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Abstract

We use the density matrix renormalization group to study the quantum

transitions that occur in the half-�lled one-dimensional fermionic Hubbard

model with onsite potential disorder. We �nd a transition from the gapped

Mott phase with algebraic spin correlations to a gapless spin-disordered phase

beyond a critical strength of the disorder �

c

� U=2. Both the transitions in

the charge and spin sectors are shown to be coincident. We also establish the

�nite-size corrections to the charge gap and the spin-spin correlation length

in the presence of disorder and using a �nite-size-scaling analysis we obtain

the zero temperature phase diagram of the various quantum phase transitions

that occur in the disorder-interaction plane.
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Electronic systems can undergo quantum

phase transitions from metallic to insulating

behavior as a function of either the inter-

action strength or the degree of disorder or

both [1]. A clean system at certain commen-

surate �llings may develop a gap in the en-

ergy spectrum as the strength of the repul-

sion is increased and turn into a Mott insu-

lator [2]. On the other hand, a system of

noninteracting electrons can undergo a tran-

sition frommetal to insulator as the degree of

randomness is increased and turn into an An-

derson localized insulator [3]. The interplay

of electron-electron interaction and disorder

raises interesting possibilities of a new type

of transition, distinct from the clean correla-

tion induced Mott transition or the disorder

induced Anderson transition.

The repulsive Hubbard model in one

dimension (1D) is probably the simplest

model which shows a Mott transition at half-

�lling for arbitrary values of the interaction

strength U > 0 [4]. One of the most at-

tractive features of this model is that the

Mott transition is unaccompanied by a spin-

density-wave gap as e.g. happens in the 2D

Hubbard model due to the existence of mag-

netic long-range order (MLRO) [5]. Instead

the 1D model shows algebraically decaying

spin correlations as the maximal remnant of

MLRO in 1D. The properties of the clean

1D Hubbard model are well established: The

dependence of the Mott gap on the interac-

tion parameter [4], the asymptotic behavior

and the critical exponents of various correla-

tion functions [6] have all been computed us-

ing Bethe Ansatz and the �nite-size-scaling

approach of conformal quantum �eld theory

[7]. All this makes this model particularly at-

tractive to study the e�ect of disorder on the

Mott state.

Recent studies of the half-�lled disor-

dered 1D Hubbard model have proceeded nu-

merically using the Quantum Monte Carlo

(QMC) method [8] and analytically using

bosonization and the renormalization group

method [9]. The QMC results give a very ac-

curate description of the �nite temperature

properties of the system. However, the low

temperature properties can only be inferred

by extrapolating the �nite temperature data

and going to larger system sizes. On the

other hand, bosonization methods using per-

turbative renormalization group techniques

only give an indication of the various plau-

sible �xed points in parameter space. Com-
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puting correlation functions at the strong

coupling �xed points is then impossible as

the coupling constants are driven away from

their weak coupling values. Nevertheless, the

results of both approaches indicate that at

half-�lling a �nite amount of potential dis-

order is needed to cause a transition from

Mott (gapped) to Anderson (gapless) insulat-

ing behavior. This is in qualitative agreement

with arguments put forward by Ma [10].

In the present Letter, we have studied

the ground state properties of the disordered

1D Hubbard model at zero temperature with

the help of the density-matrix renormaliza-

tion group (DMRG) [11]. This method has

been previously shown to be highly successful

for 1D quantum systems [12,13] and may be

seen as a numerical variational-wave-function

approach [14]. After introducing the parame-

ters of our DMRG, we show that in the clean

case, the previously known results can be re-

produced numerically reliably. We then con-

sider �nite disorder and show that the charge

gap G

c

remains open for small disorder up to

a critical disorder strength �

c

� U=2. The

transition in the spin sector is seen by study-

ing the behavior of the spin-spin-correlation

function hS

�

(r)S

+

(0)i. For � < �

c

, the

power-law remnant of the MLRO persists,

whereas for � > �

c

, the spin-spin correlation

indicates the emergence of a spin-disordered

phase.

The Hubbard Hamiltonian with addi-

tional potential disorder on a chain of L sites

is given as

H = �t

L

X

x=1

�=";#

(c

y

x+1�

c

x�

+ h:c:) + U

L

X

x=1

n

x"

n

x#

+

L

X

x=1

�

x

n

x

;

(1)

where �t is the hopping amplitude between

nearest-neighbor, c

y

x�

(c

x�

) the fermion cre-

ation (annihilation) operator at site x with

spin �, n

x�

= c

y

x�

c

x�

the number operator,

n

x

= n

x"

+ n

x#

and U is the onsite repul-

sive energy. The onsite chemical potential

�

x

is a random number which we take to be

uniformly distributed between �� such that

� = 0 corresponds to the clean case. We

work at half-�lling, e.g. N = h

P

L

x=1

n

x

i = L

and the energy scale is set by choosing t = 1.

We follow the standard open chain

DMRG algorithm of White [11]. In each iter-

ation, we diagonalize the Hamiltonian matrix

of a super-block denoted by B

l

L=2�1

�� B

r

L=2�1

of L sites and obtain the energy and the

wave function j 

0L

i of the ground state [13].

Here � represents a single site. Using j 

0L

i
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as the target state [11] we compute the re-

duced density matrix �

l

of the left sub-block

B

l

L=2

� B

l

L=2�1

� of size L=2. Diagonalizing

�

l

we obtain its eigenstates and the eigen-

values. These eigenstates with the highest

eigenvalues are the most probable states of

the left sub-block when the super-block is in

the state j 

0L

i and so can be used for trun-

cation. Keeping M eigenstates correspond-

ing to the largest M eigenvalues of �

l

as the

new basis of the left sub-block, we trans-

form the Hamiltonian and all further oper-

ators into this new basis. Since every single

� has 4 states, we thus truncate the original

4M states of B

l

L=2

to only M states. Usually

we have used M = 128. Because the disor-

der destroys translational symmetry, the left

and right sub-blocks are non-identical. Hence

a similar procedure needs to be followed for

the right sub-block B

r

L=2

. The above steps

are then repeated for the new super-block

B

l

L=2

� � B

r

L=2

with L + 2 sites and thus the

system increases by two sites at each itera-

tion.

Let E

0

(L) denote the ground state energy

of the Hubbard chain of length L with N

"

=

N

#

= L=2. In order to compute the charge

gap G

c

L

for a system of �nite length L, we re-

peat the DMRG steps with N

"

= L=2+1 and

N

#

= L=2 and also with N

"

= L=2 � 1 and

N

#

= L=2. We denote these two ground state

energies by E

1

(L) and E

�1

(L), respectively.

The charge gap is then de�ned as the discon-

tinuity of the chemical potential at half-�lling

[4], i.e., G

c

L

= E

1

(L) + E

�1

(L) � 2E

0

(L). In

the presence of disorder G

c

L

is computed for

at least 10 di�erent disorder realizations and

then averaged over all such realizations. We

also compute the spin-spin-correlation func-

tion �

s

L

(r) = h 

0L

jS

�

(r)S

+

(0)j 

0L

i and the

second moment of the staggered antiferro-

magnetic (AFM) correlation function (�

s

L

)

2

=

P

r

r

2

(�1)

r

�

s

L

(r). Here, S

+

(r) = c

y

r"

c

r#

. In

the presence of disorder, the correlation func-

tions are �rst averaged over the disorder real-

izations and then the correlation length �

s

L

of

the averaged staggered correlation function is

found.

The clean case � = 0: It has been shown

in Ref. [4] that the half-�lled repulsive 1D

Hubbard model exhibits a charge gap for all

non-zero values of the interaction strength.

We �nd that the functional dependence of the

thermodynamic value of the charge gap G

c

1

on the interaction strength U as obtained by

DMRG (Fig. 1) is in excellent agreement with
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the exact solution computed in Ref. [4],

G

c

= U � 4 + 8

Z

1

0

dw

J

1

(w)

w(1 + exp (wU=2))

(2)

with J

1

(w) a Bessel function. We note that

the DMRG algorithm using open boundary

conditions gives consistent results for the ex-

trapolated charge gap G

c

1

with that of Eq. 2

which has been derived using periodic bound-

ary conditions. Nevertheless, we now em-

ploy a �nite-size-scaling (FSS) analysis of the

charge gap G

c

L

in order to remove any �nite-

size e�ects that could arise in the extrapola-

tion. In Fig. 1 (inset) we show that the lead-

ing order �nite-size corrections to G

c

1

fall o�

as 1=L, i.e. G

c

L

(U) = G

c

1

(U)+g(U)=L. Hav-

ing determined the explicit scale dependence

of G

c

L

, a plot of LG

c

L

versus U as in Fig. 2

shows curves for di�erent L coalescing as the

charge gap vanishes. This �nite-size behav-

ior allows a numerically accurate determina-

tion of the critical value of the interaction

strength and we �nd in accordance with the

result of Ref. [4] that the Mott transition oc-

curs at U = 0.

The disordered case � 6= 0: Quantum

Monte Carlo [8] and bosonization [9] stud-

ies have predicted the existence of a critical

disorder �

c

> 0 beyond which the Mott gap

vanishes. In the limit of large U , this can be

motivated [15] by potential energy considera-

tions: any rearrangement of the one particle

per site con�guration in the half-�lled Hub-

bard model would necessarily cost an energy

U due to double occupancy and would gain

in the local site potential energy a maximum

of 2�. Hence, in order for it to be feasible for

the electrons to take advantage of the random

site energies we should have �

c

� U=2 in the

case of bounded disorder. In Fig. 3 we show

G

c

1

as a function of the disorder strength �

for U = 2. We see that the system undergoes

a transition from a gapped Mott insulator

phase to a gapless phase for �

c

� 1 = U=2.

Fig. 3 (inset) shows the �nite-size corrections

to G

c

1

in the presence of two representative

weak (� = 0:1) and strong (� = 1:0) disor-

der strengths for U = 2. We note that the

corrections continue to fall o� as 1=L even

in the presence of disorder. The FSS plot of

LG

c

L

versus � (Fig. 4) shows that curves for

di�erent L coalesce at �

c

= 1:0 � 0:1 again

indicating the transition from a gapped to a

gapless phase as the strength of the disorder

is increased. We have also done the same

analysis for U = 3 and 5 where a well devel-
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oped Mott gap exists and where the DMRG

is more stable [11]. Our results indicate that

the transition into the gapless phase takes

place at �

c

� U=2.

Spin-spin-correlation func-

tion: For � = 0, the half-�lled 1D Hubbard

model shows algebraically decaying antifer-

romagnetic (AFM) correlations as computed

by the methods of conformal �eld theory and

bosonization [6],

�

s

(r) � A

1

cos(�r + �

1

)

r

+O(1=r

2

); (3)

When the spin-spin-correlation function de-

cays as a power-law, as in Eq. 3, the AFM

correlation length �

s

1

diverges in the thermo-

dynamic limit. However, in the absence of

long-ranged correlations, �

s

1

remains �nite.

Fig. 5 (inset) shows that for � = 0:1 the

�nite-size correction to 1=�

s

1

continues to fall

o� as 1=L such that 1=�

s

L

(�) = 1=�

s

1

(�) +

�(�)=L and we can also apply the previous

FSS analysis to the correlation length. In

Fig. 5 we plot L=�

s

L

as a function of �. The

data for di�erent L coalesce until the disor-

der �

s

� 0:9 � 0:1. Thus for U = 2 the

staggered �

s

(r) continues to fall o� with a

power-law up to this critical disorder �

s

. For

larger � beyond �

s

, the values of L=�

s

L

do

not coalesce any more. This indicates the

transition from power-law correlations into a

short-ranged spin-disordered phase with a �-

nite correlation length. Again, the same anal-

ysis of the spin-spin-correlation function for

U = 3 and 5 con�rms that �

s

� U=2.

Thus the two transitions seen above viz.

(I) gapped Mott insulator phase to a gapless

phase at �

c

and (II) long-ranged AFM phase

to a short-ranged spin-disordered phase at

�

s

, are coincident, and �

c

= �

s

within

the numerical accuracy. Beyond the crit-

ical disorder �

c

� U=2 the gapped Mott

insulator with power-law AFM correlations

goes over to a gapless short-ranged spin-

disordered phase. This is the main result of

our work and allows us to show in Fig. 6 the

phase diagram of the zero temperature quan-

tum transitions that occur in the 1D disor-

dered half-�lled Hubbard model.

In summary, the DMRG allows us to an-

alyze the various quantum transitions that

occur in the half-�lled 1D Hubbard model in

the presence of onsite disorder. For � = 0

we �nd that the �nite-size corrections to the

thermodynamic value of the charge gap G

c

1

scale as 1=L (Fig. 1 (inset)). The func-

tional dependence of G

c

1

(U) on the interac-

6



tion strength (Fig. 1) is in excellent agree-

ment with the exact solution computed in

Ref. [4] in support of our DMRG approach.

We have further shown that for � 6= 0, the

�nite size corrections to G

c

1

(�) continue to

fall o� as 1=L. For small � < U=2, the Mott

gap is shown to survive. Curves of LG

c

L

ver-

sus � for di�erent L (Fig. 4) come together

at �

c

(� 1:0) and coalesce after that indi-

cating a transition from the gapped Mott in-

sulator phase to a gapless phase. A �nite-

size analysis of the staggered AFM correla-

tion length �

s

L

shows that the values of L=�

s

L

for various disorders � (Fig. 5) also coa-

lesce at �

s

� 1:0 � 0:1. These transitions

in the charge and the spin sector are shown

to be coincident �

c

= �

s

. Thus in the

gapped Mott phase �

s

(r) decays algebraically

and is short ranged in the disordered gapless

phase. We obtain the (U , �) phase diagram

(Fig. 6) showing the phase boundary which

separates the gapped Mott insulator phase

with algebraic spin correlations and the spin-

disordered gapless phase.
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FIGURES

FIG. 1. Filled squares ( ) show the charge

gap G

c

1

as a function of the interaction strength

U . The exact result [4] is shown by the solid

line. Inset: G

c

L

vs 1=L for U = 0:0; 2:5; 3:0 and

3:5. The value of the intercept gives G

c

1

.

FIG. 2. LG

c

L

as a function of the interaction

strength U showing the coalescence of curves for

di�erent L at U = 0. This indicates that the

critical value of the interaction strength at which

the Mott transition occurs is U = 0.

FIG. 3. Filled squares ( ) show the charge

gap G

c

1

as a function of the disorder � for

U = 2. Inset: G

c

L

vs 1=L for � = 0:1 and 1:0.

The value of the intercept gives G

c

1

.

FIG. 4. LG

c

L

as a function of the disorder �

for U = 2 showing the coalescence of the curves

for di�erent L at � = 1:0. This indicates the

transition from a gapped Mott insulator phase

to a gapless phase.
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FIG. 5. L=�

s

L

as a function of the disorder

� for U = 2 showing the coalescence of the

curves for di�erent L at � � 0:9 � 1:0. This

indicates the transition from a gapped Mott in-

sulator phase to a spin-disordered gapless phase.

Inset: 1=�

s

L

vs 1=L for � = 0:1.

FIG. 6. The phase diagram of the disor-

dered 1D Hubbard Hamiltonian (1) at half-�lling

showing the Mott insulator with algebraic spin

correlations (I) and the gapless spin disordered

phase (II). The phase boundary has been drawn

through the computed points (�lled squares ( )

with error bars) and is close to � = U=2.
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