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1. Introduction

The aim of the paper is to construct exact discretizations of two-point boundary

value problems

u 2 U :

1

Z

0

(u

0

v

0

+ b

!

(x) u

0

v + c

!

(x) u v) dx =

1

Z

0

f v dx; 8v 2 V;
(*)

where

U = fu(x) 2 W

1

2

(0; 1) : u(0) = u

0

; u(1) = u

1

g; V =

�

W

1

2

(0; 1);

with piecewise constant coe�cients b

!

(x); c

!

(x), c

!

(x) � 0, and piecewise con-

tinuous right-hand side functions f(x) on essentially arbitrary grids ! = fx

i

g

n

i=1

,

0 = x

0

< x

1

< x

2

< : : : < x

n

< x

n+1

= 1; h

i

= x

i

� x

i�1

> 0:

To do this, the coarsest possible grid ! must contain all points of the interval

(0; 1) at which at least one of the functions b

!

(x); c

!

(x) and f(x) is discontinuous.

Such grids, which can be re�ned arbitrary, are then called essentially arbitrary

grids !.

In our paper, we shall present the following results for essentially arbitrary grids.

(a) We generate a representation of the weak solution u(x) 2 W

2

2

(0; 1) of Prob-

lem (*) by local Green's functions.

(b) Making use of the representation of the W

2

2

(0; 1)-solution u(x), we then

explicitly show that Problem (*) is a two-point boundary value problem of

inverse isotone type.

(c) We construct exact discretizations of Problem (*) on essentially arbitrary

grids ! by Galerkin's method approach. For this, the proper basis func-

tions are de�ned by the local Green's functions, which yield completely

exponentially �tted discretizations. Furthermore, the tridiagonal system

matrices A of the resulting systems of linear equations Ay = r are in any

case irreducable M-matrices. In this way, the exact discretizations preserve

the inverse isotonicity of Problem (*).

(d) We show that jju(x)�u

h

(x)jj

C[0;1]

�  max

1�i�n

h

i

, where u

h

(x) is the ansatz of

the Galerkin method.

(e) We derive bounds for jj(D

�1

A)

�1

jj

1

independent of the grids !, which show

the stability of the derived exact discretizations. The positive diagonal

matrices D are de�ned by the basis functions.
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The paper is organized as follows.

In Section 2 we derive a representation of the weak solution of the two-point

boundary value Problem (*) with piecewise constant coe�cients b

!

(x), c

!

(x) and

piecewise continuous functions f(x) on ! by applying local Green's functions.

We show that the weak solutions may exhibit interior layers at points where its

coe�cient b

!

(x) of the �rst order derivative term is discontinuous, see [4], [6].

As a conclusion, we get that Problem (*) is boundary value problem of inverse

isotone type.

In Section 3 we generate exact discretizations on essentially arbitrary grids !

by Galerkin's method approach using proper basis functions. The resulting dis-

cretizations are of completely exponentially �tted type. This approach is known

from discretization methods for singularly perturbed boundary value problems

to derive uniformly convergent discretization methods, see [9], [8].

In Section 4 we compare the weak solutions u(x) with the ansatz for the Galerkin

method u

h

(x) to show that the ansatz converges to the weak solutions. In Section

5 we investigate the stability of the exact discretizations. It will be shown that

the row sum norm of the inverses of the tridiagonal system matrices D

�1

A are

uniformly bounded.

We begin by reviewing some ideas of the application of Green's functions G(x; �)

to represent the classical solution of two-point boundary value problems.

For b; c 2 R with c � 0, f(x) 2 C[0; 1] and u

0

; u

1

2 R, consider the two-point

boundary value problem

Lu = �u

00

+ b u

0

+ c u = f(x); 0 < x < 1;

u(0) = u

0

; u(1) = u

1

:

(1.1)

The characteristic equation ��

2

+b �+c = 0 for the di�erential equation Lu = 0

has the real roots

�

2

=

b�

p

b

2

+4c

2

� 0 � �

1

=

b+

p

b

2

+4c

2

:

It is obvious that

� = maxfjbj; cg > 0 () �

2

< �

1

;

� = maxfjbj; cg = 0 () �

2

= �

1

= 0:

(1.2)

Let w

0

(x); w

1

(x) be the solution of the two boundary value problems
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Lw

0

= 0; w

0

(0) = 1; w

0

(1) = 0;

Lw

1

= 0; w

1

(0) = 0; w

1

(1) = 1;

(1.3)

respectively, which are explicitly given by

� > 0 : w

0

(x) =

e

�

1

+�

2

x

�e

�

1

x+�

2

e

�

1

�e

�

2

; w

1

(x) =

e

�

1

x

�e

�

2

x

e

�

1

�e

�

2

;

� = 0 : w

0

(x) = 1 � x; w

1

(x) = x:

(1.4)

Observe that for � � 0

(a) w

0

(x) � 0; w

0

0

(x) < 0; 8x 2 [0; 1];

w

1

(x) � 0; w

0

1

(x) > 0; 8x 2 [0; 1];

(b) w

0

0

(0) + w

0

1

(0) � 0;

w

0

0

(1) + w

0

1

(1) � 0;

(c) W (x) =

8

>

<

>

:

(�

1

��

2

)e

(�

1

+�

2

)x

e

�

1

�e

�

2

> 0; � > 0;

1; � = 0;

(1.5)

where W (x) = w

0

(x)w

0

1

(x)�w

0

0

(x)w

1

(x) is the Wronskian of w

0

(x); w

1

(x).

Then, with the Green's function

G(x; �) =

8

>

<

>

:

1

W (�)

w

0

(x)w

1

(�); � < x;

1

W (�)

w

0

(�)w

1

(x); � � x;

(x; �) 2 [0; 1]� [0; 1]; (1.6)

the unique solution of the boundary value problem (1.1) has the representation

u(x) = u

0

w

0

(x) + u

1

w

1

(x) +

1

Z

0

G(x; �) f(�) d�

=

2

4

u

0

+

x

Z

0

w

1

(�)f(�)

W (�)

d�

3

5

w

0

(x) +

2

4

u

1

+

1

Z

x

w

0

(�)f(�)

W (�)

d�

3

5

w

1

(x);

(1.7)

where

u

0

(x) =

2

4

u

0

+

x

Z

0

w

1

(�)f(�)

W (�)

d�

3

5

w

0

0

(x) +

2

4

u

1

+

1

Z

x

w

0

(�)f(�)

W (�)

d�

3

5

w

0

1

(x);

u

00

(x) =

2

4

u

0

+

x

Z

0

w

1

(�)f(�)

W (�)

d�

3

5

w

00

0

(x) +

2

4

u

1

+

1

Z

x

w

0

(�)f(�)

W (�)

d�

3

5

w

00

1

(x)� f(x):
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Hence, u(x) 2 C

2

[0; 1] for 8f(x) 2 C[0; 1].

We introduce the weak formulation of Problem (1.1). For this let

U = fu(x) 2 W

1

2

(0; 1) : u(0) = u

0

; u(1) = u

1

g;

V =

�

W

1

2

(0; 1);

(1.8)

where W

1

2

(0; 1);

�

W

1

2

(0; 1) are the Sobolev spaces

W

1

2

(0; 1) = fu(x) 2 L

2

(0; 1) with generalized u

0

(x) 2 L

2

(0; 1)g;

�

W

1

2

(0; 1) = fu(x) 2 W

1

2

(0; 1) : u(0) = u(1) = 0g:

This is a proper pair of su�ciently general function spaces which imply unique

solvable weak formulations of second order boundary value problems, see [3].

Problem (1.1) then takes the form: Find u 2 U such that

a(u; v) = (f; v); 8v 2 V; (1.9)

where

a(u; v) =

1

Z

0

(u

0

v

0

+ b u

0

v + c u v) dx;

(f; v) =

1

Z

0

f v dx:

(1.10)

We remark that for b 6= 0 the bilinear form a(u; v) is not symmetric and not

coercive.

Problem (1.9) has a unique solution u(x) 2 U and a straightforward calculation

shows that u(x) is given by formula (1.7).

Because of

w

0

(x) � 0; w

1

(x) � 0; 8x 2 [0; 1];

G(x; �) � 0; 8(x; �) 2 [0; 1]� [0; 1];

the boundary value problem (1.1) is of inverse isotone type, see [2]. Its weak

formulation (1.9) thus also exhibits this important property.

4



2. Representation of the weak solution of two-point boundary value

problems with piecewise constant coe�cients

Using local Green's functions, in the present section we shall derive a represen-

tation of the weak solution of two-point boundary value problems with piecewise

constant coe�cients and for piecewise continuous right-hand side functions f(x).

The coarsest set of grid points ! for the representation of the weak solution is

de�ned by the set of points fx

i

g

n

i=1

� (0; 1) at which the coe�cients b

!

(x); c

!

(x)

and f(x) are discontinuous. From the construction it is clear then that this set

of grid points can be extended to an essentially arbitrary irregular grid !.

Let ! = fx

i

g

n+1

i=0

be an arbitrary grid, where

0 = x

0

< x

1

< x

2

< : : : < x

n

< x

n+1

= 1;

h

i

= x

i

� x

i�1

> 0; i = 1; : : : ; n+ 1;

(2.1)

and

! = ! n fx

0

; x

n+1

g = ! n f0; 1g:

For the piecewise constant coe�cients b

!

(x); c

!

(x), assume that

b

!

(x)j

(x

i�1

;x

i

)

= b

i

2 R;

c

!

(x)j

(x

i�1

;x

i

)

= c

i

2 R; c

i

� 0;

(2.2)

for i = 1; : : : ; n+ 1.

Furthermore, let

f(x)j

(x

i�1

;x

i

)

2 C[x

i�1

; x

i

]; i = 1; : : : ; n+ 1:

Consider the following two-point boundary value problem with piecewise constant

coe�cients, where U; V are the function spaces introduced by (1.8).

Find u 2 U such that

a

!

(u; v) = (f; v); 8v 2 V; (2.3)

where

5



a

!

(u; v) =

1

Z

0

(u

0

v

0

+ b

!

(x) u

0

v + c

!

(x) u v) dx;

(f; v) =

1

Z

0

f v dx:

The assumptions imply that Problem (2.3) has an unique solution u 2 W

2

2

(0; 1),

where W

2

2

(0; 1) = fu(x) 2 L

2

(0; 1) : with generalized u

00

(x) 2 L

2

(0; 1)g, see [3].

Because the weak solution u(x) 2 W

2

2

(0; 1) of Problem (2.3) is a continuous

function on [0,1], let

u(x)j

[x

i�1

;x

i

]

= u

i

(x); i = 1; : : : ; n+ 1: (2.4)

In analogy to (1.7), we shall use the following ansatz

u

i

(x) = u(x

i�1

) w

i0

(x) + u(x

i

) w

i1

(x) +

x

i

Z

x

i�1

G

i

(x; �) f(�) d�;

(2.5)

i = 1; : : : ; n + 1, where G

i

(x; �) for (x; �) 2 [x

i�1

; x

i

] � [x

i�1

; x

i

] are the local

Green's functions.

We must determine the unknown values u(x

i

) for i = 1; : : : ; n, where u(x

0

) =

u(0) = u

0

, u(x

n+1

) = u(1) = u

1

are the given boundary values.

De�ne

L

i

w = �w

00

+ b

i

w

0

+ c

i

w; i = 1; : : : ; n+ 1:

The functions w

i0

(x); w

i1

(x) are then the solutions of the two boundary value

problems

L

i

w

i0

= 0; w

i0

(x

i�1

) = 1; w

i0

(x

i

) = 0;

L

i

w

i1

= 0; w

i1

(x

i�1

) = 0; w

i1

(x

i

) = 1;

(2.6)

respectively, which are easily available and generate the local Green's functions

G

i

(x; �).

Under the assumptions (2.2), the characteristic equations

�(�

i

)

2

+ b

i

�

i

+ c

i

= 0; (2.7)

for the di�erential equations L

i

w = 0 has the real roots
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�

i

2

=

b

i

�

p

b

2

i

+4c

i

2

� 0 � �

i

1

=

b

i

+

p

b

2

i

+4c

i

2

; i = 1; : : : ; n+ 1:

Let �

i

= maxfjb

i

j; c

i

g, we have

�

i

> 0 () �

i

2

< �

i

1

;

�

i

= 0 () �

i

2

= �

i

1

= 0:

For x 2 [x

i�1

; x

i

], we get

�

i

> 0 : w

i0

(x) =

e

x

i

�

i

1

+x�

i

2

� e

x�

i

1

+x

i

�

i

2

e

x

i

�

i

1

+x

i�1

�

i

2

� e

x

i�1

�

i

1

+x

i

�

i

2

;

w

i1

(x) =

e

x�

i

1

+x

i�1

�

i

2

� e

x

i�1

�

i

1

+x�

i

2

e

x

i

�

i

1

+x

i�1

�

i

2

� e

x

i�1

�

i

1

+x

i

�

i

2

;

�

i

= 0 : w

i0

(x) =

x

i

�x

h

i

;

w

i1

(x) =

x�x

i�1

h

i

;

(2.8)

and remark that �

i

> 0 implies

h

i

�

i

1

> h

i

�

i

2

() x

i

�

i

1

+ x

i�1

�

i

2

> x

i�1

�

i

1

+ x

i

�

i

2

:

For �

i

� 0, i = 1; : : : ; n+ 1, it is then immediately veri�ed that

(a) w

i0

(x) � 0; w

0

i0

(x) < 0; 8x 2 [x

i�1

; x

i

];

w

i1

(x) � 0; w

0

i1

(x) > 0; 8x 2 [x

i�1

; x

i

];

(b) w

0

i0

(x

i�1

) + w

0

i1

(x

i�1

) � 0;

w

0

i0

(x

i

) + w

0

i1

(x

i

) � 0;

(c) W

i

(x) = w

i0

(x)w

0

i1

(x)� w

0

i0

(x)w

i1

(x)

=

8

>

>

<

>

>

:

(�

i

1

��

i

2

)e

(x�x

i�1

)(�

i

1

+�

i

2

)

e

h

i

�

i

1

�e

h

i

�

i

2

> 0; �

i

> 0;

1

h

i

> 0; �

i

= 0;

8x 2 [x

i�1

; x

i

]:

(2.9)

Now we de�ne the local Green's functions G

i

(x; �) by
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G

i

(x; �) =

8

>

<

>

:

1

W

i

(�)

w

i0

(x)w

i1

(�); x

i�1

� � < x;

1

W

i

(�)

w

i0

(�)w

i1

(x); x � � � x

i

;

(2.10)

for 8(x; �) 2 [x

i�1

; x

i

]� [x

i�1

; x

i

], i = 1; : : : ; n+ 1.

We see that

G

i

(x; �) � 0 on [x

i�1

; x

i

]� [x

i�1

; x

i

];

G

i

(x; �) = G

i

(�; x) , b

i

= 0:

Thus, (2.5) becomes

u

i

(x) =

2

6

4

u(x

i�1

) +

x

Z

x

i�1

w

i1

(�)f(�)

W

i

(�)

d�

3

7

5

w

i0

(x) +

2

4

u(x

i

) +

x

i

Z

x

w

i0

(�)f(�)

W

i

(�)

d�

3

5

w

i1

(x);

(2:11)

and, furthermore, we have

u

0

i

(x) =

2

6

4

u(x

i�1

) +

x

Z

x

i�1

w

i1

(�)f(�)

W

i

(�)

d�

3

7

5

w

0

i0

(x) +

2

4

u(x

i

) +

x

i

Z

x

w

i0

(�)f(�)

W

i

(�)

d�

3

5

w

0

i1

(x);

(2:12)

u

00

i

(x) =

2

6

4
u(x

i�1

) +

x

Z

x

i�1

w

i1

(�)f(�)

W

i

(�)

d�

3

7

5
w

00

i0

(x) +

2

4

u(x

i

) +

x

i

Z

x

w

i0

(�)f(�)

W

i

(�)

d�

3

5

w

00

i1

(x)

�f(x)j

[x

i�1

;x

i

]

:

Our assumptions now imply for u(x) from (2.4), (2.5) that

u(x) 2 C[0; 1];

u

i

(x) 2 C

2

[x

i�1

; x

i

];

u

i

(x

i�1

) = u(x

i�1

); u

i

(x

i

) = u(x

i

);

i = 1,. . . ,n+1. (2.13)

Substituting (2.5) in (2.3) gives for 8v 2 V
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a

!

(u; v) =

n+1

X

i=1

x

i

Z

x

i�1

(u

0

i

v

0

+ b

i

u

0

i

v + c

i

u

i

v) dx

=

n+1

X

i=1

0

B

@

x

i

Z

x

i�1

(�u

00

i

+ b

i

u

0

i

+ c

i

u

i

) v dx+ u

0

i

(x)v(x)j

x

i

x

i�1

1

C

A

=

n+1

X

i=1

0

B

@

x

i

Z

x

i�1

f v dx + u

0

i

(x

i

)v(x

i

)� u

0

i

(x

i�1

)v(x

i�1

)

1

C

A

=

1

Z

0

f v dx+

n

X

i=1

�

u

0

i

(x

i

)� u

0

i+1

(x

i

)

�

v(x

i

);

(2.14)

because of v(x

0

) = v(0) = 0; v(x

n+1

) = v(1) = 0.

Thus, (2.14) implies the system of linear equations

u

0

i

(x

i

) � u

0

i+1

(x

i

) = 0; i = 1; : : : ; n: (2.15)

according to the unknowns u(x

i

).

It follows from the conditions (2.15) that u(x) 2 C

1

[0; 1]. With u

i

(x) 2 C

2

[x

i�1

; x

i

]

we �nally get u(x) 2 W

2

2

(0; 1), see Lemma 4.2 from [4].

With (2.12) the i-th equation of (2.15) takes the form

w

0

i0

(x

i

) u(x

i�1

) +

h

w

0

i1

(x

i

)�w

0

i+1;0

(x

i

)

i

u(x

i

)� w

0

i+1;1

(x

i

) u(x

i+1

) = r̂

i

; (2.16)

where

r̂

i

= �w

0

i0

(x

i

)

x

i

Z

x

i�1

w

i1

(�) f(�)

W

i

(�)

d� + w

0

i+1;1

(x

i

)

x

i+1

Z

x

i

w

i+1;0

(�) f(�)

W

i+1

(�)

d�:

(2.17)

The right-hand side expression of (2.17) is the reason for the de�nition of the

following set of functions for i = 1; : : : ; n

9



�

i

(�) =

8

>

>

>

>

>

>

>

>

>

>

>

>

>

>

>

>

>

>

>

>

<

>

>

>

>

>

>

>

>

>

>

>

>

>

>

>

>

>

>

>

>

:

e

��

i

2

(��x

i�1

)

�e

��

i

1

(��x

i�1

)

e

��

i

2

h

i

�e

��

i

1

h

i

; �

i

> 0;

��x

i�1

h

i

; �

i

= 0;

x

i�1

� � � x

i

;

e

�

i+1

1

(x

i+1

��)

�e

�

i+1

2

(x

i+1

��)

e

�

i+1

1

h

i+1

�e

�

i+1

2

h

i+1

; �

i+1

> 0;

x

i+1

��

h

i+1

; �

i+1

= 0;

x

i

< � � x

i+1

;

0; else:

(2.18)

Using (2.8), (2.9)(c), we obtain now from (2.17) that

r̂

i

=

x

i+1

Z

x

i�1

f �

i

dx; i = 1; : : : ; n:

(2.19)

We introduce next a matrix form of the tridiagonal system of linear equations

(2.15) to go into details of its main qualitative properties.

De�ne

A = tridiag(a

i;i�1

; a

�

ii

+ a

+

ii

; a

i;i+1

)

n�n

;

u = (u(x

1

); u(x

2

); : : : ; u(x

n

))

T

;

r = (r

1

; r

2

; : : : ; r

n

)

T

:

Then we identify (2.15) with

Au = r: (2.20)

Using (2.9), we get from (2.16) that

a

i;i�1

= w

0

i0

(x

i

) < 0; i = 2; : : : ; n;

a

�

ii

= w

0

i1

(x

i

) > 0; i = 1; : : : ; n;

a

+

ii

= �w

0

i+1;0

(x

i

) > 0; i = 1; : : : ; n;

a

i;i+1

= �w

0

i+1;1

(x

i

) < 0; i = 1; : : : ; n� 1:

(2.21)

10



Thus, under condition (2.2), the matrix A is an L-matrix, [12]. This means we

have a

ii

= a

�

ii

+ a

+

ii

> 0 for i = 1; : : : ; n and a

ij

� 0 for i 6= j, see [12]. Moreover,

the tridiagonal matrix A is irreducible because all of its codiagonal entries a

i;i�1

and a

i;i+1

are nonzero, [12].

Furthermore, by (2.9)(b), it follows that

a

i;i�1

+ a

�

ii

= w

0

i0

(x

i

) + w

0

i1

(x

i

) � 0;

a

+

ii

+ a

i;i+1

= �(w

0

i+1;0

(x

i

) + w

0

i+1;1

(x

i

)) � 0;

i = 2,. . . ,n-1, (2.22)

and

a

�

11

+ a

+

11

+ a

12

> 0;

a

n;n�1

+ a

�

nn

+ a

+

nn

> 0:

(2.23)

Hence, by a usual diagonal dominance argument, the L-matrix A is an irreducible

M-matrix, see [12]. This implies that (2.20) is uniquely solvable and A

�1

> 0

entrywise.

The entries of the right-hand side vector r of the system (2.20) are given by

r

1

= a

10

u

0

+ r̂

1

;

r

i

= r̂

i

; i = 2; : : : ; n;

r

n

= a

n;n+1

u

1

+ r̂

n

;

(2.24)

where a

10

= �w

0

10

(0) > 0 and a

n;n+1

= w

0

n+1;n

(1) > 0.

The right-hand side vector r = r(u

0

; u

1

; f(x)) of the system of linear equations

(2.20) depends isotonically on its arguments. This means, if we replace u

k

by v

k

with u

k

� v

k

, k = 0; 1, and f(x) by g(x) such that f(x) � g(x) on [0,1] then

r(u

0

; u

1

; f(x)) � r(v

0

; v

1

; g(x)):

Hence, by A

�1

> 0, we conclude that

A

�1

r(u

0

; u

1

; f(x)) � A

�1

r(v

0

; v

1

; g(x)):

The latter inequality shows that the solution

u = (u(x

1

); u(x

2

); : : : ; u(x

n

))

T

= A

�1

r(u

0

; u

1

; f(x))

of the system of linear equations (2.20) depends isotonically on the boundary

values u

0

; u

1

and on the right-hand side function f(x) of Problem (2.3).

11



The Hermite interpolation of the points (x

i�1

; u(x

i�1

)) and (x

i

; u(x

i

)) by u

i

(x)

for i = 1; : : : ; n+ 1 generates the weak solution u(x) 2 C

1

[0; 1]. By ansatz (2.5),

u

i

(x) depends isotonically on u(x

i�1

); u(x

i

) and on f(x)j

[x

i�1

;x

i

]

. This proves the

fact that under condition (2.2) the weak solution u(x) of Problem (2.3) depends

isotonically on the boundary values u

0

; u

1

and on the right-hand side function

f(x). Thus, Problem (2.3) is of inverse isotone type, see also [3].

Next we derive explicit formulas for the entries of the matrix A on the basis of

the roots �

i

k

of the characteristic equations (2.7). This means we assume that all

of the roots �

i

k

; k = 1; 2; i = 1; : : : ; n+ 1 are computed from fb

i

; c

i

g

n+1

i=1

.

For �

i

> 0, de�ne the auxiliary values

p

i

= e

�

i

1

h

i

� e

�

i

2

h

i

> 0; q

i

= e

��

i

2

h

i

� e

��

i

1

h

i

=

p

i

e

b

i

h

i

> 0;

�

i

=

�

i

1

��

i

2

2(cosh((�

i

1

��

i

2

)h

i

)�1)

> 0:

(2.25)

Now (2.8), (2.21) imply

a

i;i�1

= w

0

i0

(x

i

) = �

�

i

1

� �

i

2

e

�h

i

�

i

2

� e

�h

i

�

i

1

= ��

i

p

i

< 0;

a

�

ii

= w

0

i1

(x

i

) =

�

i

1

e

h

i

�

i

1

� �

i

2

e

h

i

�

i

2

e

h

i

�

i

1

� e

h

i

�

i

2

=

�

i

1

� �

i

2

2

coth

�

�

i

1

� �

i

2

2

h

i

�

+

b

i

2

> 0:

(2.26)

Clearly, for �

i

= 0 we have

a

i;i�1

= �

1

h

i

; a

�

ii

=

1

h

i

:

(2.27)

Assuming �

i+1

> 0, we get

a

i;i+1

= �w

0

i+1;1

(x

i

) = ��

i+1

q

i+1

< 0;

a

+

ii

= �w

0

i+1;0

(x

i

) =

�

i+1

1

� �

i+1

2

2

coth

�

�

i+1

1

� �

i+1

2

2

h

i+1

�

�

b

i+1

2

> 0;

(2.28)

and for �

i+1

= 0 we get

a

i;i+1

= �

1

h

i+1

; a

+

ii

=

1

h

i+1

:

(2.29)
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Remark

We note that A = A

T

if and only if b

!

(x) � 0. To see this, let b

i

= 0 for

i = 1; : : : ; n + 1. If �

i

= 0, we have a

i;i�1

= a

i�1;i

= �

1

h

i

. Otherwise, if

�

i

> 0 then a

i;i�1

= ��

i

p

i

, a

i�1;i

= ��

i

q

i

, and, p

i

= q

i

, see (2.25), implies that

a

i;i�1

= a

i�1;i

. Conversely, A = A

T

means then a

i;i�1

= a

i�1;i

for i = 2; : : : ; n,

which automatically holds if �

i

= 0. On the other hand, for �

i

> 0, we get

a

i;i�1

= ��

i

p

i

= ��

i

q

i

= a

i�1;i

. Thus, p

i

= q

i

implies b

i

= 0, see (2.25).

Much more general, b

i

= 0 implies a

i;i�1

= a

i�1;i

independend of the behaviour

of b

!

(x) at the other subintervals of the grid !.

Remark

The behaviour of some types of weak solutions for di�erent piecewise constant

coe�cients b

!

(x) and c

!

(x) is illustrated in Appendix 1 of the paper. The

examples demonstrate for which situations weak solutions exhibit boundary and

interior layers.

3. Exact discretization by Galerkins's method approach

In this section, we shall apply Galerkin's method to derive an exact discretization

of Problem (2.3). A discretization method on the grid ! = fx

i

g

n

i=1

is said to be

"exact" if it generates a system of algebraic equations Ay = r whose solution is

fy

i

= u(x

i

)g

n

i=1

, where u(x) is the solution of the problem under consideration.

For examples, see [4], [6], [11]. In our case u(x) is the weak solution of Problem

(2.3). This means, we shall show that Galerkin's method with the set of basis

functions (2.18) is exact for Problem (2.3) on essentially arbitrary grids !.

To include the boundary conditions u(0) = u

0

; u(1) = u

1

in the ansatz for the

Galerkin's method, we �rst supplement the set of functions (2.18) with

�

0

(�) =

8

>

>

>

>

>

>

>

>

<

>

>

>

>

>

>

>

>

:

e

�

1

1

(x

1

��)

�e

�

1

2

(x

1

��)

e

�

1

1

h

1

�e

�

1

2

h

1

; �

1

> 0;

x

1

��

h

1

; �

1

= 0;

0 � � � x

1

;

0; else;
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�

n+1

(�) =

8

>

>

>

>

>

>

>

>

<

>

>

>

>

>

>

>

>

:

e

��

n+1

2

(��x

n

)

�e

��

n+1

1

(��x

n

)

e

��

n+1

2

h

n+1

�e

��

n+1

1

h

n+1

; �

n+1

> 0;

��x

n

h

n+1

; �

n+1

= 0;

x

n

� � � 1:

0; else;

De�ne

U

h

= fu

h

(x) = u

0

�

0

(x) +

n

P

i=1

y

i

�

i

(x) + u

1

�

n+1

(x); y

i

2 Rg � U;

V

h

= spanf�

i

(x)g

n

i=1

� V:

(3.1)

Applying now Galerkin's method to solve Problem (2.3), we get the following

�nite dimensional problem.

Find u

h

2 U

h

such that

a

!

(u

h

; �

i

) = (f; �

i

); i = 1; : : : ; n: (3.2)

We shall show that the tridiagonal system of linear equations resulting from (3.2)

is identical with the system of linear equations (2.20). First of all, we have the

following theorem.

Theorem 1 Under assumptions (2.2) it follows that

A = tridiag(a

!

(�

i�1

; �

i

); a

!

(�

i

; �

i

); a

!

(�

i+1

; �

i

))

n�n

;

where A is the system matrix of the linear system (2.20).

Proof. The proof of Theorem 1 is given in Appendix 2.

Remark The right-hand side vector of the system of linear equations (3.2) is

identical with the vector r = (r

1

; : : : ; r

n

)

T

de�ned by (2.24).

We have thus proved the following theorem.

Theorem 2 The Galerkin method (3.2) yields an exact discretization of prob-

lem (2.3), i.e. it holds y

i

= u(x

i

);8x

i

2 !.
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4. Comparison of the weak solution with the approximate solution

The results of Section 3 imply that the Galerkin method (3.2) is super convergent

because y

i

= u(x

i

); 8x

i

2 !, means that the order of convergence at the grid

points is in�nity.

We thus consider next the behaviour of the di�erence

d

i

(x) = ju

i

(x)� u

h

(x)j; x 2 [x

i�1

; x

i

]; i = 1; : : : ; n+ 1; (4.1)

where d

i

(x

i�1

) = d

i

(x

i

) = 0.

The restriction u

i

(x) = u(x)j

[x

i�1

;x

i

]

of the weak solution of Problem (2.3) is given

by (2.11). For the restriction of the ansatz u

h

(x) we �nd from (3.1) with the basis

functions (2.18)

u

h

(x)j

[x

i�1

;x

i

]

= y

i�1

�

i�1

(x)j

[x

i�1

;x

i

]

+ y

i

�

i

(x)j

[x

i�1

;x

i

]

=

8

>

>

>

<

>

>

>

:

y

i�1

e

�

i

1

(x

i

�x)

�e

�

i

2

(x

i

�x)

e

�

i

1

h

i

�e

�

i

2

h

i

+ y

i

e

��

i

2

(x�x

i�1

)

�e

��

i

1

(x�x

i�1

)

e

��

i

2

h

i

�e

��

i

1

h

i

; �

i

> 0;

y

i�1

x

i

�x

h

i

+ y

i

x�x

i�1

h

i

; �

i

= 0:

(4.2)

For �

i

� 0, we get from (2.8), (2.9), (2.25) that

e

�

i

1

(x

i

�x)

�e

�

i

2

(x

i

�x)

e

�

i

1

h

i

�e

�

i

2

h

i

=

w

0

i1

(x

i�1

)

W

i

(x)

w

i0

(x) = e

�(x�x

i�1

)b

i

w

i0

(x);

e

��

i

2

(x�x

i�1

)

�e

��

i

1

(x�x

i�1

)

e

��

i

2

h

i

�e

��

i

1

h

i

= �

w

0

i0

(x

i

)

W

i

(x)

w

i1

(x) = e

(x

i

�x)b

i

w

i1

(x):

(4.3)

Hence, for x 2 [x

i�1

; x

i

] holds that

u

i

(x)� u

h

(x) = u(x

i�1

)

�

1 �

w

0

i1

(x

i�1

)

W

i

(x)

�

w

i0

(x) + u(x

i

)

�

1 +

w

0

i0

(x

i

)

W

i

(x)

�

w

i1

(x)

+

x

i

Z

x

i�1

G

i

(x; �) f(�) d�

= u(x

i�1

)

h

1 � e

�(x�x

i�1

)b

i

i

w

i0

(x) + u(x

i

)

h

1 � e

(x

i

�x)b

i

i

w

i1

(x)

+

x

i

Z

x

i�1

G

i

(x; �) f(�) d�
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= u(x

i�1

)b

i

e

��

i0

(x�x

i�1

)b

i

(x� x

i�1

)w

i0

(x) + u(x

i

)b

i

e

�

i1

(x

i

�x)b

i

(x� x

i

)w

i1

(x)

+

x

i

Z

x

i�1

G

i

(x; �) f(�) d�; (4:4)

where 0 < �

i0

; �

i1

< 1 follow from the Taylor series expansion of the coe�cients

[1� e

�(x�x

i�1

)b

i

] and [1� e

(x

i

�x)b

i

] at x

i�1

and x

i

, respectively.

We remark that d

i

(x) � 0 if b

i

= 0 and f(x)j

[x

i�1

;x

i

]

� 0.

It is immediate from (4.4) that

d

i

(x) � ju(x

i�1

)jjb

i

jjx� x

i�1

je

��

i0

(x�x

i�1

)b

i

+ ju(x

i

)jjb

i

jjx� x

i

je

�

i1

(x

i

�x)b

i

+

x

i

Z

x

i�1

G

i

(x; �) jf(�)j d� � C

i

h

i

; (4:5)

where

C

i

= (�

i0

ju(x

i�1

)j+�

i1

ju(x

i

)j)jb

i

j+

^

G

i

max

[x

i�1

;x

i

]

jf(x)j;

�

i0

=

8

>

<

>

:

1; b

i

> 0;

e

jb

i

jh

i

; b

i

< 0;

�

i1

=

8

>

<

>

:

e

jb

i

jh

i

; b

i

> 0;

1; b

i

< 0;

^

G

i

= maxG

i

(x; �); (x; �) 2 [x

i�1

; x

i

]� [x

i�1

; x

i

];

jju(x)jj

C[0;1]

= max

x2[0;1]

ju(x)j � C:

We have thus proved the following theorem.

Theorem 3 For the ansatz u

h

(x) of the exact discretization (3.2) of Problem

(2.3) there exists a constant  > 0 such that

jju� u

h

jj

C[0;1]

= max

x2[0;1]

ju(x)� u

h

(x)j �  max

1�i�n+1

h

i

:

16



5. Stability

The next task is to proof that our exact discretization is stable for essentially

arbitrary grids !. In a �st step we change the system of linear equations Ay = r,

see (2.20), such that all of the components r

i

of the right-hand side vector r are

of order O(1). For this aim we multiply the i-th equation of Ay = r by the

reciprocial of d

i

> 0, where

d

i

=

Z

1

0

�

i

(�) d� =

Z

x

i+1

x

i�1

�

i

(�) d� > 0:
(5.1)

Let D be the following diagonal matrix with all of its diagonal entries positive

D = diag(d

1

; d

2

; : : : ; d

n

); (5.2)

then, for stability properties consider

D

�1

Ay = D

�1

r: (5.3)

To show that the row sum norm of the inverses (D

�1

A)

�1

> 0 are uniformly

bounded for essentially arbitrary grids !, we shall use the following Theorem.

Theorem ( see [1], [13])

Let B be a monotone matrix (det B 6= 0; B

�1

� 0 entrywise) and let v > 0 with

Bv > 0. Then

jjB

�1

jj

1

�

jjvjj

1

min

1�i�n

(Bv)

i

:

(5.4)

Letting now B be the M-matrix

B = D

�1

A; (5.5)

To apply the estimate (5.4), we shall construct solutions v of (5.3) such that

Bv = D

�1

Av = (1; : : : ; 1)

T

:

Theorem 4 Let u(x) > 0; x 2 (0; 1) be the nonnegative solution of Problem

(2.3) for f(x) � 1, u

0

= u

1

= 0. Putting

v = (u(x

1

); u(x

2

); : : : ; u(x

n

))

T

> 0; (5.6)

then there holds

17



jj(D

�1

A)

�1

jj

1

� jjvjj

1

� jju(x)jj

C[0;1]

= max

x2[0;1]

u(x);

(5.7)

for essentially arbitrary grids !.

Proof. The two-point boundary value problem

�nd u 2 V : a

!

(u; v) = (1; v); 8v 2 V; (5.8)

has a unique weak solution u(x) with u(x) > 0 for x 2 (0; 1) by the maximum

principle, see [3], [7].

Thus, with f(x) � 1, u

0

= u

1

= 0, we get from (2.24)

D

�1

r = (1; : : : ; 1)

T

:

Hence, for an arbitrary grid !, our exact discretization implies now that

D

�1

Av = ((1; : : : ; 1)

T

for v = (u(x

1

); u(x

2

); : : : ; u(x

n

))

T

> 0;

which proves the theorem. 2

Remarks

The bound of jj(D

�1

A)

�1

jj

1

, given by (5.7), simpli�es for constant coe�cients

b

!

(x); c

!

(x) as follows.

a) b

!

(x) � 0; c

!

(x) � 0; x 2 [0; 1] :

�u

00

= 1; u(0) = u(1) = 0; is equivalent to (5.8),

solution: u(x) =

1

2

x(1� x);

d

i

=

h

i

+h

i+1

2

> 0; i = 1; : : : ; n;

D

�1

A = tridiag

�

�

2

h

i

(h

i

+h

i+1

)

;

2

h

i

h

i+1

;�

2

h

i+1

(h

i

+h

i+1

)

�

n�n

;

jj(D

�1

A)

�1

jj

1

� max

x2[0;1]

1

2

x(1� x) =

1

8

; 8 !:

18



b) b

!

(x) � 0; c

!

(x) � c > 0; x 2 [0; 1] :

�u

00

+ cu = 1; u(0) = u(1) = 0; is equivalent to (5.8),

solution: u(x) =

2 sinh(

p

c

2

(1�x)) sinh(

p

c

2

x)

c cosh(

p

c

2

)

;

d

i

=

sinh(

p

c

2

(h

i

+h

i+1

))

p

c cosh(

p

c

2

h

i

) cosh(

p

c

2

h

i+1

)

> 0; i = 1; : : : ; n;

D

�1

A = tridiag (a

i;i�1

; a

ii

; a

i;i+1

)

n�n

;

a

i;i�1

= �

c cosh(

p

c

2

h

i+1

)

2 sinh(

p

c

2

h

i

) sinh(

p

c

2

(h

i

+h

i+1

))

;

a

ii

=

c cosh(

p

c

2

(h

i

+h

i+1

))

2 sinh(

p

c

2

h

i

) sinh(

p

c

2

h

i+1

)

;

a

i;i+1

= �

c cosh(

p

c

2

h

i

)

2 sinh(

p

c

2

h

i+1

) sinh(

p

c

2

(h

i

+h

i+1

))

;

jj(D

�1

A)

�1

jj

1

� max

x2[0;1]

2 sinh(

p

c

2

(1� x)) sinh(

p

c

2

x)

c cosh(

p

c

2

)

�

2 sinh

2

(

p

c

4

)

c cosh(

p

c

2

)

�

1

8

; 8 !:

c ! +0 implies case a):
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c) b

!

(x) � b; c

!

(x) � c > 0; x 2 [0; 1] :

maxfjbj; cg > 0 implies �

2

=

b�

p

b

2

+4c

2

< �

1

=

b+

p

b

2

+4c

2

;

�u

00

+ b u

0

+ c u = 1; u(0) = u(1) = 0; is equivalent to (5.8),

solution: u(x) > 0; x 2 (0; 1); max

x2[0;1]

u(x) �

2 sinh

2

(

p

c

4

)

c cosh(

p

c

2

)

�

1

8

; 8b 2 R;

d

i

> 0; i = 1; : : : ; n;

p

i

= e

�

1

h

i

� e

�

2

h

i

> 0; q

i

=

p

i

e

bh

i

> 0; �

i

=

�

1

��

2

2(cosh((�

1

��

2

)h

i

)�1)

> 0;

D

�1

A = tridiag

�

�

�

i

p

i

d

i

;

�

1

��

2

2d

i

h

coth(

�

1

��

2

2

h

i

) + coth(

�

1

��

2

2

h

i+1

)

i

;�

�

i+1

q

i+1

d

i

�

n�n

;

jj(D

�1

A)

�1

jj

1

� max

x2[0;1]

u(x) �

2 sinh

2

(

p

c

4

)

c cosh(

p

c

2

)

�

1

8

; 8!:

c > 0; and b ! 0 implies case b):

6. Final remarks

The presented exact discretization methods splits Problem (2.3) into n+1 separat

boundary value problems with constant coe�cients as follows

L

i

v = �v

00

+ b

i

v

0

+ c

i

v = f(x); x 2 (x

i�1

; x

i

);

v(x

i�1

) = u(x

i�1

); v(x

i

) = u(x

i

);

i = 1; : : : ; n+ 1;

(6.1)

where u(x

i�1

) = y

i�1

; u(x

i

) = y

i

. We can solve each of the boundary problems

(6.1) by exact discretizations indepentend of each other to get more information

on the behaviour of u

i

(x).
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Appendix 1

In the following �gures we shall illustrate some typical behaviours of weak solu-

tions for special constellations of the coe�cients b

!

(x); c

!

(x). In Examples 2 and

3 we focus attention on interior layers around grid points where b

!

(x) changes

sign from plus to minus for growing values of x. For simplicity, we assume in each

of the examples an uniform grid !.

Data of the Examples

In all of the Examples we have chosen u

0

= 1, u

1

= 2, f(x) � 0, h =

1

10

.

Example 1:

�rst: b

!

(x) � 0; c

!

(x) =

�

c

4

= 50;

c

i

= 0; i 6= 4;

second: b

!

(x) � 0; c

!

(x) =

8

<

:

c

4

= 50;

c

6

= 200;

c

i

= 0; i 6= 4; 6

Example 2:

�rst: b

!

(x) =

8

<

:

b

4

= �50;

b

5

= 50;

b

i

= 0; i 6= 4; 5;

c

!

(x) � 0;

second: b

!

(x) =

8

<

:

b

4

= 50;

b

5

= �50;

b

i

= 0; i 6= 4; 5;

c

!

(x) � 0;

Example 3:

�rst: b

!

(x) : b

i

= 100(�1)

i

; c

!

(x) � 0;

second: b

!

(x) : b

i

= 100(�1)

i

; c

!

(x) � 1=5;

third: b

!

(x) : b

i

= 100(�1)

i

; c

!

(x) =

�

c

4

= 50;

c

i

= 0; i 6= 4:

We illustrate the babaviour of the weak solutions in the following �gures.
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Example 1: b

!

(x) � 0

c

!

(x) u(x)

0

10

20

30

40

50

0 0.2 0.4 0.6 0.8 1
x

0

0.5

1

1.5

2

0 0.2 0.4 0.6 0.8 1
x

0

50

100

150

200

0 0.2 0.4 0.6 0.8 1
x

0

0.5

1

1.5

2

0 0.2 0.4 0.6 0.8 1
x

Example 2: c

!

(x) � 0

b

!

(x) u(x)

-40

-20

0

20

40

0 0.2 0.4 0.6 0.8 1
x

0

0.5

1

1.5

2

0 0.2 0.4 0.6 0.8 1
x

-40

-20

0

20

40

0 0.2 0.4 0.6 0.8 1
x

0

0.5

1

1.5

2

0 0.2 0.4 0.6 0.8 1
x
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Example 3: b

!

(x) with b

i

= 100(�1)

i

; i = 1; : : : ; 10;

c

!

(x) � 0;

b

!

(x) : b

i

= 100(�1)

i

; u(x)

-100

-50

0

50

100

0 0.2 0.4 0.6 0.8 1
x

0

0.5

1

1.5

2

0 0.2 0.4 0.6 0.8 1
x

u(x)

c

!

(x) �

1

5

,

b

!

(x) : b

i

= 100(�1)

i

;

0

0.5

1

1.5

2

0 0.2 0.4 0.6 0.8 1
x

u(x)

c

!

(x) =

�

c

4

= 50;

c

i

= 0; i 6= 4;

b

!

(x) : b

i

= 100(�1)

i

;

0

0.5

1

1.5

2

0 0.2 0.4 0.6 0.8 1
x

Example 2 shows that the weak solution u(x) exhibits a plateau at the grid point

x

i

if b

i

< 0, b

i+1

> 0 and jb

i

j = b

i+1

� 1.

Conversely, the weak solution u(x) has an interior layer around x

i

if b

i

> 0,

b

i+1

< 0 with b

i

= jb

i+1

j � 1.

In the �rst situation of Example 3 the just described situations alter from one

grid point to the next. The weak solution shows this typical behaviour also for

certain c

!

6� 0. An illustration is given in the last two situations of Example 3.
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Appendix 2

Proof of Theorem 1 in Section 3

From (2.25) we see that �

i

> 0 implies p

i

> 0; q

i

> 0; �

i

> 0. Furthermore,

de�ne the auxiliary variable



i

=

e

(�

i

1

+�

i

2

)h

i

p

2

i

=

e

b

i

h

i

p

2

i

> 0:

(3.3)

Consider �rst

a

!

(�

i�1

; �

i

) =

x

i

Z

x

i�1

(�

0

i�1

�

0

i

+ b

i

�

0

i�1

�

i

+ c

i

�

i�1

�

i

) d�:

(3.4)

For �

i

= 0 (, b

i

= c

i

= 0) we immediately get a

!

(�

i�1

; �

i

) = �

1

h

i

. On the other

hand, if �

i

> 0 after several steps of elementary integrations we �nd

x

i

Z

x

i�1

�

0

i�1

�

0

i

d� =



i

(�

i

1

� �

i

2

)

�

i

1

+ �

i

2

�

�

i

2

sinh(�

i

2

h

i

)� �

i

1

sinh(�

i

1

h

i

)

�

;

x

i

Z

x

i�1

�

0

i�1

�

i

d� = 

i

 

sinh(�

i

1

h

i

) + sinh(�

i

2

h

i

) +

�

i

2

e

��

i

1

h

i

+ �

i

1

e

��

i

2

h

i

� �

i

2

e

�

i

2

h

i

� �

i

1

e

�

i

1

h

i

�

i

1

+ �

i

2

!

;

x

i

Z

x

i�1

�

i�1

�

i

d� =



i

(�

i

1

� �

i

2

)

�

i

1

�

i

2

(�

i

1

+ �

i

2

)

�

�

i

2

sinh(�

i

1

h

i

)� �

i

1

sinh(�

i

2

h

i

)

�

;

which simpli�es to

a

!

(�

i�1

; �

i

) = ��

i

p

i

< 0: (3.5)

Hence, a

!

(�

i�1

; �

i

) = a

i;i�1

for 8�

i

� 0, see (2.26), (2.27).

It will be useful to split a

!

(�

i

; �

i

) into the sum as follows

a

!

(�

i

; �

i

) = a

�

!

(�

i

; �

i

) + a

+

!

(�

i

; �

i

); (3.6)

where

a

�

!

(�

i

; �

i

) =

x

i

Z

x

i�1

(�

0

i

�

0

i

;+b

i

�

0

i

�

i

+ c

i

�

i

�

i

) d�;

a

+

!

(�

i

; �

i

) =

x

i+1

Z

x

i

(�

0

i

�

0

i

+ b

i+1

�

0

i

�

i

+ c

i+1

�

i

�

i

) d�:

(3.7)
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If �

i

= 0 then we get a

�

!

(�

i

; �

i

) =

1

h

i

. Otherwise, for �

i

> 0 we derive from

x

i

Z

x

i�1

�

0

i

�

0

i

d� = 

i

 

2�

i

1

�

i

2

�

i

1

+ �

i

2

+

(�

i

1

� �

i

2

)

2

e

(�

i

1

+�

i

2

)h

i

2(�

i

1

+ �

i

2

)

�

�

i

2

e

(�

i

1

��

i

2

)h

i

2

�

�

i

1

e

�(�

i

1

��

i

2

)h

i

2

!

;

x

i

Z

x

i�1

�

0

i

�

i

d� = 

i

(cosh((�

i

1

� �

i

2

)h

i

)� 1);

x

i

Z

x

i�1

�

i

�

i

d� = 

i

 

2

�

i

1

+ �

i

2

+

(�

i

1

� �

i

2

)

2

e

(�

i

1

+�

i

2

)h

i

2�

i

1

�

i

2

(�

i

1

+ �

i

2

)

�

e

(�

i

1

��

i

2

)h

i

2�

i

2

�

e

�(�

i

1

��

i

2

)h

i

2�

i

1

!

;

that

a

�

!

(�

i

; �

i

) =

�

i

1

��

i

2

2

coth

�

(�

i

1

��

i

2

)h

i

2

�

+

b

i

2

> 0: (3.8)

Thus a

�

!

(�

i

; �

i

) = a

�

ii

for 8�

i

� 0, see (2.26), (2.27).

Next, if �

i+1

= 0 (, b

i+1

= c

i+1

= 0) we �nd a

+

!

(�

i

; �

i

) =

1

h

i+1

and for �

i+1

> 0

we derive

a

+

!

(�

i

; �

i

) =

�

i+1

1

��

i+1

2

2

coth

�

(�

i+1

1

��

i+1

2

)h

i+1

2

�

�

b

i+1

2

> 0; (3.9)

because of

x

i+1

Z

x

i

�

0

i

�

0

i

d� = 

i+1

(�

2�

i+1

1

�

i+1

2

�

i+1

1

+�

i+1

2

�

(�

i+1

1

��

i+1

2

)

2

e

�(�

i+1

1

+�

i+1

2

)h

i+1

2(�

i+1

1

+�

i+1

2

)

+

�

i+1

1

e

(�

i+1

1

��

i+1

2

)h

i+1

2

+

�

i+1

2

e

�(�

i+1

1

��

i+1

2

)h

i+1

2

);

x

i+1

Z

x

i

�

0

i

�

i

d� = 

i+1

(1� cosh((�

i+1

1

� �

i+1

2

)h

i+1

));

x

i+1

Z

x

i

�

i

�

i

d� = 

i+1

(�

2

�

i+1

1

+�

i+1

2

�

(�

i+1

1

��

i+1

2

)

2

e

�(�

i+1

1

+�

i+1

2

)h

i+1

2�

i+1

1

�

i+1

2

(�

i+1

1

+�

i+1

2

)

+

e

(�

i+1

1

��

i+1

2

)h

i+1

2�

i+1

1

+

e

�(�

i+1

1

��

i+1

2

)h

i+1

2�

i+1

2

):

This shows that a

+

!

(�

i

; �

i

) = a

+

ii

for 8�

i

� 0, see (2.28), (2.29).

As a last one consider

a

!

(�

i+1

; �

i

) =

x

i+1

Z

x

i

(�

0

i+1

�

0

i

+ b

i+1

�

0

i+1

�

i

+ c

i+1

�

i+1

�

i

) d�:
(3.10)
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If �

i+1

= 0 then a

!

(�

i+1

; �

i

) = �

1

h

i+1

and if �

i+1

> 0 we �nd by

x

i+1

Z

x

i

�

0

i+1

�

0

i

d� =



i+1

(�

i+1

1

��

i+1

2

)

�

i+1

1

+�

i+1

2

�

�

i+1

2

sinh(�

i+1

2

h

i+1

)� �

i+1

1

sinh(�

i+1

1

h

i+1

)

�

;

x

i+1

Z

x

i

�

0

i+1

�

i

d� = 

i+1

(sinh(�

i+1

1

h

i+1

) + sinh(�

i+1

2

h

i+1

)

+

�

i+1

1

e

��

i+1

1

h

i+1

+�

i+1

2

e

��

i+1

2

h

i+1

��

i+1

1

e

�

i+1

2

h

i+1

��

i+1

2

e

�

i+1

1

h

i+1

�

i+1

1

+�

i+1

2

);

x

i+1

Z

x

i

�

i+1

�

i

d� =



i+1

(�

i+1

1

��

i+1

2

)

�

i+1

1

�

i+1

2

(�

i+1

1

+�

i+1

2

)

�

�

i+1

2
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1

h
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)� �
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1
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2

h
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)

�

;

that

a

!

(�

i+1

; �

i

) = ��

i+1

q

i+1

< 0:

Thus, a

!

(�

i+1

; �

i

) = a

i;i+1

for 8�

i+1

� 0, see (2.28), (2.29) and the proof is

complete. 2

References

[1] Bohl, E., Finite Modelle gew�ohnlicher Randwertaufgaben, Teubner,

Stuttgart, 1981

[2] Collatz, L., Funktionalanalysis und Numerische Mathematik, Springer--

Verlag, Berlin, Heidelberg, New York, 1968

[3] Gilbarg, D., Trudinger, N.S., Elliptic partial di�erential equations of second

order, Springer, Berlin, 1983

[4] Gro�mann, Ch., Roos, H.-G., Numerik partieller Di�erentialgleichungen,

Teubner Studienb�ucher, B.G.Teubner Stuttgart, 1992

[5] Hackbusch, W., Theorie und Numerik elliptischer Di�erentialgleichungen,

Teubner, Stuttgart, 1986

[6] Hemker, P.W., A numerical study of sti� two-point boundary value prob-

lems, Math. Zentrum, Amsterdam, 1977

[7] Protter, M.H., Weinberger, H.F.: Maximum principles in di�erential equa-

tions, Prentice-Hall, Englewood Cli�s, 1967

26



[8] Roos, H.-G., Stynes, M., Tobiska, L.: Numerical methods for singularly

perturbed di�erential equations, Springer-Verlag, Berlin, 1996

[9] O'Riordan, E., Stynes, M., A uniformly accurate �nite-element method for

a singularly perturbed one-dimensional reaction-di�usion problem, Math.

Comput., 47, 1986, 555 - 570

[10] Windisch, G.: M-matrices in numerical analysis, Teubner, Leipzig, 1989

[11] Windisch, G., Exact discretizations of two-point boundary value prob-

lems, Preprint-Reihe der Chemnitzer DFG-Forschergruppe "Scienti�c Par-

allel Computing", SPC 95/29, Oktober 1995

[12] Varga, R.S.: Matrix iteative analysis, Prentice Hall, Englewood Cli�s, 1962

[13] Varga, R.S.: On diagonal dominance arguments for bounding jjA

�1

jj

1

, LAA

14(1976), 211 - 217

Author: Dr. G�unther Windisch,

Fakult�at f�ur Mathematik, TU Chemnitz-Zwickau,

D-09107 Chemnitz,

e-mail: windisch@mathematik.tu-chemnitz.de.

27



Other titles in the SFB393 series:

96-01 V.Mehrmann, H. Xu. Chosing poles so that the single-input pole placement

problem is well-conditioned. Januar 1996.

96-02 T. Penzl. Numerical solution of generalized Lyapunov equations. January

1996.

96-03 M. Scherzer, A. Meyer. Zur Berechnung von Spannungs- und Deforma-

tionsfeldern an Interface-Ecken im nichtlinearen Deformationsbereich auf

Parallelrechnern. March 1996.

96-04 Th. Frank, E. Wassen. Parallel Solution Algorithms for Lagrangian Sim-

ulation of Disperse Multiphase Flows. Proc. of 2nd Int. Symposium on

Numerical Methods for Multiphase Flows, ASME Fluids Engineering Divi-

sion Summer Meeting, July 7-11, 1996, San Diego, CA, USA. June 1996.

96-05 P. Benner, V. Mehrmann, H. Xu. A numerically stable, structure preserving

method for computing the eigenvalues of real Hamiltonian or symplectic

pencils. April 1996.

96-06 P. Benner, R. Byers, E. Barth. HAMEV and SQRED: Fortran 77 Subrou-

tines for Computing the Eigenvalues of Hamiltonian Matrices Using Van

Loans's Square Reduced Method. May 1996.

96-07 W. Rehm (Ed.). Portierbare numerische Simulation auf parallelen Architek-

turen. April 1996.

96-08 J. Weickert. Navier-Stokes equations as a di�erential-algebraic system. Au-

gust 1996.

96-09 R. Byers, C. He, V. Mehrmann. Where is the nearest non-regular pencil?

August 1996.

96-10 Th. Apel. A note on anisotropic interpolation error estimates for isopara-

metric quadrilateral �nite elements. October 1996.

96-11 Th. Apel, G. Lube. Anisotropic mesh re�nement for singularly perturbed

reaction di�usion problems. August 1996.

96-12 B. Heise, M. Jung. Scalability, e�ciency, and robustness of parallel multi-

level solvers for nonlinear equations. September 1996.

96-13 F. Milde, R. A. R�omer, M. Schreiber. Multifractal analysis of the metal-

insulator transition in anisotropic systems. October 1996.



96-14 R. Schneider, P. L. Levin, M. Spasojevi�c. Multiscale compression of BEM

equations for electrostatic systems. October 1996.

96-15 M. Spasojevi�c, R. Schneider, P. L. Levin. On the creation of sparse Bound-

ary Element matrices for two dimensional electrostatics problems using the

orthogonal Haar wavelet. October 1996.

96-16 S. Dahlke, W. Dahmen, R. Hochmuth, R. Schneider. Stable multiscale

bases and local error estimation for elliptic problems. October 1996.

96-17 B. H. Kleemann, A. Rathsfeld, R. Schneider. Multiscalemethods for Bound-

ary Integral Equations and their application to boundary value problems

in scattering theory and geodesy. October 1996.

96-18 U. Reichel. Partitionierung von Finite-Elemente-Netzen. November 1996.

96-19 W. Dahmen, R. Schneider. Composite wavelet bases for operator equations.

November 1996.

96-20 R. A. R�omer, M. Schreiber. No enhancement of the localization length for

two interacting particles in a random potential. December 1996.

96-21 G. Windisch. Two-point boundary value problems with piecewise constant

coe�cients: weak solution and exact discretization. December 1996.

96-22 M. Jung, S. V. Nepomnyaschikh. Variable preconditioning procedures for

elliptic problems. December 1996.

The complete list of current and former preprints is available via

http://www.tu-chemnitz.de/~pester/sfb/sfb96pr.html.


