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Abstract

In this paper we compare the performance, scalability, and robustness of di�erent

parallel algorithms for the numerical solution of nonlinear boundary value problems

arising in the magnetic �eld computation and in solid mechanics. These problems

are discretized by using the �nite element method with triangular meshes and piece-

wise linear functions. The nonlinearity is handled by a nested Newton solver, and

the linear systems of algebraic equations within each Newton step are solved by

means of various iterative solvers, namely multigrid methods and conjugate gra-

dient methods with preconditioners based on domain decomposition, multigrid, or

BPX techniques, respectively. The basis of the implementation of all solvers is a

non-overlapping domain decomposition data structure such that they are well-suited

for parallel machines with MIMD architecture.
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1 Introduction

Recently, Multiple Instruction Multiple Data (MIMD) parallel computers with message-

passing principle have found more and more interest. These parallel machines provide

su�cient CPU power and su�ciently large storage capacity as it is necessary for the

numerical simulation of complex processes.Therefore, e�cient parallel solvers for large

systems of algebraic equations resulting from, e.g., the �nite element (FE) or boundary

element (BE) discretization of partial di�erential equations, have been developed.

There are di�erent approaches for the construction of e�cient parallel solvers. The

�rst one is the application of Domain Decomposition (DD) preconditioners within the

preconditioned conjugate gradient (PCG) method. For example, the non-overlapping DD

(NODD) methods have been applied successfully. Here, one has to de�ne preconditioning

matrices for the sti�ness matrices of the corresponding problems in the subdomains, a

preconditioner for the Schur complement, and a basis transformation (for more details see,

e.g., [2, 6, 7, 10, 14, 15, 20, 27, 28]). The appropriate de�nition of these preconditioners

and of the basis transformation leads to (almost) optimal PCG methods, i.e. the number

of iterations for getting an approximate solution with a relative accuracy " is of the order

O(lnh

�1

q

ln "

�1

) or O(ln "

�1

) (h

q

denotes the discretization parameter).

A second possibility for getting parallel solvers is the implementation of well-known

global optimal iterative solvers, as e.g. multigrid methods or PCG methods with BPX

preconditioners, on parallel machines. Using a NODD data structure, these solvers need,

just as the DD-PCG method, a communication cost per iteration step which is one order

lower than the FE problem itself (see, e.g., [24]).

A �rst comparison of two of the algorithms, namely the CG method with DD precon-

ditioner (DD-PCG) and the global multigrid (GMG) method as linear problem solvers in

a nested Newton framework (i.e. an inexact Newton method [4, 5], see [17, 19, 20]) can

be found in [21]. Therein, we discovered that the Newton-GMG method can be faster

than the Newton-DD-PCG method for model problems and a practical problem with low

nonlinearity, but we observed the better scalability of the Newton-DD-PCG.

In addition to the solvers examined in [21], we implemented a parallel CG algorithm

with global BPX preconditioner (GBPX-PCG) [3] which uses the NODD data structure.

Further, the GMG method can serve as a preconditioner (GMG-PCG) in the parallel CG

algorithm (cf. [23]), too.

The aim of the present paper is to compare the performance, scalability, and robustness

of the di�erent parallel algorithms for di�cult nonlinear practical problems. This includes

tests for the magnetic �eld computation in electric machines with complicated interior

geometry and strong nonlinearity, i.e., high saturation of the iron parts. The latter causes

a local anisotropy of the linear Jacobi operator. Moreover, we present test calculations

for another nonlinear test problem originating from a shape design problem (see [8, 25])

that had been already investigated in [17, 20].

Further, we are interested in getting e�ciency measures by comparing calculations on

di�erent numbers of processors, say p and q, with p � q. The Relative Scale-up is de�ned

by

S(p; q) =

Time per unknown(p)

Time per unknown(q)

=

T (p)

N(p)

�

N(q)

T (q)

;

where T (p) (T (q)) denotes the calculation time of the parallel algorithm, and N(p) (N(q))

is the number of unknowns (i.e. degrees of freedom) for the problem on p (q) processors
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[11]. The Relative Scaled E�ciency is de�ned by

E(p; q) =

p

q

� S(p; q)

For an ideally scalable algorithm, we get E(p; q) = 1, otherwise E(p; q) < 1.

The aim of discussing these "scaled" e�ciency measures is to compare calculations in

the case that the number of processors used is adapted to the complexity of the problem,

i.e. N(p)=N(q) � p=q. We have to distinguish these measures from the practically less

relevant Relative Speedup

~

S(p; q) = T (p)=T (q) and Relative E�ciency

~

E(p; q) = p=q �

~

S(p; q) in the case N(p) � N(q).

The rest of the paper is organized as follows. In Section 2, we formulate the elec-

tromagnetic �eld problem as a nonlinear boundary value problem. We apply the nested

Newton-DD method for linearization. We discuss some properties of the discrete Jacobi

operators involved in the Newton method. In Section 3, we describe the di�erent meth-

ods for solving the arising linear problems. Section 4 is devoted to the numerical results.

We present performance results of the magnetostatic �eld simulation for a direct current

motor (DC motor) and an induction machine as well as for the nonlinear shape design

problem. Finally, we add some concluding remarks in Section 5.

2 The nonlinear problem and its linearization

A two{dimensional stationary magnetic �eld problem involving the saturation e�ects of

ferromagnetic materials can be written as a nonlinear boundary value problem in its

variational formulation as follows:

Find u 2 V = H

1

0

(
) such that

a(u; v) = hf; vi 8v 2 V; (1)

where

a(u; v) =

Z




�(x; jruj) r

>

u rv dx ;

and

hf; vi =

Z




(Sv �H

0y

@v

@x

+ H

0x

@v

@y

) dx :

Here, 
 � R

2

denotes a bounded domain. The physical model has been developed

from Maxwell's equations, see [18] for details. We assume that 
 representing the cross{

section of some electromagnetic device lies in the x{y{plane of R

3

. Then, the solution u

is the z{component of some vector potential

~

A. The z{component of the current density

is represented by S, and the vector

~

H

0

= (H

0x

;H

0y

; 0)

>

describes the magnetization of

permanent magnets. The nonlinearity of the problem is represented by the dependence

of � on the absolute value of the magnetic induction B = jrot

~

Aj = jruj.

We assume that

�


 consists of subdomains

�


 =

N

M

[

j=1

�

^




j

; with

^




i

\

^




k

= ; 8i 6= k:

The

^




j

's represent materials with di�erent magnetic properties (iron, copper, air, per-

manentmagnetic materials) in the cross{section of an electromagnetic device. We assume
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that the function � depends on the position x 2 
, but � becomes independent of x inside

each subdomain

^




j

, i.e.

�(x;B) = �

(j)

(B) if x 2

^




j

; j = 1; : : : ; N

M

: (2)

The function �

(j)

(B) is constant, �

(j)

(B) � �

(j)

1

, if the material in

^




j

is not ferromagnetic

(e.g., copper, air, vacuum). Assuming certain monotonicity and boundedness conditions

on the functions �

(j)

(:) we can prove the existence and uniqueness of the solution of

the variational problem (1) [17, 18]. Standard FE discretization with linear triangular

elements has been discussed in [18]. Therein, the algorithm for monotonicity preserv-

ing spline interpolation of a pointwise given material function �

(j)

(:) is described, error

estimates are given, too.

The parallel nested Newton (PNN)method for solving the discrete problems combining

a Newton-like method with the nested iteration and a suitable parallel solver, is described

in detail, e.g., in [19, 20, 21]. Therefore, we recall the main de�nitions only.

The substructuring into non-overlapping subdomains 


i

; i 2 I

?

:= f1; : : : ; pg, which

are assigned to p processors of the MIMD computer can be de�ned as follows

�


 =

N

M

[

j=1

�

^




j

=

[

i2I

?

�




i

=

N

M

[

j=1

[

i2I

j

�




i

(3)

with index sets ful�lling

I

j

� I

?

:= f1; : : : ; pg ;

N

M

[

j=1

I

j

= I

?

; I

j

\ I

k

= ; 8j 6= k;

i.e., the subdomains

^




j

determined by the materials may be decomposed further (cf. [10,

14]). We further assume that in each subdomain

�




i

there is a multilevel sequence of

linear �nite element discretizations such that this discretization process results in conform

triangulations T

q

; q = 1; : : : ; l; of 
 creating a sequence V

1

; V

2

; : : : ; V

l

� V = H

1

0

(
) of

spaces of linear �nite elements. The FE isomorphism is denoted by �

q

: R

N

q

�! V

q

.

We obtain a sequence of variational problems for q = 1; : : : ; l:

Find u

q

2 V

q

� V such that

a

q

(u

q

; v

q

) = hf

q

; v

q

i 8v

q

2 V

q

; (4)

and a sequence of equivalent nonlinear �nite element equations

K

q

u

q

= f

q

; q = 1; : : : ; l; (5)

with nonlinear operators

K

q

: R

N

q

�! R

N

q

;

solution vectors u

q

2 R

N

q

and vectors f

q

2 R

N

q

.

In the Newton method, we have to solve linear systems of the form

K

0

q

[v

q

]w

q

= d

q

(6)

with the Fr�echet derivative of K

q

at a vector v

q

,

K

0

q

[v

q

] : R

N

q

! R

N

q

; q = 1; : : : ; l;

which can be represented by the Jacobi matrix.
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The analysis shows that this operator can be strongly anisotropic. We recall from [17]

that the Jacobian can be rewritten as

(K

0

q

[v

q

]w

q

; z

q

)

q

=

X

K2T

q

meas (K) r

>

�

q

w

q

Q

j(K)

(r�

q

v

q

) r�

q

z

q

8w

q

; z

q

2 R

N

q

; (7)

with

Q

j

(t) = �

(j)

(jtj)I

2

+

�

(j)0

(jtj)

jtj

t t

>

; (8)

where t = (t

1

; t

2

)

>

2 R

2

, the matrix I

2

2 R

2�2

denotes the identity matrix, and j(K) is

the corresponding material index, i.e., j(K) is de�ned by K �

�

^




j(K)

8K 2 T

q

, cf. (2).

The matrix Q

j

2 R

2�2

can be rewritten as

Q

j

=

0

@

�

(j)

(jtj) +

�

(j)0

(jtj)

jtj

t

2

1

�

(j)0

(jtj)

jtj

t

1

t

2

�

(j)0

(jtj)

jtj

t

1

t

2

�

(j)

(jtj) +

�

(j)0

(jtj)

jtj

t

2

2

1

A

: (9)

Obviously, we have Q

j

= diag(�

(j)

1

; �

(j)

1

) for not ferromagnetic materials. For ferro-

magnetic materials, there are values of the magnetic induction B = jtj for which �

(j)0

is

large, in particular for intermediate values between the linear part

�

(j)

(B) � �

(j)

1

8B � B

1

and the asymptotic behaviour

�

(j)

(B) �! �

1

= 1=�

0

for B !1;

since �

(j)

(B) is a monotone increasing function [18]. Then the relation

jtj�

(j)0

(jtj)� �

(j)

(jtj) (10)

holds, and the Jacobi operator becomes the discretization of an anisotropic operator.

For the example t = (t

1

; 0)

>

, we get from (9) that Q

j

= diag(q

11

; q

22

) with q

22

=

�

(j)

(jtj) and q

11

= q

22

+ jtj�

(j)0

(jtj) � q

22

holds, and the anisotropy is obvious. The

anisotropy is, of course, not restricted to that direction of t = r�

q

v

q

.

3 Parallel solvers for linear problems

The standard NODD data structure and the parallelization strategy are presented, e.g.,

in [10]. The linear equations (6) can be rewritten in the standard block form

J

 

w

C

w

I

!

=

 

J

C

J

CI

J

IC

J

I

!  

w

C

w

I

!

=

 

d

C

d

I

!

; (11)

where indices "I" and "C" correspond to the nodes belonging to the interior of the subdo-

mains 


i

and to the coupling boundaries, respectively. Note that J

I

= diag (J

I;i

)

i=1;2;:::;p

is a block-diagonal matrix.

DD preconditioned conjugate gradient method:

The parallel CG algorithm with DD preconditioning for solving the systems (11) can

be implemented in a standard way, see [10, 22]. It runs completely in parallel with the
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exception of the two scalar products, and the preconditioning. The DD preconditioner

for J , the matrix C with

C =

 

I

C

J

CI

B

�T

I

O I

I

! 

C

C

O

O C

I

! 

I

C

O

B

�1

I

J

IC

I

I

!

; (12)

contains three components, i.e., the preconditioners C

C

and C

I

= diag (C

I;i

)

i=1;2;:::;p

, and

the regular matrix B

I

= diag (B

I;i

)

i=1;2;:::;p

de�ning the basis transformation, which can

be adapted to the matrix J in a suitable way [10].

Here, we choose a symmetric multigrid cycle, in our applications a V -cycle (V11) with

one pre- and one postsmoothing step of Gauss-Seidel type, in the symmetricMultiplicative

Schwarz Method [10] for C

I

, and B

I

is implicitly de�ned by hierarchical extension (for-

mally E

IC

= �B

�1

I

J

IC

) [15]. We apply a Schur complement preconditioner C

C

following

Bramble/Pasciak/Schatz [2], which uses the idea of Dryja [6] on the coupling boundaries

and a global crosspoint system (BPS-D), or a Bramble/Pasciak/Xu [29, 3] type Schur

complement preconditioner together with a global crosspoint system (S-BPX).

Spectral equivalence between J and C has been proved in [10]. Together with the

results of [2, 3, 15, 17, 29] we can prove that the numerical e�ort spent for one Newton

step on grid q is at most of order O(N

q

ln lnh

�1

q

ln"

�1

lin

) in the (S-BPX) case, i.e. almost

optimal. In the (BPS-D) case we have to add a factor lnh

�1

q

. Here h

q

denotes the

discretization parameter, such that N

q

= O(h

�2

q

). We refer to [20, 22] for details.

Additionally, we tested a DD-PCG method with a BPX preconditioner (BPX-C

I

)

instead of the multigrid cycle for the operator C

I

.

Global multigrid method:

Using the NODD data structure, the interpolation and restriction procedures do not

need any communication. We developed parallel Gauss-Seidel type smoothers and Jacobi

smoothers which require the same communication e�ort, i.e. a data exchange of the order

O(N

0:5

q

) between the processors, within each smoothing step. The Gauss-Seidel smoother

executes the smoothing �rst for the coupling nodes ("C"), and then for the inner nodes

("I"), i.e., "forward", or in the reverse order, "backward" (see [24]). In our test examples

we perform two pre- and two postsmoothing steps on each level. We utilize parallelized

preconditioned conjugate gradient methods with a (BPS-D) preconditioner applied to the

corresponding Schur complement system as coarse grid solvers. Here, communication is

required in the two scalar products and in the preconditioner, whereas all other operations

are completely parallel. The parallel multigrid algorithm is described in detail in [21, 24].

Obviously, the GMG method can serve as a preconditioner in the CG algorithm,

too [23].

Parallel global BPX method:

We realize the parallel CG method with BPX preconditioner [3] including a multilevel

diagonal scaling [30] in a similar manner. In our implementation, the data of di�erent

levels is exchanged together, i.e., the number of data exchange steps (the startup time)

is independent of the number of levels. Additionally, we need a coarse-grid solver which

coincides completely with that of the GMG method.

4 Numerical results

4.1 Implementation

The complete algorithms are implemented in the parallel code FEM





BEM [12, 13, 24].

Thus, all parts of the parallel nested Newton algorithm, such as the grid generation, the
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matrix generation and representation, and the defect computation, are identical for all

solving methods. We tested the algorithms on the parallel system GC-Power Plus (with

maximal 64 processors Power PC 601) with the operating system Parix. In the following

we describe our choice of components and parameters in the solvers for linear problems.

Initially, the linear problems arising in the Newton method are solved with a relative

accuracy of "

lin

= 0:01. This parameter "

lin

can be adapted to the quadratic convergence

speed of the Newton method in later Newton iterations [17].

Within the (GMG) solver, we used a V -cycle with 2 pre- and 2 postsmoothing steps of

the parallelizedGauss-Seidel type. With respect to the coarse grid solver, a preconditioned

Schur complement CG solver turned out to be su�cient where best results have been

obtained with a relative accuracy of 0:1 in the multilevel case (q � 2).

In the GMG-PCG method, we apply one V -cycle as a preconditioner.

To be sure, we demand an error reduction by the relative accuracy " = 10

�6

on the

�nest grid, therefore, we apply 4 or 5 Newton iterations on the �nest grid. From the

nested iteration we can expect that for obtaining an approximate solution which di�ers

from the exact solution in the order of the discretization error, two Newton iterations are

su�cient, i.e., we can nearly halve the processing time presented in the tables.

4.2 Direct current motor - two examples on di�erent numbers

of processors

A technical direct current (DC) motor which is excited by permanent magnets serves as

an example of practical interest. The machine has a diameter of 50 mm, it is described in

detail in [17]. The motor contains two di�erent ferromagnetic materials; the rotor consists

of dynamo sheet, the case is made from rolled steel. From a description of the machine,

we created two calculation examples. We decomposed the domain 
 into 32 and 64

subdomains by means of the preprocessing tool ADDPRE (Adaptive DD Preprocessor,

see [9, 13]). The decompositions have been created independently of each other. We

cannot expect relations between them such as, e.g., that two of the 64 subdomains form

one of the 32 subdomains. Figure 1 shows both decompositions.

Figure 1: Domain decomposition into 32 (left) and 64 (right) subdomains (DC machine)

In Table 1, we present the iteration count for the Newton algorithm as well as for the

di�erent linear solvers for both examples. Figure 2 shows the level lines for the DC motor.
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Table 1: Nested Newton algorithm for the DC machine

DD-PCG DD-PCG GMG GMG GBPX

Solver (V11, (BPX-C

I

, -PCG -PCG Example

S-BPX) S-BPX)

Newton iter. 1st grid 6 6 6 6 6 32

Newton iter. 2nd grid 2 2 2 2 2 sub-

CG/MG iter. 2nd grid 16,27 17,18 2,2 2,2 14,11 domains,

Newton iter. 3rd grid 2 2 2 2 2

CG/MG iter. 3rd grid 17,17 17,22 2,2 2,2 13,11 32

Newton iter. 4th grid 2 2 2 2 2 pro-

CG/MG iter. 4th grid 16,22 20,25 2,3 2,2 14,15 cessors,

Newton iter. 5th grid 4 4 4 4 4

CG/MG iter. 5th grid 16,23, 21,30, 2,4, 2,3, 14,17, 364637

17,16 23,19 2,2 2,2 17,14 unknowns

Newton iter. 1st grid 6 6 6 6 6 64

Newton iter. 2nd grid 2 2 2 2 2 sub-

CG/MG iter. 2nd grid 18,18 19,22 2,2 2,2 9,7 domains

Newton iter. 3rd grid 2 2 2 2 2

CG/MG iter. 3rd grid 18,21 20,28 2,6 2,3 11,13 64

Newton iter. 4th grid 2 2 2 2 2 pro-

CG/MG iter. 4th grid 19,31 24,38 3,10 3,4 15,22 cessors,

Newton iter. 5th grid 3 4 3 3 3

CG/MG iter. 5th grid 23, 28,48, 3, 3, 17, 688892

37,31 43,52 10,8 6,5 37,35 unknowns

relative accuracy " = 10

�6

on the �nest grid

Figure 2: Level lines for the direct current machine
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In Table 2 we compare the processing time for �ve di�erent algorithms for both ex-

amples. From the total time, we calculated the Relative Scaled E�ciency de�ned in

Section 1.

Table 2: Performance Comparison for the DC machine

DD-PCG DD-PCG GMG GMG GBPX

Solver (V11, (BPX-C

I

, -PCG -PCG Example

S-BPX) S-BPX)

Time (system generation) 18.3 18.3 17.0 17.0 17.3 32 proc.,

Time (solver) 92.9 141.4 36.1 42.6 100.4 364 637

Total time 111.2 159.7 53.1 59.6 117.7 unknowns

Time (system generation) 17.9 20.0 17.1 17.2 17.2 64 proc.,

Time (solver) 150.0 302.8 110.5 93.3 205.4 688 892

Total time 167.9 322.8 127.6 110.5 222.6 unknowns

Relative Scale-up

S(32; 64) 1.25 0.93 0.79 1.02 1.00

Relative Scaled E�ciency

E(32; 64) 0.63 0.47 0.39 0.51 0.50

Time in seconds, GC-Power Plus, relative accuracy " = 10

�6

We �nd out that the GMG-PCG method and GMG have the best performance. This

is due to the excellent convergence properties of the multigrid iteration that keep the

number of iterations small, whereas DD-PCG and GBPX-PCG need more iterations to

achieve the relative accuracy "

lin

= 0:01.

The Relative Scaled E�ciency ranges between 0.39 and 0.63 for all algorithms. The

reason for this relatively "worse" scaled e�ciency compared with model problems [21] is

that the linear solvers need more iterations for the 64 subdomain example than for the

32 subdomain one. This is due to "worse" spectral equivalence constants. The latter

is caused by the geometric properties of the automatically generated decomposition and

discretization, and by the lnh

�1

q

term in the estimates. We notice that the DD-PCG

method with (V11, S-BPX) shows the best scalability, although GMG (resp. GMG-PCG)

solves faster. We remark that the system generation is almost ideally parallelizable.

Although the ratio of anisotropy, i.e. the quotient of the eigenvalues of the matrix Q

j

(cf. (9)), is about 10 in some �nite elements, the anisotropy does not a�ect the convergence

of the GMG method in this example.

4.3 Induction machine - an example with high magnetic satu-

ration

The second example of technical interest, an induction machine (asynchronous motor),

is a more challenging one due to its very complicated interior geometry and the stronger

in
uence of saturation (i.e., a stronger nonlinearity). Indeed, we have an air gap of

0.2 mm where the coe�cient has a jump by a factor of more than 1000, whereas the

machine has a diameter of 45 mm. The electro-magnetic �eld is simulated for a state

with currents in the stator, but no rotor currents. We present the automatically generated

decomposition of the cross-section of the machine into 64 subdomains and level lines in

Figure 3, performance results in Table 3.
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Figure 3: Domain decomposition and level lines for the induction machine

Note that in Table 3 for the (GMG) with 2 Gauss-Seidel "backward" pre-smoothing

and 2 "backward" post-smoothing steps, (2b,2b), we achieved the best performance of all

solvers. But, for the same number of "forward" Gauss-Seidel steps, (2f,2f), the multigrid

solver on the levels q = 3; 4; 5 even did not converge.

Table 3: Performance for the induction machine

DD-PCG GMG GMG-PCG GBPX

Solver (V11,BPS-D) (2b,2b) (2b,2b) -PCG

Newton iterations 1st grid 11 11 11 11

Newton iterations 2nd grid 2 2 2 2

CG/MG iterations 2nd grid 43,55 2,2 2,2 13,11

Newton iterations 3rd grid 2 2 2 2

CG/MG iterations 3rd grid 42,30 2,2 3,3 15,18

Newton iterations 4th grid 2 2 2 2

CG/MG iterations 4th grid 13,81 2,2 3,3 16,21

Newton iterations 5th grid 5 5 5 5

CG/MG iterations 5th grid 36,61,60,74,61 2,2,4,8,8 3,4,3,4,5 17,29,35,39,34

Time (system generation) 49.5 48.2 48.3 50.2

Time (solver) 550.2 295.9 347.2 848.8

Total time 599.7 344.1 395.5 899.0

Time in seconds, GC-Power Plus, 64 processors (subdomains); 5 grids, 549 091 unknowns,

relative accuracy " = 10

�6

, current density S

We discovered that in large areas of the machine the ratio of anisotropy, i.e. the

quotient of the eigenvalues of the matrix Q

j

(cf. (9)), is between 17 and 18. We conclude

from (9) that the dominance direction of the anisotropy is determined by the direction

of t. Thus, it depends on the direction of ru

j

q

for the current approximate solution u

j

q

.

The direction of ru

j

q

is perpendicular to the direction of the magnetic induction

~

B

j

q

. It

di�ers for di�erent parts of a machine, and it cannot be predicted a priori for other than

model problems. Because of this anisotropy the Gauss-Seidel iteration may be a poor

smoother [16]. The application of ILU smoothers or line smoothers as described in [1, 26]
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for problems in rectangular domains could lead to better convergence properties of the

GMG solver, but it seems to be not clear up to now how to construct and parallelize them

for the complicated inner geometry of the electric machines.

For Table 4, the current density is reduced by a factor 0:1. Consequently, the magnetic

induction is lower. Various combinations of Gauss-Seidel smoothers perform well. Here,

we have 4 Newton iterations on level 1, and 2 Newton iterations with 2 multigrid cycles

on the levels 2, 3, and 4 for all 4 columns. The abbreviation "fb" denotes a "forward"

followed by a "backward" step.

Table 4: Performance for the induction machine with reduced current density (GMG)

Smoother (2f,2f) (2b,2b) (fb,fb) (2f,2b)

Newton iterations 5th grid 4 4 5 5

MG iterations 5th grid 2,2,4,8 2,2,4,8 2,2,4,8,8 2,2,4,8,8

GC-Power Plus, 64 processors (subdomains); 5 grids, 549 091 unknowns,

relative accuracy " = 10

�6

, current density 0:1 � S

The application of the MG algorithm for de�ning a preconditioner in the PCG method

gives a more robust solver. We observed that (GMG-PCG) converge for several variants

of Gauss-Seidel smoothers, see Table 5.

Table 5: Performance for the induction machine (GMG-PCG)

Smoother (2f,2b) (fb,fb) (2b,2b) (2f,2f)

Newton iterations 1st grid 11 11 11 11

Newton iterations 2nd grid 2 2 2 2

CG iterations 2nd grid 3,3 3,3 2,2 2,2

Newton iterations 3rd grid 2 2 2 2

CG iterations 3rd grid 3,3 3,3 3,3 3,3

Newton iterations 4th grid 2 2 2 2

CG iterations 4th grid 3,3 3,4 3,3 3,3

Newton iterations 5th grid 5 5 5 5

CG iterations 5th grid 3,4,4,5,3 3,4,5,5,5 3,4,3,4,5 3,4,3,4,4

GC-Power Plus, 64 processors (subdomains); 5 grids, 549 091 unknowns,

relative accuracy " = 10

�6

, current density S

4.4 A nonlinear test problem from continuum mechanics

This example demonstrates the application of the algorithms to a quite di�erent nonlinear

problem.

Consider the problem in 
 = (0; 1) � (0; 1) � R

2

:

Find u 2 V = H

1

0

(
) such that

Z




 (jruj) r

>

u rv dx =

Z




v dx 8v 2 V (13)
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where

 (z) =

8

>

<

>

:

2 if z

2

� 0:008

1 if z

2

� 0:032

p

0:032=z else.

(14)

The problem arises in the theory of elasticity (see [25] and [8]). We want to construct an

in�nitely long elastic bar of given cross{section 
 with maximal torsional rigidity from

two di�erent linearly elastic materials of given shear moduli. The proportions of these

materials are prescribed. The problem has nearly the same form as (1) but it is not

strongly monotone. Further,  

0

is not continuous.

Table 6: Performance for the shape design problem

DD-PCG DD-PCG GMG GBPX

Solver (V11, (BPX-C

I

, -PCG -PCG Example

S-BPX) S-BPX)

Time (system) 26.0 25.9 25.9 25.7 16 processors

Time (solver) 178.4 247.5 64.8 154.9 5 grids

Total time 204.4 273.4 90.7 180.6 387 985 nodes

Time (system) 28.2 25.6 28.2 25.5 64 processors

Time (solver) 412.0 289.5 138.4 337.6 5 grids

Total time 440.2 315.1 166.6 363.1 1 554 209 nodes

Relative Scale-up S(16; 64) 1.86 3.48 2.18 1.99

Relative Scaled E�ciency

E(16; 64) 0.47 0.87 0.55 0.50

Time (system) 9.3 8.8 8.1 8.8 64 processors

Time (solver) 109.7 112.7 88.4 216.3 4 grids

Total time 119.0 121.5 96.5 225.1 388 001 nodes

Relative Speedup

~

S(16; 64) 1.72 2.25 < 1 < 1

Relative E�ciency

~

E(16; 64) 0.43 0.56

Time in seconds, GC-Power Plus; relative accuracy " = 10

�6

Our �rst aim is to demonstrate the performance of the algorithms. Further, we want to

check whether in the "homogenized region", i.e., the region where 0:008 � jru

l

j

2

� 0:032

(here the two materials have to be "mixed"), the level lines are circular sectors with

identical radius, as it has been predicted theoretically for the solution u in [25].

The square domain 
 is divided into 4 � 4 resp. 8 � 8 square subdomains, each of

them is triangulated automatically by the parallel program FEM





BEM [12, 13, 24].

We present the performance results in Table 6. The Relative Scale-up and the Relative

E�ciency (see Section 1) have been calculated from the total time for the examples with

5 grids. Further, we calculated Relative Speedup and Relative E�ciency on the basis of

the examples with circa 388 000 unknowns.

We note that for this example the Newton-GMG method does not converge, nor for

Gauss-Seidel smoothers, nor for Jacobi smoothers with up to 8 smoothing steps. On the

other hand, the combination of multigrid with a CG method leads to a solver which is

both fast, and robust.

The Relative Scaled E�ciency is about one half as we had expected it for this hard test

problem. For DD-PCG with BPX-C

I

preconditioner, we may calculate a higher Relative

Scaled E�ciency, but only a poor performance. The Relative Speedup results show that

it makes no sense to distribute the problem onto too much processors.
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We show the "homogenized region" on the left-hand side of Figure 4 and the level

lines in this region on the right-hand side. We observe that the "homogenized region" has

the typical shape, and the level lines can be recognized as circular sectors.

Figure 4: Homogenized region and level lines for the shape design problem

5 Conclusions

We have tested several parallel iterative solvers for the linearized problems arising in a

nested Newton method for real-life nonlinear problems. We have found that the DD-PCG

method is able to solve the problems, but the convergence can be slow. Replacing the

V11 multigrid preconditioner in C

I

by a simpler BPX led to more CG iterations, and to

higher computing time, in most cases.

The GMG method can converge faster, but its components have to be adapted well

to the actual problem. Indeed, for anisotropic linear problems, we have to apply other

smoothers than Gauss-Seidel ones, e.g. ILU smoothers [16, 1], but it seems to be not yet

clear how to construct them for the complicated interior geometry of an electric machine.

For the shape-design problem, a multigrid method had been successfully applied in a

quite coarse discretization [17]. For a �ne discretization, the di�culties with multigrid

algorithms could be overcome in [25] by nonstandard "tricks" only. So we are not surprised

that our standard GMG method does not converge.

In [17, 23], we had already found that the use of multigrid as a preconditioner essen-

tially improves the convergence, in particular if the multigrid method converges slowly.

Our parallel computations demonstrate that the combination with the PCG algorithm

makes multigrid much more robust, even in that cases in which the pure multigrid method

does not converge.

In some cases, we get a higher scalability for the DD preconditioner than for the GMG

one, but in view of the computing time we may prefer GMG-PCG for solving technical

problems on massively parallel computer architectures.

The global BPX preconditioner yields a robust method. It may be a good choice if a

black-box solver is required, i.e., the components of the solver cannot be adapted well to

the problem.

All the algorithms mentioned above are parallelized using the NODD data structure.

The communication overhead may di�er between the solver types, but it is in the same

order of magnitude for all of them, namely one order lower than the problem itself.
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The latter makes the NODD data structure attractive for implementing robust multilevel

solvers in three dimensions, too.
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