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1 Introduction

For the efficient numerical treatment of boundary value problems (BVPs) in 3D, domain
decomposition methods as well as dimension decomposition methods are widely used in
science and engineering. Both type of methods are convenient for the parallelization of the
numerical solution of partial differential equations. In particular, nonconforming techniques
like mortar methods provide a flexible approach in the framework of domain decomposition,
see e.g. [1, 2, 3, 5, 11, 22].

In contrast to the domain decomposition, where a domain Ω̂ ⊂ IRd (here d = 3) is subdi-

vided into a finite number of subdomains of the same dimension like Ω̂, the partial decom-
position of some differential operator in 3D employs the representation of this differential
operator by a family of differential operators in 2D. For the numerical approximation of the
BVP on Ω̂ ⊂ IR3 only a finite set of problems in 2D is to be solved, cf. [4, 13, 14, 17, 18].
The combination of both methods would enable parallelization with respect to geometry
and dimension of the BVP at the same time.
In this paper, we shall present such a combination as an approach for numerically solving
the Dirichlet problem of the Poisson equation in some axisymmetric domain Ω̂ in IR3. In
particular, we combine the Fourier-finite-element method with the Nitsche-finite-element
method (as a mortar method). The domain Ω̂ is generated by rotation (ϕ: rotational angle,
ϕ ∈ (−π, π]) of some meridian domain Ωa about the rotational axis, the x3-axis. The data
and the solution u of the BVP in 3D are non-axisymmetric. As an important method for
the approximate solution of this BVP, we shall apply the so-called Fourier-finite-element
method (FFEM), see [4, 7, 13, 14, 17, 21]. This method combines the approximating
Fourier method (see, e.g. [6, 18]) with the finite-element method (FEM; cf. [8]). That is,
trigonometric polynomials of degree ≤ N are used in one space direction, here with respect
to the rotational angle ϕ. They yield an approximate splitting of the 3D-problem into a
finite set of 2D-problems. The solutions uk (k = 0,±1, ...,±N) of the 2D-problems are the
first 2N +1 Fourier coefficients of the solution u. For solving numerically the 2D-problems
on the plane meridian domain Ωa of Ω̂, the FEM with piecewise polynomials (h-version of
the FEM) is employed over a triangulation of Ωa with mesh size h.
In the second step, we employ the Nitsche-finite-element discretization as a mortar method
for solving numerically the 2D-problems on the meridian domain Ωa, cf. [1, 11, 15, 16, 19].
For simplicity, the domain Ωa is subdivided into two subdomains Ω1

a and Ω2
a. Along the

interface Γ := Ω
1

a ∩ Ω
2

a of the domain decomposition, non-matching meshes as well as
discontinuities of the approximated solutions are admitted.
The aim of this paper is to present the combined method, which seems to be new, and
to give a rigorous justification of the approach. In particular, important properties of
the approximation scheme are derived and, the convergence uhN → u with respect to
N → ∞ and h→ 0 is proved. Here, N and h are independent from each other (anisotropic
discretization).
The paper is organized as follows. First we present a derivation of the FFEM with Nitsche-
mortaring for the Dirichlet problem of the Poisson equation. Some assumptions on the BVP
and on the triangulation of the meridian domain Ωa are given. Since the BVP is treated
in cylindrical coordinates (r, ϕ, z) (where r is the distance of a point to the z-axis), we
are also concerned with Hilbert spaces provided with power weights rα (α real) and with
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functions u(r, ϕ, z) periodically with respect to the rotational angle ϕ ∈ (−π, π]. Then,
some properties of the approximation schemes and a priori estimates are derived. Finally,
error estimates and convergence rates with respect to the discretization parameters N and
h are given (N : length of the Fourier sum, h: mesh size on Ωa). In some H1-like norm
|| · ||1,h,Ω and for regular solutions u, the convergence rate is proved to be of the type
O(h+N−1). The numerical example illustrates the approach and the rates of convergence.

2 Analytical preliminaries

Let Ω̂ ⊂ IR3 be a bounded domain which is axisymmetric with respect to the x3-axis. The
part of the x3-axis contained in Ω̂ is denoted by Γ0. Then the set Ω̂ \ Γ0 is generated by
rotation of the corresponding plane meridian domain Ωa about the x3-axis. The set Γa is
defined by Γa := ∂Ωa \ Γ0, where ∂Ωa is the boundary of Ωa. In the following we assume
that Ωa is polygonally bounded. Further let Ri, i = 1, . . . , n (n: the total number of corners
of Ωa), denote the corners of the polygon Ωa such that R1, Rn ∈ Γ0 ∩ Γa, cf. Figure 1.
Then we require that for the interior angles γi at the corners Ri (i = 1, . . . , n) holds:
γ1, γn < 0.72616π (cf. [4]) and γi < π for i = 2, . . . , n− 1. These assumptions are used to
guarantee the regularity of the solution of the BVP considered subsequently. For functions
defined on X, let Hs(X) (s ≥ 0, s real, H0 = L2) denote the usual Sobolev-Slobodetskĭı
space. Introduce cylindrical coordinates r, ϕ, z (x1 = r cosϕ, x2 = r sinϕ, x3 = z), with

ϕ ∈ (−π, π]. Then we get one-to-one mappings: Ω̂\Γ0 → Ω := Ωa×(−π, π] and ∂Ω̂\Γ0 →

Γa × (−π, π]. Consequently, for each function v̂(x) with x ∈ Ω̂ \ Γ0, some function v on Ω
is defined by

v(r, ϕ, z) := v̂(r cosϕ, r sinϕ, z). (1)

Using this, we can define spaces X l
1/2(Ω) of Sobolev-type of functions periodic with respect

to ϕ ∈ (−π, π] as follows: H l(Ω̂ \ Γ0) → X l
1/2(Ω) (l = 0, 1, 2). Since Γ0 is one-dimensional,

H l(Ω̂\Γ0) and H l(Ω̂) can be identified. These spaces are equipped with the natural norms
and seminorms given by the relations

|u|Xl
1/2

(Ω) = |û|Hl(bΩ), ‖u‖Xl
1/2

(Ω) = ‖û‖Hl(bΩ), l = 0, 1, 2, (2)

with u, û according to (1). In [12, 17, 21] the spaces X l
1/2(Ω) are described in more detail.

r

z

Γ0

Γa

Ωa

6

-

R1

R2

R3

R4

R5

R6

Figure 1
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Further we shall need some spaces of functions defined on the meridian domain Ωa and
provided with power weights rα (α real):

H l
α(Ωa) := {w = w(r, z) : rαDβw ∈ L2(Ωa), 0 ≤ |β| ≤ l} for l ∈ {0, 1, 2}; (3)

Dβw :=
∂|β|w

∂rβ1∂zβ2
, β = (β1, β2), |β| = β1 + β2; H0

α(Ωa) = L2,α(Ωa) .

The canonical scalar product in L2,α(Ωa) is given by

(v, w)α,Ωa :=

∫

Ωa

vw̄ r2α drdz (4)

and the norms in the spaces H l
α(Ωa) are defined as follows

‖w‖L2,α(Ωa) :=
{∫

Ωa

|rαw|2 drdz
}1/2

, |w|Hl
α(Ωa) :=

{∑

|β|=l

‖rαDβw‖2
L2(Ωa)

}1/2

,

(5)

‖w‖Hl
α(Ωa) :=

{
‖w‖2

Hl−1
α (Ωa)

+ |w|2Hl
α(Ωa)

}1/2

for l ∈ {1, 2}.

Subsequently, these spaces, scalar products, and norms will also be used with Ωi
a (i = 1, 2)

instead of Ωa, where Ωi
a are subdomains of Ωa.

For f̂ ∈ L2(Ω̂), let us consider the Dirichlet problem for the Poisson equation on Ω̂:

−∆3û := −
3∑

i=1

∂2û

∂x2
i

= f̂ in Ω̂, û = 0 on ∂Ω̂. (6)

According to (1), we can write this problem in terms of cylindrical coordinates and obtain

−∆r,ϕ,z u := −

{
1

r

∂

∂r

(
r
∂u

∂r

)
+

1

r2

∂2u

∂ϕ2
+
∂2u

∂z2

}
= f in Ω, u = 0 on Γa × (−π, π],(7)

where u is periodic with respect to ϕ. The variational formulation of (6) in cylindrical
coordinates is given as follows. Find u ∈ V0(Ω) := {u ∈ X1

1/2(Ω) : u|Γa×(−π,π] = 0} such
that

b(u, v) = f(v) ∀v ∈ V0(Ω), (8)

with b(u, v) :=

∫

Ω

{∂u
∂r

∂v

∂r
+

1

r2

∂u

∂ϕ

∂v

∂ϕ
+
∂u

∂z

∂v

∂z

}
rdrdϕdz, f(v) :=

∫

Ω

f v rdrdϕdz.

For u(r, ϕ, z), u ∈ X1
1/2(Ω), (and for f(r, ϕ, z), f ∈ X0

1/2(Ω), resp.) we employ partial
Fourier analysis with respect to the rotational angle ϕ:

u(r, ϕ, z) =
∑

k∈Z

uk(r, z) e
ikϕ, uk(r, z) :=

1

2π

π∫

−π

u(r, ϕ, z) e−ikϕdϕ for k ∈ Z (9)
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(Z = {0,±1,±2, . . .}; i2 = −1). Using the functionals

bk(uk, vk) =

∫

Ωa

{∂uk

∂r

∂vk

∂r
+
∂uk

∂z

∂vk

∂z
+
k2

r2
ukvk

}
rdrdz, fk(vk) =

∫

Ωa

fkvk rdrdz (k ∈ Z),

the decomposition of the BVP (8) in the variational form can be written as follows:

k = 0: find u0 ∈ V a
0 :={v ∈ H1

1/2(Ωa) : v|Γa = 0 } : b0(u0, w) = f0(w) ∀w ∈ V a
0 ,

(10)
k ∈ Z\{0}: find uk ∈W a

0 :={v ∈ V a
0 : v ∈ L2,−1/2(Ωa)} : bk(uk, w) = fk(w) ∀w ∈W a

0 .

It is well-known (see e.g. [12, 17]) that the solutions uk (k ∈ Z) of (10) are the Fourier coef-
ficients of u according to (9). If uk (k ∈ Z) is sufficiently regular, the following differential
equations and boundary conditions for the Fourier coefficients uk can be derived

−
{∂2uk

∂r2
+
∂2uk

∂z2
+

1

r

∂uk

∂r

}
+
k2

r2
uk = fk in Ωa

uk = 0 on Γa ∀k ∈ Z (11)

uk = 0 on Γ0 ∀k ∈ Z\{0}.

The boundary condition for u0 on Γ0 is formulated in the context of the variational problem.

Because of the assumptions on the geometry of Ωa, the domain Ω̂ has neither sharp conical
vertices nor reentrant edges. Consequently, the solution of the 3D-BVP (8) has the regu-
larity u ∈ X2

1/2(Ω), and its Fourier coefficients uk from (10) belong to the space H2
1/2(Ωa),

cf. [4, 12, 17].

For the Nitsche-finite-element discretization we shall need a subdivision of Ωa into subdo-
mains. Throughout this paper we restrict ourselves to the case of two subdomains Ω1

a, Ω2
a

with

Ωa = Ω
1

a ∪ Ω
2

a, Ω1
a ∩ Ω2

a = ∅, Γ = Ω
1

a ∩ Ω
2

a.

Moreover, assume that the subdomains are polygonally bounded. There are different cases
for the position of the two subdomains: Figure 2 shows the case ∂Ωi

a ∩ Γa 6= ∅ for i = 1, 2,
and in Figure 3 we have ∂Ω2

a ∩ Γa = ∅, Γ = ∂Ω2
a. Obviously, the decomposition of

Ωa ⊂ IR2 implies a decomposition of the three-dimensional domain Ω into two subdomains
Ωi = Ωi

a × (−π, π], i = 1, 2.

In view of the subdivision of Ωa we introduce the restrictions vi := v|Ωi
a

of some function
v on Ωi

a as well as the vectorized form v = (v1, v2), i.e. vi(x) = v(x) holds for x ∈ Ωi
a

(i = 1, 2). It should be noted that for simplicity we use here the same symbol v for denoting
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the function on Ωa as well as the vector (v1, v2).

r

z

Γ0

Γa

Γ
Ω1

a

Ω2

a

6

-
r

z

Γ0

Γa

Γ Ω1
a

Ω2

a

6

-

Figure 2 Figure 3

Using this notation we obtain that for each k ∈ Z the solution of the BVP (11) is equivalent
to the solution of the following problem: Find (u1

k, u
2
k) such that

−
{∂2ui

k

∂r2
+
∂2ui

k

∂z2
+

1

r

∂ui
k

∂r

}
+
k2

r2
ui

k = fk in Ωi
a, i = 1, 2

ui
k = 0 on ∂Ωi

a ∩ Γa (12)

ui
k = 0 on ∂Ωi

a ∩ Γ0 (only for k ∈ Z\{0})

∂u1
k

∂n1

+
∂u2

k

∂n2

= 0 on Γ, u1
k = u2

k on Γ

are satisfied, where ni (i = 1, 2) denotes the outward normal to ∂Ωi
a ∩ Γ. Introduce the

spaces

V i
a = {w ∈ H1

1/2(Ω
i
a) : w|∂Ωi

a∩Γa
= 0 }, W i

a = {w ∈ V i
a : w ∈ L2,−1/2(Ω

i
a) } for i = 1, 2,

(13)
Va := V 1

a × V 2
a , Wa := W 1

a ×W 2
a .

Clearly, the BVPs (12) can be written in a variational form, where also the boundary
condition of ui

0 on ∂Ωi
a ∩ Γ0 is specified. Then, for the Fourier coefficients ui

k (in Ωi
a) we

have ui
0 ∈ V i

a , ui
k ∈ W i

a for k ∈ Z\{0} as well as u0 = (u1
0, u

2
0) ∈ Va, uk = (u1

k, u
2
k) ∈ Wa

for k ∈ Z\{0}. The continuity of the solution uk and its normal derivative on Γ is to

be required in the sense of the space H
1/2
1/2,∗(Γ) (the definition is given afterwards) and

its dual space [H
1/2
1/2,∗(Γ)]′, resp. Let the space H

1/2
1/2 (∂Ωi

a \ Γ0) be defined as the range

of the trace operator: v → v|∂Ωi
a\Γ0

for v ∈ H1
1/2(Ωa) (cf. [4, Section II.1.]). Then we

use H
1/2
1/2,∗(∂Ω

i
a \ Γ0) = H

1/2
1/2 (∂Ωi

a \ Γ0) for ∂Ωi
a ∩ Γa = ∅. In the case ∂Ωi

a ∩ Γa 6= ∅

we identify H
1/2
1/2,∗(∂Ω

i
a \ Γ0) with the space H

1/2
1/2,00(∂Ω

i
a \ ∂Ωa) consisting of functions

v ∈ H
1/2
1/2 (∂Ωi

a \ ∂Ωa) for which the trivial extension ṽ by zero belongs to H
1/2
1/2 (∂Ωi

a \ Γ0).

3 The discretization method

The solutions uk = (u1
k, u

2
k) (k ∈ Z) of the 2D-BVP’s (12) will be approximated by the

Nitsche-finite-element method, cf. also [1, 11, 15, 16, 19].
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First we describe the finite-element discretization with non-matching meshes. We cover Ωi
a

(i = 1, 2) by a triangulation T i
h (i = 1, 2) consisting of triangles T (T = T ), where T 1

h

and T 2
h are independent of each other. Moreover, compatibility of the nodes of T 1

h and
T 2

h along the mortar interface Γ = ∂Ω1
a ∩ ∂Ω2

a is not required, i.e., non-matching meshes
on Γ are admitted. Let h denote the mesh parameter of the triangulation Th := T 1

h ∪ T 2
h ,

with 0 < h ≤ h0 and sufficiently small h0. Take e.g. h = max{hT : T ∈ Th}, where hT

denotes the diameter of the triangle T . In the sequel, positive constants C occuring in the
inequalities are generic constants.
Since the solutions of the 2D-BVP’s do not have any singularities, it suffices to consider
only quasi-uniform meshes in Ωi

a (i = 1, 2). Throughout this paper we suppose that the
following assumption on the triangulations T i

h (i = 1, 2) is fulfilled.

Assumption 1

(i) For i = 1, 2, it holds Ω
i

a = ∪T∈T i
h
T , and two arbitrary triangles T, T ′ ∈ T i

h (T 6= T ′)
are either disjoint or have a common vertex, or a common edge.

(ii) The mesh in Ω
i

a (i = 1, 2) is quasi-uniform, i.e. the relation

maxT∈T i
h
hT

minT∈T i
h
ρT

≤ C (i = 1, 2) (14)

holds for h ∈ (0, h0], where ρT denotes the diameter of the largest inscribed sphere
of T , and C is independent of h.

For i = 1, 2 and according to V i
a , W i

a from (13) introduce finite element spaces V i
ah, W

i
ah of

functions vi
h on Ω

i

a by

V i
ah := { vi

h ∈ C(Ω
i

a) : vi
h ∈ P1(T ) ∀T ∈ T i

h , v
i
h|∂Ωi

a∩Γa
= 0 },

(15)
W i

ah := { vi
h ∈ V i

ah and vi
h|∂Ωi

a∩Γ0
= 0 },

i.e. employ linear finite elements. It should be noted that w ∈ W i
a implies w|∂Ωi

a∩Γ0
= 0

(cf. [17]) so that we require this also for the finite-element subspace. The finite element
spaces Vah and Wah of vectorized functions vh with components vi

h on Ωi
a are given by

Vah := V 1
ah × V 2

ah = {vh = (v1
h, v

2
h) : v1

h ∈ V 1
ah, v

2
h ∈ V 2

ah}
(16)

Wah := W 1
ah ×W 2

ah = {vh = (v1
h, v

2
h) : v1

h ∈W 1
ah, v

2
h ∈W 2

ah}.

It should be pointed out that the functions vh in Vah and in Wah are in general not contin-
uous across Γ.

Further we introduce some triangulation Eh of the mortar interface Γ by intervals E

(E = E), i.e., Γ = ∪E∈Eh
E, where hE denotes the diameter of E. We suppose that

two segments E,E ′ are either disjoint or have a common endpoint. A natural choice for
the triangulation Eh is Eh := E1

h or Eh := E2
h (cf. Figure 4), where E1

h and E2
h denote the

triangulations of Γ defined by the traces of T 1
h and T 2

h on Γ, resp.:

E i
h := {E : E = ∂T ∩ Γ, if E is a segment, T ∈ T i

h } for i = 1, 2.
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T 1
h

⇒ E1
h

ΓΩ1
a

Γ Γ

T 2
h

⇐E2
h

Eh

Ω2
a

Figure 4

Subsequently we use real parameters α1, α2 with

0 ≤ αi ≤ 1 (i = 1, 2), α1 + α2 = 1. (17)

The asymptotic behaviour of the triangulations T 1
h , T 2

h and of Eh should be consistent on Γ
in the sense of the following assumption.

Assumption 2

1. For E ∈ Eh and T ∈ T i
h with ∂T ∩E 6= ∅, i = 1 and i = 2, there are positive constants

C1 and C2 independent of hT , hE and h (0 < h ≤ h0) such that the following condition
is satisfied

C1hT ≤ hE ≤ C2hT . (18)

2. In the special case Eh := E i
h and αi := 1 (cf. (17)), where i = 1 or i = 2, for E ∈ Eh

and T ∈ T 3−i
h with ∂T ∩ E 6= ∅, instead of relation (18) the following condition is

required:
C1hT ≤ hE. (19)

Relation (18) means that the diameter hT of the triangle T touching the interface Γ at E
is asymptotically equivalent to the diameter of the segment E, i.e. the equivalence of hT ,
hE is required only locally. In contrast, condition (19) is weaker and admits even locally
at Γ different asymptotics of triangles T1 ∈ T 1

h , T2 ∈ T 2
h : T1 ∩ T2 6= ∅.

In order to define the Nitsche-finite-element approximation of the solutions of the BVP’s
(12), we now introduce bilinear forms Bh,k(·, ·) and linear forms Fh,k(·), k ∈ Z. We follow
the ideas as given e.g. in [1, 11, 15, 16, 19] which are here to be adapted to the situation
of weighted spaces. Moreover, a new term containing the parameter k ∈ Z occurs now in
the bilinear form.
For k ∈ Z\{0} and uh, vh ∈ Wah as well as for k = 0 and uh, vh ∈ Vah, resp., Bh,k(·, ·) and
Fh,k(·) are defined as follows:

Bh,k(uh, vh) :=

2∑

i=1

{
(∇ui

h,∇v
i
h)1/2,Ωi

a
+ k2(ui

h, v
i
h)−1/2,Ωi

a

}
−

〈
α1
∂u1

h

∂n1
− α2

∂u2
h

∂n2
, v1

h − v2
h

〉

1/2,Γ

−
〈
α1
∂v1

h

∂n1

− α2
∂v2

h

∂n2

, u1
h − u2

h

〉

1/2,Γ
+ γ

∑

E∈Eh

h−1
E (u1

h − u2
h, v

1
h − v2

h)1/2,E (20)
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Fh,k(vh) :=
2∑

i=1

(f i
k, v

i
h)1/2,Ωi

a
.

Here, 〈·, ·〉 denotes the [H
1/2
1/2,∗(Γ)]′ × H

1/2
1/2,∗(Γ)-duality pairing and (·, ·)1/2,E the weighted

L2,1/2(E) scalar product which is defined by analogy to (4). Moreover, γ is a sufficiently
large positive constant (the restriction of γ will be given subsequently) and α1 as well as

α2 are taken from (17). For vh = (v1
h, v

2
h) ∈ Vah, we have

∂vi
h

∂ni
|Γ ∈ L2,1/2(Γ). This will be

used subsequently for evaluating 〈·, ·〉 by the L2,1/2(Γ)-scalar product.
The Nitsche-finite-element approximations u0h = (u1

0h, u
2
0h) ∈ Vah and ukh = (u1

kh, u
2
kh) ∈

Wah, k ∈ Z\{0}, of the functions uk = (u1
k, u

2
k) are defined to be the solutions of the

equations

Bh,0(u0h, vh) = Fh,0(vh) ∀vh ∈ Vah
(21)

Bh,k(ukh, vh) = Fh,k(vh) ∀vh ∈Wah, k ∈ Z\{0}.

In order to define the combined Fourier-Nitsche-finite-element approximation uhN of u, we
choose some N > 0 and carry out the Fourier synthesis of the functions ukh = (u1

kh, u
2
kh)

for |k| ≤ N :

uhN = (u1
hN , u

2
hN) with u

j
hN =

∑

|k|≤N

u
j
kh(r, z) e

ikϕ for j = 1, 2. (22)

Clearly, the approximation uhN of u depends on the two discretization parameters h and N .

4 Properties of the bilinear forms Bh,k(·, ·)

The following lemma states the consistency of the solutions uk (k ∈ Z) from (10) with the
variational equations (21).

Lemma 1 Let uk (k ∈ Z) be the solution of the BVPs (10). Then uk = (u1
k, u

2
k) satisfies:

Bh,0(u0, vh) = Fh,0(vh) ∀vh ∈ Vah

(23)
Bh,k(uk, vh) = Fh,k(vh) ∀vh ∈Wah, k ∈ Z\{0}.

Proof: Obviously, for any vh indicated at (23), Bh,k(uk, vh) are well defined for k ∈ Z. Since

∆r,zu
i
k :=

{
∂2ui

k

∂r2 +
∂2ui

k

∂z2 + 1
r

∂ui
k

∂r

}
∈ L2,1/2(Ω

i
a) as well as ui

k, v
i
h ∈ H1

1/2(Ω
i
a) hold (i = 1, 2,

k ∈ Z), the generalized version of Green’s formula with the weight r

−

∫

Ωi
a

∆r,zu
i
k v

i
h rdrdz =

∫

Ωi
a

∇ui
k ∇v

i
h rdrdz −

∫

∂Ωi
a\Γ0

∂ui
k

∂ni

vi
h rds

(see e.g. [9, Theorem 3.1]) may be applied with i = 1, 2. Using the properties u1
k|Γ = u2

k|Γ

and
∂u1

k

∂n1

∣∣∣
Γ
= −

∂u2
k

∂n2

∣∣∣
Γ

(see (12)), we get (23).

For the proof of the boundedness and ellipticity of the bilinear forms Bh,k(·, ·) we shall need

an estimate of the term
∑

E∈Eh

hE ‖
∂vi

h

∂ni
‖2

L2,1/2(E) for i ∈ {1, 2} where αi 6= 0.

8



Lemma 2 Let Assumptions 1 and 2 be satisfied. Furthermore, let F ∈ E i
h denote the side

of a triangle TF ∈ T i
h touching Γ by F (TF ∩ Γ = F ). Then the inequalities

∑

E∈Eh

hE

∥∥∥
∂vi

h

∂ni

∥∥∥
2

L2,1/2(E)
≤ C

(i)
I

∑

F∈Ei
h

‖∇vi
h‖

2
L2,1/2(TF ) (24)

hold for i ∈ {1, 2} : 0 < αi ≤ 1 and vh ∈ Vah, where the constants C
(i)
I are independent

of h, hT , and hE.

Proof: By means of the Cauchy-Schwarz inequality we get
∥∥∥
∂vi

h

∂ni

∥∥∥
2

L2,1/2(E)
=

∫

E

|(ni,∇v
i
h)|

2rds ≤

∫

E

(ni, ni)(∇v
i
h,∇v

i
h) rds = ‖∇vi

h‖
2
L2,1/2(E). (25)

Moreover, using Assumption 2 we can state the inequality
∑

E∈Eh

hE‖∇v
i
h‖

2
L2,1/2(E) ≤ C

∑

F∈Ei
h

hF‖∇v
i
h‖

2
L2,1/2(F ) (26)

where F ∈ E i
h is the side of a triangle TF ∈ T i

h touching Γ by F and hF denotes the length
of F . In the following, we shall estimate the norm ‖∇vi

h‖
2
L2,1/2(F ).

The vertices of TF and their coordinates are denoted by Pj = (rj , zj), j = 1, 2, 3, and P1,
P2 are the end points of F ∈ E i

h (i = 1 or i = 2). Since the functions from V i
ah are linear

on each triangle, we can use the representation vi
h|TF

= a0 + a1r + a2z for any vi
h ∈ V i

ah

(i = 1 or i = 2) where the coefficients aj (j = 0, 1, 2) depend on the triangle T = TF . Some
obvious calculations yield

‖∇vi
h‖

2
L2,1/2(F ) =

hF

2
(a2

1 + a2
2)(r1 + r2). (27)

Now, the norm square from (27) has to be bounded by ‖∇vi
h‖

2
L2,1/2(TF ). We get by means

of some cubature formula being exact for linear functions

‖∇vi
h‖

2
L2,1/2(TF ) = (a2

1 + a2
2)

∫

TF

rdrdz =
hF h

⊥
F

6
(a2

1 + a2
2)(r1 + r2 + r3), (28)

where h⊥F is the height of the triangle TF over the side F . The estimates r3 ≥ 0 and
hF ≤ Ch⊥F yield together with (27) and (28):

hF‖∇v
i
h‖

2
L2,1/2(F ) ≤ C‖∇vi

h‖
2
L2,1/2(TF ) ∀F ∈ E i

h. (29)

Summing up (29) for all F ∈ E i
h and using (25) as well as (26) we obtain the estimate (24).

Taking (24) we can easily derive the inequalities

∑

E∈Eh

hE

∥∥∥α1

∂v1

h

∂n1

− α2

∂v2

h

∂n2

∥∥∥
2

L2,1/2(E)
≤ CI

2∑

i=1

∑

F∈Ei
h

α2
i ‖∇v

i
h‖

2
L2,1/2(TF )

≤ CI

2∑

i=1

α2
i ‖∇v

i
h‖

2
L2,1/2(Ωi

a), (30)

9



with CI := 2 max{C
(1)
I , C

(2)
I }, or CI := C(i) for αi = 1, i ∈ {1, 2}.

In special cases, we can easily give an estimate for the constant CI . For instance, choosing
Eh = E1

h and α1 = 1, we get by means of the relations (27) and (28)

CI = C(1) = sup
h≤h0

max
F∈E1

h

(
3
hF

h⊥F

)
.

For deriving the boundedness and ellipticity of the bilinear forms Bh,k(·, ·) we introduce
the weighted discrete norms ‖ · ‖1,h,k (k ∈ Z) as follows:

‖vh‖
2
1,h,k :=

2∑

i=1

{
‖∇vi

h‖
2
L2,1/2(Ωi

a) + k2‖vi
h‖

2
L2,−1/2(Ωi

a)

}
+

∑

E∈Eh

h−1
E ‖v1

h − v2
h‖

2
L2,1/2(E). (31)

For mortar methods, norms ‖ · ‖1,h are employed (see e.g. [1, 5, 11, 15, 16, 19]) which are
similar to (31). But the norm given by (31) involves a new term depending on k and norm
terms provided with the weight rα, α ∈ {−1

2
, 1

2
}.

Now we are ready to prove the following theorem.

Theorem 1 Let Assumptions 1 and 2 for T i
h (i = 1, 2) and for Eh be satisfied. Then there

exists a constant µ1 > 0 such that the following estimate holds,

|Bh,k(wh, vh)| ≤ µ1‖wh‖1,h,k‖vh‖1,h,k ∀wh, vh ∈Wah, k ∈ Z\{0} (wh, vh ∈ Vah, k = 0, resp.).

If the constant γ in (20) is independent of h and k and fulfills γ > CI (CI from (30)), then
the inequality

Bh,k(vh, vh) ≥ µ2‖vh‖
2
1,h,k ∀vh ∈Wah, k ∈ Z\{0} (vh ∈ Vah, k = 0, resp.)

holds with a positive constant µ2. Both constants µ1, µ2 are independent of h and k.

Proof: In order to prove the boundedness of Bh,k(·, ·), the integrals on Γ arising from (20)
are represented as sums of integrals on E ∈ Eh. Moreover, we employ the triangle inequality
as well as the Cauchy-Schwarz inequality and obtain

|Bh,k(wh, vh)| ≤
2∑

i=1

{
‖∇wi

h‖L2,1/2(Ωi
a)‖∇v

i
h‖L2,1/2(Ωi

a) + k2‖wi
h‖L2,−1/2(Ωi

a)‖v
i
h‖L2,−1/2(Ωi

a)

}

+
∑

E∈Eh

∥∥∥α1
∂w1

h

∂n1
− α2

∂w2
h

∂n2

∥∥∥
L2,1/2(E)

‖v1
h − v2

h‖L2,1/2(E) (32)

+
∑

E∈Eh

∥∥∥α1
∂v1

h

∂n1
− α2

∂v2
h

∂n2

∥∥∥
L2,1/2(E)

‖w1
h − w2

h‖L2,1/2(E)

+ γ
∑

E∈Eh

h−1
E ‖w1

h − w2
h‖L2,1/2(E) ‖v

1
h − v2

h‖L2,1/2(E).

10



Using Hölder’s inequality and introducing the term h−1
E hE in the third and fourth terms

on the right-hand side of (32) we get

|Bh,k(wh, vh)| ≤

( 2∑

i=1

‖∇wi
h‖

2
L2,1/2(Ωi

a)

)1/2( 2∑

i=1

‖∇vi
h‖

2
L2,1/2(Ωi

a)

)1/2

+ k2

( 2∑

i=1

‖wi
h‖

2
L2,−1/2(Ωi

a)

)1/2( 2∑

i=1

‖vi
h‖

2
L2,−1/2(Ωi

a)

)1/2

+

( ∑

E∈Eh

hE

∥∥∥α1
∂w1

h

∂n1

− α2
∂w2

h

∂n2

∥∥∥
2

L2,1/2(E)

)1/2( ∑

E∈Eh

h−1
E ‖v1

h − v2
h‖

2
L2,1/2(E)

)1/2

+

( ∑

E∈Eh

hE

∥∥∥α1
∂v1

h

∂n1
− α2

∂v2
h

∂n2

∥∥∥
2

L2,1/2(E)

)1/2( ∑

E∈Eh

h−1
E ‖w1

h − w2
h‖

2
L2,1/2(E)

)1/2

+

(
γ

∑

E∈Eh

h−1
E ‖w1

h − w2
h‖

2
L2,1/2(E)

)1/2(
γ

∑

E∈Eh

h−1
E ‖v1

h − v2
h‖

2
L2,1/2(E)

)1/2

.

For bounding the terms containing normal derivatives we apply inequality (30) and again
Hölder’s inequality. This leads to

|Bh,k(wh, vh)| ≤ µ1

{ 2∑

i=1

(
‖∇wi

h‖
2
L2,1/2(Ωi

a) + k2‖wi

h‖
2
L2,−1/2(Ωi

a)

)
+

∑

E∈Eh

h−1

E
‖w1

h − w2

h‖
2
L2,1/2(E)

}1/2

×
{ 2∑

i=1

(
‖∇vi

h‖
2
L2,1/2(Ωi

a) + k2‖vi

h‖
2
L2,−1/2(Ωi

a)

)
+

∑

E∈Eh

h−1

E
‖v1

h − v2

h‖
2
L2,1/2(E)

}1/2

= µ1‖wh‖1,h,k‖vh‖1,h,k

where µ1 := max(1 + CI , 1 + γ).

It remains to prove the ellipticity of Bh,k(·, ·). For vh ∈Wah, k ∈ Z \ {0}, and for vh ∈ Vah,
k = 0, resp., we get

Bh,k(vh, vh)=
2∑

i=1

{
(∇vi

h,∇v
i
h)1/2,Ωi

a
+ k2(vi

h, v
i
h)−1/2,Ωi

a

}
− 2

〈
α1
∂v1

h

∂n1
− α2

∂v2
h

∂n2
, v1

h − v2
h

〉

1/2,Γ

+ γ
∑

E∈Eh

h−1
E (v1

h − v2
h, v

1
h − v2

h)1/2,E . (33)

By means of Young’s inequality, the second term on the right-hand side of (33) can be
estimated as follows:

−2
〈
α1
∂v1

h

∂n1

− α2
∂v2

h

∂n2

, v1
h − v2

h

〉

1/2,Γ

≥ −
1

ε

∑

E∈Eh

hE

∥∥∥α1
∂v1

h

∂n1

− α2
∂v2

h

∂n2

∥∥∥
2

L2,1/2(E)
− ε

∑

E∈Eh

h−1
E ‖v1

h − v2
h‖

2
L2,1/2(E).
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This, together with inequality (30) and relation (33) leads to

Bh,k(vh, vh) ≥
2∑

i=1

{
‖∇vi

h‖
2
L2,1/2(Ωi

a) + k2‖vi
h‖

2
L2,−1/2(Ωi

a)

}
−

1

ε
CI

2∑

i=1

‖∇vi
h‖

2
L2,1/2(Ωi

a)

+ (γ − ε)
∑

E∈Eh

h−1
E ‖v1

h − v2
h‖

2
L2,1/2(E)

≥ µ2

{ 2∑

i=1

(
‖∇vi

h‖
2
L2,1/2(Ωi

a) + k2‖vi
h‖

2
L2,−1/2(Ωi

a)

)
+

∑

E∈Eh

h−1
E ‖v1

h − v2
h‖

2
L2,1/2(E)

}

= µ2‖vh‖
2
1,h,k ,

where ε is chosen such that γ > ε > CI is satisfied. Then we have µ2 := min{1− CI

ε
, γ−ε}.

5 Error estimates

For the error analysis of the Fourier-FEM, we have to study the approximation properties
of the interpolation operator and the projection-interpolation operator, see e.g. [17, 14, 21].
Since we now consider the FEM with mortaring, these operators have to be slightly adapted.
The interpolation operator Πh which will be employed for estimating the approximation
error for the Fourier coefficients uk with |k| ≤ 1 is now defined as follows:

Πhuk := (Πhu
1
k,Πhu

2
k), (34)

where Πhu
i
k (i = 1, 2) denotes the usual Lagrange interpolant of ui

k in the space V i
ah.

The use of Πhuk for |k| ≥ 2 does not lead to optimal error estimates with respect to the
discretization parameters h and N−1, cf. [17]. Therefore, for |k| ≥ 2 we shall apply some
projection-interpolation operator Ph. In order to define Ph, some notations are introduced.
For any node Q ∈ T i

h (i = 1, 2), let Si
Q be the polygon consisting of all triangles T ∈ T i

h

having Q as vertex. B0
h denotes the interior of the union of all triangles T ∈ Th with

T ∩Γ0 6= ∅. For i ∈ {1, 2} define B
0

h,i := B
0

h ∩Ω
i

a (see Figure 5) and let Bh,i be the interior

of the union of all triangles T ∈ Th with T ∩B
0

h,i 6= ∅. The set of all nodes of T i
h (i = 1, 2)

is called Σi
h, and the set Σi,∗

h consists of all nodes Q ∈ Σi
h with Q 6∈ B0

h and Q 6∈ (∂Ωi
a∩Γa).

r

z

Γ0

Ω1
a

Ω2

a

B0
h,1

B0
h,2

6

-

Figure 5
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Introduce Courant’s basis function Φi
Q ∈ C(Ω

i

a) associated with the node Q ∈ Σi
h:

Φi
Q ∈ P1(T ) ∀T ∈ Th, Φi

Q(Q′) =

{
1 for Q′ = Q

0 for Q′ 6= Q, Q′ ∈ Σi
h.

(35)

Define the orthogonal projection operator P i
Q :L2(S

i
Q) −→ P1(S

i
Q) by v −→ P i

Qv (Q ∈ Σi
h,

i = 1, 2) via the relation

(v − P i
Qv, p)L2(Si

Q) = 0 ∀p ∈ P1(S
i
Q).

Taking Φi
Q from (35) and vi

Q := (P i
Qv)(Q) we define the projection-interpolation opera-

tor Ph as follows,

Phuk := (P 1
hu

1
k, P

2
hu

2
k) with P i

hv :=
∑

Q∈Σi,⋆
h

vi
QΦi

Q, i = 1, 2. (36)

For Ph we can easily verify that Phuk = 0 on B
0

h and Phuk ∈Wah hold for |k| ≥ 2.

In addition to ‖ · ‖2
1,h,k at (31), we introduce the weighted mesh-dependent norm ‖ · ‖h,k,Ωa:

‖v‖2
h,k,Ωa

:=
2∑

i=1

{
‖∇vi‖2

L2,1/2(Ωi
a) + k2‖vi‖2

L2,−1/2(Ωi
a) +

∑

E∈Eh

hE

∥∥∥αi
∂vi

∂ni

∥∥∥
2

1/2,E

}

(37)
+

∑

E∈Eh

h−1
E ‖v1 − v2‖2

L2,1/2(E)

for functions v satisfying v ∈ Va for k = 0, v ∈ Wa for k ∈ Z \ {0}, and ∂vi

∂ni
|Γ∈ L2,1/2(Γ)

(i = 1, 2). Because of the regularity uk ∈ H2
1/2(Ωa) (see Section 2), we have

∂ui
k

∂r
,

∂ui
k

∂z
∈

H1
1/2(Ωa) and, consequently,

∂ui
k

∂ni
|Γ∈ L2,1/2(Γ) (i = 1, 2) is satisfied for all uk, k ∈ Z (cf. [4,

Section II.1.]).

The norms of the approximation errors uk − ukh, k ∈ Z, can be bounded by means of the
norms of uk − Πhuk and uk − Phuk, resp. This is stated in the following lemma.

Lemma 3 Let Assumptions 1 and 2 for T i
h (i = 1, 2) and for Eh be satisfied, moreover,

γ > CI. Then for the error uk − ukh (uk, ukh from (11), (21)), the following estimates
hold,

‖uk − ukh‖1,h,k ≤ C ‖uk − Πhuk‖h,k,Ωa for |k| ≤ 1
(38)

‖uk − ukh‖1,h,k ≤ C ‖uk − Phuk‖h,k,Ωa for |k| ≥ 2.

Proof: Using Lemma 1 and Theorem 1, the proof can be carried out by analogy to the
proof of Lemma 3 in [15].

In order to derive bounds of the norms on the right-hand sides of (38), we need a refined
trace theorem in weighted norms. In [20], a refined trace theorem involving the L2-norm of
some function v and its gradient is given. Now, the occurrence of norms with the weight r
requires new techniques for the proof if the triangle T is situated near the z-axis.
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Theorem 2 Let T ∈ T i
h (i ∈ {1, 2}) be a triangle with T ∩Γ0 = ∅ or T ∩Γ0 = {P}, where

P denotes a vertex of T . Let F be a side of this triangle, then the following inequality is
valid,

‖v‖2
L2,1/2(F ) ≤ C

(
h−1

T ‖v‖2
L2,1/2(T ) + ‖v‖L2,1/2(T ) ‖∇v‖L2,1/2(T )

)
∀v ∈ H1

1/2(T ). (39)

Proof: We distinguish two cases concerning the position of the triangle T .

Case 1: We suppose that T ∩Γ0 = ∅ holds, then we employ the refined trace theorem from
[20, p. 645] and obtain

‖v‖2
L2,1/2(F ) ≤ sup

F
r ‖v‖2

L2(F ) ≤ C sup
F
r
{
h−1

T ‖v‖2
L2(T ) + ‖v‖L2(T ) ‖∇v‖L2(T )

}

(40)

≤ C sup
T
r (inf

T
r)−1

{
h−1

T ‖v‖2
L2,1/2(T ) + ‖v‖L2,1/2(T ) ‖∇v‖L2,1/2(T )

}
.

Setting r0 := infT r and using the inequality r0 ≥ ChT which is a consequence of Assump-
tion 1, the factor supT r (infT r)

−1 in (40) can be bounded as follows:

sup
T
r (inf

T
r)−1 ≤ (r0 + hT ) r−1

0 ≤ 1 +
hT

ChT
≤ C. (41)

This, together with (40) proves inequality (39).

Case 2: Assuming T ∩ Γ0 = {P} we perform the proof by means of an affin-linear trans-
formation of the reference triangle T̂ to the triangle T .
Let Pj = (rj , zj), j = 1, 2, 3, denote the vertices of T . Without loss of generality we suppose

that P1 is the vertex lying on Γ0, i.e., r1 = 0. Then the mapping T̂ → T can be described
as follows:

(
r

z

)
= B

(
r̂

ẑ

)
+ b =

(
r2 r3

z2 − z1 z3 − z1

) (
r̂

ẑ

)
+

(
0
z1

)
. (42)

Taking into account Assumption 1 and the fact that the triangle T has only one common
point with Γ0, we easily show that the inequality

chT (r̂ + ẑ) ≤ r ≤ hT (r̂ + ẑ) (43)

is valid for all r with (r, z) ∈ T and (r̂, ẑ) related to (r, z) by (42).
The next step is the proof of the following inequality on the reference triangle:

‖(r̂ + ẑ)1/2v̂‖2
L2(F̂ )

≤ C
{
‖(r̂ + ẑ)1/2v̂‖2

L2(T̂ )
+ ‖(r̂ + ẑ)1/2v̂‖L2(T̂ ) ‖(r̂ + ẑ)1/2 ∇v̂‖L2(T̂ )

}
. (44)

It should be noted that in [16, Proof of Theorem 5.4], a similar inequality is given. But
there the variable r̂ has another meaning: it denotes the distance of a point of the reference
triangle to the origin. Therefore, for proving (44) we follow the ideas of [16], but with some
essential modifications.
We use the following decomposition of the function v̂ on F̂ : v̂ = v1 + v2, where vi = λiv̂,
i = 1, 2 and λ1 (resp. λ2) is the barycentric coordinate associated with (0, 0) (resp. (1, 0)).
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Without loss of generality we assume that the end points of F̂ are (0, 0) and (1, 0). By
using the relation v1(r̂, 1 − r̂) = 0 ∀r̂ ∈ [0, 1] we obtain for r̂ ∈ (0, 1):

r̂|v1(r̂, 0)|2 = r̂(|v1(r̂, 0)|2 − |v1(r̂, 1 − r̂)|2) = −r̂

1−r̂∫

0

∂ẑ|v1(r̂, ẑ)|
2dẑ

= −r̂

1−r̂∫

0

2v1(r̂, ẑ)∂ẑv1(r̂, ẑ)dẑ.

Integration of this equality on r̂ ∈ (0, 1) yields

1∫

0

r̂|v1(r̂, 0)|2dr̂ = −2

∫

T̂

r̂v1(r̂, ẑ)∂ẑv1(r̂, ẑ)dr̂dẑ,

and by means the Cauchy-Schwarz inequality as well as relations ẑ = 0 on F̂ , ẑ ≥ 0 on T̂
we get

‖r̂1/2v1‖
2
L2(F̂ )

= ‖(r̂ + ẑ)1/2v1‖
2
L2(F̂ )

≤ 2 ‖r̂1/2v1‖L2(T̂ ) ‖r̂
1/2∇v1‖L2(T̂ )

(45)
≤ 2 ‖(r̂ + ẑ)1/2v1‖L2(T̂ ) ‖(r̂ + ẑ)1/2∇v1‖L2(T̂ ).

Concerning the function v2 we utilize v2(0, x) = 0 ∀x ∈ [0, 1] (here, we temporarily use
the variables x, y because a transformation of the coordinates will be performed later) and
obtain

x|v2(x, 0)|2 = x(|v2(x, 0)|2 − |v2(0, x)|
2) = x

1∫

0

∂t|v2(tx, (1 − t)x|2dt

= 2x

1∫

0

v2(tx, (1 − t)x){∂xv2(tx, (1 − t)x) − ∂yv2(tx, (1 − t)x)}xdt.

Integration on x ∈ (0, 1) leads to

1∫

0

x|v2(x, 0)|2dx = 2

1∫

0

1∫

0

xv2(tx, (1 − t)x){∂xv2(tx, (1 − t)x) − ∂yv2(tx, (1 − t)x)}xdxdt.

For the integral on the right-hand side of this equality we perform the transformation r̂ =
tx, ẑ = (1 − t)x. This allows us to use the relation x = r̂ + ẑ, such that we get

1∫

0

r̂|v2(r̂, 0)|2dr̂ ≤ 2

∫

T̂

(r̂ + ẑ)|v2(r̂, ẑ)||∂r̂v2(r̂, ẑ) − ∂ẑv2(r̂, ẑ)|dr̂dẑ,
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and by means of the Cauchy-Schwarz inequality we have

‖r̂1/2v2‖
2
L2(F̂ )

= ‖(r̂ + ẑ)1/2v2‖
2
L2(F̂ )

≤ 4 ‖(r̂ + ẑ)1/2v2‖L2(T̂ ) ‖(r̂ + ẑ)1/2∇v2‖L2(T̂ ). (46)

By analogy to the inequalities (5.12) in [16] we get for vi = λiv̂ (i = 1, 2):

‖(r̂ + ẑ)1/2vi‖L2(T̂ ) ≤ ‖(r̂ + ẑ)1/2v̂‖L2(T̂ )
(47)

‖(r̂ + ẑ)1/2∇vi‖L2(T̂ ) ≤ 2‖(r̂ + ẑ)1/2v̂‖L2(T̂ ) + ‖(r̂ + ẑ)1/2∇v̂‖L2(T̂ ),

and inequality (44) can be concluded from (45)-(47).
Using estimate (43), the properties of transformation (42) as well as inequality (44) we
arrive at

‖r1/2v‖2
0,F ≤ Ch2

T ‖(r̂ + ẑ)1/2v̂‖2
L2(F̂ )

≤ Ch2
T

(
‖(r̂ + ẑ)1/2v̂‖2

L2(T̂ )
+ ‖(r̂ + ẑ)1/2v̂‖L2(T̂ )‖(r̂ + ẑ)1/2∇v̂‖L2(T̂ )

)

(48)

≤ Ch2
T

(
h−1

T h−2
T ‖r1/2v‖2

L2(T ) + h
−1/2
T h−1

T ‖r1/2v‖L2(T )h
−1/2
T ‖r1/2∇v‖L2(T )

)

≤ C
(
h−1

T ‖v‖2
L2,1/2(T ) + ‖v‖L2,1/2(T ) ‖∇v‖L2,1/2(T )

)

which completes the proof of Theorem 2.

Local interpolation error estimates in the L2,−1/2-norm and in the H1
1/2-seminorm are given

e.g. in [14, 17, 21]. Nevertheless, for further error estimates by means of the inequalities
given in Lemma 3 and Theorem 2 we also need an estimate for the local interpolation error
in the L2,1/2-norm.
For each triangle T ∈ Th we introduce the local interpolation operator by ΠT : C(T ) −→
P1(T ) and (ΠTψ)(Qj) = ψ(Qj) (Qj , j = 1, 2, 3: the vertices of T ). Further, let Q0 ∈ Γ0

be a node of the triangulation T i
h (i = 1 or i = 2), then for ψ ∈ C(Si

Q0
) the function

ΠSi
Q0
ψ ∈ C(Si

Q0
) is defined such that ΠSi

Q0
ψ|Tj

= ΠTj
ψ holds ∀Tj ∈ Si

Q0
, 1 ≤ j ≤ j0 (j0:

number of triangles with vertex at Q0).
The following lemma gives estimates for the local interpolation error in the L2,1/2-norm.

Lemma 4 Let Assumptions 1 and 2 for T i
h (i = 1, 2) be satisfied. If Q0 ∈ Γ0 is a node of

the triangulation T i
h (i = 1 or i = 2), the following inequality is valid

‖v − ΠSi
Q0
v‖L2,1/2(Si

Q0
) ≤ Ch2|v|H2

1/2
(Si

Q0
) ∀v ∈ H2

1/2(S
i
Q0

). (49)

If T ∈ T i
h is a triangle with T ∩ Γ0 = ∅, the estimate

‖v − ΠTv‖L2,1/2(T ) ≤ Ch2
T |v|H2

1/2
(T ) (50)

holds for all v ∈ H2
1/2(T ).

Proof: For (49), we will only give a sketch of the proof, because it is very similar to the proof
of Lemma 6.1 in [17]. The transformation of the reference element Ŝ to the polygon Si

Q0
as

16



well as the operator Π̂ can be chosen by analogy to [17, pp. 434-437]. Using relation (6.6)
from [17] we get

‖v − ΠSi
Q0
v‖2

L2,1/2(Si
Q0

) ≤ Cd(Si
Q0

) sup
1≤j≤j0

| detBj | ‖v̂ − Π̂v̂‖2
L2,1/2(Ŝ)

, (51)

where Bj, 1 ≤ j ≤ j0, is the matrix of the transformation T̂j −→ Tj (T̂j ∈ Ŝ, Tj ∈ Si
Q0

).

Applying Corollary 4.2 (with X := L2,1/2(Ŝ)) and inequality (6.11) from [17] we obtain

‖v̂ − Π̂v̂‖2
L2,1/2(Ŝ)

≤ C|v̂|2
H2

1/2
(Ŝ)

≤ C
h2

d(SQi
0
)
|v|2H2

1/2
(Si

Q0
). (52)

This, together with (51) and with the inequalities | detBj | ≤ Ch2 (1 ≤ j ≤ j0), yields
estimate (49). Finally, in order to prove (50), we can use the classical interpolation error
estimates (see e.g. [8]) and inequality (41).
For simplicity of further presentations, we impose an additional condition on the triangu-
lations.

Assumption 3 For each F ∈ E i
h, i = 1, 2, the triangle T with T ∩F = F has at most one

common point with Γ0.

Now we have the following error estimate for the operator Πh.

Theorem 3 Under the Assumptions 1-3, for the Fourier coefficients uk of u, with |k| ≤ 1,
the following error estimate holds:

‖uk − Πhuk‖h,k,Ωa ≤ Ch‖uk‖H2
1/2

(Ωa). (53)

Proof: For the sake of brevity we set wk := uk − Πhuk and wi
k := ui

k − Πhu
i
k. Then,

according to (37), we have

‖wk‖
2
h,k,Ωa

=
2∑

i=1

{
‖∇wi

k‖
2
L2,1/2(Ωi

a) + k2‖wi
k‖

2
L2,−1/2(Ωi

a) +
∑

E∈Eh

hE

∥∥∥αi
∂wi

k

∂ni

∥∥∥
2

L2,1/2(E)

}

+
∑

E∈Eh

h−1
E ‖w1

k − w2
k‖

2
L2,1/2(E) =:

2∑

i=1

{Si
1 + Si

2 + Si
3} + S4, (54)

where Si
1, S

i
2, S

i
3, and S4 are abbreviations for the corresponding norm terms on the left-

hand side, with Si
2 = 0 for k = 0. In order to estimate Si

1 and Si
2, i = 1, 2, we employ

Proposition 6.1 from [17] and obtain

2∑

i=1

Si
1 ≤ Ch2

2∑

i=1

‖ui
k‖

2
H2

1/2
(Ωi

a) = Ch2‖uk‖
2
H2

1/2
(Ωa) for |k| ≤ 1, (55)

2∑

i=1

Si
2 ≤ Ch2

2∑

i=1

‖ui
k‖

2
H2

1/2
(Ωi

a) = Ch2‖uk‖
2
H2

1/2
(Ωa) for |k| = 1. (56)
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Moreover, the summation over E ∈ Eh in Si
3 and S4 (i = 1 or i = 2) can be replaced by a

summation over F ∈ E i
h (cf. [15], Proof of Theorem 2), and ‖

∂wi
k

∂ni
‖L2,1/2(E) can be bounded

by ‖∇wi
k‖L2,1/2(E). This leads to

Si
3 ≤ C

∑

F∈Ei
h

hF ‖∇wi
k‖

2
L2,1/2(F ) (57)

S4 ≤ 2

2∑

i=1

∑

E∈Eh

h−1
E ‖wi

k‖
2
L2,1/2(E) ≤ C

2∑

i=1

∑

F∈Ei
h

h−1
F ‖wi

k‖
2
L2,1/2(F ), (58)

where inequality (57) is only considered for i ∈ {1, 2} : αi > 0.

Owing to Assumption 3, we may apply Theorem 2 for the estimation of the terms on the
right-hand sides of (57) and (58). Hence we obtain for each F ∈ E i

h

‖∇wi
k‖

2
L2,1/2(F ) ≤ C {h−1

T |wi
k|

2
H1

1/2
(T ) + |wi

k|H1
1/2

(T ) |w
i
k|H2

1/2
(T )} (59)

‖wi
k‖

2
L2,1/2(F ) ≤ C {h−1

T ‖wi
k‖

2
L2,1/2(T ) + ‖wi

k‖L2,1/2(T ) ‖∇w
i
k‖L2,1/2(T )}. (60)

We first consider the case that F ∩ Γ0 = ∅ holds. Then we can employ inequality (50)
and [17, Lemma 6.2], which leads to the inequalities

‖∇wi
k‖

2
L2,1/2(F ) ≤ C

{
h−1

T h2
T |u

i
k|

2
H2

1/2
(T ) + hT |u

i
k|

2
H2

1/2
(T )

}
≤ ChT |u

i
k|

2
H2

1/2
(T ) (61)

‖wi
k‖

2
L2,1/2(F ) ≤ C

{
h−1

T h4
T |u

i
k|

2
H2

1/2
(T ) + h2

T |u
i
k|H2

1/2
(T )hT |u

i
k|H2

1/2
(T )

}
≤ Ch3

T |u
i
k|

2
H2

1/2
(T ). (62)

In the case F ∩ Γ0 6= ∅ we utilize inequality (49) as well as [17, estimate (6.1)], and get

‖∇wi
k‖

2
L2,1/2(F ) ≤ Ch|ui

k|
2
H2

1/2
(Si

Q0
) (63)

‖wi
k‖

2
L2,1/2(F ) ≤ Ch3|ui

k|
2
H2

1/2
(Si

Q0
). (64)

Using h−1
F ≤ Ch−1 and summing up inequalities (61) and (62) for all F : F ∩ Γ0 = ∅

(resp. (63), (64) for all F : F ∩ Γ0 6= ∅), together with (54)-(58), we are led to the desired
estimate (53).

Theorem 4 Let Assumptions 1-3 be satisfied. Then, for Ph from (36) and the Fourier
coefficients uk, |k| ≥ 2, the following inequality is fulfilled:

‖uk − Phuk‖h,k,Ωa ≤ Ch
{
k2‖uk‖

2
H1

−1/2
(Ωa) + ‖uk‖

2
H2

1/2
(Ωa)

}1/2

. (65)
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Proof: With the abbreviations wk := uk−Phuk and wi
k := ui

k −P
i
hu

i
k, we obtain by analogy

to (54), (57) and (58):

‖wk‖
2
h,k,Ωa

≤ C

2∑

i=1

{
‖∇wi

k‖
2
L2,1/2(Ωi

a) + k2‖wi
k‖

2
L2,−1/2(Ωi

a) (66)

+ αi

∑

F∈Ei
h

hF ‖∇wi
k‖

2
1/2,F +

∑

F∈Ei
h

h−1
F ‖wi

k‖
2
L2,1/2(F )

}
=: C

2∑

i=1

{Si
1 + Si

2 + Si
3 + Si

4},

where Si
1, S

i
2, S

i
3, and Si

4 are now abbreviations for the corresponding norm terms in (66).
If αi = 0 for i = 1 or i = 2, the term Si

3 in (66) vanishes for this i.
Applying Theorems 7.1 and 7.2 of [17], we get for i = 1, 2 the inequalities

Si
1 ≤ Ch2

{
‖ui

k‖
2
H1

−1/2
(Ωi

a) + ‖ui
k‖

2
H2

1/2
(Ωi

a)

}
(67)

Si
2 ≤ Ck2h2|ui

k|H1
−1/2

(Ωi
a). (68)

For the terms Si
3 and Si

4 we can use the refined trace theorem again, e.g. inequalities (60)
and (59) hold, but now the functions wi

k contain the operator P i
h instead of Πh. The terms

occurring in this relations will now be estimated. For this purpose we distinguish three
cases concerning the position of the triangle T having F as a side.

Case 1: Let T ⊂ B
0

h,i with i = 1 or i = 2 be satisfied, with B
0

h,i introduced at the beginning

of this Section. Because P i
hu

i
k = 0 holds on B

0

h,i, we only need estimates for the norms of
the functions ui

k themselves. Using the relation supT r ≤ hT which holds for all triangles
considered in this case we get

‖ui
k‖L2,1/2(T ) ≤ sup

T
r‖ui

k‖L2,−1/2(T ) ≤ hT‖u
i
k‖L2,−1/2(T ).

This, together with ‖∇ui
k‖L2,1/2(T ) = |ui

k|H1
1/2

(T ) and estimate (39) yields

‖wi
k‖

2
L2,1/2(F ) ≤ ChT

{
‖ui

k‖
2
L2,−1/2(T ) + ‖ui

k‖L2,−1/2(T )|u
i
k|H1

1/2
(T )

}
(69)

≤ ChT

{
‖ui

k‖
2
L2,−1/2(T ) + |ui

k|
2
H1

1/2
(T )

}
, (70)

where F ∈ E i
h (i = 1 or i = 2) is a side of T .

Case 2: We consider the triangles T with T ⊂ Bh,i \ B
0
h,i, i = 1 or i = 2. For these

triangles, at least one vertex belongs to B
0

h,i. Without loss of generality we suppose that

Q1 ∈ B
0

h,i holds (Qj , j = 1, 2, 3: the local numbers of the vertices of T ). Then, following
the ideas of [17, Proof of Theorem 7.1], we obtain the inequalities

‖wi
k‖

2
L2,1/2(T ) ≤ (sup

T
r)2‖wi

k‖
2
L2,−1/2(T ) ≤ Ch2‖wi

k‖
2
L2,−1/2(T )

≤ Ch2
{
‖ui

k‖
2
L2,−1/2(T ) + h2

3∑

j=2

|ui
k|

2
H1

−1/2
(Si

Qj
)

}
, (71)
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‖∇wi
k‖

2
L2,1/2(T ) = |wi

k|
2
H1

1/2
(T ) ≤ C

{
|ui

k|
2
H1

1/2
(T ) + h2

3∑

j=2

|ui
k|

2
H1

−1/2
(Si

Qj
)

}
. (72)

Combining relations (71) and (72) with the refined trace theorem, we are led to the estimate

‖wi
k‖

2
L2,1/2(F ) ≤ Ch

{
‖ui

k‖
2
L2,−1/2(T ) + |ui

k|
2
H1

1/2
(T ) + h2

3∑

j=2

|ui
k|

2
H1

−1/2
(Si

Qj
)

}
. (73)

Case 3: Let T 6⊂ Bh,i (i = 1, 2) be satisfied. The local numbering of the vertices of T
is again: Qj, j = 1, 2, 3. Then, using Theorem 1 and inequality (7) from [10] as well as
estimate (41) we get

‖wi
k‖

2
L2,1/2(T ) ≤ sup

T
r‖wi

k‖
2
L2(T ) ≤ Ch4 sup

T
r

3∑

j=1

|ui
k|

2
H2(Si

Qj
)

≤ Ch4 sup
T
r(inf

T
r)−1

3∑

j=1

|ui
k|

2
H2

1/2
(Si

Qj
) ≤ Ch4

3∑

j=1

|ui
k|

2
H2

1/2
(Si

Qj
),

‖∇wi
k‖

2
L2,1/2(T ) ≤ sup

T
r|wi

k|
2
H1(T ) ≤ Ch2 sup

T
r

3∑

j=1

|ui
k|

2
H2(Si

Qj
) ≤ Ch2

3∑

j=1

|ui
k|

2
H2

1/2
(Si

Qj
).

Therefore, the estimate

‖wi
k‖

2
L2,1/2(F ) ≤ Ch3

3∑

j=1

|ui
k|

2
H2

1/2
(Si

Qj
)

holds, where F ∈ E i
h (i = 1 or i = 2) is a side of T ⊂ Si

Qj
.

Now, after discussing these three cases, we additionally need the following estimates
(cf. [17], Lemma 7.2 and relations (7.26), (7.27)):

‖ui
k‖L2,−1/2(B) ≤ Ch|ui

k|
2
H1

−1/2
(Bli(h))

(74)
|ui

k|H1
1/2

(B) ≤ Ch|ui
k|

2
H1

−1/2
(Bli(h))

, B ∈ {B0
h,i, Bh,i}, i = 1, 2,

where Bli(h) := {(r, z) ∈ Ωa : 0 < r < li(h)}, li(h) = supBh,i
r.

Now, summing up the estimates for all F ∈ E i
h (i = 1, 2) and using h−1

F ≤ Ch−1 as well as
inequalities (74), we arrive at

2∑

i=1

Si
4 ≤ Ch2

2∑

i=1

{
|ui

k|
2
H1

−1/2
(Ωi

a) + |ui
k|

2
H2

1/2
(Ωi

a)

}
= Ch2

{
|uk|

2
H1

−1/2
(Ωa) + |uk|

2
H2

1/2
(Ωa)

}
. (75)

The estimate of Si
3 (i = 1, 2) can be performed by analogy to that of Si

4 given above, and
we obtain

2∑

i=1

Si
3 ≤ Ch2

2∑

i=1

{
|ui

k|
2
H1

−1/2
(Ωi

a) + |ui
k|

2
H2

1/2
(Ωi

a)

}
= Ch2

{
|uk|

2
H1

−1/2
(Ωa) + |uk|

2
H2

1/2
(Ωa)

}
. (76)
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Collecting the inequalities (66)-(68), (75), and (76) completes the proof.

Now it remains to state an estimate for the error u−uhN , where u is the solution of (8) and
uhN the approximate solution defined by (22). For this purpose we introduce a suitable
norm in 3D:

‖v‖2
1,h,Ω :=

2∑

j=1

|vj|2X1
1/2

(Ωj) +
∑

E∈Eh

h−1
E ‖v1 − v2‖2

X0
1/2

(E×(−π,π]), (77)

where | · |X1
1/2

(Ωj), with Ωj := Ωj
a × (−π, π] (j = 1, 2), is defined by analogy to | · |X1

1/2
(Ω)

at (2), and the norm ‖ · ‖X0
1/2

(E×(−π,π]) is determined by the completeness relation

‖v‖2
X0

1/2
(E×(−π,π]) := 2π

∑

k∈Z

‖vk‖
2
L2,1/2(E). (78)

It should be noted that we have in general uhN 6∈ X1
1/2(Ω), but only uhN ∈ X1

1/2(Ω
j),

j = 1, 2.

The final result of this paper is given in the next theorem.

Theorem 5 Let u be the solution of the BVP (8) and uhN its approximation given by (21),
(22). Then the following error estimate holds,

‖u− uhN‖1,h,Ω ≤ C(h+N−1)‖f‖X0
1/2

(Ω). (79)

Clearly, relation (79) states also the convergence uhN → u as h→ 0, N → ∞. In particular,
h and N can be chosen independently from each other.

Proof: By means of the auxiliary function uN = (u1
N , u

2
N) defined by

u
j
N =

∑

|k|≤N

u
j
k(r, z) e

ikϕ j = 1, 2, (80)

we easily get

‖u− uhN‖1,h,Ω ≤ ‖u− uN‖1,h,Ω + ‖uN − uhN‖1,h,Ω =: S1 + S2, (81)

where S1 and S2 denote the corresponding norm terms. We shall now find estimates of S1

and S2 in terms of powers of h and N . According to (77) we have

S2
1 =

2∑

j=1

|uj − u
j
N |

2
X1

1/2
(Ωj) +

∑

E∈Eh

h−1
E ‖u1 − u1

N − (u2 − u2
N)‖2

X0
1/2

(E×(−π,π]). (82)

The first term on the right-hand side of (82) is equal to |u−uN |2
X1

1/2
(Ω)

since uk ∈ H1
1/2(Ωa)

(k ∈ Z) and, therefore, u− uN ∈ X1
1/2(Ω) holds. Further we have the estimate

|u− uN |
2
X1

1/2
(Ω) ≤ N−2‖u‖2

X2
1/2

(Ω) (83)

(for the proof we refer to [17, Proof of Theorem 8.1]). The second term on the right-hand
side of (82) vanishes. This is clear by u1|E×(−π,π] = u2|E×(−π,π]; the same holds for u1

N , u2
N .
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This, together with (82) and (83) as well as with the estimate ‖u‖X2
1/2

(Ω) ≤ C‖f‖X0
1/2

(Ω)

yields

S1 ≤ CN−1‖f‖X0
1/2

(Ω). (84)

Applying completeness relations (cf. [12, Lemma 3.2] and (78)) we obtain for S2 the relation

S2
2 =

2∑

j=1

|uj
N − u

j
hN |

2
X1

1/2
(Ωj) +

∑

E∈Eh

h−1
E ‖u1

N − u1
hN − (u2

N − u2
hN)‖2

X0
1/2

(E×(−π,π])

= 2π
2∑

j=1

∑

|k|≤N

{
‖∇(uj

k − u
j
kh)‖

2
L2,1/2(Ωj

a)
+ k2‖uj

k − u
j
kh‖

2
L2,−1/2(Ωj

a)

}
(85)

+ 2π
∑

E∈Eh

h−1
E

{ ∑

|k|≤N

‖u1
k − u1

kh − (u2
k − u2

kh)‖
2
L2,1/2(E)

}
.

Changing the sequence of summation and employing (31) as well as (38) we are led to

S2
2 = 2π

∑

|k|≤N

‖uk − ukh‖
2
1,h,k ≤ C

{∑

|k|≤1

‖uk − Πhuk‖
2
h,k,Ωa

+
∑

2≤|k|≤N

‖uk − Phuk‖
2
h,k,Ωa

}
.

At the right-hand side of this estimate, we may apply Theorems 3 and 4 and get

S2
2 ≤ Ch2

{ ∑

|k|≤N

‖uk‖
2
H2

1/2
(Ωa) +

∑

2≤|k|≤N

k2‖uk‖
2
H1

−1/2
(Ωa)

}
.

By means of completeness relations (see [12, Lemma 3.2]), the terms on the right-hand
side of this inequality can be bounded by ‖u‖2

X2
1/2

(Ω)
. This yields

S2 ≤ Ch‖u‖X2
1/2

(Ω) ≤ Ch‖f‖X0
1/2

(Ω). (86)

The assertion of Theorem 5 is a consequence of (81), (84), (86).

6 Numerical example

For verifying the convergence rate of the Fourier-finite-element method with Nitsche mor-
taring, we consider some BVP of type (6), (7). The meridian domain Ωa which generates Ω̂,
is a rectangle with two subdomains Ω1

a = (0, 1)×(1, 2) and Ω2
a = (0, 1)×(0, 1), cf. also Fig-

ure 6. The right-hand is chosen such that the solution of the BVP (7) is

u(r, ϕ, z) =

128∑

k=1

uk(r, z) sin kϕ, with uk(r, z) = k−
5
2 (r

5
2 − r

3
2 )(z2 − 2z). (87)

We easily check that u = 0|Γa×(−π,π] and u ∈ X2
1/2(Ω) holds.
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Figure 6

For the experiments, the initial mesh shown in Fig-
ure 6 is used. This mesh is refined globally by divid-
ing each triangle into four equal triangles such that
the mesh parameters form a sequence {h1, h2, . . .}
given by hi+1 = 0.5 hi, here with six levels. The ra-
tio of the number of mesh segments on the mortar
interface is given by 2 : 3. The mortar parame-
ters (cf. Section 3) are chosen as follows: α1 = 1,
α2 = 0, and γ = 4. The trace E1

h of the triangu-
lation T 1

h of Ω1
a on the interface Γ is taken to form

the partition Eh. Furthermore, for the discretization
with respect to N (the number of Fourier modes for
the approximate solution), we employ five levels Ni,
where N1 = 4 and Ni+1 = 2Ni for i = 1, 2, 3, 4
holds.

For the approximate measuring of the convergence rate stated in (79), the hypothesis for
the tests is

‖u− uhN‖1,h,Ω ≈ C1h
α + C2N

−β , (88)

with u from (87) and uhN as its approximate solution according to (22). The parameters C1

and C2 are assumed to be approximately constant for two consecutive levels of h and N .

First we investigate the convergence order with respect to the discretization parameter h.
Table 1 shows the approximation error norms etotal and eh as well as the observed values
αobs of the convergence order α on the levels h1, . . . , h6, all with N = 64. Here, etotal
denotes the norm of the total error, that is ‖u − uhN‖1,h,Ω =: etotal, and eh is the norm
of the error with respect to h (for fixed N = 64). The latter is used to compute the
values αobs. We can state that the obtained values of the convergence order are very close
to the theoretically expected value αexp = 1 (cf. Theorem 5).

level etotal eh αobs

h1 1.97376e-1 1.97351e-1 –

h2 9.96031e-2 9.95527e-2 0.987

h3 4.96306e-2 4.95293e-2 1.007

h4 2.48453e-2 2.46422e-2 1.007

h5 1.26857e-2 1.22833e-2 1.004

h6 6.90228e-3 6.13132e-3 1.002

Table 1: Error norms and convergence orders for h = h1, . . . h6 and N = 64

In order to observe the convergence order with respect to N , some computations on the
mesh with the mesh parameter h5 and N varying from N1 to N5 are carried out. The
norms etotal and eN as well as the observed values βobs of the convergence order β are
represented in Table 2 (eN : the error norm with respect to N for fixed h = h5). The
convergence orders βobs are computed by means of eN . According to Theorem 5, the
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level etotal eN βobs

N1 5.62542e-2 5.48976e-2 –

N2 3.06833e-2 2.81175e-2 0.965

N3 1.88183e-2 1.42566e-2 0.980

N4 1.41588e-2 7.04220e-3 1.018

N5 1.26857e-2 3.16992e-3 1.152

Table 2: Error norms and convergence orders for h = h5 and N = N1, . . . ,N5

expected convergence order is βexp = 1, and the observed rates are approximately equal
to βexp.
This numerical example illustrates that the Fourier-finite-element method with Nitsche
mortaring is a suitable approach for the numerical treatment of the Poisson equation
in three-dimensional axisymmetric domains where the exact solution is supposed to be
regular, i.e. u ∈ X2

1/2(Ω).
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