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Abstract

We study the dynamical behavior of disordered many-particle systems

with long-range Coulomb interactions by means of damage-spreading sim-

ulations. In this type of Monte-Carlo simulations one investigates the

time evolution of the damage, i.e. the di�erence of the occupation num-

bers of two systems, subjected to the same thermal noise. We analyze

the dependence of the damage on temperature and disorder strength. For

zero disorder the spreading transition coincides with the equilibrium phase

transition, whereas for �nite disorder, we �nd an evidence for a dynamical

phase transition well below the transition temperature of the pure system.

1 Introduction

The combined in
uence of disorder and long-range interactions on the properties

of many-particle systems has been a subject of great interest for some time. In

electronic systems already disorder or interactions alone can drastically change

the physical behavior. Disorder can lead, e.g., to a metal-insulator transition due

to Anderson localization. On the other hand, a metal-insulator transition can also

be induced by correlations due to electron-electron interactions. If disorder and

interactions are both signi�cant then complex physical problems and phenomena

arise, many of which are not completely understood.

The behavior of strongly localized correlated electrons in disordered insulators

is especially complicated, both experimentally and theoretically. Thus progress

has been slow since the �rst investigations [1, 2]. Many properties of such systems

are still poorly understood. In particular there are only few and contradicting

results on thermodynamics, phase diagram, phase transitions or critical behavior,

and the examination of the dynamical behavior is only at its beginning [3]. Two

1



of the central questions are whether or not the disordered interacting electron

system shows glassy behavior and what is the nature of the glassy "state". Two

di�erent views can be found in the literature. In the earlier work the formal

similarity between disordered localized electrons and spin glasses had lead to

speculations about a possible equilibrium phase transition to a spin-glass-like

low-temperature phase [4, 5]. More recent investigations show, however, growing

experimental and theoretical evidence of the transition being of dynamical nature

[6, 7, 8, 9].

In this paper we study the dynamical behavior of disordered localized elec-

trons by means of the damage-spreading method. In this type of Monte-Carlo

simulations the microscopic di�erences of the time evolution between two sys-

tems are investigated. In particular, we address the question of a dynamical

phase transitions from a dynamically active high-temperature phase to a frozen

low-temperature phase upon changing characteristic parameters like disorder or

temperature. Our paper is organized as follows. In Sect. 2 we introduce the

Coulomb glass model, the prototype model of disordered localized electrons. In

Sect. 3 we describe the damage spreading technique, whereas in Sect. 4 we

present the results for the dynamical behavior of the model. Section 5 is dedi-

cated to some discussions and conclusions.

2 Model

Our investigations are based on the Coulomb glass model �rst proposed by Efros

and Shklovskii [2] to describe compensated doped semiconductors. Later it has

also been applied to simulate granular metals [10] and conducting polymers

[11, 12]. The model consists of a square or cubic lattice of linear size L with

N = L

d

sites (in d dimensions) and lattice constant a. The sites can be oc-

cupied by KN (0 < K < 1) electrons. These electrons are interacting via an

unscreened Coulomb potential. To guarantee charge neutrality every site carries

a compensating charge of +Ke (�e is the charge of the electron). The disorder

of this system is described by the random potential '

i

. The Hamiltonian of the

Coulomb glass is given by

H =

X

i

('

i

� �)n

i

+

1

2

X

i 6=j

(n

i

�K)(n

j

�K)U

ij

U

ij

=

e

2

r

ij

(1)

where � is the chemical potential, n

i

(with values 0 or 1) is the occupation number

of site i and r

ij

denotes the distance between sites i and j. In the rest of the

paper we set the interaction strength between nearest neighbor sites e

2

=a = 1

which �xes the energy scale. The random potential energies '

i

are independent

from each other and chosen according to some probability distribution W (').

We use the box distribution with mean 0 and width W

0

. The parameter W

0

measures the strength of the disorder. Speci�cally, we investigate a half-�lled
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system (K =

1

=

2

). Then the Coulomb glass model is particle-hole symmetric and

the chemical potential vanishes. (Note that the two quantities K and � are not

independent of each other. We treat K as a free parameter and calculate � from

it.)

For later reference we brie
y mention some properties of the Coulomb glass

model. One of the central quantities is the single-electron density of states

g(�; T ) =

1

N

X

i

h�(�� �

i

)i (2)

at energy � and temperature T , where h: : :i denotes thermal and disorder averages.

�

i

are the single-electron energies given by

�

i

= '

i

� � +

X

j 6=i

U

ij

(n

j

�K): (3)

The single-electron density of states of the Coulomb glass shows a pronounced

gap, called the Coulomb gap, close to the Fermi energy �

F

(see �g. 1). At zero

temperature the density of states actually vanishes at the Fermi energy [2], close

to the Fermi energy it can be described by a power law

g(�) / j�� �

F

j

�

(4)

where � is approximately 1.2 for two-dimensional (2D) and 2.5 for 3D systems

[13]. At �nite temperatures the Coulomb gap is �lled gradually (for recent sim-

ulation results see, e.g., Ref. [14]).

The Coulomb glass model (1) describes a system without internal dynamics.

In reality the electrons, though localized, are coupled to additional (vibrational)

degrees of freedom, which lead to transitions between the many-electron states.

Phenomenologically this can be simulated by a Monte-Carlo method. In every

Monte-Carlo step we change the occupation numbers of one or several sites with

a certain probability. Within the Metropolis algorithm this probability is given

by

P =

(

1 ;�H < 0

exp[�

�H

k

B

T

] ;�H > 0

(5)

where �H is the energy di�erence between the many-particle states before and

after such a change and k

B

is the Boltzmann constant. N such Monte-Carlo steps

are called a Monte-Carlo sweep which is the natural time scale of our calculations.

To simulate the dynamics one can use di�erent \move classes", which deter-

mine how the occupation numbers are changed in every Monte-Carlo step to get

the new con�guration. The simplest move class consists of exchanging a single

electron with a reservoir (i.e. the conduction band in the case of doped semicon-

ductors), other classes include hopping of single electrons between the sites, or

correlated hopping of several electrons. In this paper we present results obtained
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Figure 1: Single-electron density of states of the Coulomb glass at T = 0:008 for

di�erent strengths of disorder.

by using only single-electron exchanges between the system and a reservoir, but

we have also checked more complicated move classes. As long as we do not in-

clude distance-dependent "tunneling terms" into the transition probabilities (5)

applying di�erent move classes yields data which do not show a qualitatively

di�erent behavior. We attribute this result to the fact that single and multiple

electron hops can be combined from the moves in our implementation of single

electron exchanges with an external reservoir. Thus all many-electron states with

KN electrons are available in our simulation. A more detailed investigation of

this question including the e�ects of distance-dependent transition probabilities

on the damage-spreading simulations is in progress.

3 Damage Spreading

The damage-spreading technique [15] is a modi�cation of the usual Monte-Carlo

method. The idea is to look not at the time evolution of a single system but

to compare the time evolutions of two systems which are subjected to the same

thermal noise (i.e., the same random numbers are used within the Metropolis

algorithm). Usually, at the beginning of the simulation the occupation numbers

of both systems di�er only at a single site (or at a few sites, e.g. a single column

in a 2D lattice system).
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Since both systems are thermodynamically identical, averages of equilibrium

quantities will be the same for both systems. Microscopically, however, the

two systems may evolve di�erently from each other. The central observable in

damage-spreading simulations is the Hamming distance D(t), which is the por-

tion of sites for which the occupation numbers di�er between the two systems.

D(t), which measures the "damage", is given by

D(t) =

1

N

X

i

jn

o

i

(t)� n

o

i

(t)j (6)

where n

o

i

(t)and n

c

i

(t) are the occupation numbers of site i of the original system

and the copy at (Monte-Carlo) time t. ForD(t) = 0 the two systems are identical,

D(t) =

1

=

2

describes completely uncorrelated con�gurations, and for D(t) = 1

the two systems are totally anticorrelated. In the course of the time evolution

the two systems evolve towards a steady state, in which D(t) 
uctuates around

an asymptotic average value

D = lim

�!1

lim

t!1

1

�

Z

t+�

t

dt

0

D(t

0

) (7)

Depending on the values of the external parameters temperature and disor-

der strength di�erent regimes can be observed in principle if the initial damage

D(0) is small: The damage may heal out during the time evolution (D = 0), the

systems may stay partially correlated for in�nite time (D <

1

=

2

), or the systems

may become completely uncorrelated so that D =

1

=

2

. In contrast to the thermo-

dynamics the detailed behavior of D(t) depends on the choice of the dynamical

algorithm. Whereas Metropolis, Glauber and heat-bath dynamics give the same

results for equilibrium quantities of a single system, the damage spreading results

di�er. For the Metropolis dynamics which we use (as well as for the Glauber

dynamics) the damage tends to heal at low temperatures and tends to spread

at high temperatures [15]. In contrast, the heat-bath dynamics yields healing at

high temperatures and frozen con�gurations at low temperatures [16]. (Note that

since D is not a thermodynamic quantity but measures the microscopic di�er-

ences between two systems, there is no reason to expect that di�erent dynamical

algorithms give the same results.)

We apply the damage-spreading technique to the 2D Coulomb-glass model

at half �lling K =

1

=

2

and linear system sizes L = 20; :::; 80. The simulation

proceeds as follows: (i) We create the initial system by choosing random potential

values according to the probability distribution W (') and occupy the sites at

random with KN electrons. (ii) We equilibrate this system at temperature T by

performing several (at least 300) Monte-Carlo sweeps according to the Metropolis

algorithm. (iii) A copy of the system is created and modi�ed at a single site (or

several sites). This di�erence in the occupation numbers constitutes the initial

damage. (iv) We study the time evolution of the original and the copy using
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the same random numbers in the Metropolis algorithm for both systems. The

damage D(t) is recorded and its asymptotic value D is determined.

Note that there is a modi�cation of the damage-spreading method that can

be used to determine equilibrium quantities instead of purely dynamic ones [19,

20]. In that kind of simulations the occupation number of a single site in one

of the systems is �xed whereas it is allowed to 
uctuate in the other system.

Consequently, the two systems are thermodynamically di�erent and the damage

can be related to equilibrium correlation functions. Since in this paper we are

interested in the properties of the dynamics rather than in equilibrium quantities,

our data is gained by means of the original damage-spreading method, where the

occupation numbers of the systems are allowed to 
uctuate.

4 Results

4.1 Time evolution

In this subsection we present data on the time evolution of the damage D(t)

starting with an initial damage consisting of a single site. In analogy to the

well studied 2D Ising model [15, 17, 18] we �nd that for temperatures below

a certain temperature T

S

, called the spreading temperature, the damage D(t)

remains small and eventually heals, giving an asymptotic value of D = 0. For

temperatures larger than T

S

the damage increases with time until a steady state

is reached where D(t) 
uctuates around a �nite value. Consequently, the asymp-

totic damage D is �nite in this regime. In Fig. 2 the time evolution of D(t) is

shown for the Coulomb glass with zero disorder W

0

= 0. The three curves pre-

sented correspond to the three regimes discussed in the last section. At T = 0:5

the damage increases quickly and then 
uctuates around D =

1

=

2

. This means

the two systems become completely uncorrelated very fast. Consequently we are

above the spreading temperature T

S

. At T = 0:1 the evolution of D(t) is much

slower and the asymptotic damage is smaller than

1

=

2

. This behavior occurs,

because the system is in the vicinity of the spreading transition at T

S

. It corre-

sponds to the critical slowing down in ordinary critical phenomena. At T = 0:06

the damage remains small and eventually heals, thus the system is below the

spreading temperature T

S

. In the case of �nite disorder W

0

the time evolution of

the damage is similar (see Fig. 3). The asymptotic damage D is, however, di�er-

ent from 0 or

1

=

2

even far away from the spreading transition. The dependence of

the damage on the external parameters temperature and disorder is investigated

in more detail in Subsect. 4.3.
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Figure 2: Time dependence of the Hamming distance of the 2D Coulomb glass
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4.2 In
uence of the long-range interaction

The character of the interaction has a large in
uence on the time evolution of

the damage. In systems with nearest-neighbor interactions, e.g. the Ising model,

the damage can only spread within a single Monte-Carlo step from one site of

the system to its neighbor. Therefore the clouds of damaged sites can only grow

slowly in space and tend to be more compact (but not necessarily connected). In

contrast, in systems with long-range interactions the occupation number of any

site e�ects all other sites. The damage can spread from one site of the system to

any other site within a single Monte-Carlo step. Therefore the damage spreads

much faster as in systems with short-range interactions and the damage clouds

are usually not compact. A comparison of the two cases is presented in Fig. 4.

Figure 4: Snapshot of the damage for 2D systems with short-range interactions

(left) and long-range interactions (right) for T = 0:5 and W

0

= 0:5 at a time of 5

Monte-Carlo sweeps after the introduction of a single damaged site. A �lled circle

indicates a damaged site where the occupation numbers of the two systems di�er,

an empty circle indicates that the occupation numbers of that site are identical

in both systems.

Note, that since the damage can spread from one site to any other site in

the case of long-range interactions, some of the methods developed to analyze

the damage-spreading simulations [15, 17] cannot be used for systems with long-

range interactions. This applies to all methods that measure the spatial extension

of the damage, and its evolution, because the spatial extents of the damage cloud

is not a well de�ned quantity for systems with long-range interactions.
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4.3 Temperature and disorder dependence of the asymp-

totic damage

We now turn to the main results of this paper. Figure 5 shows an overview of

the temperature and disorder dependence of the asymptotic Hamming distance

D. For disorder strength W

0

= 0 there is a pronounced transition at a spreading
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Figure 5: Overview of the temperature dependence of the Hamming distance for

various strengths of disorder of a 2D system with N = 20

2

sites.

temperature of approximately T

S

= 0:1 between a low-temperature regime with

D = 0 and a high-temperature regime with D =

1

=

2

. Within our numerical

accuracy the spreading temperature T

S

coincides with the equilibrium critical

point T

c

of the model without disorder which we determined from the peak in

the speci�c heat C

v

of the Coulomb glass model as a function of temperature

(see Fig. 6). For very high temperatures T !1 the spreading of the damage is

drastically slowed down due to the fact that the probability P in the Metropolis

algorithm, Eq. 5, becomes independent of the actual con�gurations of the two

systems (original and copy) and reaches P = 1. This means that in both systems

nearly every exchange of electrons is performed and di�erences in the occupation

numbers occur only rarely. Our investigations of the spreading behavior for very

high temperatures show that the Hamming distance D still reaches a plateau if

plotted versus time as in Figs. 2 and 3, but the relaxation time diverges as is

predicted in a recent mean-�eld theory [21]. The damage-spreading transition in

the Coulomb glass model without disorder occurs thus in complete analogy to
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that in the Ising model [15].

For �nite disorder strength W

0

, however, this behavior changes in several

aspects. First, the values of the asymptotic Hamming distance in the high-

temperature regime are smaller than D =

1

=

2

. This means, the two systems

remain partially correlated even for high temperatures. The reason for that is

easy to understand: In the presence of a random potential the electrons are

trapped (repulsed) at sites with small (high) potential values '

i

. These sites are

identical in the original system and its copy. Therefore the presence of a random

potential tends to reduce the damage. With increasing strength of disorder this

trapping e�ect becomes larger, so that the maximumvalue of the damage is more

and more reduced. On the other hand, increasing temperature makes it easier to

overcome the potential di�erences so that the described reduction of the damage

becomes less e�ective.

The second e�ect of the disorder concerns the behavior of D at low temper-

atures and close to the spreading point. This region is shown in more detail in

Fig. 7. In the case of �nite disorder the asymptotic damage remains �nite even

at temperatures below the spreading temperature of the model without disorder.

This somewhat counterintuitive result, viz. an acceleration of the dynamics by

disorder, can be understood by looking at the single-electron density of states of

the Coulomb glass model (see Fig. 1). For W

0

= 0 the single-electron density of

states at low temperatures has a hard gap around the Fermi energy �

F

= 0 and
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of a 2D system with N = 20

2

sites.

two peaks at the Madelung energies ��

M

. Therefore there are only exponentially

few sites that can be excited at low temperatures and thus the Hamming distance

vanishes. In contrast, for �nite disorder W

0

, the gap in the density of states is

not exponential but the power-law Coulomb gap (4). Therefore more sites can

be excited at low temperatures and the dynamics does not freeze completely, i.e.,

the Hamming distance remains �nite.

As can be seen in Fig. 7, even for �nite disorder strengthW

0

there is, however,

a spreading temperature T

S

(W

0

), below which the asymptotic damage vanishes.

T

S

(W

0

) decreases with increasing W

0

, but seems to tend to a �nite limiting value

for large W

0

which we approximately determined to T

S

(1) � 0:03. Note, that

the existence of a spreading transition in the case of �nite disorder is a purely

dynamic phenomenon, since the system does not undergo an equilibrium phase

transition.

In order to determine more detailed properties of the spreading transition a

careful analysis of �nite size e�ects is necessary. In Fig. 8 we show the depen-

dence of the Hamming distance D on the system size. As expected from the

analogy with usual critical phenomena the spreading transition becomes sharper

with increasing system size. Figure 8 also shows that a system size of L = 20

already gives reasonable results for the location of the spreading temperature of

the Coulomb glass model, provided the disorder strength is comparatively small.
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5 Conclusions and Outlook

We have used the damage-spreading technique to examine the low-temperature

dynamics of disordered electronic systems with localized states based on the

Coulomb glass model. We have found that the dynamics of the system freezes

below a spreading temperature T

S

. For zero disorder this damage spreading

transition coincides with the equilibrium phase transition within our accuracy.

At �nite disorder strength, when there is no equilibrium phase transition, the

spreading point T

S

is shifted to lower temperatures. However, T

S

remains �-

nite even for larger disorder strengths. Consequently, there is a low temperature

"phase" of the Coulomb glass with frozen dynamics and a high temperature phase

where the damage spreads through the system. In the case of �nite disorder W

0

the spreading transition is a purely dynamic transition which does not possess

an equilibrium counterpart. A more detailed investigation of this transition is

in progress. It is, however, hampered by �nite-size e�ects since the long-range

interaction severely restricts the possible system sizes in our simulations. These

limited system sizes are also the reason why the spreading point T

S

for high values

of disorder could not yet be determined exactly. For small disorder strengths the

spreading point T

S

is still close to the (second-order) equilibrium phase transition

temperature T

c

of the system without disorder. Since physical quantities in the

vicinity of a critical point can usually be described by scaling laws we expect the
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Hamming distance D to obey the homogeneity relation

D(W

0

; T ) = t

�

f

�

W

0

t

'

�

; t = jT � T

c

j (8)

with the critical exponents ' and �. The con�rmation of this scaling law and the

determination of the exponents remain a task for the future.

One might also ask, how the results change if more sophisticated dynamical

algorithms are used, that represent the physical processes in disordered insulators

better than the simple Metropolis algorithm with single-particle exchange with a

reservoir. The question is of particular importance, since the properties of damage

spreading depend on the type of dynamics used in the simulation more strongly

than the thermodynamic quantities. We have begun to study the Coulomb glass

model with distance-dependent tunneling probabilities between the sites. Results

of this numericallymuchmore involved investigations will be published elsewhere.

This work was supported in part by the DAAD, by the DFG under grant

number Vo 659/1-1 and SFB 393 and by the NSF under grant number DMR-95-

10185.
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