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Abstract

A new method is presented for the numerical computation of the generalized eigen-

values of real Hamiltonian or symplectic pencils and matrices. The method is strongly

backward stable, i.e., it is numerically backward stable and preserves the structure (i.e.,

Hamiltonian or symplectic). In the case of a Hamiltonian matrix the method is closely

related to the square reduced method of Van Loan, but in contrast to that method which

may su�er from a loss of accuracy of order

p

", where " is the machine precision, the new

method computes the eigenvalues to full possible accuracy.

Keywords. eigenvalue problem, Hamiltonian pencil (matrix), symplectic pencil (matrix),

skew-Hamiltonian matrix
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1 Introduction

The eigenproblem for Hamiltonian and symplectic matrices has received a lot of attention

in the last 25 years, since the landmark papers of Laub [13] and Paige/Van Loan [20]. The

reason for this is the importance of this problem in many applications in control theory and

signal processing, [17, 12] and also due to the fact that the construction of a completely

satisfactory method is still an open problem. Such a method should be numerically backward

stable, have a complexity of O(n

3

) or less and at the same time preserve the Hamiltonian or

symplectic structure. Many attempts have been made to tackle this problem, see [8, 15, 17]

and the references therein, but it has been shown in [2] that a modi�cation of standard QR-

like methods to solve this problem is in general hopeless, due to the missing reduction to a

Hessenberg{like form. For this reason other methods like the multishift-method of [1] were

developed that do not follow the direct line of a standard QR-like method. The structure

of the multishift method is at �rst a computation of the eigenvalues followed by a sequence

�
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of exact-shift steps of a QR method that is based on the non-Hessenberg reduction of Paige

and Van Loan [20]. The method is backward stable and structure preserving but it may

su�er from loss of convergence, in particular for large problems and furthermore it needs

good approximations for the eigenvalues �rst. These can for example be obtained via the

square-reduced method of Van Loan [25]. In the symplectic case a similar method has been

proposed by Lin [16] and improved by Patel [21]. Both methods are structure preserving and

backward stable for a modi�ed problem which involves the square of the original matrix. But

squaring a matrix, computing the eigenvalues of the square, and taking square roots to obtain

the eigenvalues of the original matrix can lead to a loss of half of the possible accuracy. This

was shown by the worst-case error analysis in [25].

In this paper we will present a new method which does not su�er from this loss of accuracy

and it is constructed in such a way that the same method can be used for Hamiltonian

matrices, symplectic matrices, Hamiltonian pencils, or symplectic pencils. The method is

structure preserving, backward stable, and needs O(n

3

) oating point operations. There are

three main ingredients for this new method, a new matrix decomposition, which can be viewed

as a symplectic URV decomposition, a periodic Schur decomposition for a product of two or

four matrices [6, 10, 11] and the generalized Cayley transformation which allows a uni�ed

treatment of Hamiltonian and symplectic problems, [14, 18].

The paper is organized as follows: In Section 2 we introduce the notation and review

some basic results. In Section 3 we develop the theoretical basis for the new algorithm and

in Section 4 we then describe the new procedure. An error analysis is given in Section 5 and

numerical examples are presented in Section 6.

2 Notation and Preliminaries

In this section we introduce some notation, important de�nitions and also some preliminary

results.

We will be concerned with the computation of eigenvalues of special matrices and matrix

pencils. To simplify the notation we use in the following the expression eigenvalue for eigen-

values of matrices and also for pairs (�; �) 6= (0; 0) for which the determinant of a matrix

pencil �E � �A vanishes. These pairs are not unique, since they can be scaled by a nonzero

factor and still the determinant vanishes. So if � 6= 0 then we identify (�; �) with (

�

�

; 1) or

� =

�

�

. Pairs (�; 0) with � 6= 0 are called in�nite eigenvalues.

We now introduce the classes of matrices and matrix pencils that are discussed in this

paper.

De�nition 1 Let J :=

"

0 I

n

�I

n

0

#

, where I

n

is the n� n identity matrix.

a) A pencil �E � �A 2 R

2n�2n

is called Hamiltonian i� EJA

T

= �AJE

T

. The set of

Hamiltonian pencils in R

2n�2n

is denoted by H

p

2n

.

b) A matrix H 2 R

2n�2n

is called Hamiltonian i� (HJ)

T

= HJ. The Lie Algebra of

Hamiltonian matrices in R

2n�2n

is denoted by H

2n

.

c) A matrix H

s

2 R

2n�2n

is called skew-Hamiltonian i� (H

s

J)

T

= �H

s

J. The set of

skew-Hamiltonian matrices in R

2n�2n

is denoted by SH

2n

.

d) A pencil �E � �A 2 R

2n;2n

is called symplectic i� EJE

T

= AJA

T

.The set of symplectic

pencils in R

n�n

is denoted by S

p

2n

.
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e) A matrix S 2 R

n�n

is called symplectic i� SJS

T

= J. The Lie group of symplectic

matrices in R

n�n

is denoted by S

2n

.

f ) A matrix U 2 R

2n�2n

is called orthogonal symplectic i� UJU

T

= J and UU

T

= I

2n

.

The Lie group of orthogonal symplectic matrices in R

2n�2n

is denoted by US

2n

.

In this paper we will mainly discuss regular Hamiltonian and symplectic pencils, (a pencil

�E � �A is called regular if det(�E � �A) does not vanish identically for all complex pairs

(�; �).) The main reasons for this are �rst that we do not know of any application for

singular Hamiltonian or symplectic pencils and second that for singular pencils no eigenvalue

computation is necessary, since every complex number is an eigenvalue. We will, however,

point out in our algorithm when we detect singularity or near singularity of the pencil.

We have the following well-known properties of Hamiltonian and symplectic pencils:

Proposition 1

a) Let �E ��A be a real Hamiltonian pencil. If � =

�

�

is a �nite eigenvalue of �E ��A, then

also ���, ��, �� are eigenvalues of �E � �A.

b) Let �E � �A be a real symplectic pencil. If � =

�

�

is an eigenvalue of �E � �A, then also

1=��, ��, 1=� are eigenvalues of �E � �A. This includes the eigenvalue 0 corresponding to

(�; �) = (0; 1) with in�nite eigenvalue (�; �) = (1; 0) as counterpart.

c) Any matrix H 2 H

2n

can be written as H =

"

F G

H �F

T

#

, where F , G, H 2 R

n�n

and

G = G

T

, H = H

T

.

d) Any matrix U 2 US

2n

can be written as U =

"

U

1

U

2

�U

2

U

1

#

, where U

1

; U

2

2 R

n�n

.

Proof. See, e.g., [15, 17].

There is a well-known relationship between Hamiltonian and symplectic pencils, which is

given via the generalized Cayley transformation, e.g., [14, 18] and there is also an interesting

relationship between Hamiltonian and skew-Hamiltonian matrices, which, however, does not

extend to pencils.

Lemma 2

a) Let �E

s

� �A

s

be a real symplectic pencil and let �

1

= 1 or �

1

= �1.

Then

�E

H

� �A

H

:= �(E

s

� �

1

A

s

)� �(�

1

E

s

+A

s

) (1)

is a real Hamiltonian pencil.

b) Let �E

H

� �A

H

be a real Hamiltonian pencil and let �

1

= 1 or �

1

= �1. Then

�E

s

� �A

s

= �(�

1

A

H

+ E

H

)� �(A

H

� �

1

E

H

) (2)

is a real symplectic pencil.

c) Let H be a Hamiltonian matrix, then H

2

is skew Hamiltonian.

Proof. For a) and b) see [14, 18], for c) see [25].

Further properties of symplectic and Hamiltonian pencils are discussed in [14, 15, 17, 18].
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Remark 1 For Hamiltonian pencils �E ��A with E invertible, Part c) of Lemma 2 suggests

that the pencil

�EJE

T

� �AJ

T

A

T

(3)

might be a skew-Hamiltonian pencil, i.e.,

EJE

T

JAJA

T

= AJA

T

JEJE

T

: (4)

However, in general this is not the case, since to show this we would also need that E

T

JA =

�A

T

JE for the Hamiltonian pencil. But this holds only in some special cases. If, for example,

one of the matrices E or A is symplectic or if E

�1

and A commute, then (3) is a skew-

Hamiltonian pencil. In general this is not true as the following example shows.

Example 1 Let

E =

2

6

6

6

4

2 0 2 1

2 4 1 4

�1 �1 2 2

�1 �2 0 4

3

7

7

7

5

; A =

2

6

6

6

4

0 0 2 1

�2 �2 1 4

1 1 0 2

1 2 0 2

3

7

7

7

5

:

The pencil �E � �A is Hamiltonian according to De�nition 1 as can easily be checked by

computing AJE

T

+ EJA

T

, but

A

T

JE + E

T

JA =

2

6

6

6

4

0 4 0 0

�4 0 0 0

0 0 0 12

0 0 �12 0

3

7

7

7

5

and

EJE

T

JAJA

T

�AJA

T

JEJE

T

=

2

6

6

6

4

0 �48 �32 �32

48 �96 �8 32

�32 �8 �32 �16

�32 32 �16 0

3

7

7

7

5

:

On the other hand, as we will show below, this does not harm the spectral properties, i.e.,

we can still use (3) to compute the eigenvalues of �E � �A.

3 Theoretical Background

When one does eigenvalue computations one is usually restricted to similarity transformations

for matrices and equivalence transformations for pencils, since only these preserve all the

spectral properties.

The basis for our new algorithm, however, is a non-equivalence transformation for the

original Hamiltonian pencil, which leads to an equivalence transformation for the pencil (3).

From the eigenvalues of (3) we can then easily compute the eigenvalues of �E � �A.

Lemma 3

a) Let �E � �A be a regular real Hamiltonian pencil. The pair (�; �) is an eigenvalue of the

pencil �EJE

T

� �AJ

T

A

T

if and only if the pairs (

p

�;

p

�), (�

p

�;

p

�) are eigenvalues of

�E � �A.

b) If � 6= 0 is a simple eigenvalue of a Hamiltonian matrix H then �

2

is a nondefective

eigenvalue of H

2

of multiplicity 2.
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Proof. The eigenvalues of �E ��A are the pairs (�; �) 6= (0; 0) for which det(�E � �A) = 0.

Now det(�E � �A) = 0 if and only if

det[(�E � �A)J(�E � �A)

T

] = det(�

2

EJE

T

� ��(EJA

T

+ AJE

T

)� �

2

AJ

T

A

T

)

= det(�

2

EJE

T

� �

2

AJ

T

A

T

) = 0;

and hence a) follows.

For b) observe that if � 6= 0 is a simple �nite eigenvalue of H, then also �� is a simple

eigenvalue. Let x

1

; x

2

be the corresponding right eigenvectors, which are clearly independent

if � 6= 0. Any linear combination of x

1

and x

2

then is a right eigenvector of H

2

, and hence

the dimension of the eigenspace is two and �

2

is a nondefective double eigenvalue.

Remark 2 From the proof of Lemma 3 b), we see that the eigenvalue condition number

1=s(�) is not uniquely de�ned for the eigenvalues �

2

of H

2

. Since s(�) = y

H

x, where y and

x are the left and right eigenvectors of H corresponding to �, 1=s(�) can also be considered

as a condition number of �

2

with respect to H

2

is given by. But since any linear combination

of x

1

and x

2

from the proof of Part b) de�nes a right eigenvector of H

2

corresponding to �

2

and any linear combination of the left eigenvectors y

1

and y

2

of H corresponding to � and

��, respectively, de�nes a left eigenvector of H

2

corresponding to �

2

, many other values for

s(�

2

) with respect to H

2

are possible.

Lemma 3 indicates a way to compute the eigenvalues of a Hamiltonian pencil via the square

roots of the eigenvalues of another pencil. This is the direct generalization of the square

reduced method of Van Loan [25] to Hamiltonian pencils. If we apply this trick explicitly or

implicitly as in the square reduced method, we will su�er from the same

p

" perturbation in

the computed eigenvalues as in Van Loan's method.

But in this situation we can apply a trick which is based on a non-equivalence transforma-

tion applied to the Hamiltonian pencil. This transformation can be viewed as a symplectic

version of the URV-decomposition. URV-decompositions of a matrix into a product of two

unitary matrices U , V and an upper triangular matrix R, were �rst introduced by Stewart

in order to achieve a compromise between accuracy and computational cost between the QR

decomposition and the singular value decomposition for rank and nullspace computations, see

[23, 22].

In general such decompositions are not useful for the computation of eigenvalues, but as

we will see, in the case of Hamiltonian and symplectic pencils or matrices the situation is

di�erent.

Lemma 4 Let �E��A be a real 2n� 2n pencil. Then there exist orthogonal transformation

matrices Q

3

2 R

2n�2n

and Q

1

; Q

2

2 US

2n

, (which can be obtained via a �nite elimination

procedure), such that

Q

T

3

EQ

1

=

"

E

11

E

12

0 E

22

#

; (5)

Q

T

3

AQ

2

=

"

A

11

A

12

0 A

22

#

; (6)

where E

ij

; A

ij

2 R

n�n

, E

11

, A

11

, E

T

22

are upper triangular, and A

T

22

is upper Hessenberg.
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Proof. The proof is given in a constructive way by Algorithm 3 in the next section.

Lemma 4 describes a �nite step non-equivalence transformation to a condensed form. This

form is a mixture between the Hessenberg and the triangular form for real 2n � 2n pencils.

The second result that we need is that the Hessenberg matrix A

22

in Lemma 4 can also be

transformed to quasi-upper triangular form with the same type of transformations.

Theorem 5 Let �E��A be a real 2n�2n pencil. Then there exist orthogonal transformation

matrices Q

3

2 R

2n�2n

and Q

1

; Q

2

2 US

2n

, such that

Q

T

3

EQ

1

=

"

E

11

E

12

0 E

22

#

; Q

T

3

AQ

2

=

"

A

11

A

12

0 A

22

#

; (7)

where E

ij

; A

ij

2 R

n�n

, E

11

, A

11

, E

T

22

are upper triangular and A

T

22

is quasi-upper triangular,

i.e., block upper triangular with diagonal blocks of size 1� 1 and 2� 2.

Proof. By Lemma 4 we may assume, w.l.o.g., that the blocks E

11

, A

11

, E

T

22

are upper trian-

gular and A

T

22

is upper Hessenberg. We then apply the generalized real Schur decomposition,

[[9], p.396] to the pencil �E

11

E

T

22

� �A

11

A

T

22

. It follows that there exist real orthogonal ma-

trices U; V 2 R

n�n

such that U

T

E

11

E

T

22

V is upper triangular and U

T

A

11

A

T

22

V is quasi-upper

triangular. Let U

1

; U

2

2 R

n�n

be orthogonal matrices such that U

T

1

E

T

22

V and U

T

A

11

U

2

are upper triangular (these always exist from the QR factorization). Then it follows that

U

T

E

11

U

1

is upper triangular and U

T

2

A

T

22

V is quasi-upper triangular. Thus,

�

"

U

T

0

0 V

T

#

E

"

U

1

0

0 U

1

#

� �

"

U

T

0

0 V

T

#

A

"

U

2

0

0 U

2

#

yields the required decomposition.

For real 2n� 2n matrices we have the following obvious corollary:

Corollary 6 Let A 2 R

2n�2n

. Then there exist matrices Q

1

; Q

2

2 US

2n

, such that

Q

T

1

AQ

2

=

"

A

11

A

12

0 A

22

#

; (8)

where A

ij

2 R

n�n

, A

11

is upper triangular and A

T

22

is quasi-upper triangular.

Proof. The proof follows directly from Theorem 5 by inverting Q

T

3

AQ

1

.

At �rst sight it is not clear how the above non-equivalence transformation can be used

for eigenvalue computation, but when we apply the transformation to a Hamiltonian pencil

�E � �A and then consider the impact of this transformation on the pencil

�EJE

T

� �AJ

T

A

T

(9)

then we obtain the following result.

Theorem 7 Let �E � �A be a real Hamiltonian pencil. Then there exists an orthogonal

matrix Q

3

such that

Q

T

3

EJE

T

Q

3

J =

"

E

11

E

12

0 E

22

# "

�E

T

22

E

T

12

0 �E

T

11

#

; (10)
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and

Q

T

3

AJ

T

A

T

Q

3

J =

"

A

11

A

12

0 A

22

# "

A

T

22

�A

T

12

0 A

T

11

#

; (11)

where E

ij

; A

ij

2 R

n�n

, E

11

, A

11

, E

T

22

are upper triangular and A

T

22

is quasi-upper triangular.

Proof. Applying the transformation from Theorem 5 we obtain

Q

T

3

EJE

T

Q

3

J = Q

T

3

EQ

1

JQ

T

1

E

T

Q

3

J

=

"

E

11

E

12

0 E

22

#

J

"

E

11

E

12

0 E

22

#

T

J (12)

=

"

�E

11

E

T

22

E

11

E

T

12

�E

12

E

T

11

0 �(E

11

E

T

22

)

T

#

Q

T

3

AJ

T

A

T

Q

3

J = Q

T

3

AQ

2

J

T

Q

T

2

A

T

Q

3

J

=

"

A

11

A

12

0 A

22

#

J

T

"

A

11

A

12

0 A

22

#

T

J (13)

=

"

A

11

A

T

22

�A

11

A

T

12

+ A

12

A

T

11

0 (A

11

A

T

22

)

T

#

:

An obvious corollary is obtained for Hamiltonian matrices.

Corollary 8 Let H 2 H

2n

then there exist Q

1

; Q

2

2 US

2n

such that

Q

T

1

H

2

Q

1

=

"

�H

11

H

T

22

H

11

H

T

12

�H

12

H

T

11

0 �H

22

H

T

11

#

; (14)

Q

T

2

H

2

Q

2

=

"

�H

T

22

H

11

H

T

12

H

22

�H

T

22

H

12

0 �H

T

11

H

22

#

; (15)

with H

ij

2 R

n�n

, H

11

is upper triangular and H

T

22

is quasi-upper triangular.

Proof. Using the Hamiltonian structure and Q

1

; Q

2

from Corollary 6 we obtain that

Q

T

1

H

2

Q

1

= Q

T

1

HQ

2

Q

T

2

JH

T

JQ

1

= (Q

T

1

HQ

2

)J(Q

T

1

HQ

2

)

T

J;

which has the required form. The proof for (15) follows analogously.

From these two results we see that in order to compute the eigenvalues of �E��A it su�ces

to compute the eigenvalues of the pencil

�E

11

E

T

22

+ �A

11

A

T

22

(16)

as it arises from (10) and (11), and to compute the eigenvalues of a Hamiltonian matrix it

su�ces to compute the eigenvalues of

�H

11

H

T

22

or �H

T

22

H

11

(17)

as in (14), (15).
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Now fortunately we can compute the eigenvalues of (16), (17) from the condensed form of

Lemma 3 without forming the products. To do this we can directly employ the periodic Schur

decomposition for products of matrices or pencils of products of matrices [6, 10, 11] without

forming the products. The periodic QR algorithm applied to (17) yields real orthogonal

transformation matrices U; V 2 R

n�n

such that

^

H := U

T

H

11

V V

T

H

T

22

U;

^

H

T

22

:= (U

T

H

22

V )

T

(18)

are quasi-upper triangular, while

^

H

11

:= U

T

H

11

V (19)

is upper triangular. Analogously the periodic QZ-algorithm applied to (16) yields real or-

thogonal transformation matrices U; V; Y; Z 2 R

n�n

such that

^

E := U

T

E

11

V V

T

E

T

22

Z;

^

E

11

:= U

T

E

11

V;

^

E

T

22

:= (Z

T

E

22

V )

T

;

^

A

11

:= U

T

A

11

Y (20)

are upper triangular and

^

A := U

T

A

11

Y Y

T

A

T

22

Z;

^

A

T

22

:= (Z

T

A

22

Y )

T

(21)

are quasi-upper triangular. After these forms have been computed, we can compute the

eigenvalues of

^

H or �

^

E � �

^

A, respectively by solving 1 � 1 or 2 � 2 eigenvalue problems.

We present here the formulas for the pencil situation, the matrix case is obtained by setting

^

E = I

n

. Let

^

E

11

:= U

T

E

11

V =: [e

ij

];

^

E

22

:= Z

T

E

22

V =: [f

ij

]; (22)

^

A

11

:= U

T

A

11

Y =: [a

ij

];

^

A

22

:= Z

T

A

22

Y =: [b

ij

]:

In the case of a 1� 1 diagonal block in

^

A

22

the corresponding eigenvalue is a solution of the

equation

�(e

ii

f

ii

) + �(a

ii

b

ii

) = 0; (23)

i.e., (�; �) = (�

a

ii

b

ii

e

ii

f

ii

; 1) if e

ii

f

ii

6= 0 or (�; �) = (1; 0) � 1 if e

ii

f

ii

= 0 and a

ii

b

ii

6= 0. If

both products are 0 then the pencil is singular, and thus clearly if both products are close

to 0, then the pencil is near to a singular pencil, see [24]. The eigenvalues of the original

Hamiltonian pencil are then obtained via Lemma 3.

In the case of an unreduced 2� 2 diagonal block in

^

A

22

the corresponding eigenvalue is an

eigenvalue of the pencil

�

"

e

ii

e

i;i+1

0 e

i+1;i+1

#"

f

ii

f

i;i+1

0 f

i+1;i+1

#

+ �

"

a

ii

a

i;i+1

0 a

i+1;i+1

# "

b

ii

b

i;i+1

b

i+1;i

b

i+1;i+1

#

; (24)

which has the characteristic polynomial

�

2

a+ ��b + �

2

c (25)
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where the coe�cients are given by

a = e

ii

e

i+1;i+1

f

ii

f

i+1;i+1

;

b = e

ii

f

ii

a

i+1;i+1

b

i+1;i+1

+ (a

ii

b

ii

+ a

i;i+1

b

i+1;i

)e

i+1;i+1

f

i+1;i+1

�a

i+1;i+1

b

i+1;i

(e

ii

f

i;i+1

+ e

i;i+1

f

i+1;i+1

);

c = a

ii

a

i+1;i+1

(b

ii

b

i+1;i+1

� b

i+1;i

b

i;i+1

):

We obtain that the pencil is singular if a = b = c = 0 and it is near to a singular pencil if

all three coe�cients are close to 0. If this is not the case, then we have the following cases:

There exists one eigenvalue in�nity if a = 0 and b 6= 0 and two in�nite eigenvalues if

a = b = 0 and c 6= 0. If a = 0 and b 6= 0 then the other eigenvalue is (�; �) = (

c

b

; 1). If a 6= 0

then the eigenvalues are both �nite, of the form (�; �) = (�

i

; 1), where �

i

, i = 1; 2, are the

solutions of the quadratic equation

�

2

+ �

b

a

+

c

a

= 0:

The eigenvalues of the original Hamiltonian pencil are again obtained via Lemma 3.

In this section we have described a new method to compute the eigenvalues of Hamiltonian

pencils. We can apply the same idea to symplectic pencils by using the generalized Cayley

transformation of Lemma 2 b) to transform the symplectic pencil to a Hamiltonian pen-

cil, applying the described procedure and computing the eigenvalues via the inverse Cayley

transformation applied to the eigenvalues.

If (�; �) is an eigenvalue of the Hamiltonian pencil obtained via the Cayley transformation

with shiftpoint �

1

, then (�

1

�+�; ���

1

�) is the associated eigenvalue of the original symplectic

pencil.

Remark 3 The method described above can in principle also be applied to a pencil �E��A

where E;A 2 R

2n�2n

are skew-symmetric since every skew-symmetric matrix B 2 R

2n�2n

can be factored as B = CJC

T

.

Remark 4 Note that the described procedure cannot be applied to complex symplectic or

Hamiltonian pencils. The reason for this is that the reduction to condensed form via unitary

symplectic matrices cannot be carried out in the same way, since with unitary symplectic

matrices less eliminations are possible. The same problem already occurs in the square reduced

method of Van Loan [25].

Remark 5 If we apply Lemma 4 to a symplectic matrix S, i.e., we set E = I

2n

and choose

Q

1

= Q

3

, then

Q

T

1

SQ

2

=

"

S

1

S

2

0 S

�T

1

#

(26)

where S

1

is an upper triangular matrix and S

1

S

T

2

�S

2

S

T

1

= 0, i.e., Q

T

1

SQ

2

is symplectic trian-

gular [17]. In addition, Q

2

= I

2n

and (26) is equivalent to the symplectic QR decomposition

of a symplectic matrix (see [7]).
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4 The Numerical Algorithm

We have already described the main features of the new algorithm in Section 3.

Algorithm 1 A structure preserving method for the computation of the eigenvalues of Hamil-

tonian and symplectic pencils.

Input: Hamiltonian pencil �E

H

� �A

H

or symplectic pencil �E

s

� �A

s

.

Output: Eigenvalues of the pencil.

Step 0: If the pencil is symplectic, choose �

1

2 f1;�1g and form

�E

H

� �A

H

:= �(E

s

� �

1

A

s

)� �(�

1

E

s

+A

s

):

Step 1: Determine orthogonal transformation matrices Q

3

2 R

2n�2n

and Q

1

; Q

2

2 US

2n

,

such that

Q

T

3

E

H

Q

1

=

"

E

11

E

12

0 E

22

#

; Q

T

3

A

H

Q

2

=

"

A

11

A

12

0 A

22

#

;

where E

ij

; A

ij

2 R

n�n

, E

11

, A

11

, E

T

22

are upper triangular and A

T

22

is upper Hessenberg (see

Algorithm 3).

Step 2: Apply the periodic QZ algorithm of [11] to the product pencil

�E

11

E

T

22

+ �A

11

A

T

22

; (27)

i.e., compute orthogonal transformation matrices U

1

; U

2

; U

3

; U

4

2 R

n�n

such that

U

T

1

E

11

U

2

; (U

T

3

E

22

U

2

)

T

; U

T

1

A

11

U

4

(28)

are upper triangular and

(U

T

3

A

22

U

4

)

T

(29)

is quasi-upper triangular.

Step 3: Solve the 1� 1 or 2� 2 eigenvalue problems arising from explicitly multiplying out

the diagonal blocks in (27), i.e., determine pairs (�

i

; �

i

) for i = 1; : : : ; n via (24) or (25),

respectively.

Step 4: Compute the �nite eigenvalues (�

i

; �

i

) of �E � �A as

(�

i

; �

i

) = (

p

�

i

;

p

�

i

);

(�

n+i

; �

n+i

) = (�

p

�

i

;

p

�

i

);

)

i = 1; : : : ; n: (30)

Step 5: If the original pencil was symplectic, then compute the eigenvalues of �E

s

� �A

s

as

(�

s

i

; �

s

i

) = (�

1

�

i

+ �

i

; �

i

� �

1

�

i

); i = 1; : : : ; 2n: (31)

End

The main computational work lies in Steps 1. and 2. of this procedure. While Step 2. is

well analyzed, and di�erent procedures for this problem have been described [6, 11], Step 1

is new and we describe it in more detail below.

If we want to apply Algorithm 1 to a Hamiltonian matrix it simpli�es signi�cantly. Note

that for symplectic matrices we still need to use the pencil formulation, since the associated

Hamiltonian problem arising from the Cayley transformation is in general a Hamiltonian

pencil.
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Algorithm 2 A structure preserving method for the computation of the eigenvalues of a

Hamiltonian matrix.

Input: Hamiltonian matrix H.

Output: The eigenvalues f

1

; : : : ; 

2n

g of H.

Step 1: Determine orthogonal transformation matrices Q

1

; Q

2

2 US

2n

, such that

Q

T

1

HQ

2

=

"

H

11

H

12

0 H

22

#

; (32)

where H

ij

2 R

n�n

, H

11

is upper triangular, and H

T

22

is upper Hessenberg.

Step 2: Apply the periodic QR algorithm of [10] to the product matrix

�H

T

22

H

11

; (33)

i.e., compute orthogonal transformation matrices U

1

; U

2

2 R

n�n

such that

U

T

1

H

11

U

2

; (34)

is upper triangular and

(U

T

1

H

22

U

2

)

T

(35)

is quasi-upper triangular.

Step 3: Solve the 1� 1 or 2� 2 eigenvalue problems arising from explicitly multiplying out

the diagonal blocks in (34), (35), i.e., determine eigenvalues �

i

, i = 1; : : : ; n, via the solution

of the 1� 1 or 2� 2 eigenvalue problems arising in the block diagonal of this product.

Step 4: Compute the eigenvalues of H by 

i

=

p

�

i

; 

n+i

= �

p

�

i

; i = 1; : : : ; n.

End

We now describe the reduction to the condensed form (5), (6). For this reduction we need

�ve basic transformations. These are transformations with Givens rotations and Householder

reections from the left and transformations with three types of orthogonal symplectic matri-

ces from the right. Standard Givens rotations in R

2n�2n

operating in rows i; j 2 f1; : : : ; 2ng

are of the form

J(i; j; �) :=

2

6

6

6

6

6

4

I

i�1

cos(�) sin(�)

I

j�i�1

� sin(�) cos(�)

I

2n�j

3

7

7

7

7

7

5

; (36)

while symplectic Givens rotations take the same form but operate in rows i; n + i, i 2

f1; : : : ; ng, i.e.,

J

s

(i; �) := J(i; n+ i; �): (37)

The third type of transformations consists of the direct sum of two n � n Givens rotations.

Such matrices operate in rows i; j; n+ i; n+ j, where i; j 2 f1; : : : ; ng and have the form

G

s

(i; j; �) :=

"

J(i; j; �) 0

0 J(i; j; �)

#

: (38)
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Besides the transformations that carry out rotations, we need two types of Householder re-

ection matrices. A standard Householder reection in R

n�n

is given by

P (k; v) = I

n

� 2

vv

T

v

T

v

(39)

where v

i

= 0 for i = 1; : : : ; k � 1. A symplectic Householder matrix is de�ned in [20] as the

direct sum of two Householder reections in R

n�n

, i.e.,

P

s

(k; v) =

"

P (k; v) 0

0 P (k; v)

#

: (40)

Numerical procedures that implement these transformations and their numerical properties

are well studied and need not be repeated here, [20, 9, 17]. The condensed form of Lemma 4

is obtained via a sequence of transformations and described in the following Algorithm.

Algorithm 3 Reduction of a general real 2n� 2n pencil to the condensed form of Lemma 4.

Input: Real 2n� 2n pencil �E � �A = �

"

E

11

E

12

E

21

E

22

#

� �

"

A

11

A

12

A

21

A

22

#

.

Output: Orthogonal matrices Q

3

2 R

2n�2n

and Q

1

; Q

2

2 US

2n

, and transformed pencil

�

^

E � �

^

A := �Q

T

3

EQ

1

� �Q

T

3

AQ

2

= �

"

^

E

11

^

E

12

0

^

E

22

#

� �

"

^

A

11

^

A

12

0

^

A

22

#

;

where

^

E

ij

;

^

A

ij

2 R

n�n

,

^

E

11

,

^

A

11

,

^

E

T

22

are upper triangular and

^

A

T

22

is upper Hessenberg.

Step 1:

Compute a QR factorization

"

E

11

E

21

#

= Q

0

"

^

E

11

0

#

where

^

E

11

2 R

n�n

is upper triangular

and Q

0

2 U

2n

and set

^

E := Q

T

0

E =:

"

^

E

11

^

E

12

0

^

E

22

#

.

Compute a QL factorization

^

E

22

=

~

QL and set

~

Q

0

:=

"

I

n

0

0

~

Q

#

,

^

E :=

~

Q

T

0

^

E =

"

^

E

11

^

E

12

0

^

E

22

#

=

2

6

4

@

@

3

7

5

,

^

A :=

~

Q

T

0

Q

T

0

A =:

"

^

A

11

^

A

12

^

A

21

^

A

22

#

,

Q

3

:= Q

0

~

Q

0

; Q

1

:= I

2n

; Q

2

:= I

2n

.

Step 2:

For k = 1; : : : ; n� 1

% Annihilate

^

A

n+k:2n;k

.

For j = k; : : : ; n� 1

Use J(n+ j; n+ j+ 1; �

k;j;1

) to eliminate â

n+j;k

from the left. Set

^

E := J(n + j; n+ j + 1; �

k;j;1

)

T

^

E,

^

A := J(n + j; n+ j + 1; �

k;j;1

)

T

^

A,

Q

3

:= Q

3

J(n + j; n+ j + 1; �

k;j;1

)
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Use G

s

(j; j + 1; �

k;j;2

) to eliminate ê

n+j;n+j+1

from the right. Set

^

E :=

^

EG

s

(j; j + 1; �

k;j;2

),

Q

1

:= Q

1

G

s

(j; j + 1; �

k;j;2

),

Use J(j; j + 1; �

k;j;3

) to eliminate ê

j+1;j

from the left. Set

^

E := J(j; j + 1; �

k;j;3

)

T

^

E,

^

A := J(j; j + 1; �

k;j;3

)

T

^

A,

Q

3

:= Q

3

J(j; j + 1; �

k;j;3

).

Endfor j

Use J

s

(n; �

k;n;1

) to eliminate â

2n;k

from the left. Set

^

E := J

s

(n; �

k;n;1

)

T

^

E,

^

A := J

s

(n; �

k;n;1

)

T

^

A,

Q

3

:= Q

3

J

s

(n; �

k;n;1

).

Use J

s

(n; �

k;n;2

) to eliminate ê

2n;n

from the right. Set

^

E :=

^

EJ

s

(n; �

k;n;2

),

Q

1

:= Q

1

J

s

(n; �

k;n;2

).

% Annihilate

^

A

k+1:n;k

.

For j = n; n� 1; : : : ; k+ 1

Use J(j � 1; j; �

k;j;1

) to eliminate â

j;k

from the left. Set

^

E := J(j � 1; j; �

k;j;1

)

T

^

E,

^

A := J(j � 1; j; �

k;j;1

)

T

^

A,

Q

3

:= Q

3

J(j � 1; j; �

k;j;1

).

Use G

s

(j � 1; j; �

k;j;2

), to eliminate ê

j;j�1

from the right. Set

^

E :=

^

EG

s

(j � 1; j; �

k;j;2

),

Q

1

:= Q

1

G

s

(j � 1; j; �

k;j;2

).

Use J(n + j � 1; n+ j; �

k;j;3

) to eliminate ê

n+j�1;n+j

from the left. Set

^

E := J(n + j � 1; n+ j; �

k;j;3

)

T

^

E,

^

A := J(n + j � 1; n+ j; �

k;j;3

)

T

^

A,

Q

3

:= Q

3

J(n + j � 1; n+ j; �

k;j;3

).

Endfor j

% Annihilate

^

A

n+k;k+1:n

and

^

A

n+k;n+k+2:2n

.

Use P

s

(k+ 1; u

k

) to eliminate

^

A

n+k;k+2:n

from the right. Set

^

A :=

^

AP

s

(k + 1; u

k

),

Q

2

:= Q

2

P

s

(k + 1; u

k

).

Use J

s

(k+ 1;  

k

) to eliminate â

n+k;k+1

from the right. Set

^

A :=

^

AJ

s

(k + 1;  

k

),

Q

2

:= Q

2

J

s

(k + 1;  

k

).

Use P

s

(k+ 1; v

k

) to eliminate

^

A

n+k;n+k+2:2n

from the right. Set

^

A :=

^

AP

s

(k + 1; v

k

),

Q

2

:= Q

2

P

s

(k + 1; v

k

).

Endfor k

% Annihilate â

2n;n

.

Use J

s

(n; �

n;n;1

) to eliminate â

2n;n

from the left. Set

^

E := J

s

(n; �

n;n;1

)

T

^

E,

^

A := J

s

(n; �

n;n;1

)

T

^

A,

Q

3

:= Q

3

J

s

(n; �

n;n;1

).

13



Use J

s

(n; �

n;n;2

) to eliminate ê

2n;n

from the right. Set

^

E :=

^

EJ

(

n; �

n;n;2

),

Q

1

:= Q

1

J

s

(n; �

n;n;2

).

End

If only the condensed form is required (i.e., the orthogonal transformations are not accumu-

lated) then the algorithm requires about 84n

3

ops which is less than the initial Hessenberg{

triangular reduction in the standard QZ algorithm which requires 90

2

3

n

3

ops. Although Al-

gorithm 3 generates more zeros than the Hessenberg-triangular reduction, it is cheaper as far

as the computational cost is concerned. This is due to the fact that we can apply Householder

matrices to A from the right during the reduction process whereas the Hessenberg-triangular

reduction relies on 2� 2 rotations (or reections).

We demonstrate how the algorithm works using a 6� 6 example (i.e., n = 3). Suppose we

have reduced E to triangular form and updated A as in Step 1 of Algorithm 3, i.e.,

^

E =

2

6

6

6

6

6

6

6

4

x x x x x x

0 x x x x x

0 0 x x x x

0 0 0 x 0 0

0 0 0 x x 0

0 0 0 x x x

3

7

7

7

7

7

7

7

5

;

^

A =

2

6

6

6

6

6

6

6

4

x x x x x x

x x x x x x

x x x x x x

x x x x x x

x x x x x x

x x x x x x

3

7

7

7

7

7

7

7

5

:

The �rst Givens rotation J

1

:= J(n+1; n+2; �

1;1;1

) = J(4; 5; �

1;1;1

) is then used to eliminate

â

n+1;1

= â

4;1

from the left, resulting in

^

E := J

T

1

^

E =

2

6

6

6

6

6

6

6

4

x x x x x x

0 x x x x x

0 0 x x x x

0 0 0 x 
 0

0 0 0 x x 0

0 0 0 x x x

3

7

7

7

7

7

7

7

5

;

^

A := J

T

1

^

A =

2

6

6

6

6

6

6

6

4

x x x x x x

x x x x x x

x x x x x x

0 x x x x x

x x x x x x

x x x x x x

3

7

7

7

7

7

7

7

5

:

We have introduced a nonzero element ê

n+1;n+2

= ê

4;5

(denoted by 
) which is now annihi-

lated by G

1

:= G

s

(1; 2; �

1;1;2

) from the right,

^

E :=

^

EG

1

=

2

6

6

6

6

6

6

6

4

x x x x x x


 x x x x x

0 0 x x x x

0 0 0 x 0 0

0 0 0 x x 0

0 0 0 x x x

3

7

7

7

7

7

7

7

5

;

^

A =

2

6

6

6

6

6

6

6

4

x x x x x x

x x x x x x

x x x x x x

0 x x x x x

x x x x x x

x x x x x x

3

7

7

7

7

7

7

7

5

;

resulting in a nonzero element e

2;1

. This is eliminated applying J

2

:= J(1; 2; �

1;1;3

) from the

left,

^

E := J

T

2

^

E =

2

6

6

6

6

6

6

6

4

x x x x x x

0 x x x x x

0 0 x x x x

0 0 0 x 0 0

0 0 0 x x 0

0 0 0 x x x

3

7

7

7

7

7

7

7

5

;

^

A := J

T

2

^

A =

2

6

6

6

6

6

6

6

4

x x x x x x

x x x x x x

x x x x x x

0 x x x x x

x x x x x x

x x x x x x

3

7

7

7

7

7

7

7

5

:
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Thus, we have annihilated the (n+ 1; 1) = (4; 1) entry of

^

A, while keeping the zero structure

of

^

E. Analogously, the entries â

n+j;1

, j = 1; : : : ; n� 1, are eliminated while at the same time

restoring the destroyed zeros in

^

E such that

^

E =

2

6

6

6

6

6

6

6

4

x x x x x x

0 x x x x x

0 0 x x x x

0 0 0 x 0 0

0 0 0 x x 0

0 0 0 x x x

3

7

7

7

7

7

7

7

5

;

^

A =

2

6

6

6

6

6

6

6

4

x x x x x x

x x x x x x

x x x x x x

0 x x x x x

0 x x x x x

x x x x x x

3

7

7

7

7

7

7

7

5

:

Next, the (2n; 1) = (6; 1) entry of

^

A is eliminated employing a Givens symplectic matrix J

3

:=

J

s

(n; �

1;n;1

) = J

s

(3; �

1;3;1

) which introduces a nonzero element in position (2n; n) = (6; 3) of

^

E,

^

E := J

T

3

^

E =

2

6

6

6

6

6

6

6

4

x x x x x x

0 x x x x x

0 0 x x x x

0 0 0 x 0 0

0 0 0 x x 0

0 0 
 x x x

3

7

7

7

7

7

7

7

5

;

^

A := J

T

3

^

A =

2

6

6

6

6

6

6

6

4

x x x x x x

x x x x x x

x x x x x x

0 x x x x x

0 x x x x x

0 x x x x x

3

7

7

7

7

7

7

7

5

:

Now ê

2n;n

= ê

6;3

is annihilated by applying J

4

:= J

s

(n; �

1;n;2

) = J

s

(3; �

1;3;2

) from the right.

Hence, we obtain

^

E :=

^

EJ

4

=

2

6

6

6

6

6

6

6

4

x x x x x x

0 x x x x x

0 0 x x x x

0 0 0 x 0 0

0 0 0 x x 0

0 0 0 x x x

3

7

7

7

7

7

7

7

5

;

^

A =

2

6

6

6

6

6

6

6

4

x x x x x x

x x x x x x

x x x x x x

0 x x x x x

0 x x x x x

0 x x x x x

3

7

7

7

7

7

7

7

5

:

To eliminate the upper part of the �rst column of

^

A, we use a similar sequence of transforma-

tions as for the lower part, but this time we start from the bottom element â

n;1

= â

3;1

which

is eliminated by using a Givens rotation J

5

:= J(n � 1; n; �

1;n;1

) = J(2; 3; �

1;3;1

).

^

E := J

T

5

^

E =

2

6

6

6

6

6

6

6

4

x x x x x x

0 x x x x x

0 
 x x x x

0 0 0 x 0 0

0 0 0 x x 0

0 0 0 x x x

3

7

7

7

7

7

7

7

5

;

^

A := J

T

5

^

A =

2

6

6

6

6

6

6

6

4

x x x x x x

x x x x x x

0 x x x x x

0 x x x x x

0 x x x x x

0 x x x x x

3

7

7

7

7

7

7

7

5

:

To restore the triangular structure of

^

E, we �rst employ G

2

:= G

s

(2; 3; �

1;3;2

),

^

E :=

^

EG

3

=

2

6

6

6

6

6

6

6

4

x x x x x x

0 x x x x x

0 0 x x x x

0 0 0 x 0 0

0 0 0 x x 


0 0 0 x x x

3

7

7

7

7

7

7

7

5

;

^

A =

2

6

6

6

6

6

6

6

4

x x x x x x

x x x x x x

0 x x x x x

0 x x x x x

0 x x x x x

0 x x x x x

3

7

7

7

7

7

7

7

5
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Then ê

5;6

can be eliminated using J

6

:= J(5; 6; �

1;3;3

) such that

^

E := J

T

6

^

E =

2

6

6

6

6

6

6

6

4

x x x x x x

0 x x x x x

0 0 x x x x

0 0 0 x 0 0

0 0 0 x x 0

0 0 0 x x x

3

7

7

7

7

7

7

7

5

;

^

A := J

T

6

^

A =

2

6

6

6

6

6

6

6

4

x x x x x x

x x x x x x

0 x x x x x

0 x x x x x

0 x x x x x

0 x x x x x

3

7

7

7

7

7

7

7

5

:

With the same sequence of rotations we can annihilate the entries â

j;1

, j = n� 1; n� 2; : : : ; 2

(here, this is only â

2;1

) and retain the triangular structure of

^

E. We then obtain

^

E =

2

6

6

6

6

6

6

6

4

x x x x x x

0 x x x x x

0 0 x x x x

0 0 0 x 0 0

0 0 0 x x 0

0 0 0 x x x

3

7

7

7

7

7

7

7

5

;

^

A =

2

6

6

6

6

6

6

6

4

x x x x x x

0 x x x x x

0 x x x x x

0 x x x x x

0 x x x x x

0 x x x x x

3

7

7

7

7

7

7

7

5

:

The next step involves only the application of three symplectic transformations from the

right to

^

A which do not a�ect

^

E. First, a symplectic Householder matrix is used to annihilate

^

A

n+1;3:n

=

^

A

4;3:3

,

^

E =

2

6

6

6

6

6

6

6

4

x x x x x x

0 x x x x x

0 0 x x x x

0 0 0 x 0 0

0 0 0 x x 0

0 0 0 x x x

3

7

7

7

7

7

7

7

5

;

^

A :=

^

AP

s

(2; u

1

) =

2

6

6

6

6

6

6

6

4

x x x x x x

0 x x x x x

0 x x x x x

0 x 0 x x x

0 x x x x x

0 x x x x x

3

7

7

7

7

7

7

7

5

:

Second, â

n+1;2

= â

4;2

is eliminated by a symplectic Givens rotation,

^

E =

2

6

6

6

6

6

6

6

4

x x x x x x

0 x x x x x

0 0 x x x x

0 0 0 x 0 0

0 0 0 x x 0

0 0 0 x x x

3

7

7

7

7

7

7

7

5

;

^

A :=

^

AJ

s

(2;  

1

) =

2

6

6

6

6

6

6

6

4

x x x x x x

0 x x x x x

0 x x x x x

0 0 0 x x x

0 x x x x x

0 x x x x x

3

7

7

7

7

7

7

7

5

:

Last, another symplectic Householder reection yields

^

E =

2

6

6

6

6

6

6

6

4

x x x x x x

0 x x x x x

0 0 x x x x

0 0 0 x 0 0

0 0 0 x x 0

0 0 0 x x x

3

7

7

7

7

7

7

7

5

;

^

A :=

^

AP

s

(2; u

2

) =

2

6

6

6

6

6

6

6

4

x x x x x x

0 x x x x x

0 x x x x x

0 0 0 x x 0

0 x x x x x

0 x x x x x

3

7

7

7

7

7

7

7

5

:

That is, we have generated the required structure in rows and columns 1 and n + 1 = 4. In

the next execution of the outer (k) loop, the same sequence of transformations is used in rows
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and columns 2 and n + 2 = 5 and we obtain

^

E =

2

6

6

6

6

6

6

6

4

x x x x x x

0 x x x x x

0 0 x x x x

0 0 0 x 0 0

0 0 0 x x 0

0 0 0 x x x

3

7

7

7

7

7

7

7

5

;

^

A =

2

6

6

6

6

6

6

6

4

x x x x x x

0 x x x x x

0 0 x x x x

0 0 0 x x 0

0 0 0 x x x

0 0 x x x x

3

7

7

7

7

7

7

7

5

:

The �nal step consists of eliminating â

2n;n

= â

6;3

using J

7

:= J

s

(n; �

n;n;1

) = J

s

(3; �

3;3;1

) such

that

^

E = J

T

7

^

E

2

6

6

6

6

6

6

6

4

x x x x x x

0 x x x x x

0 0 x x x x

0 0 0 x 0 0

0 0 0 x x 0

0 0 
 x x x

3

7

7

7

7

7

7

7

5

;

^

A := J

T

7

^

A =

2

6

6

6

6

6

6

6

4

x x x x x x

0 x x x x x

0 0 x x x x

0 0 0 x x 0

0 0 0 x x x

0 0 0 x x x

3

7

7

7

7

7

7

7

5

and then restoring the triangular structure of

^

E by applying J

8

:= J

s

(n; �

n;n;1

) = J

s

(3; �

3;3;2

)

from the right to

^

E which yields the desired form

^

E :=

^

EJ

8

=

2

6

6

6

6

6

6

6

4

x x x x x x

0 x x x x x

0 0 x x x x

0 0 0 x 0 0

0 0 0 x x 0

0 0 0 x x x

3

7

7

7

7

7

7

7

5

;

^

A =

2

6

6

6

6

6

6

6

4

x x x x x x

0 x x x x x

0 0 x x x x

0 0 0 x x 0

0 0 0 x x x

0 0 0 x x x

3

7

7

7

7

7

7

7

5

:

Again the algorithm simpli�es substantially if we have a matrix rather than a pencil.

Algorithm 4 Reduction of a general real 2n � 2n matrix to the condensed form analogous

to (6).

Input: Real 2n� 2n matrix A.

Output: Orthogonal matrices Q

1

; Q

2

2 US

2n

, and transformed matrix

^

A := Q

T

1

AQ

2

=

"

A

11

A

12

0 A

22

#

where A

ij

2 R

n�n

, A

11

is upper triangular and A

T

22

is upper Hessenberg.

Set

^

A := A; Q

1

:= I

2n

; Q

2

:= I

2n

.

For k = 1; : : : ; n� 1

% Annihilate

^

A

k+1:2n;k

.

Use P

s

(k; u

k;1

) to eliminate

^

A

n+k+1:2n;k

from the left. Set

^

A := P

s

(k; u

k;1

)

^

A,

Q

1

:= Q

1

P

s

(k; u

k;1

).

Use J

s

(k; �

k

) to eliminate â

n+k;k

from the left. Set

^

A := J

s

(k; �

k

)

T

^

A,

Q

1

:= Q

1

J

s

(k; �

k

).
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Use P

s

(k; u

k;2

) to eliminate

^

A

k+1:n;k

from the left. Set

^

A := P

s

(k; u

k;2

)

^

A,

Q

1

:= Q

1

P

s

(k; u

k;2

).

% Annihilate

^

A

n+k;k+1:n

and

^

A

n+k;n+k+2:2n

.

Use P

s

(k+ 1; v

k;1

) to eliminate

^

A

n+k;k+2:n

from the right. Set

^

A :=

^

AP

s

(k + 1; v

k;1

),

Q

2

:= Q

2

P

s

(k + 1; v

k;1

).

Use J

s

(k+ 1; �

k

) to eliminate â

n+k;k+1

from the right. Set

^

A :=

^

AJ

s

(k + 1; �

k

),

Q

2

:= Q

2

J

s

(k + 1; �

k

).

Use P

s

(k+ 1; v

k;2

) to eliminate

^

A

n+k;n+k+2:2n

from the right. Set

^

A :=

^

AP

s

(k + 1; v

k;2

),

Q

2

:= Q

2

P

s

(k + 1; v

k;2

).

Endfor k

% Annihilate â

2n;n

.

Use J

s

(n; �

n

) to eliminate â

2n;n

from the left. Set

^

A := J

s

(n; �

n

)

T

^

A,

Q

1

:= Q

1

J

s

(n; �

n

).

End

If only eigenvalues are required, the orthogonal transformations need not be accumu-

lated. In that case, Algorithm 4 requires 80n

3

=3 + 20n

2

ops. This is comparable to re-

ducing the Hamiltonian matrix to Hessenberg form by Householder reections which requires

80n

3

=3 � 10n

2

ops. That is, the initial reductions necessary for either Algorithm 2 or the

standard Hessenberg QR algorithm are equally expensive as far as oating point operations

are concerned. Besides the O(n

2

) di�erence in the op count, Algorithm 4 is more compli-

cated than the standard Householder Hessenberg reduction as far as indexing, subroutine

calls, and updating the transformations are concerned. This will in practise lead to a slightly

higher execution time than for the Householder Hessenberg reduction.

We will illustrate the reduction of a 2n�2n to the condensed form (6) using a 6�6 example.

First, we have to annihilate the �rst column of A. Using a symplectic Householder reection

we can eliminate all entries below the diagonal in the �rst column of the lower left block of

A.

^

A := P

s

(1; u

1;1

)A =

2

6

6

6

6

6

6

6

4

x x x x x x

x x x x x x

x x x x x x

x x x x x x

0 x x x x x

0 x x x x x

3

7

7

7

7

7

7

7

5

:

The entry in position (n+1; 1) = (4; 1) is then eliminated using a symplectic Givens rotation

such that

^

A := J

s

(1; �

1

)

T

^

A =

2

6

6

6

6

6

6

6

4

x x x x x x

x x x x x x

x x x x x x

0 x x x x x

0 x x x x x

0 x x x x x

3

7

7

7

7

7

7

7

5

:
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Now the elements below the diagonal of the upper left block of

^

A are annihilated using again

a symplectic Householder reection.

^

A := P

s

(1; u

1;2

)A =

2

6

6

6

6

6

6

6

4

x x x x x x

0 x x x x x

0 x x x x x

0 x x x x x

0 x x x x x

0 x x x x x

3

7

7

7

7

7

7

7

5

:

The next three steps reduce the (n + 1)st = 4th row of

^

A to the desired form. Applying a

symplectic Householder reection form the right, we can annihilate

^

A

n+1;3:n

=

^

A

4;3:3

, resulting

in

^

A :=

^

AP

s

(2; v

1;1

) =

2

6

6

6

6

6

6

6

4

x x x x x x

0 x x x x x

0 x x x x x

0 x 0 x x x

0 x x x x x

0 x x x x x

3

7

7

7

7

7

7

7

5

:

Then, â

n+1;2

= â

4;2

is eliminated by a symplectic Givens rotation,

^

A :=

^

AJ

s

(2; �

1

) =

2

6

6

6

6

6

6

6

4

x x x x x x

0 x x x x x

0 x x x x x

0 0 0 x x x

0 x x x x x

0 x x x x x

3

7

7

7

7

7

7

7

5

:

Next, another symplectic Householder reection yields

^

A :=

^

AP

s

(2; v

1;2

) =

2

6

6

6

6

6

6

6

4

x x x x x x

0 x x x x x

0 x x x x x

0 0 0 x x 0

0 x x x x x

0 x x x x x

3

7

7

7

7

7

7

7

5

:

That is, we have generated the required structure in rows and columns 1 and n + 1 = 4. In

the next execution of the outer loop, the same sequence of transformations is used in rows

and columns 2 and n + 2 = 5 and we obtain

^

A =

2

6

6

6

6

6

6

6

4

x x x x x x

0 x x x x x

0 0 x x x x

0 0 0 x x 0

0 0 0 x x x

0 0 x x x x

3

7

7

7

7

7

7

7

5

:
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The �nal step consists of eliminating â

2n;n

= â

6;3

using J

s

(3; �

3

) such that

^

A := J

s

(3; �

3

)

T

^

A =

2

6

6

6

6

6

6

6

4

x x x x x x

0 x x x x x

0 0 x x x x

0 0 0 x x 0

0 0 0 x x x

0 0 0 x x x

3

7

7

7

7

7

7

7

5

:

5 Error Analysis

In this section, we will derive the error analysis for Algorithms 1 and 2.

Since in both methods all transformations are performed with orthogonal and orthogonal

symplectic matrices we can apply the standard backward error analysis of Wilkinson, e.g.

[27, 9]. To do this we need to analyse the backward error. We begin with an analysis of the

computation of the eigenvalues of a Hamiltonian matrix H via Algorithm 2.

Using the usual arguments in the analysis of orthogonal transformations, e.g., [27, 9], we

obtain that there exists a 2n � 2n matrix E, with jjEjj � " jjHjj, where " is a small number

equivalent to the machine precision, and

^

Q

1

;

^

Q

2

2 US

2n

such that the computed factorization

satis�es

^

H :=

"

H

11

H

12

0 H

22

#

=

^

Q

T

1

(H +E)

^

Q

2

: (41)

Note that if

^

� is a computed eigenvalue of H, we have that

^

�

2

is an eigenvalue of

"

�H

T

22

H

T

12

0 �H

T

11

# "

H

11

H

12

0 H

22

#

= J

^

H

T

J

^

H;

and by (41)

^

�

2

is also an eigenvalue of (H + JE

T

J)(H+ E).

The condition of a simple eigenvalue � of a matrix A 2 R

n�n

as de�ned in [27] is given by

1

s(�)

=

1

jy

H

xj

(42)

where x and y with jjxjj

2

= jjyjj

2

= 1 are the right and left, respectively, eigenvectors of A

corresponding to �.

Theorem 9 Let � be a nonzero and simple eigenvalue of a real Hamiltonian matrix H 2 H

2n

,

and let 1=s(�) be its condition number as given in (42). Let " be the machine precision. If the

matrix E in (41) satis�es jjEjj < " jjHjj, and

2jjHjj"

j�js(�)

< 1, then Algorithm 2 yields a computed

eigenvalue

^

� such that

j

^

�� �j �

jjHjj "

(1�

jjHjj"

j�js(�)

)s(�)

+ O("

2

) �

2 jjHjj "

s(�)

+O("

2

): (43)

Proof. Since we have assumed that � is simple, from Lemma 3 b) we obtain that �

2

is a

nondefective eigenvalue of H

2

of multiplicity two. Furthermore, if y, x with jjxjj = 1, jjyjj = 1

are the left and right eigenvectors of H to � then they are also eigenvectors of H

2

to the

eigenvalue �

2

.
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Now consider perturbations in the matrix (H + JE

T

J)(H +E). Clearly

(H + JE

T

J)(H + E) = H

2

+HE + JE

T

JH + JE

T

JE; (44)

which is H

2

perturbed with a matrix of order O("). From the analytical properties of simple

eigenvalues and its eigenvectors and the discussions given above, it follows that when " is

su�ciently small, there exists an eigenvalue

^

�

2

of (H+JE

T

J)(H+E), such that its unit left

and right eigenvectors ŷ, x̂ can be expanded as ŷ = y + "y

1

+ O("

2

), x̂ = x + "x

1

+ O("

2

).

Multiplying by y

H

on the left and by x on the right hand sides of (44), and using y

H

H = �y

H

,

Hx = �x, we obtain

y

H

(H+ JE

T

J)(H +E)x = y

H

(H

2

+HE + JE

T

JH + JE

T

JE)x

= �

2

y

H

x+ �y

H

(E + JE

T

J)x+O("

2

):

On the other hand,

y

H

(H+ JE

T

J)(H +E)x =

�

ŷ

H

� "y

H

1

+ O("

2

)

�

(H + JE

T

J)(H + E)

�

x̂� "x

1

+ O("

2

)

�

=

^

�

2

�

ŷ

H

x̂� "(ŷ

H

x

1

+ y

H

1

x̂)

�

+O("

2

)

=

^

�

2

y

H

x+ O("

2

):

Therefore

^

�

2

� �

2

=

�y

H

(E + JE

T

J)x

y

H

x

+ O("

2

);

and with the reciprocal eigenvalue condition number s(�) = jy

H

xj, we obtain

j

^

�+ �j j

^

�� �j �

2 jjHjj j�j"

s(�)

+O("

2

): (45)

Using the inequality j

^

� + �j > 2j�j � j

^

� � �j together with the inequality

2jjHjj"

j�js(�)

< 1 and

omitting the second order perturbations, we obtain (43) by solving the quadratic inequality

j

^

�� �j

2

� 2j�j j

^

�� �j+

2 jjHjj j�j"

s(�)

� 0:

As a consequence of Theorem 9 we have that Algorithm 2 is numerically backward stable.

Remark 6 From the error analysis in Theorem 9 we see the major di�erence between the

new method and the square reduced method of Van Loan for which the perturbation analysis

yields that the computed eigenvalues are the exact eigenvalues ofH

2

+F , and the perturbation

satis�es jjF jj < "

�

�

�

�

H

2

�

�

�

�

. In our new approach we can avoid squaring the matrix, but as we

have seen in Section 4, the prize is an increase in computational cost.

Now we give an error analysis for the eigenvalues of a Hamiltonian pencil.

Let (�; 1) be a nonzero �nite simple eigenvalue of a real regular Hamiltonian pencil �E��A;

then by Proposition 1 a), (��; 1) is also a simple eigenvalue of �E � �A. Furthermore, if y,

x with jjyjj ; jjxjj = 1 are the left eigenvectors corresponding to (�; 1) and (��; 1), respectively,

then we have

y

H

(�E � A) = 0; (�E � A)JE

T

�x = 0; (46)
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x

H

(��E � A) = 0; (��E � A)JE

T

�y = 0: (47)

If we take the chordal distance (see [24, page 283]) as a metric for the complex numbers, i.e.,

�((�; �); (; �)) =

j�� � �j

p

j�j

2

+ j�j

2

p

jj

2

+ j�j

2

then the condition numbers of (�; 1) and (��; 1) are [9, 24]

�(�) :=

�

�

�

�

�

�

E

T

�x

�

�

�

�

�

�

q

jy

H

EJE

T

�xj

2

+ jy

H

AJE

T

�xj

2

; (48)

�(��) :=

�

�

�

�

�

�
E

T

�y

�

�

�

�

�

�

q

jx

H

EJE

T

�yj

2

+ jx

H

AJE

T

�yj

2

: (49)

Since EJA

T

= �AJE

T

= AJ

T

E

T

we have

�

2

EJE

T

� �

2

AJ

T

A

T

= (�E � �A)J(�E � �A)

T

= (�E + �A)J(�E + �A)

T

:

It is clear that (�

2

; 1) is a double eigenvalue of �EJE

T

� �AJ

T

A

T

, and

y

H

(�

2

EJE

T

�AJ

T

A

T

) = 0; (�

2

EJE

T

�AJ

T

A

T

)�x = 0 (50)

which means that y and �x are left and right eigenvectors of �EJE

T

��AJ

T

A

T

corresponding

to (�

2

; 1).

Similar to the matrix case, the eigenvalue (

^

�

2

; 1), where (

^

�; 1) is computed by Algorithm 1,

can be considered as an eigenvalue of the matrix pencil

�(E +E)J(E +E)

T

� �(A+ F )J

T

(A+ F )

T

;

where E and F are real small perturbation matrices satisfying

jj[E; F ]jj � " jj[E ; A]jj (51)

(see [9, 19]). We then get

Theorem 10 Let (�; 1) be a nonzero simple eigenvalue of a real regular Hamiltonian pencil

�E � �A. If

p

1 + j�j

2

j�j

�
�

�

�

�

�

�
E

T

�y

�

�

�

�

�

�
+

�

�

�

�

�

�
E

T

�x

�

�

�

�

�

�

�

y

H

EJE

T

�x

jj[E ; A]jj " < 1 (52)

where y, x are de�ned in (46), (47), and if we set �(�;��) := �(�) + �(��) where �(�)

and �(��) are de�ned as in (48) and (49), then there is an eigenvalue (

^

�; 1) computed by

Algorithm 1 such that

�((

^

�; 1); (�; 1))� " jj[E ; A]jj�(�;��) + O("

2

): (53)
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Proof. If (

^

�; 1) is the analogue of (�; 1), computed by Algorithm 1, then (

^

�

2

; 1) is an exact

eigenvalue of the matrix pencil

�(E + E)J(E +E)

T

� �(A+ F )J

T

(A+ F )

T

with E; F 2 R

2n�2n

satisfying (51), i.e., jj[E; F ]jj � " jj[E ; A]jj. This matrix pencil can be

considered as the pencil �EJE

T

� �AJ

T

A

T

plus a perturbation of order ". Thus, from (50)

and by using the result in [24, Theorem 2.2, p.293] we obtain

(

^

�

2

; 1) =

 

y

H

(A+ F )J

T

(A+ F )

T

�x

y

H

(E + E)J(E +E)

T

�x

; 1

!

+O("

2

): (54)

From (46), (47), and (50) we get

y

H

(A+ F )J

T

(A+ F )

T

�x = �

2

y

H

EJE

T

�x� �(y

H

EJF

T

�x� y

H

FJE

T

�x) + O("

2

)

and

y

H

(E +E)J(E +E)

T

�x = y

H

EJE

T

�x+ y

H

EJE

T

�x+ y

H

EJE

T

�x+O("

2

):

(Note that by assumption (52) and without considering the O("

2

) terms,

jy

H

(E +E)J(E +E)

T

�xj � jy

H

EJE

T

�xj � "(

�

�

�

�

�

�

E

T

�y

�

�

�

�

�

�

+

�

�

�

�

�

�

E

T

�x

�

�

�

�

�

�

) jj[E ; A]jj > 0

and hence, the right-hand side of (54) is well de�ned.)

Therefore

^

�

2

y

H

(E + E)J(E + E)

T

�x� y

H

(A+ F )J

T

(A+ F )

T

�x =

(

^

�

2

� �

2

)y

H

EJE

T

�x+

^

�

2

(y

H

EJE

T

�x+ y

H

EJE

T

�x)

+ �(y

H

EJF

T

�x� y

H

FJE

T

�x) =

(

^

�

2

� �

2

)(y

H

EJE

T

�x+ y

H

EJE

T

�x+ y

H

EJE

T

�x)

+ �

2

(y

H

EJE

T

�x+ y

H

EJE

T

�x) + �(y

H

EJF

T

�x� y

H

FJE

T

�x) = O("

2

)

Hence, by omitting the second order terms, we have

�

2

�

^

�

2

�

�

2

(y

H

EJE

T

�x+ y

H

EJE

T

�x) + �(y

H

EJF

T

�x� y

H

FJE

T

�x)

y

H

EJE

T

�x+ y

H

EJE

T

�x+ y

H

EJE

T

�x

�

�

n

�(y

H

EJE

T

�x+ y

H

EJE

T

�x) + y

H

EJF

T

�x� y

H

FJE

T

�x

o

y

H

EJE

T

�x:

Thus,

j

^

�� �jj

^

�+ �j '

j�j

 

�

�

�

�

�

[�y

H

EJ; y

H

EJ ]

"

E

T

F

T

#

�x+ y

H

[E; F ]

"

�JE

T

�x

�JE

T

�x

#

�

�

�

�

�

!

jy

H

EJE

T

�xj

�

j�j

p

1 + j�j

2

jj[E; F ]jj (

�

�

�

�

�

�

E

T

�y

�

�

�

�

�

�

+

�

�

�

�

�

�

E

T

�x

�

�

�

�

�

�

)

jy

H

EJE

T

�xj:
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By using the condition

"

p

1 + j�j

2

jj[E ; A]jj (

�

�

�

�

�

�
E

T

�y

�

�

�

�

�

�
+

�

�

�

�

�

�
E

T

�x

�

�

�

�

�

�
)

j�jjy

H

EJE

T

�xj

< 1

and j

^

�+ �j � 2j�j � j

^

�� �j, we get

j

^

�� �j <

"

p

1 + j�j

2

jj[E ; A]jj (

�

�

�

�

�

�

E

T

�y

�

�

�

�

�

�

+

�

�

�

�

�

�

E

T

�x

�

�

�

�

�

�

)

jy

H

EJE

T

�xj

:

From (46) we have

�y

H

EJE

T

�x = y

H

AJE

T

�x;

and thus

(1 + j�j

2

)jy

H

EJE

T

�xj

2

= jy

H

EJE

T

�xj

2

+ jy

H

AJE

T

�xj

2

Finally we get

�((�; 1); (

^

�; 1)) =

j��

^

�j

p

1 + j�j

2

q

1 + j

^

�j

2

'

j��

^

�j

1 + j�j

2

<

" jj[E ; A]jj (

�

�

�

�

�

�
E

T

�y

�

�

�

�

�

�
+

�

�

�

�

�

�
E

T

�x

�

�

�

�

�

�
)

p

1 + j�j

2

jy

H

EJE

T

�xj

= " jj[E ; A]jj�(�;��);

which proves (53).

Remark 7 Clearly, the bound (53) also holds for the eigenvalue (��; 1).

Remark 8 Usually �(�) and �(��) are di�erent and thus, the eigenvalue condition number

�(�;��) � 2maxf�(�); �(��)g is a combination of �(�) and �(��). This is the condition

number of our method both for (�; 1) and (��; 1). If we consider structured perturbations,

i.e., E, F with jj[E F ]jj < " jj[E ; A]jj such that �(E+E)��(A+F ) is still a Hamiltonian pencil,

then �(�) � �(��) In this case, (�; 1) and (��; 1) have equivalent perturbation properties.

So we can assume that in general �(�) and �(��) have the same magnitude. If this is true,

then the bound (53) is as good as the standard perturbation bound.

6 Numerical Examples

Algorithm 2 was implemented in Fortran 77 and was tested for all examples given in the

benchmark collections for continuous-time algebraic Riccati equations [5], the examples given

in [25], and some randomly generated examples. Here, we present the most interesting results

obtained by these experiments.

The numerical tests were performed using IEEE double precision arithmetic with machine

precision " � 2:2204 � 10

�16

on a HP Model 712/60 workstation with operating system

HP-UX 9.0. As compiler we used the HP-UX Fortran 77 compiler as invoked by f77. The

programs were compiled using only minimal optimization.

We compared the following methods:
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� URVHQR, the symplectic URV decomposition given in Algorithm 4 and Hessenberg

QR iteration using LAPACK subroutine DHSEQR, i.e., the product �H

T

22

H

11

was

formed explicitly,

� URVPSD, the symplectic URV decomposition given in Algorithm 4 and the periodic

Schur decomposition [10] as implemented in [26],

� SQRED, Van Loan's square reduced method as implemented in [4],

� LAPACK, nonsymmetric eigenproblem solver DGEEVX from LAPACK [3].

All subroutines use the BLAS and LAPACK [3] as far as possible.

Example 2 [25, Example 2] Let

F = diag(1; 10

�2

; 10

�4

; 10

�6

; 10

�8

)

then a Hamiltonian matrix H is obtained by

H = U

T

"

F 0

0 �F

T

#

U ;

with U 2 US

2n

randomly generated by �ve symplectic rotations and �ve reectors. Thus,

�(H) = f�1;�10

�2

;�10

�4

;�10

�6

;�10

�8

g:

Table 1 shows the absolute errors in the eigenvalue approximations computed by the four

methods.

� URVHQR URVPSD SQRED LAPACK

1 0 0 0 7:8� 10

�16

10

�2

5:5� 10

�16

5:5� 10

�16

5:5� 10

�16

5:0� 10

�17

10

�4

7:7� 10

�14

1:6� 10

�18

1:6� 10

�14

2:6� 10

�18

10

�6

4:1� 10

�12

1:0� 10

�18

1:5� 10

�11

8:4� 10

�18

10

�8

1:7� 10

�9

3:1� 10

�17

2:2� 10

�9

4:7� 10

�17

Table 1: Example 2, absolute errors j��

~

�j

From Table 1 the loss of accuracy of jjH jj =j�j for Van Loan's method is obvious. The same

loss of accuracy is observed as was to be expected when the symplectic URV decomposition is

used but the product �H

T

22

H

11

is formed explicitly. Using the periodic Schur decomposition

yields the exact eigenvalues with respect to machine precision as does the QR algorithm

implemented in LAPACK.
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Example 3 [25, Example 3] The Frank matrix F 2 R

n�n

is de�ned by

F =

2

6

6

6

6

6

6

6

6

6

6

6

6

4

n n� 1 n� 2 : : : : : : 2 1

n� 1 n� 1 n � 2 : : : : : : 2 1

0 n� 2 n� 2 : : : : : : 2 1

0 0 n� 3

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

2 1

0 0 : : : 0 1 1

3

7

7

7

7

7

7

7

7

7

7

7

7

5

:

All the eigenvalues are real and positive. For increasing n, the eigenvalue condition number

becomes worse for the small eigenvalues. A Hamiltonian matrix having the same eigenvalues

as the Frank matrix together with their negative counterparts is generated as in Example 2,

H = U

T

"

F 0

0 �F

T

#

U ;

with U 2 US

2n

randomly generated by n symplectic rotations and n reectors.

We tested all four methods for n = 12. Since exact eigenvalues are not known, we compare

the values computed by URVHQR, URVPSD, and SQRED with those obtained by DGEEVX

(denoted by �

QR

). The results for the �ve eigenvalues of smallest absolute value (and worst

condition number) are shown in Table 2. (Here,

~

� denotes the computed values by either of

the three methods other than LAPACK.)

� � s(�) URVHQR URVPSD SQRED

0.2847 1:8� 10

�6

1:8� 10

�9

2:7� 10

�11

2:8� 10

�9

0.1436 1:8� 10

�6

2:7� 10

�8

9:9� 10

�10

7:6� 10

�8

0.08122 3:8� 10

�8

1:4� 10

�7

5:9� 10

�9

5:6� 10

�7

0.0495 2:6� 10

�8

2:3� 10

�7

9:8� 10

�9

1:4� 10

�6

0.03102 5:5� 10

�8

1:2� 10

�7

5:0� 10

�9

1:1� 10

�6

Table 2: Example 3, j

~

�� �

QR

j

Again, the symplectic URV decomposition yields eigenvalue approximations according to

the accuracy to be expected by s(�) and Theorem 9 whereas both SQRED and URVHQR

again loose accuracy of order jjH jj =j�j.

Example 4 We tested the four methods for randomly generated Hamiltonian matrices with

entries distributed normally in the interval [�1; 1 ]. Since the eigenvalue distribution for these

examples usually behaves nicely, the eigenvalues computed by either of the four methods are

computed to almost the same accuracy. We give the CPU times for 2n � 2n examples for

several sizes of n. For each size of n, we computed 100 examples. The values given in Table 3

are the mean values of the CPU times measured on a HP Model 712/60 work station.

Table 3 shows that both URVHQR and SQRED are much faster than the standard QR

algorithm. The speed up expected from the op counts is not attained, though. This is due
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n URVHQR URVPSD SQRED LAPACK

25 0.045 0.173 0.052 0.118

50 0.35 1.13 0.31 0.71

75 1.13 3.40 0.95 2.21

100 2.78 7.99 2.31 5.01

125 5.42 15.00 4.53 9.75

150 9.41 25.53 7.71 17.25

175 15.18 40.61 12.22 28.15

200 22.93 60.24 18.38 42.45

Table 3: Example 4, CPU times

to the fact that both methods are more complex as far as index handling, memory access,

and subroutine calls are concerned.

The CPU times for URVPSD are unsatisfactory. This is due to the high CPU times re-

quired by the implemented subroutines for the periodic Schur decomposition and are not in

accordance with the op counts | even if the abovementioned e�ects are taken into account.

Besides the faster computation of the eigenvalues, both URV based methods and Van Loan's

method return the right pairing of the eigenvalues as ��

i

, i = 1; : : : ; n. Since DGEEVX treats

a Hamiltonian matrix like an arbitrary unsymmetric matrix, small perturbations can cause

computed eigenvalues with small real parts to cross the imaginary axis. For instance, the

number of stable eigenvalues in Example 4 returned by DGEEVX for n = 100 varied between

96 and 106.

7 Conclusions

We have presented a new method for computing the eigenvalues of Hamiltonian matrices

and pencils which can also be used for symplectic matrices and pencils employing a Cayley

transformation. The method is numerically strongly backward stable, since it preserves the

underlying Hamiltonian structure and uses only backward stable orthogonal transformations.

The algorithms save a signi�cant amount of computational cost compared to the standard

QR and QZ algorithms. On the other hand, the new method is more expensive in both com-

putational cost and work space than Van Loan's method and its analogues for the symplectic

case, but does not su�er from the O(

p

") loss of accuracy as these methods do.

Future work will include an LAPACK-based implementation of Algorithms 1. Our algo-

rithms strongly depend upon the performance of the periodic QR and QZ algorithms. Thus, in

order to obtain reasonable execution times for Algorithms 1 and 2, excellent implementations

of the periodic QR and QZ algorithm will be required.
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