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Abstract

A new backward stable, structure preserving method of complexityO(n

3

) is presented

for computing the stable invariant subspace of a real Hamiltonian matrix and the stabiliz-

ing solution of the continuous-time algebraic Riccati equation. The new method is based

on the relationship between the invariant subspaces of the Hamiltonian matrix H and

the extended matrix

�

0 H

H 0

�

and makes use of the symplectic URV-like decomposition

that was recently introduced by the authors.
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1 Introduction

It is a well accepted fact in numerical analysis that a numerical algorithm should reect as

many of the structural properties of the physical problem or the resulting mathematical model.

For the solution of eigenvalue problems this means that use of the symmetry structures of

the matrix or the spectrum is made. While for symmetric matrices this is relatively straight

forward and well established [25], for other structures this is not the case. In the last ten

years Bill Gragg and his co-workers (see, e.g., [3, 13, 14]) have made large contributions to

the much more complicated orthogonal and unitary eigenvalue problems.

In this paper we now discuss another structured eigenvalue problem, the one for Hamilto-

nian matrices. It is a long-standing open problem [24] to compute the eigenvalues and the

Lagrangian invariant subspaces (in particular the stable one) of Hamiltonian matrices via a

�
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method that is of complexity O(n

3

) and numerically strongly backward stable (in the sense

of [6]), i.e., it is not only backward stable but the computed eigenvalues (subspaces) are the

exact eigenvalues (subspaces) of a nearby Hamiltonian matrix. For completeness we recall

the following de�nition.

De�nition 1.1 Let J :=

"

0 I

n

�I

n

0

#

, where I

n

is the n� n identity matrix.

a) A matrix H 2 R

2n�2n

is called Hamiltonian i� (HJ)

T

= HJ. The Lie algebra of

Hamiltonian matrices in R

2n�2n

is denoted by H

2n

. We denote the subset of H

2n

consisting of Hamiltonian matrices that have no eigenvalues on the imaginary axis by

H

�

2n

and by H

0

2n

the set of Hamiltonian matrices, for which all the eigenvalues on

the imaginary axis have even algebraic multiplicity. Matrices H 2 H

2n

have the form

"

F G

H �F

T

#

, where F;G;H 2 R

n�n

, G = G

T

, and H = H

T

.

b) A matrix S 2 R

2n�2n

is called symplectic i� SJS

T

= J. The Lie group of symplectic

matrices in R

2n�2n

is denoted by S

2n

.

c) The group of orthogonal matrices in R

n�n

is denoted by U

n

.

d) A matrix U 2 R

2n�2n

is called orthogonal symplectic i� U 2 S

2n

\ U

2n

. The

Lie group of orthogonal symplectic matrices in R

2n�2n

is denoted by US

2n

. Matrices

U 2 US

2n

have the form U =

"

U

1

U

2

�U

2

U

1

#

, where U

1

; U

2

2 R

n�n

.

The reason for the large interest in the solution of the Hamiltonian eigenvalue problem is

its intimate relationship to the solution of the continuous-time algebraic Riccati equation

0 = F

T

X +XF +H �XGX; (1)

where F;G;H are the blocks in H and X is a real n� n symmetric matrix. It is well-known,

that if X is symmetric and the columns of the matrix

"

I

n

�X

#

span an invariant subspace of

H then X solves (1), e.g., [19, 24, 20, 23, 18].

Paige/Van Loan [24] showed that if H 2 H

�

2n

, then it has a Hamiltonian Schur-form, i.e.

there exist a matrix Q 2 US

2n

such that

Q

T

HQ =

"

T N

0 �T

T

#

; (2)

where T is quasi upper triangular and N = N

T

. The �rst n columns of Q then span the

desired Lagrangian subspace.

Lin and Ho [21] extended this result to the case thatH has eigenvalues on the imaginary axis.

In this case it is necessary but not su�cient for the existence of a Lagrangian subspace that

the eigenvalues with zero real part have even algebraic multiplicity. But even if a Lagrangian

subspace exists it is not always the case that it is spanned by the columns of a matrix of the

form

"

I

n

�X

#

, see [18] for details.
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Example 1.2 If H = J 2 US

4

\H

4

then there does not exist a matrix Q 2 US

4

, such that

Q

T

HQ =

"

T N

0 �T

T

#

;

since Q

T

JQ = J . But using a non-symplectic permutation matrix

^

Q =

2

6

6

6

4

1 0 0 0

0 0 1 0

0 1 0 0

0 0 0 1

3

7

7

7

5

we obtain that

^

Q

T

J

^

Q =

2

6

6

6

4

0 1 0 0

�1 0 0 0

0 0 0 1

0 0 �1 0

3

7

7

7

5

is in Hamiltonian Schur-form. Note that there

exists no symmetric solution to (1).

Remark 1.3 Example 1.2 shows that Hamiltonian Schur-forms may exist, even if the trans-

formation matrices are not symplectic. This does not contradict the result, that the only set

of similarity transformations that leave H

2n

invariant is S

2n

(e.g. [7]), since in this case and

also in the case that we study later in this paper, the Hamiltonian matrix has a special struc-

ture, in particular the diagonal blocks are 0. We will, therefore, in contrast to the existing

literature require for a Hamiltonian Schur form only the existence of U 2 U

2n

such that

U

T

HU =

"

T N

0 �T

T

#

; (3)

i.e., U need not be symplectic.

Unfortunately, the numerical computation of the Hamiltonian Schur form via a strongly

backward stable O(n

3

) method has been an open problem since its introduction. Many

attempts have been made to solve this problem, see [8, 20, 23] and the references therein,

but only in special cases a satisfactory solution has been obtained [9, 10]. Furthermore it has

been shown in [1] that a modi�cation of standard QR-like methods is in general hopeless, due

to the missing reduction to a Hessenberg{like form. For this reason other methods like the

multishift-method of [2] were developed that do not follow the direct line of a standard QR-

like method. The multishift method is in principle a satisfactory solution, but unfortunately

it sometimes has convergence problems, in particular for large n.

Recently the authors have proposed a method to compute the eigenvalues (but not the

invariant subspaces) of Hamiltonian matrices using a new approach via non-similarity trans-

formations. This new method is based on the following symplectic URV-like decomposition:

Lemma 1.4 (Symplectic URV Decomposition) Let H 2 H

2n

, then there exist U

1

, U

2

2

US

2n

such that

H = U

2

"

H

t

H

r

0 �H

T

b

#

U

T

1

; (4)

where H

t

; H

r

; H

b

2 R

n�n

, H

t

is upper triangular and H

b

is quasi upper triangular (diagonal

blocks of sizes 1� 1 or 2� 2). Moreover,

H = JH

T

J = U

1

"

H

b

H

T

r

0 �H

T

t

#

U

T

2

(5)
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and the positive and negative square roots of the eigenvalues of H

t

H

b

are the eigenvalues of

H.

Proof. See [5].

Using this URV-like decomposition the authors presented in [5] a new method to compute

the eigenvalues of a Hamiltonian matrix. This is a generalization of the square-reduced

method of Van Loan [28] but in contrast to that method it achieves the full possible accuracy.

There have also been several attempts to build a method for the computation of invariant

subspaces on the square reduced approach [30, 31], but so far none of these approaches lead

to a numerically stable procedure.

In this paper we now present a new idea that is based on the new eigenvalue method of [5]

and yields a new method that is not only backward stable, and of complexity O(n

3

), but also

structure preserving.

The key idea for this new method is to employ the relationship between the eigenvalues

and invariant subspaces of H and the extended matrix

"

0 H

H 0

#

: In principle it can be

applied also to arbitrary matrices and it gives a new way to determine the sign function of

A or the positive square root of A

2

, [26, 16], but for general matrices it will not be e�cient.

For Hamiltonian matrices, however, the new idea can signi�cantly exploit the structure to be

e�cient.

The paper is organized as follows: In Section 2 we develop the general theoretical back-

ground for the new algorithm and in Section 3 we then specialize these results to the Hamil-

tonian case and describe the new procedure. An error analysis is given in Section 4 and

numerical examples are presented in Section 5. Some algorithmic details for the new proce-

dure are given in the appendix.

We use the following notation: The spectrum (including multiple eigenvalues) of a matrix

A 2 R

n�n

is denoted by �(A). The subsets of �(A) of eigenvalues with positive, zero, and

negative real parts, respectively, are denoted by �

+

(A), �

0

(A), and �

�

(A), respectively. The

associated invariant subspaces of A corresponding to these subsets of eigenvalues are denoted

by Inv

+

(A), Inv

0

(A), Inv

�

(A), respectively. Finally jj�jj refers to the spectral norm.

2 Theoretical Background

In this section we give the theoretical background for our new method. This approach can also

be applied to general matrices, so we present it in general and then show how it specializes

for Hamiltonian matrices in the next section. Let A 2 R

n�n

and consider the eigenstructure

of the extended matrix

B =

"

0 A

A 0

#

: (6)

Let

^

I =

p

2

2

"

I

n

�I

n

I

n

I

n

#

2 US

2n

, then

^

I

T

B

^

I =

"

A 0

0 �A

#

: (7)

This implies the following relationship between the spectra of A and B.
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�(B) = �(A) [ �(�A);

�

0

(B) = �

0

(A) [ �

0

(A); (8)

�

+

(B) = �

+

(A) [ �

+

(�A) = �

+

(A) [ (��

�

(A)) ;

�

�

(B) = �

�

(A) [ �

�

(�A) = (��

+

(A))[ �

�

(A) = � �

+

(B):

(Note that in the spectra we count eigenvalues with their algebraic multiplicities.) We obtain

the following relations for the invariant subspaces of A and B.

Theorem 2.1 Let A 2 R

n�n

and B 2 R

2n�2n

be related as in (6) and let

"

Q

1

Q

2

#

2 R

2n�n

,

Q

1

; Q

2

2 R

n�n

, have orthonormal columns, such that

B

"

Q

1

Q

2

#

=

"

Q

1

Q

2

#

R; (9)

where

�

+

(B) � �(R) � �

+

(B) [ �

0

(B): (10)

Then

rangefQ

1

+Q

2

g = Inv

+

(A) +N

1

; where N

1

� Inv

0

(A); (11)

rangefQ

1

�Q

2

g = Inv

�

(A) +N

2

; where N

2

� Inv

0

(A): (12)

Moreover, if we partition R as

R =

"

R

11

R

12

0 R

22

#

; where �(R

11

) = �

+

(B); (13)

and, accordingly, Q

1

=

h

Q

11

Q

12

i

, Q

2

=

h

Q

21

Q

22

i

, then

B

"

Q

11

Q

21

#

=

"

Q

11

Q

21

#

R

11

; (14)

and there exists an orthogonal matrix Z such that

p

2

2

(Q

11

+ Q

21

) =

h

0 P

+

i

Z;

p

2

2

(Q

11

� Q

21

) =

h

P

�

0

i

Z; (15)

where P

+

, P

�

are orthogonal bases of Inv

+

(A), Inv

�

(A), respectively.

Proof. Identity (9) implies that AQ

2

= Q

1

R and AQ

1

= Q

2

R. Hence

A(Q

1

+Q

2

) = (Q

1

+ Q

2

)R; A(Q

1

�Q

2

) = (Q

1

� Q

2

)(�R):

By (10) we have

rangefQ

1

+ Q

2

g � Inv

+

(A) + Inv

0

(A); (16)

rangefQ

1

� Q

2

g � Inv

�

(A) + Inv

0

(A): (17)
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Since �

+

(B) � �(R), we may assume w.l.o.g. that R is in the form (13) and that we have

(14). With the same argumentation used to derive (16) and (17) we get

rangefQ

11

+ Q

21

g � Inv

+

(A); rangefQ

11

� Q

21

g � Inv

�

(A):

If R

11

2 R

p�p

, then dim Inv

+

(A) + dim Inv

�

(A) = p: Hence,

rank(Q

11

+Q

21

) + rank(Q

11

�Q

21

) � p:

On the other hand, with

p

2

2

"

Q

11

+ Q

21

Q

11

� Q

21

#

=

^

I

"

Q

11

Q

21

#

; (18)

and using that

^

I and

"

Q

11

Q

21

#

are orthogonal, we obtain that

rank(Q

11

+Q

21

) + rank(Q

11

�Q

21

) � rank

"

Q

11

+Q

21

Q

11

�Q

21

#

= p:

Hence, rank(Q

11

+Q

21

) + rank(Q

11

�Q

21

) = p and since it is clear that rangefQ

11

+Q

21

g \

rangefQ

11

� Q

21

g = f0g, it follows that

rangefQ

11

+Q

21

g = Inv

+

(A); rangefQ

11

�Q

21

g = Inv

�

(A): (19)

Combining this with (16), (17) we obtain (11) and (12).

Now let Z 2 U

p

such that

p

2

2

(Q

11

�Q

21

)Z

T

=

h

P

�

0

i

;

and P

�

has full column rank, i.e., the columns of P

�

form a basis of Inv

�

(A). De�ne

C :=

p

2

2

"

Q

11

+ Q

21

Q

11

� Q

21

#

Z

T

=:

"

P

11

P

+

P

�

0

#

;

then from (18), C is orthonormal, so P

+

must be orthonormal, i.e., P

T

+

P

+

= I . It is obvious

that rankP

+

= p�rank P

�

= p�dim Inv

�

(A) = dim Inv

+

(A): Thus, the columns of P

+

form

an orthogonal basis of Inv

+

(A). With (19) we get

Inv

+

(A) = rangefP

+

g = rangef

h

P

11

P

+

i

g:

Thus, there must exist a matrix

^

Z , such that P

11

= P

+

^

Z. Again, since C is orthonormal,

we have P

T

11

P

+

= 0; which implies 0 =

^

Z

T

P

T

+

P

+

=

^

Z

T

, i.e., P

11

= 0. Therefore P

�

is also

orthonormal and we have (15).

Remark 2.2

a) If in Theorem 2.1, the assumption of

"

Q

1

Q

2

#

having orthonormal columns is relaxed to

assuming full column rank, then we still obtain results analogous to (12){(14).
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b) The number of columns of

"

Q

1

Q

2

#

(or the size of R) can be chosen in the interval

[p; 2n� p], where p = dim Inv

+

(A) + dim Inv

�

(A), i.e., the spectrum of R may contain

any number of eigenvalues from �

0

(B) as long as these admit a real invariant subspace

of B.

c) If we just assume that �

�

(R) = ; instead of (10), we only obtain (16) and (17). If

�(R) � �

+

(B), then rangefQ

1

+ Q

2

g � Inv

+

(A) and rangefQ

1

� Q

2

g � Inv

�

(A).

If A has no purely imaginary eigenvalues then we have the following corollary as a direct

consequence of Theorem 2.1.

Corollary 2.3 Under the hypotheses of Theorem 2.1 and assuming further that �

0

(A) = ;,

there exists Z 2 U

n

such that

p

2

2

(Q

1

+Q

2

) =

h

0 P

+

i

Z;

p

2

2

(Q

1

�Q

2

) =

h

P

�

0

i

Z; (20)

where P

+

, P

�

are orthogonal bases of Inv

+

(A) and Inv

�

(A), respectively.

The above results give a direct relationship between a matrix, its sign function, and the

square root of its square. To see this, assume that �

0

(A) = ;. Then there exists a nonsingular

matrix X such that

A = X

"

T

1

0

0 T

2

#

X

�1

;

where T

1

is a k � k matrix, �(T

1

) = �

+

(A) and �(T

2

) = �

�

(A). The matrix

X

"

I

k

0

0 �I

n�k

#

X

�1

is the sign function matrix of A; denoted by Sign(A), (e.g. [26, 16] ), and the matrix

X

"

T

1

0

0 �T

2

#

X

�1

is the positive square root of A

2

, denoted by Sqrt(A

2

), see e.g., [17].

The matrices A, Sign(A), Sqrt(A

2

) commute, and

Sign(A)

2

= I

n

; (21)

A Sign(A) = Sqrt(A

2

); A = Sign(A) Sqrt(A

2

); (22)

see [16]. Also we have [26, 30, 31]

rangefSign(A) + I

n

g = rangefA+ Sqrt(A

2

)g = Inv

+

(A); (23)

rangefSign(A)� I

n

g = rangefA� Sqrt(A

2

)g = Inv

�

(A): (24)

Theorem 2.4 Let A, B, Q

1

, Q

2

, R be as in Theorem 2.1. If �

0

(A) = ;, then Q

1

and Q

2

are nonsingular, and

Sign(A) = Q

1

Q

�1

2

= Q

2

Q

�1

1

;

Sqrt(A

2

) = Q

1

RQ

�1

1

= Q

2

RQ

�1

2

:

(25)
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Proof. We can rewrite the equations of (22) as

B

"

I

n

Sign(A)

#

=

"

I

n

Sign(A)

#

Sqrt(A

2

):

Then

�(Sqrt(A

2

)) = �

+

(B) = �(R);

and hence both

"

Q

1

Q

2

#

,

"

I

n

Sign(A)

#

span Inv

+

(B).

Since Inv

+

(B) is unique, there must be a nonsingular matrix Z such that

"

I

n

Sign(A)

#

=

"

Q

1

Q

2

#

Z; i.e., Q

1

Z = I

n

; Q

2

Z = Sign(A):

By (21), Sign(A) is nonsingular. Thus Q

1

and Q

2

are nonsingular and Sign(A) = Q

2

Q

�1

1

.

Using Sign(A) = Sign(A)

�1

we also get Sign(A) = Q

1

Q

�1

2

.

From (9) we obtain AQ

2

= Q

1

R and AQ

1

= Q

2

R and applying (22)

Sqrt(A

2

) = A Sign(A) = AQ

2

Q

�1

1

= Q

1

RQ

�1

1

= AQ

1

Q

�1

2

= Q

2

RQ

�1

2

:

Remark 2.5 If �

0

(A) 6= ;, then Sign(A) and Sqrt(A

2

) are not de�ned, but Q

1

, Q

2

and R

always exist. These matrices can be considered as generalizations of Sign(A) and Sqrt(A

2

).

Note further that the results in Theorem 2.1 generalize the formulas (23) and (24).

The results in this section indicate how to obtain a numerical method for the computation

of the invariant subspaces Inv

+

(A) and Inv

�

(A) via the Schur form of B. In general, this is

not a suitable method, because we can easily compute invariant subspaces by �rst forming

the Schur form of A and then reordering the eigenvalues. However, when this approach is

applied to real Hamiltonian matrices, then it turns out to be very useful as we will show in

the following sections.

3 Application to Hamiltonian Matrices

In this section we discuss how the general ideas of the previous section specialize to the case of

Hamiltonian matrices. We will in general assume that H 2H

�

2n

and we will point out where

the results hold in a more general situation like H 2 H

0

2n

. We consider the block matrix

B =

"

0 H

H 0

#

: (26)

Observe that

~

B := diag(I

2n

; J

�1

)B diag(I

2n

; J) 2 H

�

4n

, since H 2 H

�

2n

implies that HJ and

J

�1

H = J

T

H are symmetric and by (8) it follows that �

0

(

~

B) = ;.

We have the following main result which we prove constructively.

8



Theorem 3.1 Let H 2 H

0

2n

and B as in (26). Then there exists U 2 U

4n

such that

U

T

BU =

"

R D

0 �R

T

#

=: R; (27)

is in Hamiltonian Schur form and �

�

(R) = ;: Furthermore, if H 2 H

�

2n

, then R has only

eigenvalues with positive real part. Moreover, U =

^

UP

~

U with

~

U 2 US

4n

,

P =

2

6

6

6

4

I

n

0 0 0

0 0 I

n

0

0 I

n

0 0

0 0 0 I

n

3

7

7

7

5

;

and

^

U = diag(U

1

; U

2

), where U

1

; U

2

2 US

2n

.

Proof. We will make use of the symplectic URV decompositions of H. By Lemma 1.4 there

exist U

1

; U

2

2 US

2n

, such that

H = U

2

"

H

t

H

r

0 �H

T

b

#

U

T

1

; (28)

H = U

1

"

H

b

H

T

r

0 �H

T

t

#

U

T

2

; (29)

where H

t

is upper triangular and H

b

is quasi-upper triangular. Taking

^

U := diag(U

1

; U

2

), we

have

B

1

:=

^

U

T

B

^

U =

2

6

6

6

4

0 0 H

b

H

T

r

0 0 0 �H

T

t

H

t

H

r

0 0

0 �H

T

b

0 0

3

7

7

7

5

: (30)

Using the block form of P ,

B

2

:= P

T

B

1

P =

2

6

6

6

4

0 H

b

0 H

T

r

H

t

0 H

r

0

0 0 0 �H

T

t

0 0 �H

T

b

0

3

7

7

7

5

is Hamiltonian and block upper triangular. Let U

3

=

"

U

11

U

12

U

21

U

22

#

2 U

2n

be such that

U

T

3

"

0 H

b

H

t

0

#

U

3

=:

"

� �

0 ��

#

; (31)

is in real Schur form with �, � 2 R

n�n

quasi upper triangular and

�(�) = �(�); �

�

(�) = ;: (32)

Then

B

3

:=

"

U

3

0

0 U

3

#

T

B

2

"

U

3

0

0 U

3

#

=

2

6

6

6

4

� � �

1

�

2

0 �� �

T

2

�

3

0 0 ��

T

0

0 0 ��

T

�

T

3

7

7

7

5

: (33)
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Note that B

3

is already in Hamiltonian Schur form. The order of the eigenvalues on the block

diagonal may, however, be not as we require. But using the reordering procedure of Byers

[9, 10], there exists an orthogonal symplectic matrix V :=

2

6

6

6

4

I

n

0 0 0

0 V

1

0 V

2

0 0 I

n

0

0 �V

2

0 V

1

3

7

7

7

5

2 US

4n

such that

R := V

T

B

3

V =

2

6

6

6

4

�

~

� �

1

~

�

2

0

~

�

~

�

T

2

~

�

3

0 0 ��

T

0

0 0 �

~

�

T

�

~

�

T

3

7

7

7

5

: (34)

is in Hamiltonian Schur formwith the required eigenvalue reordering and

~

U := diag(U

3

; U

3

)V 2

US

4n

.

Remark 3.2 The transformation matrix U

3

in the proof of Theorem 3.1 can be obtained in

an e�cient way by exploiting the structure of

"

0 H

b

H

t

0

#

, recalling that H

b

is already quasi-

upper triangular and H

t

is upper triangular. For details of this reduction see the appendix.

If we partition U :=

"

U

11

U

12

U

21

U

22

#

, U

ij

2 R

2n�2n

, then using the structures of the matrices

^

U , P , U

3

and V we obtain

U

11

= U

2

"

U

11

U

12

V

1

0 �U

12

V

2

#

; U

21

= U

1

"

U

21

U

22

V

1

0 �U

22

V

2

#

: (35)

By Theorem 2.1 we have

rangefU

11

� U

21

g = Inv

�

(H) +N

1

; rangefU

11

+ U

21

g = Inv

+

(H) +N

2

; (36)

where N

1

, N

2

� Inv

0

(H): Clearly, if H 2 H

�

2n

then, since Inv

0

(H) = ;, we have computed

the required subspace.

The construction in the proof of Theorem 3.1 leads to the following algorithm for computing

the desired (stable) invariant subspace of a Hamiltonian matrix H 2 H

�

2n

. The computation

of the unstable invariant subspace can be done simultaneously.

Algorithm 1 This algorithm computes the Lagrangian invariant subspace of a Hamiltonian

matrix H 2 H

�

2n

, corresponding to the eigenvalues in the left half plane.

Input: A Hamiltonian matrix H 2 H

�

2n

.

Output: Y 2 R

2n�n

, with Y

T

Y = I

n

, rangefY g = Inv

�

(H).

Step 1 Apply Algorithm 2 of [5] to H and compute the symplectic URV decomposition,

H := U

2

"

H

t

H

r

O �H

T

b

#

U

T

1

; U

1

; U

2

2 US

2n

:

Step 2 Determine U

3

, � as in (31). Compute �

3

as in (33).

10



Step 3 Compute V from the orthogonal symplectic reordering scheme of Byers [10].

Step 4 Form U

11

, U

21

as in (35). Set

^

Y :=

p

2

2

(U

11

� U

21

). Compute Y , an orthogonal

basis of rangef

^

Y g, using any numerically stable orthogonalization scheme, for example

a rank-revealing QR-decomposition; see, e.g., [11].

End

Remark 3.3 In the last step of Algorithm 1, a QR factorization is usually su�cient to

determine the required invariant subspace because of (20). But in general it is more reliable

to use a rank-revealing QR-decomposition, see e.g. [11].

We have estimated the computational cost for this algorithm under the following assump-

tions. We assume that the periodic QR-iteration needs an average of two iterations per

eigenvalue, that the diagonal blocks in H

b

are all 2 � 2, that we used a rank-revealing QR

decomposition in Step 4 and the method described in the appendix in Step 2. The op counts

for the four steps are given in Table 1.

Step 1 2 3 4 total

ops 103 n

3

9 n

3

9 n

3

42 n

3

163 n

3

Table 1: Flop counts for Algorithm 1

These numbers compare with 203n

3

ops for the computation of the same invariant subspace

via the standard QR-algorithm as suggested in [19].

The storage requirement for this algorithm is about 9n

2

, a little more than for the standard

QR algorithm.

Remark 3.4 Up to now we have discussed only the computation of the stable invariant

subspace of the Hamiltonian matrix and not the solution of algebraic Riccati equation (1),

since the invariant subspace computation is more general and can also be used in other

applications. Clearly we can obtain the stabilizing solution of the Riccati equation from the

invariant subspace but it is also possible to get it directly from

^

Y . As both, range(

^

Y ) and

range

 "

I

�X

#!

form a basis of Inv

�

(H) and moreover, Inv

�

(H) is isotropic with respect

to the inner product de�ned by J =

"

0 I

�I 0

#

(see, e.g., [18]), we have

"

I

�X

#

T

JY =

h

X I

n

i

^

Y = 0:

Let

^

Y =

"

^

Y

1

^

Y

2

#

,

^

Y

1

;

^

Y

2

2 R

n�2n

, then X

^

Y

1

= �

^

Y

2

. The solution X can thus be computed

directly by solving this overdetermined, consistent set of linear equations. In this case it is

not necessary to explicitly form an orthogonal basis for range(

^

Y ) as in Step 4 of Algorithm 1.
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Remark 3.5 By Remark 2.2 c), as long as �(R) � �

+

(B), rangefQ

1

� Q

2

g � Inv

�

(A)

regardless of the size of R. So in Algorithm 1 we can easily check whether

rangefU

2

"

U

11

0

#

� U

1

"

U

21

0

#

g = Inv

�

(H)

after we have �nished Step 2. If the subspace is satisfactory, then we may stop the algorithm

after Step 2, otherwise we continue the process. In general, however, it may happen that

rank(Q

1

� Q

2

) < dim Inv

�

(A), i.e., some basis vectors of the invariant subspace are missing,

or the computed bases are not accurate. We will demonstrate this phenomenon in some

examples in Section 5. If we stop after Step 2 then the computational cost reduces to 118n

3

ops and the storage requirement reduces to 8n

2

.

Remark 3.6 Algorithm 1 can also be applied to matrices with eigenvalues on the imaginary

axis. But in this case it is not clear which invariant subspace we wish to compute, i.e., which of

the eigenvectors and principal vectors corresponding to purely imaginary eigenvalues should

be contained in the desired subspace. In this case it is also sometimes di�cult to decide in

�nite precision arithmetic whether a Lagrangian subspace exists, because this depends on

the partial multiplicities of the eigenvalues, see [18, 21]. These questions are currently under

investigation.

4 Error Analysis

In this section we present an error analysis for Algorithm 1 applied to matrices in H

�

2n

. We

show that the method computes the Hamiltonian Schur form of a (typically) non-Hamiltonian

matrix close to

~

B. This is not quite what we would like to have. It would be better if the

matrix for which we obtain the Hamiltonian Schur form is Hamiltonian itself and it would be

ideal to compute the Hamiltonian Schur form of H directly, without having to use B or

~

B.

How to get these better methods is still an open problem.

In the following we use Sep(A;B) := min

X 6=0

jjAX�XBjj

jjX jj

, where jj : jj is the spectral norm,

and by � we denote the machine precision. We �rst introduce several lemmata.

Lemma 4.1 Suppose that H 2 H

�

2n

has the Hamiltonian Schur form

Q

T

HQ =

"

T N

0 �T

T

#

with �(T ) = �

�

(H). Let P =

"

P

1

P

2

�P

2

P

1

#

2 US

2n

be such that

P

T

"

�T

T

0

N T

#

P =

"

�

^

T

T

^

N

0

^

T

#

with �(

^

T) = �(T ) = �

�

(H). Let

Q :=

p

2

2

"

Q 0

0 Q

#

2

6

6

6

4

I

n

0 I

n

0

0 I

n

0 �I

n

�I

n

0 I

n

0

0 I

n

0 I

n

3

7

7

7

5

2

6

6

6

4

I

n

0 0 0

0 P

1

0 P

2

0 �P

2

0 P

1

0 0 I

n

0

3

7

7

7

5

; (37)
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then

Q

T

BQ =

2

6

6

6

4

�T 0 N 0

0 �

^

T

T

0

^

N

0 0 T

T

0

0 0 0

^

T

3

7

7

7

5

=:

"

M S

0 �M

T

#

2 H

�

4n

: (38)

Proof. The proof follows by direct calculation.

Lemma 4.2 Let M be as in (38) then

� := Sep(M

T

;�M) = minfSep(T

T

;�T ); Sep(

^

T;�

^

T

T

)g: (39)

Proof. Since �(M) = �

+

(M), applying the results in [15], we have Sep(M

T

;�M) = 1= jjX jj,

whereX is the solution of the Lyapunov equationM

T

X+XM = I

2n

. SinceM = diag(�T;�

^

T

T

)

and �(T ) = �(

^

T) = �

�

(H), it follows that X = diag(X

1

; X

2

), where X

j

, j = 1; 2, are the

solutions of the Lyapunov equations T

T

X

1

+ X

1

T = �I

n

,

^

TX

2

+ X

2

^

T

T

= �I

n

. Then,

again from [15], we have Sep(T

T

;�T ) = 1= jjX

1

jj and Sep(

^

T;�

^

T

T

) = 1= jjX

2

jj. Hence,

jjX jj = maxfjjX

1

jj ; jjX

2

jjg implies (39).

Our next result gives a structured forward error analysis for the computation of the Hamil-

tonian Schur form of B.

Lemma 4.3 If R, U are the computed factors in the Hamiltonian Schur form (27) of B

determined by Algorithm 1, then

U

T

BU = R+ E ; (40)

where

E 2 H

4n

; jjEjj � c� jjHjj ; (41)

and c is some constant.

Proof. Using standard backward error analysis [29], since U

1

; U

2

2 U

n

, there exists

F =

"

F

11

F

12

F

21

F

22

#

2 R

2n�2n

; jjF jj � c

1

� jjHjj ;

such that (rewritten in a forward way)

U

T

2

HU

1

=

"

H

t

H

r

0 �H

T

b

#

+ F; U

T

1

HU

2

=

"

H

b

H

T

r

0 �H

T

t

#

+ JF

T

J:

So with

^

U , P as in Theorem 3.1,

P

T

^

U

T

B

^

UP = P

T

(B

1

+

"

0 JF

T

J

F 0

#

)P =: B

2

+ E

1

;

where B

2

2 H

0

4n

and

E

1

=

2

6

6

6

4

0 �F

T

22

0 F

T

12

F

11

0 F

12

0

0 F

T

21

0 �F

T

11

F

21

0 F

22

0

3

7

7

7

5

2 H

4n

13



satis�es jjE

1

jj = jjF jj � c

1

� jjHjj. Note that the matrix F in general is not Hamiltonian and

note further that we cannot guarantee that B

2

2 H

�

4n

, since perturbations may have moved

eigenvalues on the imaginary axis.

Steps 2 and 3 of Algorithm 1 only use 4n�4n orthogonal symplectic transformationmatrices

to transform B

2

to R. Thus, these steps satisfy a strong backward error analysis in the sense

of Bunch [6], i.e., there exists E

2

2 H

4n

, such that

~

U

T

B

2

~

U = R+ E

2

; jjE

2

jj � c

2

� jjB

2

jj � c

2

(1 + c

1

�)� jjHjj :

Hence U

T

BU = R+ E with E = E

2

+

~

U

T

E

1

~

U 2 H

4n

and

jjEjj � jjE

2

jj+ jjE

1

jj � c� jjHjj ;

where c = c

2

(1 + c

1

�) + c

1

.

Lemma 4.4 Consider the matrix R + E 2 H

4n

as in (40), (41), and let Q be as in (37).

Then there exists G 2 US

4n

, and Z

1

; Z

2

2 U

2n

such that

U = Q diag(Z

1

; Z

2

)G; (42)

where G is such that

G(R+ E)G

T

=

"

^

R

^

D

0 �

^

R

T

#

=:

^

R; �(

^

R) = �

+

(B); (43)

and Z

1

; Z

2

satisfy

"

Z

1

0

0 Z

2

#

^

R

"

Z

1

0

0 Z

2

#

T

=

"

M S

0 �M

T

#

:=M (44)

with M;S de�ned by (38).

Proof. Since H 2 H

�

2n

we have B 2 H

�

4n

. By (40) we have R+ E 2 H

�

4n

, so the Hamiltonian

Schur form in (43) and hence the transformation matrix G exist.

Let Z =

"

Z

11

Z

12

Z

21

Z

22

#

:= Q

T

UG

T

, then (38), (40), and (43) imply that Z

^

R = MZ

with M as in (44). By comparing the (2; 1) blocks on both sides and recognizing that

�(

^

R) = �(M) = �

+

(B), it follows that Z

21

= 0 and hence the orthogonality implies that

Z = diag(Z

1

; Z

2

) and thus the result follows.

Now we have prepared the ground for analysing the errors in the matrix Y computed by

Algorithm 1. In order to simplify the presentation, in the following we do omit the analysis for

Step 4 of Algorithm 1, since this analysis is well-known [12] and we assume that the columns

of Y form an orthogonal basis of the left singular vector subspace of

^

Y , associated with the

n largest singular values.

Theorem 4.5 Let M = Q

T

BQ =

"

M S

0 �M

T

#

2 H

�

4n

be the Hamiltonian Schur form of

B as in (38), let � = Sep(M

T

;�M) be as in (39), and let E be the forward error matrix as in

(40), (41). Furthermore, let Y be the exact output of Algorithm 1 and Y

�

the computed output
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in �nite arithmetic. Denote by � 2 R

n�n

the diagonal matrix of canonical angles between

rangefY g and rangefY

�

g. If

8 jjEjj (� + jjSjj) < �

2

; (45)

then

jjsin�jj < c

s

jjEjj

�

< c

s

c�

jjHjj

�

; (46)

with c

s

= 8

p

10 + 4

p

10 + 2

� 11:1.

Proof. Recognizing the block structures of

^

R and M, (44) implies

Z

1

^

RZ

T

1

=M; Z

2

^

RZ

T

2

=M; Z

1

^

DZ

T

2

= S:

Since Z

1

, Z

2

are orthogonal, it follows that

Sep(

^

R

T

;�

^

R) = �; jj

^

Djj = jjSjj : (47)

If we rewrite (43) as G

T

(

^

R +

^

E)G = R, where

^

E = �GEG

T

, then jj

^

Ejj = jjEjj. Partition

^

E :=

"

^

E

1

^

E

2

^

E

3

�

^

E

T

1

#

2 H

4n

comformally to

^

R. Then applying [27, Theorem V.2.5] it follows

from (45) that

Sep((

^

R+

^

E

1

)

T

;�(

^

R+

^

E

1

)) � Sep(

^

R

T

;�

^

R)� 2

�

�

�

�

�

�

^

E

1

�

�

�

�

�

�
� � � 2 jjEjj � 3�=4:

Inequality (45) implies that jjEjj jjSjj <

�

2

4

� � jjEjj. Adding jjEjj

2

on both sides we obtain

jjEjj (jjSjj+ jjEjj) <

(� � 2 jjEjj)

2

4

;

which implies that

jj

^

E

3

jj(jj

^

Djj+ jj

^

E

2

jj) <

(Sep(

^

R

T

;�

^

R)� 2jj

^

E

1

jj)

2

4

: (48)

Applying [27, Theorem V.2.7], there exists a symmetric matrix W 2 R

2n�2n

satisfying the

algebraic Riccati equation

(

^

R+

^

E

1

)

T

W +W (

^

R+

^

E

1

) +W (

^

D +

^

E

2

)W �

^

E

3

= 0; (49)

and

jjW jj � 2jj

^

E

3

jj=(� � 2jj

^

E

1

jj) <

8

3

jj

^

E

3

jj

�

<

1

3

; (50)

where the last inequality follows from (45). (Note that in [27], Sep is de�ned using the

Frobenius norm, the proof there is identical in spectral norm.) If we form

^

G :=

"

I

2n

�W

W I

2n

# "

(I

2n

+W

2

)

�

1

2

0

0 (I

2n

+W

2

)

�

1

2

#

;

then

^

G 2 US

4n

; and

~

R =

^

G

T

(

^

R+

^

E)

^

G :=

"

~

R

~

D

0 �

~

R

T

#
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with

~

R = (I +W

2

)

1

2

[

^

R+

^

E

1

+ (

^

D +

^

E

2

)W ](I +W

2

)

�

1

2

: (51)

We will prove that

^

G and G are essentially equal (up to a block orthogonal matrix which can

be incorporated into diag(Z

1

; Z

2

) and will not a�ect the results). Since

~

R is similar to R and

�

�

(R) = ; (R is the upper left block of R), it su�ces to prove that �(

~

R) = �

+

(

~

R), i.e., the

spectrum of

~

R remains in the right half complex plane.

Let t 2 [0; 1] and E(t) = t

^

E , then clearly E(t) sati�es (45). So from [27, Theorem V.2.11] for

every matrix

^

R+ E(t), there exist a W (t), the unique minimal norm solution of the Riccati

equation analogous to (49), satisfying

jjW (t)jj < 2t jjEjj =(� � 2t jjEjj) < 1=3:

Hence, constructing

^

G(t) analogously it follows that

^

R + E(t) is similar to a block upper

triangular Hamiltonian matrix

~

R(t) =

"

~

R(t)

~

D(t)

0 �

~

R(t)

T

#

, with

~

R(t) = (I+W (t)

2

)

1

2

R

s

(t)(I+

W (t)

2

)

�

1

2

, and R

s

(t) :=

^

R+ t

^

E

1

+ (

^

D+ t

^

E

2

)W (t): Condition (45) implies the bound (50) for

jjW (t)jj and then by elementary calculations it follows that for all t 2 [0; 1],

Sep(R

s

(t)

T

;�R

s

(t)) � � � 2

jjEjj (� + 2 jjSjj)

� � 2 jjEjj

>

�

2

> 0: (52)

The solutions W (t) of the algebraic Riccati equation analogous to (49) with parameters de-

pending on t is continuous in the coe�cents, e.g., [18, Theorem 11.2.1] and also the eigenvalues

of R

s

(t) and

~

R(t) are continuous in t.

Now suppose that some eigenvalues of

~

R =

~

R(1) are in the closed left half complex plane.

Then, by continuity, there must exist t

0

2 [0; 1] such that �

0

(

~

R(t

0

)) 6= ;. But this implies

Sep(R

s

(t

0

)

T

;�R

s

(t

0

)) = 0, which contradicts (52).

Thus it follows that

^

G = diag(V; V )G for some V 2 U

2n

and by incorporating this block

diagonal matrix into diag(Z

1

; Z

2

), we may assume that G =

^

G.

Recall the block forms of Q, Q, U and the relations (37), (42). If we partition Q =

h

Q

1

Q

2

i

with Q

1

; Q

2

2 R

2n�n

, then it follows that

^

Y := U

21

� U

11

= Q(

"

I

n

0

0 0

#

Z

1

�

"

0 0

I

n

0

#

Z

2

W )(I

2n

+W

2

)

�

1

2

= (

h

Q

1

0

i

Z

1

�

h

Q

2

0

i

Z

2

W )(I

2n

+W

2

)

�

1

2

:

=

h

Q

1

0

i

Z

1

+

h

Q

1

0

i

(Z

1

(I

2n

+W

2

)

�

1

2

� I

2n

)

�

h

Q

2

0

i

Z

2

W (I

2n

+W

2

)

�

1

2

=:

h

Q

1

0

i

Z

1

+ E

Y

:

Performing some elementary calculations and using (50) we obtain

jjE

Y

jj � 1�

1

q

1 + jjW jj

2

+

jjW jj

q

1 + jjW jj

2

<

3

p

10 + 12

3

p

10 + 10

jjW jj =: � jjW jj <

p

10 + 4

3

p

10 + 10

:
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This means that

^

Y can be considered as

h

Q

1

0

i

Z

1

perturbed by E

Y

. Let the singular

values of

^

Y be given by �

1

� � � � � �

2n

� 0. Since the singular values of

h

Q

1

0

i

Z

1

are 1

and 0 both with multiplicity n, we have

min

1�k�n

�

k

� 1� jjE

Y

jj ; max

n+1�k�2n

�

k

� jjE

Y

jj :

So

� := min

1�k�n

�

k

� max

n+1�k�2n

�

k

� 1� 2 jjE

Y

jj >

p

10 + 2

3

p

10 + 10

:

Using the assumptions on Y and inequality (50), it follows by a result of Wedin (e.g., [27,

Theorem V.4.4]) that

jjsin �jj �

jjE

Y

jj

�

<

�

�

jjW jj < c

s

jjEjj

�

which is the �rst inequality of (46). The second inequality follows then from (41).

Remark 4.6 Assumption (45) usually is needed with a factor 4 instead of 8 in the literature.

The factor 8 here is arti�cial, any other factor � 4 that guarantees that � > 0 in the proof of

Theorem 4.5 is su�cient.

Remark 4.7 Sep(T

T

;�T ) can be considered as a condition number for Inv

�

(H): It is not

di�cult to see that Sep(

^

T;�

^

T

T

) can be viewed as a condition number for Inv

+

(H).

If Sep

2

(T

T

;�T ) � Sep

2

(

^

T;�

^

T

T

), then the bound (46) is similar to the bound obtained

when the ideal strongly backwards stable algorithm would be used to compute the Hamilto-

nian Schur form. However, in general these two separations may be quite di�erent. Consider

the following example. Let

T =

"

�� 1

0 ��

#

; R =

"

�1 0

0 0

#

; H =

"

T R

O �T

T

#

:

Then

^

T =

"

��

�2�

p

1+4�

2

0 ��

#

:

If � is su�ciently small then Sep(T

T

;�T ) � 4�

3

, while Sep(

^

T;�

^

T

T

) � 2�: On the other

hand, our algorithm computes both, Inv

�

(H) and Inv

+

(H), simultaneously. In this sense we

conclude that our bound is essentially optimal, since both bounds are available.

5 Numerical Examples

In this section we present the numerical results obtained by applying Algorithm 1 to the

problems of the benchmark collection for continuous-time algebraic Riccati equations [4] using

the default parameters given there. The solutions of the algebraic Riccati equations are

computed by solving the linear system XU

11

= �U

21

, where U

11

, U

21

are the (1; 1), (2; 1)

blocks of U as returned from our new algorithm.

All examples were computed using MATLAB version 4.2c on a PC Pentium-s with IEEE

standard double precision arithmetic and machine precision � � 2:22 � 10

�16

. (Note that
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E

1

X

E

2

X

R

1

R

2

E

1

�

E

2

�

1 0 2:1� 10

�16

0 2:3� 10

�15

2:2� 10

�16

7:1� 10

�9

2 4:7� 10

�15

1:6� 10

�15

3:9� 10

�13

1:9� 10

�13

8:9� 10

�16

2:4� 10

�15

3 1:4� 10

�14

8:5� 10

�14

2:9� 10

�15

9:5� 10

�15

4 9:0� 10

�15

2:6� 10

�14

3:6� 10

�15

4:4� 10

�15

5 7:3� 10

�14

7:1� 10

�14

3:7� 10

�13

6:4� 10

�14

6 1:3� 10

�4

9:1� 10

�7

1:6� 10

�8

5:2� 10

�10

7 8:3� 10

�5

5:3� 10

�4

3:3� 10

8

2:1� 10

9

6:7� 10

�16

1:0� 10

0

8 1:5� 10

�4

4:1� 10

�3

6:1� 10

�12

9:7� 10

�9

9 4:1� 10

�14

4:1� 10

�14

8:2� 10

�8

8:2� 10

�8

1:4� 10

�11

1:4� 10

�11

10 1:6� 10

�16

7:2� 10

�2

1:8� 10

�15

1:0� 10

0

2:7� 10

�17

1:5� 10

�2

11 2:1� 10

�8

2:1� 10

�8

2:5� 10

�9

6:0� 10

�15

4:0� 10

�10

4:9� 10

�16

12 5:7� 10

�4

1:2� 10

0

2:0� 10

16

5:9� 10

18

7:0� 10

�10

6:1� 10

�2

13 2:9� 10

�4

2:4� 10

�4

1:7� 10

�5

1:2� 10

�5

14 3:8� 10

�15

1:7� 10

�15

4:5� 10

�16

4:5� 10

�16

15 9:7� 10

�14

1:1� 10

�13

4:7� 10

�15

4:7� 10

�15

16 7:3� 10

�15

2:8� 10

�13

1:3� 10

�14

1:3� 10

�14

17 8:3� 10

�7

6:6� 10

�7

2:1� 10

3

1:8� 10

3

1:6� 10

�15

1:6� 10

�15

18 7:1� 10

�16

7:1� 10

�16

4:9� 10

�12

4:9� 10

�12

19 8:8� 10

�13

1:1� 10

�12

3:0� 10

�15

3:0� 10

�15

Table 2: Errors and Residuals of the Benchmark Examples

Example 20 from the benchmark collection is missing, since it requires more memory than

available in the used computing environment.)

The results are shown in Table 2. There, X denotes the exact solution (if known) and

^

X

the solution computed with our new method. Furthermore, E

X

:=

jj

^

X�X

jj

2

jjX jj

2

, provided X is

known; in Example 17, we use E

X

= jx̂

n;1

�x

n;1

j=jx

n;1

j as it is the only available information

about the exact solution. The 2-norm of the residual of the continuous-time algbraic Riccati

equation (1) is denoted by R. Let Y be an orthogonal basis for Y computed by Algorithm 1

(determined via a rank revealing QR decomposition of

^

Y ). If E

�

is the maximum eigenvalue

error in Y

T

HY , compared to �

�

(H) computed by the symplectic URV method of [5], then

E

�

can be viewed as a measure of the accuracy of the computed invariant subspace.

For each of the benchmark examples we ran the method twice, once the whole Algorithm 1

(superscript `1') and in the other case we stopped the algorithm after Step 2 (superscript `2')

as discussed in Remark 3.5.

We compared the results with the result obtained using the Schur vector method as proposed

in [19] and implemented in the MATLAB function are [22] and the multishift method as

described in [2]. We refrain from reproducing all the data here. In general, Algorithm 1

produces errors of the same order as the other two methods. For the problems of larger

dimension (Examples 15, 16, 18, 19), the new method produced the best results while the

multishift method su�ers from convergence problems and looses 1 to 3 orders of magnitude

compared to Algorithm 1. Note that in Examples 6 and 11, the residual increases if the new

18



method is not stopped after Step 2 while the residual after Step 2 is again of the same order

as for the other two methods.

The large residuals in Examples 7, 12 and 17 are due to badly scaled algebraic Riccati

equations. The relative errors obtained in these examples are in accordance with the condition

of the matrix U

11

which has to be factored in order to solve for X .

In Example 14, the solutions computed by Algorithm 1 and the Schur vector method are

both nonsymmetric and the eigenvalues of

^

X appear in complex conjugate pairs, while the

multishift method yields the required symmetric solution. However, the symmetric parts

(

^

X

T

+

^

X)=2 of the approximate solutions are also good approximations to X in this example,

in the sense that the residuals are still of the same order.

Also note that in Example 11 the Hamiltonian matrix has eigenvalues on the imaginary axis

causing the new method and the Schur vector method to loose half the number of signi�cant

digits while the multishift method computes the solution to full accuracy. From the other

examples with eigenvalues close to the imaginary axis it seems that the multishift algorithm

can handle this problem a little better (which can be explained by the fact that it is not

a�ected by the conditioning of Inv

+

(H), i.e., Sep(

^

T;�

^

T

T

)). On the other hand, the new

method overcomes the problems of the multishift method for growing dimensions while still

being substantially faster than the Schur vector method.

The method to stop after Step 2 of Algorithm 1 breaks down in Example 10. In this case,

one computes a basis of an invariant subspace of dimension one (while the desired subspace

has dimension two).

6 Conclusion

We have presented a new method for the computation of Lagrangian invariant subspaces of

real Hamiltonian matrices. By embedding the matrix into a specially structured Hamiltonian

matrix of double size, we can compute the desired subspace via a method that is not only

backward stable, but has a forward error of Hamiltonian structure and thus reects the

structure of the problem in a su�cient way.

The complexity of the method is less than that of the standard QR-algorithm with eigen-

value reordering. It works very well for problems in H

�

2n

and it can in principle also be

applied to problems with eigenvalues on the imaginary axis, but currently it is not clear

which subspace one should compute then.
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Appendix

In this Appendix we give an alternative method for the computation of U

3

in Step 2 of

Algorithm 1. This method makes use of the special structure of H

b

and H

t

. The symplectic

URV decomposition yields block-matrices H

t

= [H

t

ij

]

s�s

; H

b

= [H

b

ij

]

s�s

2 R

n�n

partitioned

analogously, where H

t

ii

, H

b

ii

are n

i

� n

i

, i = 1; 2; : : : ; s. We want to transform

"

0 H

b

H

t

0

#

to quasi upper triangular form using a �nite sequence of orthogonal tranformations. As in

the common reordering of the real Schur form using the Bartels-Stewart algorithm, e.g., [12],

we need to distinguish di�erent cases depending on the size (1� 1 or 2� 2) of the blocks we

treat. We have to solve the following elementary problems:

1. For nonnegative scalars K;L or 2�2 matrices K;L such that KL has a pair of complex

conjugate eigenvalues �nd an orthogonal matrix Z such that

Z

T

"

0 L

K 0

#

Z =:

"

T

1

T

3

0 �T

2

#

; (53)

with �(T

1

) = �(T

2

) and �

�

(T

1

) = ;.

In the 1� 1 case let

Z =

"

c s

�s c

#

;

with

c :=

s

L

L+K

; s := �

s

K

L+K

;

then

Z

T

"

0 L

K 0

#

Z =

"

p

KL L�K

0 �

p

KL

#

=:

"

T

1

T

3

0 �T

2

#

:

For the 2 � 2 case we �rst determine the eigenvalues with positive real parts of the

matrix

"

0 L

K 0

#

. They are a� ib, a > 0, with

a =

1

2

q

2

p

det(KL) + trace(KL);

b =

1

2

q

2

p

det(KL)� trace(KL):

We then apply the QR algorithm with double shifts a � ib (e.g. [12]) to

"

0 L

K 0

#

.

Since the matrix size is 4 � 4 and since the shifts are very close to the accurate ones,

usually one or two iterations are su�cient to get (53).

2. For a given matrix

"

T

1

0

T

3

�T

2

#

, where T

1

and T

2

are either 1� 1 or 2� 2, determine

an orthogonal matrix Z such that

Z

T

"

T

1

0

T

3

�T

2

#

Z =:

"

~

T

1

~

T

3

0 �

~

T

2

#

; (54)
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where �(T

1

) = �(

~

T

1

) and �(T

2

) = �(

~

T

2

). If both T

1

, T

2

are 1� 1, then we form

Z =

"

c s

�s c

#

;

with

c :=

T

1

+ T

2

q

T

2

3

+ (T

1

+ T

2

)

2

; s := �

T

3

q

T

2

3

+ (T

1

+ T

2

)

2

:

Then

Z

T

"

T

1

0

T

3

�T

2

#

Z =

"

T

1

�T

3

0 �T

2

#

:

If at least one of T

1

or T

2

is 2� 2, then we obtain (54) by applying the QR algorithm

with the eigenvalue(s) of �T

2

as the shift(s). Again one or two iterations are usually

su�cient.

Algorithm 2

Input: Real n� n matrices H

t

, H

b

with H

t

upper triangular and H

b

quasi upper triangular.

Output: U

3

2 U

2n

, � as in (31) and �

3

as in (33).

% Initialize U

3

.

Set U = I

2n

:=

"

U

11

U

12

U

21

U

22

#

.

FOR i = 1; : : : ; s

Set C(i : s) = 0, D(i : s) = H

b

(i; i : s), H

b

(i; i : s) = 0.

% Store � in H

b

.

FOR j = i; i� 1; : : : ; 1

IF j = i THEN

% Annihilate H

t

(j; j).

Take H

t

(j; j), D(i) as K, L of (53). Determine the orthogonal matrix

Z :=

"

Z

11

Z

12

Z

21

Z

22

#

;

such that

Z

T

"

0 L

K 0

#

Z =:

"

T

1

T

3

0 �T

2

#

;

ELSE

% Annihilate H

t

(j; i).

Take H

t

(j; i), C(i), H

b

(j; j) as T

3

, T

1

, T

2

in (54). Determine the orthogonal

matrix

Z :=

"

Z

11

Z

12

Z

21

Z

22

#

such that

Z

T

"

T

1

0

T

3

�T

2

#

Z =:

"

T

1

T

3

0 �T

2

#

:
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END IF

Set

C(i) := T

1

; D(j) := T

3

;

H

t

(j; i) := 0; H

b

(j; j) := T

2

;

C(i+ 1 : s) := Z

T

11

C(i+ 1 : s) + Z

T

21

H

t

(j; i+ 1 : s);

H

t

(j; i+ 1 : s) := Z

T

12

C(i+ 1 : s) + Z

T

22

H

t

(j; i+ 1 : s);

D(j + 1 : s) := Z

T

11

D(j + 1 : s)� Z

T

21

H

b

(j; j + 1 : s);

H

b

(j; j + 1 : s) := �Z

T

12

D(j + 1 : s) + Z

T

22

H

b

(j; j + 1 : s);

H

t

(1 : j � 1; i) := H

t

(1 : j � 1; i)Z

11

�H

b

(1 : j � 1; j)Z

21

;

H

b

(1 : j � 1; j) := �H

t

(1 : j � 1; i)Z

12

+H

b

(1 : j � 1; j)Z

22

;

U

11

(j : i; i) := U

11

(j : i; i)Z

11

+ U

12

(j : i; j)Z

21

;

U

12

(j : i; j) := U

11

(j : i; i)Z

12

+ U

12

(j : i; j)Z

22

;

U

21

(j : i; i) := U

21

(j : i; i)Z

11

+ U

22

(j : i; j)Z

21

;

U

22

(j : i; j) := U

21

(j : i; i)Z

12

+ U

22

(j : i; j)Z

22

:

END FOR j

END FOR i

% Form �

3

as in (33) and store it in H

r

.

H

r

:= U

T

22

H

r

U

12

, H

r

:= H

r

+H

T

r

:

END
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