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Abstract

Rank-revealing ULV and URV factorizations are useful tools to

determine the rank and to compute bases for null-spaces of a ma-

trix. However, in the practical ULV (resp. URV ) factorization each

left (resp. right) null vector is recomputed from its corresponding

right (resp. left) null vector via triangular solves. Triangular solves

are required at initial factorization, re�nement and updating. As a

result, algorithms based on these factorizations may be expensive, es-

pecially on parallel computers where triangular solves are expensive.

In this paper we propose an alternative approach. Our new rank-

revealing ULV factorization, which we call "top-down" ULV factor-

ization (TDULV -factorization) is based on right null vectors of lower

triangular matrices and therefore no triangular solves are required.

Right null vectors are easy to estimate accurately using condition esti-

mators such as incremental condition estimator (ICE). The TDULV

factorization is shown to be equivalent to the URV factorization with

the advantage of circumventing triangular solves.

1. Introduction. Recent numerical integration methods for di�erential-

algebraic equations (DAEs) [17, 18, 19] require at each time integration

step the computation of the numerical rank and bases for null-spaces of very

large matrices. These matrices are obtained by a recursive di�erentiation

algorithm which appends new rows to the previous matrices. The process

of incorporating a new row or column in a matrix is called updating. Other

applications are the solution of underdetermined rank-de�cient least squares

problems [12, 14, 20], subset selection problems [13, 14] and information re-

trieval [2].

The singular value factorization (SV D) [14, p. 246] is known to be an

extremely reliable tool for computing the numerical rank and bases for the

null-spaces of a matrix. However, the SV D is "too expensive" when it comes

to recursive algorithms or real-time applications, since its computation re-

quires O(n

3

) ops

1

and the SV D is di�cult to update [1, 6]. Therefore

alternative algorithms that are nearly as accurate as the SV D, cheaper and

easier to update are desired.

Recently, Stewart [25, 26, 27, 29] proposed two rank-revealing factoriza-

tions, called ULV and URV factorizations. These two factorizations are

1

Here, a op is either an addition or a multiplication
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e�ective in exhibiting the numerical rank and bases for the null-spaces. The

ULV and the URV factorizations can be updated inO(n

2

) ops, sequentially

and in O(n) ops on an array of n processors [26, 27]. Recent work related

to the URV and ULV factorization both in theory and implementation may

be found in [8, 9, 10, 11, 22, 23]. The rank-revealing ULV and the URV al-

gorithms are iterative and require estimates of the condition number of some

triangular submatrices at every iteration step of initial factorization, re�ne-

ment and updating. In the URV and the ULV factorizations small singular

values and associated null vectors are estimated by means of conditions es-

timators [3, 4, 5, 15, 24, 30]. A survey of condition estimators is given in [16].

In the practical ULV (resp. URV ) factorization, however, each left (resp.

right) null vector is recomputed from its corresponding right (resp. left) null

vector via triangular solves. Triangular solves are required for the initial

factorization, the re�nement and updating. For some applications triangular

solves have to be performed many times in order to achieve a required accu-

racy. Therefore algorithms based on the usual ULV and URV factorizations

may be very expensive on parallel computers, where triangular solves are

expensive.

For this reason we introduce an alternative rank-revealing ULV factor-

ization, called "top-down" ULV factorization (TDULV -factorization). This

new factorization relies on right null vectors of lower triangular matrices

which are accurately estimated using condition estimators. This results in

circumventing triangular solves required in the usual rank-revealing ULV

and URV factorizations. Our TDULV factorization is essentially equivalent

to the URV with the advantage of avoiding triangular solves, thus it is more

suitable for parallel implementations. Furthermore the TDULV uses the

null vectors obtained from condition estimators in a straithforward way.

In this paper we describe the TDULV factorization, give an algorithm

to compute it and show how this algorithm can be implemented, re�ned and

updated e�ciently. The remainder of this paper is organised as follows. In

section 2, we briey review the usual rank-revealing ULV and URV factor-

izations. Our new TDULV factorization method is proposed in section 3.

In section 4 we give details of the TDULV factorization algorithm. The new

algorithm is presented in section 5. Finally, we draw a conclusion in section 6.
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2. ULV and URV factorizations. In this section we review the rank-

revealing ULV and URV factorizations introduced by Stewart [25, 26, 27,

29]. We �rst introduce the concept of numerical rank of a matrix. Given a

matrix A 2 R

m�n

(m � n) a singular value factorization (SV D) (see [14, x

2.5]) of A has the form

A = U�V

T

; (1)

where U = [u

1

; � � � ; u

m

] and V = [v

1

; � � � ; v

m

] are orthogonal matrices and

� = diag(�

1

; � � � ; �

n

) is an m�n diagonal matrix whose entries, the singular

values of A, are ordered such that �

1

� �

2

� � � � � �

n

� 0. Then the

numerical rank of A with respect to a threshold � > 0 is de�ned as the

number of singular values of A strictly larger than �, i:e:,

�

1

� � � � � �

k

> � � �

k+1

� � � � � �

n

: (2)

� is a threshold below which a singular value of the matrix A is declared to

be numerically null or negligeable. The ratio �

r+1

=�

k

estimates the "gap"

between "large" and "small" singular values of A. The numerical rank is

well de�ned whenever the gap is su�ciently large. Ways for choosing the

threshold � may be found in [28].

For i = k + 1; � � � ; n the columns v

i

of V satisfy kAv

i

k � � and therefore

are called numerical right null vectors (k � k denotes the matrix 2-norm). In

the same way columns u

k+1

; � � � ; u

n

of U are called numerical left null vectors,

since they satisfy ku

T

i

Ak � � for i = k + 1; � � � ; n.

The numerical right null-space of A is de�ned by

N

r

k

:= spanfv

k+1

; : : : ; v

n

g: (3)

in the same way we de�ne the numerical left null-space of A by

N

l

k

:= spanfu

k+1

; : : : ; u

n

g: (4)

Given a matrix A 2 R

m�n

, a ULV [29] factorization of A has the form

A = U

 

L

k

0

H E

!

V

T

; (5)

with orthogonal matrices U 2 R

m�m

, V 2 R

n�n

and L

k

2 R

k�k

, E 2

R

(m�k)�(m�k)

lower triangular matrices, H 2 R

(m�k)�k

.
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Such a factorization is said to be rank-revealing if k[H E]k = O (�

k+1

) and

L

k

is well-conditioned, i:e:, �

k

(L

k

)=�

1

(L

k

) � c, where c > 0 is some given

tolerance.

Similarly, a URV factorization [25, 29] of A has the form

A = U

 

R

k

F

0 G

!

V

T

; (6)

where R

k

2 R

k�k

, G 2 R

(m�k)�(n�k)

are upper triangular matrices and where

F 2 R

k�(n�k)

.

Such a factorization is said to be a rank-revealing if R

k

is well-conditioned

and k[F

T

G

T

]

T

k = O (�

k+1

).

In factorizations (5) and (6) the numerical rank of A is revealed by the

dimension of the submatrices L

k

and R

k

, respectively. Orthonormal left and

right bases for the null-spaces of A are revealed by the matrix U and V ,

respectively. More precisely, columns k + 1 through n of U and V span the

left and right null-spaces of A, respectively.

Factorization (5) and (6) are based on estimating small singular values

of the middle factors L and R and the associated left and right null vectors,

respectively. Then deating small singular values from the bottom of ma-

trices L and R, factorizations (5) and (6) are obtained. Adaptive versions

of the ULV and URV algorithms and results concerning the e�ect of esti-

mated null vectors on the size of o�-diagonal blocks H and F are discussed

in [10]. There, it is shown that the sizes of H and F depend strongly on

approximations of the null vectors. The norms of H and F in turn a�ect

the accuracy of the approximated null-spaces. A re�nement method for the

URV factorization was presented and analysed in Stewart [25].

The usual way to compute a ULV factorization (5) of a matrix A is �rst

to compute an ordinary QL factorization of A [31, p. 140] and then to "peel-

o�" small singular values one by one from the bottom of the matrix L [10,

27]. This requires approximations of left null vectors of the triangular ma-

trix L at each iteration step of factorization, re�nement and updating. In

the practical rank-revealing ULV factorizations, left null vectors are usually

obtained from the corresponding right null vectors via triangular solves. For

very large problems, however, this results in an extra cost and may lead to
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loss of accuracy in the subspaces. In the next section we present a more e�-

cient ULV factorization that avoids triangular solves by working with right

null vectors of lower triangular matrices. This reduces the computational

work needed for the triangular solves.

3. TDULV factorization. In this section we present the rank-revealing

TDULV factorization. The idea of our factorization is to compute �rst any

QL factorization of A (for example by using the LAPACK routine xGE-

QLF

2

) then to "peel-o�" small singular values of L one after the other from

the top of the matrix L in a sequence of deation steps until a large singular

value is detected. This is achieved by estimating small singular values of L

and associated right null vectors using condition estimators (for example by

using the incremental condition estimator (ICE)[5] implemeted in LAPACK

routine xLAIC1). This process leads to the so called "top-down" ULV fac-

torization TDULV .

A = U

�

E 0

H L

k

�

V

T

; (7)

where L

k

2 R

k�k

, E 2 R

(m�k)�(n�k)

are lower triangular matrices and where

H 2 R

k�(n�k)

.

We call such a factorization rank-revealing TDULV factorization if L

k

is

well-conditioned and k[E

T

H

T

]

T

k = O (�

k+1

).

In the TDULV factorization the rank of the matrix A is revealed by the

dimension of the right bottom submatrix L

k

. The �rst n� k columns of the

orthogonal matrices U and V furnish orthonormal left and right bases for

null-spaces of A, respectively.

We show in the appendix that the rank-revealing TDULV factorization

(7) and the rank-revealing URV factorization (6) are mathematically equiv-

alent. The advantage of the TDULV over the URV is that the TDULV

works with singular vectors computed by condition estimators in a straith-

foward way.

4. Outline of the rank-revealing TDULV Algorithm. In this section,

we discuss the implementation of the TDULV algorithm. We show how to

re�ne the factorization to make it rank-revealing. We then discuss the updat-

ing of the factorization. The rank-revealing TDULV factorization process

2

Here, the pre�x x is S or D
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begins with any QL factorization of A followed by an iteration with makes

the factor L rank-revealing. The matrix L is declared to be numerically rank

de�cient with respect to a threshold � if L has at least one singular value

� � �. Small singular values � of L and associated null vectors v of norm

one are estimated e�ciently using condition estimators. If the matrix L is

rank de�cient then we transform it to an equivalent lower triangular matrix

P

T

LQ by means of Givens rotations. The orthogonal matrix Q is formed as

the product of Givens rotations such that components of v are annihilated

one at a time to obtain the canonical unit vector e

1

, i:e: we have Q

T

v = e

1

.

We postmultiply L by the orthogonal matrix Q. Then we triangularize LQ

by premultiplying it by an orhogonal matrix P

T

where P is again formed as

product of Givens rotations. It follows that

� � � = kLvk = kP

T

LQQ

T

vk = kP

T

LQe

1

k; (8)

and hence the �rst column of the triangular matrix P

T

LQ is small. This way

of proceeding is called deation and applying it repeatedly, the TDULV is

computed. However, to obtain accurate null-spaces one may have to delay the

deation and re�ne the factorization until the required accuray is achieved.

4.1 Re�nement. Factorization (7) reveals the numerical rank of A by the

dimension of the matrix L

k

. Bases for approximate left and right null-spaces

of A are given by the �rst n�k columns of U and V respectively. To obtain an

accurate basis for the left null-space one may need to re�ne the factorization

by bringing the matrix E to near diagonal form. This is achieved by Givens

rotations. Suppose we have obtained the partial factorization

A = U

 

e 0

h L

n�1

!

V

T

; (9)

where the matrix in the middle is assumed to be rank de�cient.

The aim of the re�nement is to make the norm khk � � , where � is some

deation parameter. This leads to accurate bases for null-spaces of A and

A

T

. The �rst step in the re�nement is to compute an orthogonal matrix Q

such that o�-diagonal elements of the �rst column of LQ vanish, i:e:,

LQ =

 

e

0

h

0T

0 L

0

n�1

!

: (10)

This is achieved by zeroing successively elements of h by means of Givens

rotations. The matrix Q is the product of these Givens rotations applied to
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L from the right. Nonzero elements then appear in the �rst row of LQ. The

second step in the re�nement is to determine an orthogonal matrix P such

that element of h

0T

are annihilated by premultiplying LQ by P

T

. This is done

by zeroing successively the elements of h

0T

by means of Givens rotations. We

then obtain the following lower triangular matrix

P

T

LQ =

 

e

00

0

h

00

L

00

n�1

!

: (11)

After these two steps of re�nement, elements of h

00

have become smaller. If

kh

00

k < � , then we deate the �rst row and column in (11). To maintain

null-spaces, transformations P and Q in these two steps of re�nement are

also applied to U and V . At this point, the factorization of A is given by

A = (UP )

 

e

00

0

h

00

L

00

n�1

!

(V Q)

T

: (12)

In this fashion the matrix E in (7) is made "closer" to a diagonal matrix.

4.2 TDULV-Updating. The TDULV factorization can be updated when

a new row is incorporated at the bottom of the matrix A. Assume that after

having computed a rank-revealing factorization (7) of A, we wish to include

a new row in A. The aim of the updating is to compute a rank-revealing

factorization of the updated matrix from that of A at a low computational

cost namely O(n

2

) or less. This should be done without destroying small

elements of E and F . The row-updating of the rank-revealing TDULV is

described as follows

 

A

a

T

!

=

 

U 0

0 1

!

0

B

@

E 0

H L

k

x

T

y

T

1

C

A

V

T

; (13)

where a

T

is the appended row and where (x

T

y

T

) = a

T

V .

In the �rst phase of updating we annihilate the �rst n�k�1 components

of x

T

, while maintaining the triangular form of E. This is performed by

applying a sequence of interleaved right and left Givens rotations. In the

process each right rotation introduces above the diagonal of E a nonzero

element which is zeroed out by left rotation. In this annihilation process

7



of x

T

only rows of E and the �rst n � k columns of the middle matrix

in (13) are involved. In this fashion "smallness" of matrices E and H is

preserved. The reduction procedure, where only E and x

T

are shown, is

illustrated in Fig: 1 (In all �gures, vertical arrows point out the columns

involved in a postmultiplication by a rotation. Horizontal arrows point out

the rows involved in a premultiplication by a rotation. A check over an

element indicates the element to be eliminated.).

# #

e

e e

e e e

e e e e

�x x x x

=)

! e �e

! e e

e e e

e e e e

0 x x x

=)

# #

e

e e

e e e

e e e e

0 �x x x

=)

e

! e e �e

! e e e

e e e e

0 0 x x

=)

# #

e

e e

e e e

e e e e

0 0 �x x

=)

e

e e

! e e �e

! e e e e

0 0 0 x

=)

e

e e

e e e

e e e e

0 0 0 x

Fig. 1 Annihilation of components of x

T

The second phase is to triangularize the following trapezoidal matrix by

annihilating the last row

e

h l

h l l

h l l l

h l l l l

x y y y y
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This is performed by means of Givens rotations as follows

# #

e

h l

h l l

h l l l

h l l l l

x y y y �y

=)

e

h l

h l l

! h l l l

�

l

! h l l l l

x y y y 0

=)

# #

e

h l

h l l

h l l l

h l l l l

x y y �y 0

=)

e

h l

! h l l

�

l

! h l l l

h l l l l

x y y 0 0

=)

# #

e

h l

h l l

h l l l

h l l l l

x y �y 0 0

=)

e

! h l

�

l

! h l l

h l l l

h l l l l

x y 0 0 0

=)

e

! h l

h l l

h l l l

h l l l l

! x �y 0 0 0

=)

! e

x l

h l l

h l l l

h l l l l

! �x 0 0 0 0

=)

x

x l

h l l

h l l l

h l l l l

0 0 0 0 0

Fig. 2 Triangularization

The triangularization process replaces the zeros in the last matrix of Fig:1 by

some small elements h. These small elements can be eliminated or neglected.

5. TDULV-Algorithm.

The rank-revealing TDULV factorization is summarized in the following

algorithm:

Input:

� Matrix A 2 R

m�n

(m � n) to be decomposed.

� Threshold � for singular values of A.

� Deation tolerance � for kHk.

9



� Maximum number of iterations N

�

for the re�nement.

Output:

� Numerical rank k.

� Orthogonal matrices U 2 R

m�m

, V 2 R

n�n

and a lower triangular

matrix L 2 R

n�n

.

1. Compute a QL factorization of A: A = Q

�

0

L

�

, where Q is orthogonal

and L 2 R

n�n

is lower triangular ( e:g:, using the LAPACK routine

xGEQLF).

2. Initialization: U  Q, V  I

n

, k  n and itstep 0.

3. Compute the smallest singular value �

n

of L and the associated right

null vector v

n

2 R

n

of norm one (e:g:, by using the incremental condi-

tion estimator (ICE)[5] implemented in LAPACK routines xLAIC1).

4. While (�

k

< � and k � 2) do

While (itstep � N

�

) do

For j = n� 1; � � � ; n� k + 1 do

Determine a Givens rotation Q

j; j+1

2 R

k�k

, so that

premultiplication of v

k

by Q

T

j; j+1

zeroes component

v

k

j+1

of v

k

using v

k

j

. Update L and V

L L

 

I

n�k

0

0 Q

j; j+1

!

and V  V

 

I

n�k

0

0 Q

j; j+1

!

:

Determine a Givens rotation P

j; j+1

2 R

k�k

, so that pre-

multiplication of L

k

:= L(n � k + 1 : n; n� k + 1 : n)

by P

T

j; j+1

zeroes l

j; j+1

using l

j+1; j+1

. Update L and U

L 

 

I

n�k

0

0 P

T

j; j+1

!

L and U  U

 

I

m�k

0

0 P

j; j+1

!

:

Enddo

If (kL(n� k + 2 : n; n� k + 1)k < � or itstep > N

�

) then

Deation: Set k  k � 1 and itstep 0.

Else

Re�nement: Set itstep itstep+ 1.

Determine a sequence of Givens rotations

�

Q

n+1�k; n+2�k

; : : : ;

�

Q

n+1�k; n

so that postmultiplication

of L

k

by

�

Q

k

:=

�

Q

n+1�k; n+2�k

� � �

�

Q

n+1�k; n

zeroes the

10



elements L(n� k + 2 : n; n � k + 1). Update L and V

L L

 

I

n�k

0

0

�

Q

k

!

and V  V

 

I

n�k

0

0

�

Q

k

!

:

Determine a sequence of Givens rotations

�

P

n+1�k; n

; : : : ;

�

P

n+1�k; n+2�k

so that premultiplication of L

k

by

�

P

T

k

, where

�

P

k

:=

�

P

n+1�k; n

� � �

�

P

n+1�k; n+2�k

, zeroes the

elements L(n� k + 1; n� k + 2 : n). Update L and U

L 

 

I

n�k

0

0

�

P

T

k

!

L and U  U

 

I

m�k

0

0

�

P

k

!

:

Endif

Compute the smallest singular value �

k

of L

k

and the

associated right null vector v

k

2 R

k

of norm one.

Endwhile

Endwhile

End of TDULV �Algorithm

The algorithm terminates if a lower bound �

k

> � is computed. The dimen-

sion k of the bottom right matrix L

k

is equal to the numerical rank. Bases

for left and right null-spaces are given by the �rst n + 1 � k columns of U

and V , respectively.

Example 1

We now describe the steps for the (n + 1 � k)th stage of the algorithm and

illustrate it for the case k = 4. At this stage already (n � 4) deations have

been performed and the matrix L has the form (7) where the right bottom

submatrix L

4

has dimension k = 4. According to the above algorithm, only

the matrix L

4

is involved in the coming steps, we therefore sketch only this

matrix. The next step in our algorithm is to compute � and v 2 R

4

, approx-

imations of the smallest singular value of L

4

and the associated right null

vector. Then we annihilate successively the 4th; 3rd and the 2nd component

of v using Givens rotations Q

T

12

, Q

T

23

, Q

T

34

so that

Q

T

12

Q

T

23

Q

T

34

v = (1; 0; 0; 0)

T

:

The sketch below clari�es the e�ect of carring out successive transformations
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Q

i; i+1

on v.

!

!

0

B

B

B

@

v

v

v

v

1

C

C

C

A

Q

T

34

7�!

!

!

0

B

B

B

@

v

v

v

0

1

C

C

C

A

Q

T

23

7�!

!

!

0

B

B

B

@

v

v

0

0

1

C

C

C

A

Q

T

12

7�!

0

B

B

B

@

1

0

0

0

1

C

C

C

A

:

Fig. 3 Reduction of v

We must then postmultiply L

4

by these rotations. This multiplication by

Q

i; i+1

produces a nonzero (i; i + 1) entry in L

4

. To restore the triangular

form to L

4

, we premultiply it by some appropriate plane rotation P

T

i; i+1

. For

i = 3; 2; 1 we then have
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The triangular form changes as follows
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Fig. 4 Deation procedure

The elements h and e in the �rst column of L

4

indicate that small elements

have been generated in this column. To see this, consider the norm of L

4

v,

� � �

4

= kL

4

vk = kP

T

L

4

QQ

T

vk = kP

T

L

4

Qe

1

k;

where P = P

34

P

23

P

12

and Q = Q

34

Q

23

Q

12

. Thus the �rst column of the

triangular matrix P

T

L

4

Q is small. One can stop at this point and take the

computed factorization as rank-revealing factorization. However, to obtain

the correct numerical rank and accurate null-spaces, one has to bring the

12



matrix E to near diagonal form by reducing the norm of H. This is acom-

plished by reducing the size of elements h in the �rst column of P

T

L

4

Q in

each deation step as follows
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Fig. 5 Zeroing o�-diagonal elements of the �rst column

We reduce now the �rst row of the matrix L using left rotations as follows
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Fig. 6 Zeroing o�-diagonal elements of the �rst row

Example 2

Let A be the lower triangular matrix with 1 on the diagonal and �1 as o�-

diagonal elements. For m = n = 3 and � = 1:5 the rank is 2 and the middle

matrix L is

0

B

@

:3472963553338607 0 0

9:302245467261437e � 14 1:53607859485413 0

4:855638724371323e � 14 7:799425873704058e � 2 �1:87450385105148

1

C

A

:
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Tables 1 and 2 show that the null-spaces computed from the TDULV closely

approximate the null-spaces computed from the SV D.

U

TDULV

U

SV D

.8440296287459917 .8440296287459852

.4490987851112734 .4490987851112867

.2931284138572732 .2931284138572721

Table 1: Bases for the left null-space

V

TDULV

V

SV D

.2931284138573261 .2931284138572723

.4490987851112454 .4490987851112868

.8440296287459887 .8440296287459852

Table 2: Bases for the right null-space

6. Conclusion. In this paper we have proposed a new ULV factorization

called TDULV factorization and an algorithm to compute it. This factoriza-

tion is based on right null vectors of lower triangular matrices rather than left

null vectors as in the ULV factorizations. First, this has resulted in avoiding

triangular solves, which may be expensive on parallel computers and reduc-

ing the cost related to these solves especially if they have to be performed

many times with very large matrices. Second, this avoids including parame-

ters related to triangular solves. Furthermore our method uses null vectors

computed by condition estimators in a straightforward way. Therefore it may

be more accurate than the URV in exhibing the numerical rank and bases

for null-spaces.

Appendix.

LEMMA 1

Rank-revealing URV factorizations and TDULV factorizations of a matrix

A are equivalent.

PROOF

Let A have the rank-revealing TDULV factorization

A = U

�

E 0

H L

k

�

V

T

:
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Then we can write

A = (UJ

m

)J

m

�

E 0

H L

k

�

J

n

(V J

n

)

T

;

where

J

m

=

 

0 J

k

J

m�k

0

!

; J

n

=

�

0 J

n�k

J

k

0

�

and where J

k

denotes the k � k ip matrix. Therefore

A = (UJ

m

)

 

J

k

L

k

J

k

J

k

HJ

n�k

0 J

m�k

EJ

n�k

!

(V J

n

)

T

;

which is of the form

A =

^

U

�

R F

0 G

�

^

V

T

with

G = J

m�k

EJ

n�k

; F = J

k

HJ

n�k

; R = J

k

L

k

J

k

;

^

U = UJ

m

;

^

V = V J

n

:

Note that the matrices G and R are upper triangular and

^

U and

^

V are or-

thogonal. Furthermore we have

kGk = kEk; kFk = kHk; kR

�1

k

k = kL

�1

k

k;

therefore the TDURV factorization is rank revealing if and only if the URV

is rank-revealing. The bases obtained from the TDULV are given by the

�rst columns of the orthogonal matrices UJ

m

and V J

n

.
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