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Abstract

We study the Anderson model of localization with anisotropic hopping in

three dimensions for weakly coupled chains and weakly coupled planes. The

eigenstates of the Hamiltonian, as computed by Lanczos diagonalization for

systems of sizes up to 48

3

, show multifractal behavior at the metal-insulator

transition even for strong anisotropy. The critical disorder strength W

c

de-

termined from the system size dependence of the singularity spectra is in

a reasonable agreement with a recent study using transfer matrix methods.

But the respective spectrum at W

c

deviates from the \characteristic spec-

trum" determined for the isotropic system. This indicates a quantitative

di�erence of the multifractal properties of states of the anisotropic as com-

pared to the isotropic system. Further, we calculate the Kubo conductivity

for given anisotropies by exact diagonalization. Already for small system sizes

of only 12

3

sites we observe a rapidly decreasing conductivity in the directions

with reduced hopping if the coupling becomes weaker.
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I. INTRODUCTION

It is well known that the three dimensional (3D) isotropic Anderson model exhibits

a metal-insulator transition (MIT): Increasing the disorder of the random potential site

energies causes the wave functions to localize.

1

There exists a mobility edge in the energy-

disorder diagram which separates extended from localized eigenstates. In order to determine

these critical disorders W

c

(E) accurately, the transfer-matrix method (TMM) together with

the one-parameter �nite-size scaling hypothesis applied to quasi-1D bars has been used with

much success in the past.

2{4

Recently, the anisotropic Anderson model has received much

attention in connection with the anisotropic transport properties of the high T

c

cuprates

and a possible contradiction to the scaling theory of localization was mentioned

5

supported

by a diagrammatic analysis.

6

However, recent TMM studies

7{9

show that the one-parameter

scaling theory is still valid and further that an MIT exists even for strong hopping anisotropy

. The values of the critical disorder in the band center were found to follow a power law

W

c

/ (1 � )

�

independent of the orientation of the quasi-1D bar. � was argued to be

independent of the strength of the anisotropy.

Here, we shall study the problem of Anderson localization by a di�erent method: we

focus our attention directly on the eigenfunctions of the Hamiltonian. In an in�nite system

the wave functions are expected to be localized on the insulating side and extended on the

metallic side even arbitrarily close to the transition. As �rst suggested by Aoki

10

the fractal

nature of the critical eigenstates can connect these discrepant characteristics. Indeed, large

uctuations of the wave functions have been observed numerically which dominate | at

least at small length scales | the character of the states and invalidate the simple notions

of exponentially localized or homogeneously extended states. Approaching the transition

these uctuations increase and at the critical disorder they are expected to occur on all

length scales. It has been shown

11

that such wave functions are multifractal entities. To

characterize the eigenstates of the isotropic Anderson model the singularity spectrum f(�)

has been used successfully.

11

A characteristic spectrum f

c

(�) was shown to determine the

1



mobility edge independent of the microscopic details of the sample.

12

Further, around its

maximum, f

c

(�) agrees well with an analytical result of Wegner

13

based on a nonlinear

� model calculation. Near the critical disorder W

c

, characteristic changes of f(�) were

observed when the system size was increased.

14

These distinguish the localized and the

extended character of the states and therefore allow us to determine the transition directly

from multifractal properties of eigenstates.

It is our aim in the present work to use and extend these concepts for the case of

anisotropic hopping. In Sec. II we introduce our notation and de�ne the anisotropies of

weakly coupled planes and weakly coupled chains. We next recall the concepts and methods

of the multifractal analysis employed in the sequel. Using the hypothesis of a characteristic

singularity spectrum, we estimate the critical disorders in Sec. IVB. To check the validity

of the hypothesis we analyze the system size dependence of the multifractal properties and

compare our results with TMM data.

8;9

For completeness, we also study the conductivity of

small samples of anisotropic systems in Sec. V. We discuss our results in Sec. VI.

II. THE ANDERSON MODEL WITH ANISOTROPIC HOPPING

The Anderson Hamiltonian is given as

1

H =

X

i

�

i

jiihij+

X

i 6=j

t

ij

jiihjj : (1)

Here, the sites i = (x; y; z) form a regular cubic lattice of size N

3

and the potential site

energies �

i

are as usual taken to be randomly distributed in the interval [�W=2;+W=2].

The transfer integrals t

ij

are restricted to nearest neighbors and depend only on the spatial

direction, so t

ij

can either be t

x

, t

y

or t

z

. We set the energy scale by normalizing the largest

t

ij

to 1.

Following Ref. 8, we study two possibilities of anisotropic transport: (i) weakly coupled

planes with t

x

= t

y

= 1, t

z

= 1 �  and (ii) weakly coupled chains with t

x

= t

y

= 1 � ,

t

z

= 1. Here the parameter  2 [0; 1] describes the strength of the anisotropy. Hence, for

2



 = 0 we recover the isotropic 3D case and  = 1 corresponds to N independent planes or

N

2

independent chains. The direction with normal (reduced) transfer integral is called the

parallel (perpendicular) direction.

The Lanczos algorithm,

15

which is well suited for the diagonalization of sparse matrices,

allows us to solve the eigenvalue equation H	(E) = E	(E) for system sizes up to N = 72,

yielding eigenvalue/eigenvector pairs in a requested energy range. We use state-of-the-art

workstations and a parallel computer with 128 PowerPC processors. It takes about 11

hours to diagonalize the Anderson Hamiltonian with N = 48 on the parallel machine using

8 processors. The workstations need about 35 hours for the same calculation. Since we

also have to perform a statistical averaging over di�erent disorder con�gurations, we have

restricted the systematic investigations to sizes up to N = 48. In order to allow a direct

comparison with the results of Refs. 7{9, we restrict our study to the states in the center of

the band such that E = 0. Numerically this is the worst case because of the high density

of states there which requires a very large tridiagonal matrix in the Lanczos algorithm to

determine the eigenvalues.

III. MULTIFRACTAL ANALYSIS

Fractal measures are widely used in physics to characterize objects such as percolat-

ing clusters, random walks, and random surfaces.

16{18

The common geometric feature of

such point sets is the self-similarity: Parts of the set are similar to the whole, at least in

a statistical sense. However, for uctuating physical quantities such as the probability am-

plitude of an eigenstate 	(E) of the Anderson model, the appropriate concept is given by

the multifractal measures: If the mentioned uctuations are statistically the same on every

length scale, i.e., if all the moments of the investigated quantity are self similar, the object

is (statistically) self-a�ne and is called a multifractal.

A characteristic property of multifractals is their singularity spectrum f(�).

18

Let us

briey describe an algorithm to determine this quantity, based on the standard box counting

3



procedure: We consider a volume L

D

in our D dimensional space which contains the support

of the physical variable, i.e., all points where the variable is de�ned. We cover it with a

number of "boxes" of linear size r = �L. The actual shape of the boxes is not important,

they may be spheres as well. Next, we determine the contents �

i

(�) of each box i by summing

or integrating the investigated quantity over the part of the support inside the box. For a

self-a�ne object one �nds a power-law dependence �

i

(�) / �

�

i

in the limit � ! 0. The so-

de�ned singularity strength �

i

is assigned to each point of the support. The subset S

�

which

contains all points with the same value of � is a fractal with fractal dimension f(�) de�ned

by K(�; �) / �

�f(�)

. Here, K(�; �) is the number of boxes which cover S

�

. A multifractal

object consists of a (in�nite) number of subsets S

�

with di�erent fractal dimensions.

In the present work we shall use an equivalent but numerically more convenient algo-

rithm to compute the singularity spectrum. Our physical quantity is again the probability

amplitude of eigenstates. Considering the normalized qth moments of the box probability

�

i

(q; �) = �

q

i

(�)=

P

k

�

q

k

(�) it is possible to �nd

19

a parametric expression of f(�) such that

�(q) = lim

�!0

P

i

�

i

(q; �)ln�

i

(1; �)=ln� ;

f(q) = lim

�!0

P

i

�

i

(q; �)ln�

i

(q; �)=ln� :

(2)

We plot the sums in (2) versus ln� and observe multifractal behavior if and only if the data

may be well �tted by straight lines. The slope from the linear regression procedure used in

the �t gives f and �. Note, that a check of the linearity is important, since the numerical

procedure gives an f(�) curve for nearly every distribution of the physical variable, but

without the mentioned linearity it does not indicate multifractality.

In general, f(�) is a nonnegative, convex function with 0 < �

min

� � � �

max

<1. The

maximum of f(�) at �(q = 0) � �

0

equals the dimension of the support, i.e., the fractal

dimension D

f

of the subset of points where the investigated quantity is not zero. For our

wave functions D

f

= D = 3 because they are nowhere exactly zero. The whole f(�) curve

is below the bisector f(�) = � except at �(q = 1) � �

1

where both curves touch. For

q = 1 the relation f(�

1

) = �

1

is ful�lled. �

1

equals the entropy dimension or information

4



dimension and one can show that the corresponding set S

�

1

contains the entire measure.

18

There are two limits which will be important for the later interpretation of our results.

Consider a D-dimensional support. (i) A uniform distribution is represented by the single

point f(� = D) = D in the singularity spectrum, because �

i

(�) / (L�)

D

for every point of

the support. (ii) With increasing localization the spectrum becomes wider and an extremely

localized distribution with measure 1 at one point and 0 elsewhere has a spectrum which

consists of two points only: f(� = 0) = 0 and f(� = 1) = D. This is because the box

around the maximum has contents 1 for each �, so � is 0 for this single point while all

other points have �

i

/ �

1

= 0. In Fig. 1 we show two typical singularity spectra of 3D

wave functions corresponding to a localized and an extended wave function. The tendency

towards the 2 limiting cases can be seen for these two examples already: The extended state

has a narrow f(�) curve close to f(3) = 3 while the localized wave function is represented

by a very wide spectrum with larger �

0

and smaller �

1

.

IV. CALCULATION OF CRITICAL DISORDERS W

C

()

A. Existence of multifractal eigenstates

As has been shown in Refs. 8, 9 by the TMM, the anisotropic Anderson model still

exhibits a MIT for all  > 0 in the band center E = 0 and, by the general arguments given

above, we expect the wave functions at the transition point to be multifractals just as in

the isotropic case. As a check we have computed various eigenstates close to the proposed

8;9

critical disorders W

c

for system sizes up to N = 48. In Fig. 2, we show the data for the

linear regression of a typical state with W �W

c

. We �nd even for very strong anisotropies

 = 0:99 that the sums in Eq. (2), plotted versus ln� are linear. Therefore, we do �nd

multifractal behavior of the wave functions close to the critical disorder for the anisotropic

Anderson model.

Every singularity spectrum is characteristic only for the particular con�guration of the

5



site energies. But for a given set of parameters fW;E; g the di�erent f(�) curves uctuate

around one singularity spectrum. In order to suppress these statistical uctuations we

average the spectra obtained from 3 to 8 eigenstates close to E = 0 for 12 realizations of the

random site energies. The averaged spectrum is thus characteristic for the set of parameters

fW;E; g and will be used in the next sections to compute the critical disorder W

c

as a

function of the anisotropy .

B. Estimation of W

c

from comparison with the characteristic spectrum

In the isotropic case a characteristic singularity spectrum f

c

(�) was found previously

20

at all points of the mobility edge independent of the microscopic details of the system such

as the probability distribution of the site energies. The region close to the maximum of

f

c

(�) is described well by an analytical result of Wegner

13

from the 2 + " expansion of the

non-linear � model, i.e.,

f

c

(�) = D �

"

4

�

D � �

"

+ 1

�

2

+O("

4

)

"=1

� 3 �

(4� �)

2

4

: (3)

As a hypothesis we shall now assume that this characteristic spectrum determines the tran-

sition even in the case of anisotropic hopping. This hypothesis is certainly valid in the limit

 ! 0 but needs further support for larger anisotropies.

We �nd that for each anisotropy  there exists a corresponding W

f

c

such that the eigen-

states are characterized by f

c

. Identifying W

c

= W

f

c

gives us an estimate for the  depen-

dence of the critical disorder. Note that since the singularity spectrum should be independent

of the system size at the transition point, it is su�cient to investigate small systems. We

have used systems with N = 24 for the results presented in this section.

1. Weakly coupled planes

Assuming the validity of f

c

we �nd a crossover between two power laws in the  depen-

dence of the critical disorder: W

c

= 55(1 � )

0:86

for  � 0:9 and W

c

= 16:8 (1 � )

0:35

for

6



 � 0:9 as can be seen in Fig. 3. This does not agree with the results of Ref. 8, where

� = 0:25 has been calculated within the self-consistent theory of localization and where the

single power law W

c

= 15:4(1 � )

0:25

has been deduced from the TMM data.

2. Weakly coupled chains

In Fig. 4 the results for W

c

() for weakly coupled chains are shown. Using f

c

we �nd

W

c

= 17:6(1 � )

0:74

which is very similar to the TMM data

9

W

c

= 16:19(1 � )

0:611

. The

di�erence becomes signi�cant only for very large 

>

�

0:9. The exponent � = 0:611 was

obtained from a �t of the TMM data over the whole  range. For large  the authors of

Ref. 9 get � = 0:5. This is consistent with the result of Ref. 8.

C. Estimation of W

c

from the system-size dependence

We have shown in the last section, that the assumption of the characteristic f

c

leads to

large di�erences in the estimates of W

c

between the TMM results

8;9

and our results based

on the multifractal analysis. Thus we will now use a more direct method to estimateW

c

()

from the multifractal properties of the eigenstates. From the isotropic case it is known

12

that multifractal behavior is found not only directly at the critical disorder W

c

but also

close to the transition. The reason is the �nite sample size which is much smaller than the

characteristic length scales of the states close to W

c

. In this range the exponential decay

or uniformly extended character of the wave function is masked by large uctuations and it

is not obvious to which side of the MIT a given state belongs. Due to the relatively small

sample size the system is very sensitive to its boundary. Correspondingly, a characteristic

change in the singularity spectrum is observed when the system size is increased. This change

can be evaluated to distinguish the localized or extended character of the wave function. For

an extended state the f(�) curve becomes narrower and the maximum position is shifted

towards smaller values of �, approaching the value 3. The opposite behavior is found for

a localized state. Thus the spectra tend towards the extreme cases discussed in Sec. III.

7



Indeed we expect these limiting cases, namely f(3) = 3 for the metallic side and f(0) = 0

and f(1) = 3 for the insulating side, to be reached for in�nitely large system size for any

disorder except W

c

. Only directly at the transition the wave functions are multifractal,

the uctuations are the same on all length scales, and f(�) is independent of the system

size. This makes is feasible to determine the critical disorder by analyzing the system-size

dependence of the singularity spectra.

14

1. Weakly coupled planes

We show in Fig. 5 an example of weakly coupled planes with  = 0:8. The above

described di�erent behaviors of the spectra can be seen. For W = 8, a larger system size

results in a narrower f(�) curve which is characteristic for extended states. On the other

hand, the increase in the system size forW = 12 yields a widening of the spectrum indicating

localized states. The singularity spectrum for W = 10 is least e�ected by the change of the

system size and we thus conclude a critical disorder W

c

( = 0:8) = 10� 1. Considering the

error bars, the f(�) curve for W

c

equals the characteristic spectrum f

c

of the isotropic case.

For moderate anisotropies 

<

�

0:8 this con�rms the hypothesis of a characteristic f

c

.

Visual observation of the system-size dependence of the f(�) curves is not well suited

for a systematic search for the transition. A better method is to focus attention to special

points of the spectra such as the position �

0

of the maximum and the information dimension

D

1

= �

1

. An increase of the system size causes a decreasing �

0

and a increasing �

1

for

extended states and the opposite tendency for localized states

14;21

as described in Sec. III.

A constant behavior of �

0

and �

1

versus system size indicates W

c

. Following Ref. 14 we

have parameterized the system-size dependence by 1=ln(N) which has been found to give a

nearly linear behavior of �

0

and �

1

thus distinguishing their tendencies more clearly.

14;21;22

In Fig. 6 we �nd a constant behavior at the same value of the disorder for both quantities

and we conclude W

c

( = 0:96) = 8:0 � 0:5.

For very weakly coupled planes we get signi�cantly larger values of W

c

than in Sec. IVB.

8



The new values are close to, but slightly larger than the TMM data

8

as can be seen in

Fig. 3. Our data follow W

c

= 16:3(1 � )

0:25

which con�rms the exponent � = 0:25 derived

analytically.

8

We therefore conclude that f

c

is no longer characteristic for the eigenstates

at the MIT for weakly coupled planes with 

>

�

0:8. In our present analysis we �nd wider

singularity spectra which is a sign of a tendency towards localization. An eigenstate at the

transition for very strong anisotropy  = 0:99 is shown in Fig. 7. The probability amplitude

is concentrated to a few planes perpendicular to the direction with reduced transfer. This

coincides with the observation that the localization length is smaller by a factor 1 �  in

the perpendicular direction compared with the parallel one.

8

In the mentioned planes the

wave function looks like a fractal with holes and islands of di�erent sizes, very similar to

the critical eigenstates of the isotropic system. It may well be that the cubic boxes used in

the box-counting procedure for the multifractal analysis cannot appropriately measure this

fractal, because most box sizes exceed the number of planes on which the wave functions

are concentrated. Therefore it is possible that the deviations of W

f

c

from W

c

in Fig. 3 are

an artefact of the analysis.

2. Weakly coupled chains

The results for the W

c

() dependence of weakly coupled chains are shown in Fig. 4.

They are in reasonable agreement with the TMM data,

9

although we cannot reproduce the

exponent

8

� = 0:5. The di�erences between W

c

and W

f

c

are not as large as in the other

case and the multifractal properties of the critical states are therefore similar to those of the

isotropic system.

V. CONDUCTIVITY IN SMALL ANISOTROPIC SYSTEMS

The transport properties are determined by the localization properties of the states.

At T = 0 localized states cannot contribute to charge transfer and we have insulating

behavior. On the other hand, extended states yield metallic behavior. The Kubo formula

9



following from Fermi's golden rule provides a connection of the electrical conductivity and

the electronic states jni.

Let us consider an electrical AC �eld with frequency ! = �hE in x direction on an sample

with volume N

3

. We assume a half-�lled band at T = 0 such that all states with E � 0 are

occupied while all others are unoccupied. A con�guration average because of the random

site energies is denoted by h i

C

. Neglecting prefactors the real part � of the conductivity is

given by

23

�(E) �

*

X

nn

0

jhnjxjn

0

ij

2

E

nn

0

�(E � E

nn

0

)

+

C

; E 6= 0 : (4)

In order to compute this quantity it is necessary to know all eigenvalues and all eigen-

states. We use the standard Householder algorithm to diagonalize the Hamiltonian (1).

We average over 90 to 150 con�gurations to suppress the large statistical uctuations of

�. This limits the treatable linear system size to N = 12. As a consequence we encounter

strong �nite-size e�ects for W � 4. The small number of eigenenergies in the ordered

limit is not smeared out su�ciently by the disorder to yield a smooth density of states

�(E) =

1

N

3

h

P

n

�(E � E

n

)i

C

as shown in Fig. 8 for W = 1 and  = 0:9. We also note that

the density of states for larger disorder values and  � 0:9 agrees with that of the respective

1D or 2D system within the uncertainty due to uctuations. However, the transport behav-

ior of the states is completely di�erent: In 1D and 2D there is no MIT (W

c

= 0) while 3D

systems exhibit an MIT even for very strong anisotropy as shown in Sec. IV.

Because the characteristic length scales of the wave functions exceed the system size it is

a priori not clear whether the localization behavior of the states has any measurable inuence

on the computed conductivity. Suppose there is no such inuence, then the matrix elements

hnjxjn

0

i are all be equal and the conductivity is given by the E-weighted joint density of

states �

u

(E) = h

P

nn

0
E

nn

0

�(E �E

nn

0

)i

C

. We compare � and �

u

for weakly coupled planes

with, e.g. W = 1 and  = 0:9 in Fig. 9. The peak structure for this small disorder is a

again �nite size e�ect reecting the peaks of �(E). The positions of the minima of �(E)

are the same as expected from the joint density of states but the minima are much more

10



pronounced. The reason for this behavior is the strong localization of the states for energies

with low �(E) similar to the localization in the band tails; the latter causes the decrease of �

at higher energies. Thus despite the small system size the conductivity is highly inuenced

by localization e�ects.

In Fig. 10 we present the conductivity computed for the two nonequivalent directions:

parallel (a), (c) and perpendicular (b), (d) to the planes and chains, respectively. For

strong anisotropy the wave functions are concentrated to a few chains or planes as shown in

Fig. 7. Consequently, the conductivity is drastically reduced in the perpendicular direction.

For  = 0:9 the maximum of � is reached at small energies because the most extended

eigenstates appear in the band center. This causes the (small) peak for W = 1. For strong

disorder W = 15 all eigenstates are strongly localized and the perpendicular conductivity is

nearly negligible. For the parallel conductivity we �nd an increase if the anisotropy becomes

stronger. Here, the transport is not handicapped by the anisotropic localization of the wave

functions. The increase is relatively small for the planes and considerable for the chains. A

good argument to explain this di�erence is the form of the density of states which yields a

higher amount of possibly transitions for the energies around the position of the maximumof

�(E) for the second. The parallel conductivity atW = 15 is relatively small but considerable

in a large energy range which reects the disorder widened energy band. We note that the

conductivities for a very strong anisotropy  = 0:99 are nearly equal to those of  = 0:9 in

the parallel direction and again negligible in the perpendicular direction.

VI. CONCLUSIONS

In the present work we have studied the localization behavior of eigenfunctions and

transport properties of the Anderson model with anisotropic hopping. As expected from the

general argument for the fractal nature of wave functions at the metal-insulator transition,

multifractal eigenstates were found even for strong anisotropy. The multifractal description

holds not only directly at the transition but also close to it due to the small system sizes

11



considered. As a �rst estimate for the critical disorder W

c

we determined that W

f

c

where

the states show the characteristic singularity spectrum f

c

(�) which indicates the MIT in the

isotropic case. But especially for weakly coupled planes the computed anisotropy depen-

dence of the critical disorder di�ers remarkably from the TMM results.

8

We also analyzed

the system-size dependences of the singularity spectra to determine the MIT. The observed

W

c

() agree reasonably well with the TMM data.

8;9

Therefore we conclude that the "char-

acteristic spectrum" is no longer valid if the anisotropy becomes strong. This is surprising

because f

c

was independent of the microscopic details of the isotropic system for the 3D

case. The spectrum at W

c

for weakly coupled planes is wider than f

c

. This coincides with

the observed concentration of the probability amplitude to only a few planes perpendicular

to the direction with reduced hopping for large anisotropy.

We have also studied the AC conductivity of small anisotropic samples using Kubo's

formula. In this case the treatable system sizes are very small because all eigenvalues and

eigenvectors of the Hamiltonian are needed. Nevertheless we observe a rapidly decreas-

ing conductivity in the direction with smaller hopping integral if the anisotropy becomes

stronger. This is a pure localization e�ect. For the used small system size N = 12 it

is surprising that this can be observed, because the characteristic length scales are much

larger for nearly all of the states. Another interesting fact is that the density of states for

an anisotropy  = 0:9 is already nearly identically with that of the corresponding lower-

dimensional system.
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FIG. 1. Singularity spectra of a localized (W = 1) and an extended (W = 25) state of an

isotropic system with N = 48. The circles (�) mark f(�

0

) and the squares (2) mark f(�

1

).
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FIG. 2. Linear regression data for the evaluation of Eq. (2) determining �(q) and f(q) for

weakly coupled planes with  = 0:9, N = 48, W = 9 and q = �2(�);�1(2); 0(3); 1(4); 2(+).
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FIG. 3. W

c

() for weakly coupled planes as obtained from the \characteristic spectrum" (�)

and from the system size dependence (4). The thin solid lines represent the two power law �ts to

the (�) data. The thick dashed line is the result of Ref. 8. The thick solid line is a combination of

the isotropic result

4

W

c

= 16:3 and the perturbative exponent

8

� = 0:25 which �ts the (4) data

well.

17



0.01 0.10 1.00
1-γ

1

10

W
C
(γ

)

WC(γ)=17.6(1-γ)
0.74

WC(γ)=16.19(1-γ)
0.611

WC(γ)=16.3(1-γ)
0.5

FIG. 4. W

c

() for weakly coupled chains as obtained from the \characteristic spectrum" (�)

and from the system size dependence (4). The thin solid line is a power law �t to the (�) data,

the thick dashed line is the result of Ref. 9. The thick solid line is the combination of the isotropic

result

4

W

c

= 16:3 and the perturbative exponent

8

� = 0:5.
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FIG. 5. Singularity spectra for weakly coupled planes at  = 0:8 for the two system sizes

N = 18 (�) and N = 42 (��). The symbols distinguish W = 8(�); 10(4); 12(2) and indicate �(q)

and f(q) for q = �2;�1; 0; 1; 2 (from right to left). The error bars result from the linear regression

(cp. Fig. 2) and the average over the di�erent eigenstates (cp. Sec. IVA). The dotted line is the

"characteristic spectrum" f

c

.
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FIG. 6. N dependence of �

0

and �

1

for weakly coupled planes with  = 0:96 and

W = 5:5(�); 6:5(2); 7:5(?); 8:5(�); 9:5(4); 10:5(+).
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FIG. 7. Wave function close to the MIT for very weakly coupled planes with  = 0:99, N = 48

and W = 4:5. Every site with probability j	

i

j

2

larger than the average N

�3

is shown as a box

with volume j	

i

j

2

�N . The 764 cubes with j	

i

j

2

�N >

p

1000 are plotted in white with black

edges. The grey scale distinguishes between di�erent slices of the system along the x-axis. The

thick solid line is the logarithm of the summed probability amplitude for each plane perpendicular

to the z-axis. Again only values above N

�3

are shown.
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FIG. 8. Density of states for weakly coupled chains (a) and planes (b) with  = 0:9 and N = 12.

The data for W = 5 and 15 agree with that of uncoupled chains or planes within the statistical

uctuations. The peak structure for W = 1 is due to the small system size.
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FIG. 9. Comparison of � and �

u

in weakly coupled planes with W = 1,  = 0:9, and N = 12.

�

u

has been scaled to the same maximum value as �.
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FIG. 10. Conductivity � for N = 12 and various anisotropies  and disorders W for weakly

coupled chains (c), (d) and planes (a), (b) for the parallel (a), (c) and perpendicular (b), (d)

direction. The perpendicular conductivity for  = 0:9 and W = 15 is negligible while the parallel

conductivity for  = 0:9 and W = 1 exceeds the range of the diagram (see Fig. 9).
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