11) of the third fundamental form, (2.12) of

the Christo�el symbol and (3.5) of the elasticity coe�cients are calculated. The partial

derivatives of the mixed components of the second fundamental form (2.10) which are

used in the bilinear form (cf. (3.4)) are computed via numerical di�erentiation. By using

all these values and putting the BFS ansatz functions (16 per element) into the bilinear

form (3.6) and carrying out the weighted summation over all intergration points, the

element integration subroutine calculatates six element sti�ness submatrices E

xx

, E

xy

,

E

xz

, E

yy

, E

yz

, E

zz

of dimension 16�16. Finally, the assembly subroutine assembles these

submatrices for all elements in such a way, that every node contains 3 � 4 = 12 nodal

values for the 3 directions (x,y,z) and 4 derivatives (value, �rst partial derivatives, mixed

derivative) (see Section 4). For the Adini elements the assembly is realized in a similar

way.
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6.3 The parallel preconditioned CG-method

The PPCG methods which are based on the data structure of Subsection 6.1 require

communication between the processors for computing of scalar products, within the pre-

conditioners, and for solving the systems of equations on the coarse mesh. A detailed

description of the used parallelization of the PCG method is given in [7].

For the BFS elements we now consider the realization of the preconditioning step

w

h

= C

�1

h

d

h

with the matrix C

�1

h

from (5.18). The residuum vector d

h

is of the additive

type. The transformation action v = S

T

d

h

does not require any communication. Since the

resulting vector v is of the additive type, it now has to be transformed into the overlapping

type. This requires a communication over the coupling nodes of all subdomains for all

levels of the generating system.

Now we solve the coarse-grid system using a direct solver on the basis of the Cholesky

factorization of the matrix K

j

0

. The matrix is stored in the processor P

0

, and before

starting the PPCG algorithm step, all processors send their part of right-hand side vector

to the processor P

0

. After the forward and backward substitution steps for solving the

coarse grid system on processor P

0

, this processor sends the solution to all processors.

The scaling and multiplication of the resulting vector with S does not require any

communication again. Details of the parallel implementation of the classic BPX and

MDS-BPX preconditioners can be �nd in [1].

In the case of Adini elements due to (5.29) we �rst have to transform the residuum

vector

~

d

h

of the Adini elements space into the residuum vector d

h

= F

T

h

~

d

h

of the BFS

element space. This simple operation does not require any communication. Then we carry

out the preconditioning step w

h

= C

�1

h

d

h

as described above. At the end, we transform

the correction w

h

back into the Adini elements space by calculating
~
w

h

= F

h

w

h

what

also does not need any communication.

7 Numerical results

In this section we consider three kinds of shells: plates, cylinders, and hyperboloids. For

every shell we choose a parametrization and state the most important tensor components.

For all numerical examples we compare the iteration numbers for di�erent numbers of

processors. We use only the MDS-BPX preconditioner, because computations with the

classic BPX preconditioner which are not documented here lead to much higher iteration

numbers. All algorithms, described in the Section 6, are implemented in the program

SPC-EL 2,5D.

In correspondence to Section 6, for parallelization we decompose the reference domain


 in p subdomains where p is the number of processors. Therefore, in this section every

subdomain corresponds to one processor. The computations are carried out on a Parsytec

GC/PP-128 machine. This machine is provided with 128 processors of the type PowerPC-

601 installed at 64 nodes in a 2D-grid topology. Each processor has a memory of 16 MByte.

7.1 The MDS-BPX preconditioner for BFS elements

7.1.1 The plate

We use the parametrization

�

1

(x

1

; x

2

) = x

1

; �

2

(x

1

; x

2

) = x

2

; �

3

(x

1

; x

2

) = 0 ;
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which leads to the following local bases:

a

1

= a

1

= e

1

;a

2

= a

2

= e

2

;a

3

= a

3

= e

3

and the tensor components

8

>

>

>

<

>

>

>

:

a

11

= a

11

= a

22

= a

22

= a = 1 ; a

12

= a

12

= 0 ;

b

��

= b

�

�

= b

��

= 0 ;

c

��

= 0 ;

�

%

��

= 0 :

In order to compare our results with these of the MDS-BPX preconditioner in [14] we

consider three kinds of domains 
: the unit square (Fig. 4a, see also Fig. 5), an L{shaped

domain (Fig. 4b) and a slit domain (Fig. 4c). We use the Poisson coe�cient � = 0:3

(steel). The numbers of unknowns and the corresponding iteration numbers of the MDS

c)b)a)

Figure 4: Domains 
 and initial partitions T

0

.

preconditioned CG method for all three plates are shown in the Table 1. The calculations

were carried out on one processor. As the stopping criteria of the iteration, we use the

relative accuracy 10

�6

in the the near-energy norm K

h

C

�1

K

h

. For the unit square the

J Unit square L{shaped domain Slit domain

2 36 7 132 15 180 15

3 196 13 644 19 868 19

4 900 15 2820 21 3780 21

5 3844 17 11780 { 15740 {

Table 1: Plates, multilevel preconditioning: 1 subdomain.

iteration numbers of the MDS-BPX preconditioner are nearly the same as in [14] while

the iteration numbers of the L{shaped domain and the slit domain are notably lower than

these in [14].
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Figure 5: Plate under constant vertical load.

Figure 6: Arch under constant radial load.
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Figure 7: Cylinder under constant radial load.

Figure 8: Cylinder under wind load.
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7.1.2 Arch and full cylinder

We use the parametrization

�

1

(x

1

; x

2

) = R cos

x

1

R

; �

2

(x

1

; x

2

) = R sin

x

1

R

; �

3

(x

1

; x

2

) = x

2

;

which enables identical orthonormal covariant and contravariant local bases to be ob-

tained:

a

1

= a

1

= � sin

x

1

R

e

1

+ cos

x

1

R

e

2

; a

2

= a

2

= e

3

; a

3

= a

3

= cos

x

1

R

e

1

+ sin

x

1

R

e

2

:

The tensor components are

8

>

>

>

<

>

>

>

:

a

11

= a

11

= a

22

= a

22

= a = 1 ; a

12

= a

12

= 0 ;

b

11

= b

1

1

= b

11

= �

1

R

; b

�2

= b

2

�

= b

�2

= 0 ;

c

11

=

1

R

2

; c

12

= c

22

= 0 ;

�

%

��

= 0 :

We consider two kinds of these shells: an arch and a full cylinder.

The radius of the arch (cf. Fig. 6) is R = 1 and its lenght is L = 1; therefore we have

the following reference domain:


 = f(x

1

; x

2

)j0 � x

1

� � ; 0 � x

2

� 1g :

We further assume, that the arch is clamped on its complete lateral boundary, i.e.

�

0

= @
 :

The thickness of the shell is " = 0:01. We use the Poisson coe�cient � = 0:3. Finally,

we assume, that the arch is loaded by constant radial forces; therefore we use p

1

= p

2

=

0; p

3

= const: > 0. The iteration numbers and times (and pure arithmetic times) in

seconds of MDS preconditioned CG methods including coarse grid solution on the levels

j

0

(cf. 5.17) for the arch are given in the Tables 2 and 3. As the stopping criteria of the

iteration, we use the relative accuracy 10

�5

in the near energy norm K

h

C

�1

K

h

. As we

J N j

0

= 0 (4� 1) j

0

= 1 (8� 2) j

0

= 2 (16 � 4)

2 540 32 1.22 (0.60) { {

3 2604 32 2.05 (1.19) 21 3.48 (1.76) {

4 11340 33 4.50 (3.36) 22 4.72 (2.28) 19 10.94 (3.73)

5 47244 33 13.42 (11.88) 22 6.93 (3.87) 20 14.37 (4.29)

6 192780 { 22 13.69 (9.79) 21 19.35 (6.08)

7 778764 { { 21 27.98 (11.88)

Table 2: Arch, multilevel preconditioning: 4, 16, 64 subdomains.

can see, the iteration numbers became nearly constant for increasing level number J . We

also obtain that in the case of a large number of subdomains, the iteration numbers became

low, because the geometry of the shell is well described by the coarse grid system (which

is solved directly). On the other hand the enlargement of the number of subdomains leads
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J N j

0

= 0 (4� 2) j

0

= 1 (8� 4) j

0

= 2 (16 � 8)

2 1260 34 1.82 (0.79) { {

3 5580 34 2.67 (1.34) 21 3.89 (1.23) {

4 23436 35 5.59 (3.82) 22 5.44 (1.73) 20 18.31 (7.42)

5 96012 35 15.51 (13.34) 23 8.32 (3.46) 21 23.49 (8.27)

6 388620 { 24 16.36 (10.19) 22 30.23 (10.26)

7 1563660 { { 23 42.47 (17.11)

Table 3: Arch, multilevel preconditioning: 8, 32, 128 subdomains.

to a decreasing e�cency of the paralleliztion. The iteration numbers are approximately

like that for the same problem in [10] despite the fact that in [10] the shell model of

Novozhilov [12] is used. However, for cylindrical shells both models only di�er in one

component of the middle surface change of curvature tensor ��

��

(see (3.4)).

We now want to investigate the inuence of the geometry parameters R and " on the

iteration numbers of the preconditioner. In order to do this, we use the arch with the

domain that is splitted into 4 subdomains (see Table 2, j

0

= 0). First we vary the radius

R. The results are shown in the Table 4. Then we vary the thickness ". The results

are given in Table 5. The tables show that the iteration numbers of the MDS-BPX

J N R

0.5 1.0 2.0 4.0 8.0

2 540 41 32 25 22 22

3 2604 42 32 26 23 22

4 11340 42 33 26 23 22

5 47244 42 33 27 24 23

Table 4: Arch, multilevel preconditioning for di�erent radii: 4 subdomains.

J N "

0.0001 0.001 0.01 0.1 1.0

2 540 89 72 32 22 23

3 2604 191 78 32 22 24

4 11340 180 76 33 23 25

5 47244 176 76 33 23 26

Table 5: Arch, multilevel preconditioning for di�erent thicknesses: 4 subdomains.

preconditioner strongly depend on both geometry parameters R and ". On the other

hand, for every value of both geometry parameters the iteration numbers became quickly

(nearly) constant for an increasing level number J .

Now we consider a full cylinder (cf. Fig. 7). We use the same parameters like in the

case of the arch with two exceptions. Since the shell is a cylinder, we naturally must use
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the following reference domain:


 = f(x

1

; x

2

)j0 � x

1

� 2� ; 0 � x

2

� 1g :

The second di�erence is the change of the boundary conditions: the plate is clamped at

the boundary at x

2

= 0, single supported at the boundary at x

2

= 1 (uj

�

1

= 0):

�

0

= f(x

1

; x

2

) 2 @
 : x

2

= 0g ;

�

1

= f(x

1

; x

2

) 2 @
 : x

2

= 1g ;

and there are periodic boundary conditions de�ned by

u(0; x

2

) = u(2�; x

2

) ; 8x

2

2 [0; 1] :

The iteration numbers and times of the calculation for this cylinder problem are shown

in Tables 6, 7. As we can see, the iteration numbers are very small in contradiction

J N j

0

= 0 (4 � 1) j

0

= 1 (8 � 2) j

0

= 2 (16 � 4)

2 704 13 0.98 (0.83) { {

3 2944 12 1.22 (1.03) 11 0.91 (0.43) {

4 12032 12 2.00 (1.75) 11 1.43 (0.64) 10 4.14 (2.68)

5 48640 13 5.64 (5.29) 11 2.98 (1.92) 11 5.11 (2.98)

6 195584 { 12 9.31 (7.62) 11 6.49 (3.78)

7 784384 { { 12 10.87 (7.27)

Table 6: Cylinder, multilevel preconditioning: 4, 16, 64 subdomains.

J N j

0

= 0 (4 � 2) j

0

= 1 (8 � 4) j

0

= 2 (16� 8)

2 1472 11 0.85 (0.73) { {

3 6016 11 1.15 (0.91) 10 1.21 (0.66) {

4 24320 11 2.05 (1.73) 10 1.58 (0.85) 9 7.09 (5.17)

5 97792 11 5.20 (4.76) 11 2.69 (1.69) 11 8.76 (6.66)

6 392192 { 12 6.47 (5.11) 11 10.37 (6.49)

7 1570816 { { 12 15.18 (10.05)

Table 7: Cylinder, multilevel preconditioning: 8, 32, 128 subdomains.

to the results of [10], where much higher iteration numbers were obtained for nearly the

same problem (other single supported boundary conditions at x

2

= 1 were used). First

investigations expect to �nd the reason in di�erent communication techniques.

Since in the last problem constant radial forces lead to a radial symmetric solution,

we now consider the same problem for the cylindric shell, but with unsymmetric load (cf.

Fig. 8). For this we use the wind load from [2], which is shown in Fig. 9.

The distribution function c is analytically given as

c(#) = �0:2273 + 0:3762 cos(#) + 0:5148 cos(2#) +
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Figure 9: Distribution of the wind load.

+0:3509 cos(3#) + 0:0452 cos(4#)�

�0:0719 cos(5#)� 0:0077 cos(6#) +

+0:0287 cos(7#)� 0:0024 cos(8#) +

�0:0129 cos(9#) + 0:0044 cos(10#) :

So we have the following components of the vector �eld p6ia

i

: p

1

= p

2

= 0; p

3

= p

W

(x

1

).

The iteration numbers and times of the calculation for this cylinder problem are shown

in Tables 8, 9. As we can see, the iteration numbers are much higher than that for

J N j

0

= 0 (4� 1) j

0

= 1 (8� 2) j

0

= 2 (16 � 4)

2 704 50 3.94 (3.39) { {

3 2944 46 4.90 (4.27) 39 4.37 (3.01) {

4 12032 45 7.21 (6.37) 40 5.51 (3.62) 19 5.97 (3.29)

5 48640 46 19.50 (18.25) 40 8.98 (6.53) 20 7.47 (3.75)

6 195584 { 41 20.85 (17.52) 20 9.91 (5.19)

7 784384 { { 20 16.83 (10.65)

Table 8: Cylinder under wind load, multilevel preconditioning: 4, 16, 64 subdomains.

the cylinder under constant load. These iteration numbers better correspond to the

eigenvalues of the MDS preconditioner, see Subsection A.1.
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J N j

0

= 0 (4� 2) j

0

= 1 (8� 4) j

0

= 2 (16 � 8)

2 1472 59 4.68 (3.83) { {

3 6016 60 5.95 (4.75) 53 4.73 (1.99) {

4 24320 58 10.45 (8.94) 55 6.81 (3.05) 41 17.10 (8.89)

5 97792 59 26.86 (24.70) 58 12.16 (7.23) 45 22.36 (10.36)

6 392192 { 60 29.88 (23.45) 46 29.35 (13.90)

7 1570816 { { 51 49.88 (28.71)

Table 9: Cylinder under wind load, multilevel preconditioning: 8, 32, 128 subdomains.

7.1.3 Cooling tower

Most of these towers have a middle surface of the hyperbolic type. One example of such

a tower is given in Fig. 10 together with a parametrization (�-1) taken from [2]. (In [2]

the parametrization is only used to describe the tower; in the calculations the geometry

of the tower is approximated by at facets.) Now we adapt the parametrization of the

clamped

free
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Figure 10: Cooling tower with parametrization (�-1) according to Argyris.

cooling tower used in [3] to our cooling tower (the advantage of this parametrization will

be seen later). Therefore, the surface of the tower is the image of the rectangle 
 of the

plane


 = f(x

1

; x

2

)j0 � x

1

� 2� ; x

2

� x

2

� x

2

g ; x

2

= �0:93941; x

2

= 0:3829

via the mapping

�

1
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1
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2
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1
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2

; �

2
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1

; x

2
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1
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2

; �
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1
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2
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2
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where R = 24:85m, Z = 64:60m, Z

0

= 88:35m. We denote this parametrization by (�-2).

The covariant local basis is given by the tangential basis vectors

a

1

=

R

cosx

2

0

B

@

� sinx

1

cos x

1

0

1

C

A

; a

2

=

1
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2

)

2

0

B

@

R cosx

1

sinx

2

R sinx

1

sinx

2

Z

1

C

A

;

and the normal basis vector

a

3

=

1

q
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2
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2

)

2

+ Z

2

0

B

@

Z cos x

1

Z sinx

1
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2

1

C

A

:

Now we give the most important tensor components.

First fundamental form:

a
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2
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2

)

2

; a

12

= 0 ; a

22
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2
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2
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2

+ Z

2
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2
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R

2
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2
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:

Second fundamental form:

b
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22
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RZ

cosx

2

q
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+ Z

2
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Christo�el symbols:
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1
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1
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2

12

= tan x

2

;

�

2

11
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2
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2
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(sinx
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2
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2
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2

:

With this parametrization for a cooling tower with the thickness " = 0:14m, Young's

modulus E = 3 � 10

9

kp=m

2

, and the Poisson coe�cient � = 0:2 under a wind pressure (as

described in the previous subsection) with the boundary that is clamped at x

2

= �0:93941

and free at x

2

= 0:3829, our program �nds nearly the same solution of the displacement

�eld u as the best of the methods (SHEBA) given in [2] (see Fig. 11, see also Fig. 12

for the complete result of the deformation calculated by the use of the parametrization

(�-2)). But using the parametrization (�-1) for the geometric description of the cooling

tower, which is more complicated than the parametrization (�-2), our program �nds a

much worse solution (Fig. 11)

The iteration numbers and times of the calculation for the cooling tower problem

using parametrization (�-2) are shown in the Tables 10, 11. The stopping criterion of the

iteration is the same as in the cylinder case. The tables show high, but nearly constant

iteration numbers. We also see that the enlargement of the number of subdomains reduces

the iteration number substancially.
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Figure 11: Normal displacements u

n

for the BFS elements with di�erent parametrizations

and for the SHEBA element.

J N j

0

= 0 (4 � 1) j

0

= 1 (8� 2) j

0

= 2 (16� 4)

2 704 208 5.75 (3.52) { {

3 2944 206 9.92 (6.90) 120 7.29 (3.02) {

4 12032 200 23.64 (19.66) 118 10.75 (5.11) 63 14.73 (6.14)

5 48640 203 77.83 (71.97) 117 20.45 (13.31) 66 19.76 (7.72)

6 195584 { 123 56.73 (46.82) 89 36.26 (15.99)

7 784384 { { 113 82.98 (50.08)

Table 10: Cooling tower under wind load, multilevel prec.: 4, 16, 64 subdomains.

J N j

0

= 0 (4� 2) j

0

= 1 (8� 4) j

0

= 2 (16 � 8)

2 1472 200 7.64 (4.61) { {

3 6016 191 19.22 (15.31) 102 8.75 (3.52) {

4 24320 192 32.79 (27.65) 99 12.08 (5.35) 34 15.07 (8.05)

5 97792 194 87.84 (80.30) 100 20.68 (12.15) 34 18.62 (8.82)

6 392192 { 100 49.75 (38.86) 36 26.59 (11.76)

7 1570816 { { 39 50.09 (25.67)

Table 11: Cooling tower under wind load, multilevel prec.: 8, 32, 128 subdomains.
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Figure 12: Cooling tower under wind load (deformations are drawn strongly ampli�ed).
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7.2 The MDS-BPX preconditioner for Adini elements

In this subsection we present the results of the MDS-BPX preconditioner for the same

examples (plate, cylinder, hyperboloid) like in Subsection 7.1. All assumptions and condi-

tions of the calculations are also the same. We start with the results of the deformation of

the plate (see Subsection 7.1.1) which are shown in Table 12. As we can see, the iteration

J Unit square L{shaped domain Slit domain

2 27 6 99 14 135 15

3 147 12 483 18 651 18

4 675 14 2119 20 2835 21

5 2883 17 8835 { 11805 {

Table 12: Plates, multilevel preconditioning: 1 subdomain.

numbers are nearly the same like in the case of BFS elements. For low level numbers they

are somewhat lower while for increasing levels they became as high as that of the BFS

elements.

Now we show the iteration numbers for the arch (Table 13) and for the cylinder under

wind load (Table 14).

J N j

0

= 0 j

0

= 1 j

0

= 2 N j

0

= 0 j

0

= 1 j

0

= 2

2 405 31 { { 945 33 { {

3 1953 32 21 { 4185 34 21 {

4 8505 33 21 17 17577 35 22 20

5 35433 33 22 19 72009 35 23 21

6 144585 { 22 21 291465 { 23 22

7 584073 { { 21 1172745 { { 22

Table 13: Arch, multilevel preconditioning: 4, 16, 64, 8, 32, 128 subdomains.

J N j

0

= 0 j

0

= 1 j

0

= 2 N j

0

= 0 j

0

= 1 j

0

= 2

2 528 47 { { 1104 55 { {

3 2208 45 37 { 4512 59 50 {

4 9024 45 39 18 18240 57 54 40

5 36480 46 40 20 73344 58 57 45

6 146688 { 40 20 294144 { 60 45

7 588288 { { 20 1178112 { { 48

Table 14: Cylinder under wind load, multilevel preconditioning: 4, 16, 64, 8, 32, 128

subdomains.

Finally, the iteration numbers for the cooling tower are given in Table 15. The iteration
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J N j

0

= 0 j

0

= 1 j

0

= 2 N j

0

= 0 j

0

= 1 j

0

= 2

2 528 146 { { 1104 164 { {

3 2208 192 105 { 4512 188 95 {

4 9024 199 114 61 18240 191 97 33

5 36480 205 116 65 73344 193 99 34

6 146688 { 120 88 294144 { 100 36

7 588288 { { 113 1178112 { { 39

Table 15: Cooling tower, multilevel preconditioning: 4, 16, 64, 8, 32, 128 subdomains.

numbers of the arch, the full cylinder, and the cooling tower lead to the same conclusion

like in the case of the plate. It is worth mentioning that in the case of the cooling

tower the graph of the normal displacement u

n

for the Adini elements (we use again the

parametrization (�-2)) is nearly the same like that in Fig. 11 (note that we have used

the same parametrization (�-2)).

8 Conclusions

For all classes of shells which were considered in Section 7, the iteration numbers of the

MDS preconditioner seam to be independent of the mesh size. The iteration numbers of

the Adini elements are a little bit lower than these of the BFS elements. In the case of a

large number of subdomains, the iteration numbers are very low since the geometry of the

shell is well described by the coarse grid system. However, the direct coarse grid solver

allows only an e�cient parallelization of the preconditioner for a small number of subdo-

mains. Therefore, it may be advantageous to use other methods for coarse grid solving

which are more suitable for massive parallelization. All in all, the presented precondi-

tioner is robust and fast. Since the condition number of the subspace splitting of Section

5 is mesh size independent, it is also possible to construct corresponding multiplicative

methods like multigrid. In general, they lead to a faster convergence of the PPCG method

than the additive preconditioners wheras the parallelization is less e�ective.
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A Eigenvalues of the MDS-BPX preconditioner for

some examples

Here we give estimations of the eigenvalues and condition numbers of the MDS precon-

ditioner for the examples from section 7. These estimations were calculated by the use

of the gradient method described in [15]. While the estimations of the maximum eigen-

values are very close to reality, the estimations of the minimum eigenvalues are only a

rough approximation to the existing ones. However, these estimations show the order of

the condition numbers of the preconditioners.

A.1 Eigenvalues of the MDS-BPX preconditioner for the BFS

elements

J Unit square L{shaped domain Slit domain

N � � � N � � � N � � �

2 36 0.67 1.84 2.74 132 0.36 2.28 6.30 180 0.35 2.29 6.54

3 196 0.62 2.63 4.25 644 0.32 2.98 9.37 868 0.30 2.98 9.83

4 900 0.60 3.27 5.44 2820 0.28 3.55 12.59 3780 0.27 3.56 13.37

5 3844 0.59 3.79 6.40 11780 { { { 15740 { { {

Table 16: Plates, one-dimensional calculation: eigenvalues and condition numbers of

multilevel preconditioning for 1 subdomain.

J Unit square L{shaped domain Slit domain

N � � � N � � � N � � �

2 108 0.20 4.52 22.06 396 0.21 4.66 22.07 540 0.20 4.67 23.30

3 588 0.20 5.00 24.90 1932 0.20 5.13 25.62 2604 0.20 5.13 25.51

4 2700 0.20 5.16 25.64 8460 0.20 5.28 26.24 11340 0.21 5.29 25.46

5 11532 0.20 5.22 25.73 35340 { { { 47220 { { {

Table 17: Plates: eigenvalues and condition numbers of multilevel preconditioning for 1

subdomain.

34



J N j

0

= 0 (4� 1) j

0

= 1 (8� 2) j

0

= 2 (16 � 4)

� � � � � � � � �

2 540 0.12 6.06 51.18 { { { {

3 2604 0.13 6.64 49.81 0.21 5.37 26.08 { {

4 11340 0.14 6.76 47.23 0.21 5.84 28.44 0.21 5.00 23.82

5 47244 0.15 6.79 44.83 0.21 5.98 28.23 0.21 5.48 25.68

6 192780 { { 0.27 5.92 22.32 0.27 5.63 20.94

7 778764 { { { { 0.33 5.65 16.92

Table 18: Arch, multilevel preconditioning: eigenvalues and condition numbers for 4, 16,

64 subdomains.

J N j

0

= 0 (4� 2) j

0

= 1 (8� 4) j

0

= 2 (16 � 8)

� � � � � � � � �

2 1260 0.099 5.63 56.86 { { { {

3 5580 0.11 6.00 55.92 0.18 4.97 27.93 { {

4 23436 0.11 6.09 53.98 0.19 5.44 28.98 0.22 4.93 22.02

5 96012 0.14 6.11 44.06 0.20 5.58 27.31 0.22 5.40 24.90

6 388620 { { 0.21 5.62 26.60 0.21 5.54 25.86

7 1563660 { { { { 0.21 5.59 26.19

Table 19: Arch, multilevel preconditioning: eigenvalues and condition numbers for 8, 32,

128 subdomains.

J N j

0

= 0 (4� 1) j

0

= 1 (8� 2) j

0

= 2 (16 � 4)

� � � � � � � � �

2 704 0.057 7.19 125.99 { { { {

3 2944 0.089 8.08 90.85 0.091 5.76 63.67 { {

4 12032 0.096 8.23 85.72 0.099 6.14 62.22 0.21 4.99 23.32

5 48640 0.099 8.25 82.85 0.10 6.24 62.44 0.30 5.47 18.48

6 195584 { { 0.11 6.27 57.80 0.30 5.61 18.94

7 784384 { { { { 0.32 5.65 17.73

Table 20: Cylinder, multilevel preconditioning: eigenvalues and condition numbers for 4,

16, 64 subdomains.
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J N j

0

= 0 (4 � 2) j

0

= 1 (8� 4) j

0

= 2 (16 � 8)

� � � � � � � � �

2 1472 0.033 5.42 163.58 { { { {

3 6016 0.027 5.82 212.19 0.026 4.81 182.48 { {

4 24320 0.027 5.93 216.96 0.026 5.25 199.03 0.026 4.76 180.86

5 97792 0.027 5.97 218.32 0.027 5.40 201.67 0.026 5.19 198.68

6 392192 { { 0.027 5.84 215.81 0.027 5.43 205.31

7 1570816 { { { { 0.027 5.93 220.17

Table 21: Cylinder, multilevel preconditioning: eigenvalues and condition numbers for 8,

32, 128 subdomains.

J N j

0

= 0 (4� 1) j

0

= 1 (8� 2) j

0

= 2 (16 � 4)

� � � � � � � � �

2 704 0.0050 13.05 2604.87 { { { {

3 2944 0.0080 15.49 1928.56 0.014 12.43 865.98 { {

4 12032 0.010 16.52 1541.66 0.019 13.78 739.06 0.060 9.65 160.08

5 48640 0.015 16.66 1136.82 0.019 11.92 613.22 0.048 10.16 213.06

6 195584 { { 0.023 14.02 600.84 0.023 10.27 439.97

7 784384 { { { { 0.012 10.29 844.18

Table 22: Cooling tower, multilevel preconditioning: eigenvalues and condition numbers

for 4, 16, 64 subdomains.

J N j

0

= 0 (4 � 2) j

0

= 1 (8� 4) j

0

= 2 (16 � 8)

� � � � � � � � �

2 1472 0.0068 11.71 1722.84 { { { {

3 6016 0.0096 13.90 1445.00 0.016 10.79 680.90 { {

4 24320 0.011 14.63 1310.80 0.019 11.78 615.73 0.11 7.82 73.02

5 97792 0.013 14.72 1138.06 0.021 11.94 569.41 0.12 8.27 71.90

6 392192 { { 0.025 11.97 481.90 0.15 8.39 57.56

7 1570816 { { { { 0.13 8.43 67.36

Table 23: Cooling tower, multilevel preconditioning: eigenvalues and condition numbers

for 8, 32, 128 subdomains.
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A.2 Eigenvalues of the MDS-BPX preconditioner for the Adini

elements

J Unit square L{shaped domain Slit domain

N � � � N � � � N � � �

2 27 0.67 1.78 2.65 99 0.38 2.25 5.96 135 0.36 2.26 6.20

3 147 0.63 2.56 4.11 483 0.33 2.97 9.03 651 0.31 2.98 9.50

4 675 0.61 3.26 5.39 2119 0.29 3.56 12.21 2835 0.27 3.56 12.98

5 2883 0.59 3.79 6.38 8835 { { { 11805 { { {

Table 24: Plates, one-dimensional calculation: eigenvalues and condition numbers of

multilevel preconditioning for 1 subdomain.

J Unit square L{shaped domain Slit domain

N � � � N � � � N � � �

2 81 0.63 4.25 6.79 297 0.41 4.42 10.84 405 0.45 4.44 9.80

3 441 0.60 4.96 8.22 1449 0.34 5.10 15.19 1953 0.40 5.12 12.71

4 2025 0.61 5.16 8.41 6357 0.29 5.27 18.00 8505 0.35 5.29 15.11

5 8649 0.60 5.22 8.67 26505 { { { 35415 { { {

Table 25: Plates: eigenvalues and condition numbers of multilevel preconditioning for 1

subdomain.
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J N j

0

= 0 (4� 1) j

0

= 1 (8� 2) j

0

= 2 (16 � 4)

� � � � � � � � �

2 405 0.12 5.96 48.33 { { { {

3 1953 0.14 6.64 48.89 0.31 5.19 16.59 { {

4 8505 0.14 6.76 47.85 0.33 5.83 17.64 0.45 4.76 10.58

5 35433 0.14 6.79 47.12 0.37 5.98 16.14 0.39 5.45 14.13

6 144585 { { 0.37 5.87 15.96 0.37 5.61 15.19

7 584073 { { { { 0.36 5.64 15.54

Table 26: Arch, multilevel preconditioning: eigenvalues and condition numbers for 4, 16,

64 subdomains.

J N j

0

= 0 (4� 2) j

0

= 1 (8� 4) j

0

= 2 (16� 8)

� � � � � � � � �

2 945 0.10 5.52 53.49 { { { {

3 4185 0.11 6.00 54.73 0.18 4.76 26.43 { {

4 17577 0.12 6.10 53.01 0.19 5.43 28.62 0.23 4.71 20.90

5 72009 0.14 6.13 43.24 0.21 5.58 27.19 0.22 5.38 24.77

6 291465 { { 0.21 5.62 26.58 0.21 5.54 25.84

7 1172745 { { { { 0.21 5.59 26.18

Table 27: Arch, multilevel preconditioning: eigenvalues and condition numbers for 8, 32,

128 subdomains.

J N j

0

= 0 (4� 1) j

0

= 1 (8� 2) j

0

= 2 (16 � 4)

� � � � � � � � �

2 528 0.062 6.98 112.09 { { { {

3 2208 0.093 8.07 87.25 0.094 5.68 60.21 { {

4 9024 0.098 8.23 84.02 0.10 6.15 60.93 0.22 4.79 21.66

5 36480 0.10 8.25 81.53 0.11 6.26 58.98 0.32 5.45 16.80

6 146688 { { 0.11 6.29 56.91 0.30 5.61 18.44

7 588288 { { { { 0.32 5.65 17.63

Table 28: Cylinder, multilevel preconditioning: eigenvalues and condition numbers for 4,

16, 64 subdomains.
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J N j

0

= 0 (4 � 2) j

0

= 1 (8� 4) j

0

= 2 (16 � 8)

� � � � � � � � �

2 1104 0.033 5.33 162.14 { { { {

3 4512 0.027 5.84 216.17 0.026 4.74 180.52 { {

4 18240 0.027 5.95 217.36 0.026 5.27 199.95 0.026 4.66 177.08

5 73344 0.027 5.98 218.79 0.027 5.42 202.43 0.026 5.19 198.85

6 294144 { { 0.027 5.80 214.39 0.027 5.43 205.31

7 1178112 { { { { 0.027 5.93 220.18

Table 29: Cylinder, multilevel preconditioning: eigenvalues and condition numbers for 8,

32, 128 subdomains.

J N j

0

= 0 (4� 1) j

0

= 1 (8� 2) j

0

= 2 (16 � 4)

� � � � � � � � �

2 528 0.0099 12.31 1234.37 { { { {

3 2208 0.0094 15.38 1641.44 0.019 11.84 641.17 { {

4 9024 0.011 16.52 1497.38 0.020 13.73 680.80 0.067 9.37 139.79

5 36480 0.015 16.66 1127.67 0.021 13.99 653.46 0.049 10.17 206.52

6 146688 { { 0.023 14.03 600.95 0.023 10.28 440.60

7 588288 { { { { 0.011 10.30 845.07

Table 30: Cooling tower, multilevel preconditioning: eigenvalues and condition numbers

for 4, 16, 64 subdomains.

J N j

0

= 0 (4 � 2) j

0

= 1 (8� 4) j

0

= 2 (16 � 8)

� � � � � � � � �

2 1104 0.0093 11.01 1189.42 { { { {

3 4512 0.010 13.80 1381.48 0.018 10.30 584.41 { {

4 18240 0.011 14.62 1297.65 0.019 11.74 596.67 0.11 7.57 69.11

5 73344 0.013 14.72 1133.14 0.021 11.94 561.34 0.12 8.25 69.03

6 294144 { { 0.025 11.98 478.64 0.15 8.40 57.37

7 1178112 { { { { 0.13 8.44 67.41

Table 31: Cooling tower, multilevel preconditioning: eigenvalues and condition numbers

for 8, 32, 128 subdomains.
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