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1 Introduction

Over the last decades, adaptive solution strategies have become an accepted and more
or less standard technique for solving partial differential equations via the finite element
method. The main idea of all adaptive strategies is to start the computation with a low-
dimensional approximation of the solution arising from a coarse grid on the computational
domain in conjunction with low local approximation orders. Thereafter, in order to improve
the accuracy of the approximation, an error indicator is employed to obtain information
about the error distribution. Based on this error distribution, a suitable enlargement of the
finite element space is chosen and a new approximation of higher accuracy is computed.
The error of the new approximation is estimated and in case the approximation is not
sufficiently accurate a new iteration of the adaptive loop is begun. In the adaptive h-FEM,
the enlargement of the finite element space is simply done by subdividing into smaller
elements all those elements that the error indicator has flagged as being tainted with a
large error. However, in hp-FEM one has the option to split an element or to increase
its approximation order. Thus, a main difficulty in Ap-adaptivity is to decide whether to
perform a p- or an h-refinement for each element whose error is large. The importance
of making the correct decisions is highlighted by the a priori analysis of I. Babuska and
B. Guo (see [4] and the monograph [25] for a survey), where it is shown that for a large
class of problems an exponential rate of convergence can be achieved if the meshes and
polynomial degree distribution is chosen suitably.

Generally speaking, a local p-refinement is the more efficient method on elements where
the solution is smooth. On the other hand, local h-refinement is the strategy suitable for
regions where the solution is not smooth. Starting from this observation, most hp-adaptive
algorithms base the decision on whether to increase the approximation order or to refine
the mesh on an estimate of the local Sobolev regularity. Estimating explicitly the local
Sobolev regularity is the basis of [1, 2, 3], [6], and more recently [17]. The approach of [17]
generalises an idea proposed in [19], namely, to extract the regularity of the solution from
the decay of the Legendre coefficients of the solution u. The work [19, 17] concentrates
on one-dimensional problems and situations where all elements have tensor product struc-
ture (quadrilaterals, hexahedra); we extend this approach to triangulations consisting of
triangles (in 2D) or tetrahedra (in 3D). We justify our procedure in Proposition 4.6 and
Theorem 5.7 by showing that a function is analytic on the closure of a triangle/tetrahedron
if and only if the coefficients of its expansion in orthogonal polynomials decay exponentially.
Since the exact solution is not available, our numerical algorithm tests for exponential de-
cay of the coefficients of the numerical solution by fitting them to an exponential decay
law. The numerical studies of this paper show that an hp-adaptive algorithm based on
testing locally for analyticity in this way works well provided that the initial polynomial
degree is suitably large so that sufficiently many coefficients of the orthogonal expansion
are available.

A more implicit way of gauging the regularity of a solution underlies the algorithms of
[22] and [15]. In these algorithms the solution is assumed to be smooth and it is checked
after a refinement step whether the assumption of smoothness is justified; if so, then a p-



enrichment is called for in the next step, otherwise an h-refinement will be performed. The
algorithm proposed in [22] is studied there for meshes consisting of quadrilaterals only and
mesh refinement is facilitated by hanging nodes. The present work extends this algorithm
to the case of meshes consisting of triangles.

Another adaptive strategy that we study numerically in the present paper is the application
of the “three-fold” algorithm of [14].

We close this introduction by briefly mentioning related ideas for hp-adaptivity. The
approach pursued in [8, 9] consists in formulating hp-adaptivity as an optimization problem
of finding the most efficient combination of h-refinement and p-enrichment. Earlier work
consists of the Texas Three Step of [24, 23] and [7].

2 Model problem and Ap-FEM

For a bounded Lipschitz domain Q € R? and f € L*(Q) we consider the following Dirichlet
problem, given in weak formulation:

Problem 2.1. (model problem) Find v € H(Q) such that

/Vu -VodQ = /fde Vo e Hy(Q). (1)
Q

We will restrict our considerations to y-shape-regular triangulations 7 of {2 consisting of
affine triangles. That is, each element K € 7T is the image Fi(K) of the reference triangle
K, and we have

Wi | Fill o ey + hiell(Fi) ooy <7 VK €T,

where hx denotes the diameter of the element K. In order to define hp-FEM spaces on a
mesh 7, we associate a polynomial degree px € N with each element K € 7 and collect
these pg in the polynomial degree vector p := (px)xer. We furthermore associate with
each edge e of the triangulation a polynomial degree

Pe := min {pk | e is an edge of element K} (2)

and denote by
P(K) := (Pe1, Pez; Pes; P ) (3)

the vector containing the polynomial distribution of the triangle K" € 7 with edges {e; |i=
1,2,3}. Next, we introduce the reference triangle K and the reference square Q by

K:={(z,y)| —1<z,y A z+y <0}, Q= (-1,1) (4)

and point out the following relationship between these reference elements:
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Figure 1: Reference elements K and Q
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Lemma 2.2. (Duffy transformation) The transformation D : R* — R? given by
1
D (n1,m2) = (§1,&) = 5(1+771)(1—772)—17772

maps Q onto K. The inverse transformation D=1 : R? — R? is given by

D (&1,&2) — (m,m2) = <21j§1 _ 1752) i
2

Now we are in the position to define local shape functions on the reference triangle K. To
do so, we proceed as follows:

1. We define a set ® of functions on the reference square Q

2. We transform these functions via D : R? — R? given by Lemma 2.2 to functions on
the reference triangle K.

Definition 2.3 (Local shape functions on the reference triangle). Let the reference
elements K Q be given by (4) and let the transformation D : R?* — R? be given by
Lemma 2.2. Then, for a degree vector p(f() = (paB,Pac,PBC, PK), Where pag,...,PBC
denote the polynomial degrees associated with the edges AB, ..., BC' and px denotes the
polynomial degree associated with the interior of the triangle, we define a set of local shape
functions as follows:

U= oD ' ={poD'pe®’} B=1,...,5

4



with ®F given by:

A =m) A —m) A+m) @ —n) (1+mn)
q)_{ 2 2 72 2 72 }

v {(1_2771)(12771)(1_4”2)21%(_1’1”(771)|¢:1,...,pAB_1},
o — {(1 —2771) (1 —2n2) <1+2”2)P}1’11>(772) =1 pao— 1}’
ot {(1+2n1)(1—2n2) (14;?72)]3](1,11)(7}2) |j:1"“’p30_1}’
P° — {(1—477%) (1—;772) (1_2772)i+]13i(1’11)(UI)PJ'(%frl’l)(TIQ) ij = 17---,pK—1}

and Pi(a’ﬁ)(n) the i-th Jacobi polynomial with respect to the weight (1 —n)*(1+n)°.

The subdivision of the shape functions into 5 different groups in Definition 2.3 follows a
standard pattern in Ap-FEM:

e ®! contains the vertex shape functions, which are the usual linear shape functions,
equal to one in exactly one node and zero in the other nodes.

e The sets ®2, &3, ®* contain the side shape functions, which are zero in all nodes and
vanish on all but one edge.

e The set ®° consists of internal shape functions, which vanish on 9K .
Properties of this set of shape functions are collected in the following lemma.
Lemma 2.4. For B=1,...,5 let ¥ be given by Definition 2.3. Denote by

P,(K) = spanfa’y? |0<i+j <p},  Py(l) = spanfa’ |0 <i < p}
the spaces of all polynomaials of degree p and set

Pp(K)(K) = {¢ S PPK(K) | ¢|ei S ,Ppei(ei)ai =1,.. '73}7

5
Qp(f()(K) = span ¥ = spcm{ U \I'B} ,
B=1
where e;, 1 =1,...,3 denote the edges of K. Then
1. U= U‘j’gzl UB s a set of linear independent functions,

3. Y € ¥ is polynomial.



Proof. Obviously, the functions ¢y € U are independent. Since the shape functions defined
n [18, D.1.1.2] are a subset of ¥, the second claim follows from [18]. Moreover, in [18§]
it is already shown that for B = 1,...,4 all functions 1 € U? are polynomial. Thus, it
remains to show that ¢ o D~! is polynomial for all ¢ € ®°. Applying the transformation
D! to ¢ € P yields:

a0 (=& (1+&) ([1+&) [(1-& -+
er = (359 () (59 (59) -

P'(1,11) (21 +& 1) P.(2i+1,1)(€2).

' 1-6& -
Now, by expanding the polynomials Pi(if) 2z —1) = 22;10 apr® and
Pj(zlfrl’l)(x) = 37774 bpx® we obtain

i—1 1+£ kJj—1
poD = Cpy6+6)(1+8&)(1+6) 1—62“2%( ) > b,

which is polynomial in (&, &). O

Remark 2.5. The vertex and side shape functions introduced in Def. 2.3 coincide with
those proposed by G. Karniadakis and S. Sherwin, [18]. The internal shape functions ®°
differ from those of [18] in that we admit roughly twice as many internal shape functions.
Our reason for using this bigger space is that the shape functions of ®° can be modified so
as to be adapted to the quadrature rule employed. The stiffness matriz can then be set up
in optimal complexity. These ideas have been presented for reference elements with tensor
product structure (squares, hexahedra) in [21] and can be generalised to the present situation
of triangles and tetrahedra, [12]. We emphasise that the additional shape functions are all
internal shape functions that can be eliminated on the element level by static condensation.

Our hp-FEM spaces we define as follows:

Definition 2.6. (FEM spaces) Let T be a mesh consisting of triangles and let p be a
polynomial degree vector. Furthermore, for all edges e let p. be given by (2). Then we set

SP(,T) = {uc HY(Q) |uoFx € Qpui)(K) VYK €T},
Sy T) = SP(Q,T)N Hy(),

with QP(K)(K) defined in Lemma 2.4.
The FE-discretization of Problem 2.1 then reads:
Problem 2.7. (hp-FEM approximation) Find u, € S§(Q,7) such that

/Vu-Vde:/fde VoesSHQT).
Q



3 Error indicator

This section is devoted to the residual-based a-posteriori error estimator used in the Ap-
adaptive algorithms of Section 4 to decide which elements to refine. The error estimator
was developed in [22] and so we refer to [22] for a detailed description.

Definition 3.1 (error estimator). Let K € 7. Then the local error indicator ng,
associated with the element K s given by:

Nk = Mg, + Ny

where the first term TﬁgK 15 the weighted internal residual and the second term 77129;( a
weighted boundary residual. They are given by

2
8u FE

[ on.

2

h3 > he
Nk = p—QK o + AUFE||L2(K) and 7712;;K = Z
K

eCOKNQ p

I

L2(e)

where fx denotes the L*(K)-projection of f on the space of polynomials of degree pgx — 1
and [auFE] the jump of the normal derivative of upg across the edge e. Finally, the global
error indicator is given by

=D i

KeT

The following theorem collects the most important properties of the error indicator n:

Theorem 3.2. Let € > 0. Then there exist Cy,Cy > 0 independent of h and p such that

h2
|lu— UJFE”%TI(Q) <G Z 77%( + _QKHf - pr”%Q(K)v
KeT Pk

€ eh'
i < Cao(e)py’™ (pK|!U—UFEH12H1(wK + PR ) 1 fpse — fH%Q(wK))'

3.1 Performance of the error indicator

In this subsection we present some numerical results to demonstrate the performance of
the error indicator given by Definition 3.1. We introduce three examples:

Example 3.3. We consider the model problem (1) on Qs = (0,1)? together with a right
hand side f chosen in such a way that the exact analytic solution is given by

u=a(l - 2)y(1—y)(1 - 2y)e 3,

Example 3.4. We consider the model problem (1) on Qr = (0,1)?\([0,1] x[~1,0]) together
with a right-hand side f chosen in such a way that the evact solution v € H>37¢(Qy) ,
e >0, is given by

u =73 sin <§<p) (1 — 7? cos® <p) (1 — r?sin® <p) .



Example 3.5. ForQ) = (—1,1)x(0,1), 'y ={(z,y) € Q |z > 04,y =0}, 'p = 0O\I'y
and

1 . —at? —bt? —ct—d : t< —0.8
v x <0
gn(T,y) = 0. s> 9IO= 1 : |t|<08
o= at> —bt2 +ct—d : t>0.8

with (a,b,c,d) = (250,675,600,175), we consider the problem: Find u € V = {u €
HY(Q) | ulr, = 0} such that

/Vu-Vde:/fde+/gnvd1" Vo€ Hy(9Q),
Q

'y
where f is chosen in such a way that the exact solution u € H3?7¢(Q), € > 0, is given by

u(r, ¢) = g(rcos ¢)g(rsin ¢)r/? cos (%) :

For a fixed polynomial degree p the error indicator n reduces to a standard h-FEM error
indicator and therefore we are mainly interested in the p-dependence of 1. In order to
examine the p-dependence of 7, we consider a pure p-FEM on a mesh consisting of 4
triangles in the case of Example 3.3, a mesh consisting of 12 triangles in the case of
Example 3.4, and the mesh shown in Fig. 3 for Example 3.5. The important property of
the mesh for Example 3.5 is that, in contrast to Example 3.4, the singularity is not at
a mesh point. The results of our computation are plotted in Figures 2 and 3. All plots
show the global error measured in the H'-norm and the error predicted by n. As we can
see, in each example the true error is overestimated by 1 and especially in Example 3.4
we observe that as the polynomial degree p increases, the true error decays much faster
then the error indicator n predicts. Note, however, that Theorem 3.2 is suboptimal in
the efficiency estimate so that n is allowed to overestimate the error. The situation of
Example 3.4 is special: The solution is in some Sobolev space H*(Q), (here: k =5/3 —¢),
but the singularity is located at a mesh point; it is known from approximation theory
that singularity functions of the type considered here can be approximated in the H'-
norm by polynomials of degree p with an error O(p~2*~1): this convergence is faster than
the O(p~*~Y) behaviour achievable for generic functions in H*, [5], [25, Sec. 3.3.5]. In
Example 3.5, the singularity is not located at a mesh point. We observe in Fig. 3 and from
the effectivity indices in Table 1 that in this situation the indicator 7 captures the true
error accurately.
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Table 1: effectivity index n/||u — urg| g (@

plEx 1 Ex 2 Ex. 3| p|Ex 1 Ex 2 Ex 3
1] 522 385 15.61 |11 10.02 5.09 2.16
2| 4.08 4.64 1560 |12 |10.27 547 2.18
3| 683 267 38313 |10.77 585 2.16
41 6.24 264 22814 11.02 6.24 217
51 731 294 224 |15| 1147 6.62 2.16
6| 762 329 22116/ 11.62 7.02 2.17
7| 826 3.63 218 |17 | 1195 741 2.16
8] 866 399 219 |18 — 7.81 217
91 919 435 21719 — 821 216
10| 949 472 218 |20 — 861 217

4 hp-adaptive strategies

In this section we investigate and compare different hp-adaptive strategies. For each of
these strategies we use the error indicator n* := 3 - .7 % defined in Section 3 to determine
which elements should be refined. Since the main difference between these strategies is the
way how to decide whether to perform an h- or a p- refinement, we can formulate the
following common basic hp-adaptive algorithm:

Algorithm 4.1. (basic hp-adaptive algorithm)

o Input: An admissible mesh T together with a polynomial degree distribution p :=
(pr)ker and the corresponding finite element solution urrp € S§(Q,T).

o Output: The refined mesh T,oy together with the polynomial degree distribution p =
(P ) ket -

e Algorithm:

1. Calculate the error indicator n? for all K € T.

2. Determine Ty ey C T containing all K € T selected for h-refinement.
3. Determine T, ,.y C T containing all K € T selected for p-refinement.
4

. Compute a preliminary version of the refined mesh T,.; by subdividing all K €
Th_rep into four congruent sons (red refinement).

5. Determine the refined mesh T,.; by eliminating hanging nodes.

6. Increase the polynomial degree px := prx + 1 for all elements K € Tocf N7y ey
(Otherwise, if an h-step is applied inherit the polynomial degree px from the
father element to the sons and leave it as it is if no refinement is applied.)

10



Algorithm 4.2. (elimination of hanging nodes) The elimination of hanging nodes is
done as follows:

1. While there exists an element K € T, oy with more than one hanging node subdivide
this element into four congruent sons (red refinement).

2. Subdivide all elements K € Ty, .y with one hanging node into two sons (green refine-
ment).

Remark 4.3. Since green refinement divides an interior angles of the father element into
two angles of about half the size of the original angle, repeated use of green refinement
may lead to a degeneration of the mesh. In order to avoid such a degeneration, we forbid
further refinement of triangles resulting from a green refinement. Instead of subdividing
a so called green triangle, we undo the green refinement and perform a red subdivision of
the father element before further refinement may occur. (For further information about
adaptive mesh refinement strategies see [13] and the references therein.)

Now, having presented the basic algorithm, we consider different strategies for determining
Th_ref, the set of all triangles selected for h-refinement, and 7, ,.f, the set of all triangles
selected for p-refinement.

4.1 Strategy I - Comparison of estimated and predicted error

The first strategy we consider is the strategy proposed in [22]. The decision which elements
should be refined is based on a mean value strategy and to determine whether an h-
refinement or a p-refinement is the proper one, we compare the current estimated error
with the error predicted from a previous refinement step. Summarized this reads as follows:

Algorithm 4.4. For parameters o, vy, v, and vy, do:

1. Compute the mean error

ﬁ2=%27ﬁ<-

KeT

2. Determine
Tprer = {K €T | ng = ol Ay < (nﬁ’?ed>2} :
Thre = {K €T | g > o A > (nf?ed>2} :
For the predicted error of the initial triangulation we set

Y

pred 0 if we prefer h-refinement for the first refinement step
Tk =\ oo if we prefer p-refinement for the first refinement step

and after each adaptive refinement step, that is after finishing point 6 of the basic adaptive
algorithm, we update the error prediction via the following algorithm:

11



Algorithm 4.5 (error prediction). For all K € T do
o [f K is h-refined, then for all Ky = son of K set

2 2 1 (1\2rx C
Te e n 5 th d bd
(771;(5 d) = <np d) ' { 1 (2) in the case of red subdivision G

K 5 in the case of green subdivision

o [f K is p-refined, then
pred 2 pred 2
(77}( ) =% (77}( ) . (6)

e [f no refinement is done, then

2 2
() o= (1)

(See Subsection 4.4 for a proper choice of o, v, 7, and 7,,)

For the computation of 7% “* we followed the lines of [22] in the event of a red subdivision
or a p-refinement. In the event of green refinement we observe the triangle K is subdivided
into two triangles without significantly reducing the edge length or the diameter. Thus, we
don’t expect a considerable error reduction and merely assign half the error of K to each of
its sons. The motivation for the decision between h- and p-refinement is the following: The
predictions (5) and (6) assume maximal smoothness of the solution; in fact the prediction
(6) assumes analyticity of the solution so that the error can decay exponentially. If the
estimated error is smaller than the predicted error, then we perform p-refinement since the
assumption of smoothness appears to be correct. Otherwise, if the estimated error is larger
than the predicted error, we perform h-refinement since our assumption of smoothness does
not appear to be correct.

4.2 Strategy II - Decay of Legendre expansion coefficients

The second second strategy we consider is to determine whether the solution is locally
smooth or not by a expansion in orthogonal polynomials of the finite element solution.
This idea was first discussed in [19] (see also [17]). The theoretical basis for the case of
triangular elements is the following result:

Proposition 4.6. Define on the reference triangle K the L*(K)-orthogonal basis Ypg, D,
q € No by
~ 1 L7 (0,0) 1—m\" (2p+1,0)
Vpg = Upg 0 D with 1pg = P77 (m) 2 Fa (n2).

where P,ga’ﬁ) (1) denotes the p-th Jacobi polynomial with respect to the weight (1 —n)*(1+n)”?
and D the transformation of Lemma 2.2. Let u € L*(K) written as u = > p.qeno UpaVpg-

Then u is analytic on K if and only if there exist constants C, b > 0 such that |uy,| <
Ce=t®+9) for all p, ¢ € N,.

12



Proof. Combine [20, Prop. 3.2.14] and [20, Lemma 3.2.15]. O

We will present the extension of Proposition 4.6 to tetrahedra below in Theorem 5.7. The
main idea of an Ap-algorithm that is based on estimating the decay of the coefficients
is to check whether the expansion coefficients u,, of (upg|x) 0 Fx = ZM UpgWpg decay
sufficiently fast. If so, then an exponential convergence in p can be expected and a p-
refinement is indicated. Otherwise, an h-refinement is called for. Since the exact solution
u|x is not available, we will consider the expansion of the finite element approximation.
This leads to:

Algorithm 4.7. For parameters o and 6 do:
1. Compute the mean error

ﬁ2=%27ﬁ<-

KeT
2. For all elements K € T with n3% > on? compute the expansion coefficients
Uijik = Hi/fz‘jHZQQ(K) (urp|x © F;}I,Q/sz)Lg(K), 0<i+j<pxk
and estimate the decay coefficient b by a least-squares fit of
In|uij.x| ~ Cx — br (i + j).

3. Determine
Tyrey = {K €T |ng >0 Nog > 5},
Threy = {K €T |ny>o0n ANbxg <5}

4.3 Strategy III - Three fold algorithm

The third strategy we consider goes back to an idea proposed in [14] for the treatment of
hypersingular and weakly singular integral equations via boundary element method. In
contrast to the previous strategies, the decision which elements should be refined is no
longer based on a mean value strategy. Instead, the crucial value for refinement is the
maximum occurring error. The main idea of the algorithm is quite simple: If the error
indicator nx predicts a small error for K € 7 (with respect to the maximum occurring er-
ror), we do nothing. For elements with medium predicted error we perform a p-enrichment
and those elements with a large predicted error become h-refined. Thus, the algorithm
reads as follows:

Algorithm 4.8. For parameters §, 0o with 0 < §; < d3 < 1 do:
1. Compute the maximum error
Mg = WAX T
2. Determine
Tpres = {AK €T | 0iae < i < 0allas}
Thre = {K €T | N > 0aMnas}-

13



4.4 Collection of numerical results

In this section the performance of each adaptive hp-strategy from above is testest for two
very different problems. The first example we consider is Example 3.3. Since we have
an analytic solution, the optimal strategy is a pure p-method on a suitable mesh, which
features an exponential convergence in the polynomial degree p. We therefore expect a
successful hp-algorithm to perform only a few h-refinements at the beginning and then
turn into a pure p-method in later iterations. Anticipating an exponential convergence in
p we plot the error versus v DOF. The second example we consider is Example 3.4, the
classical L-shaped domain. In this case we have a singularity at the origin and so we expect
a strong mesh refinement towards this reentrant corner in conjunction with p-refinement
for the rest of the domain. For this example, the best known hp-strategy yields an error
bound of

L
(see, e.g., [25]); for this example, therefore, we plot the error versus (DOF)Y/2. All computa-
tions are performed with the hp-FEM code ADURACON!. We now consider the strategies

in detail:

e Strategy I: For our computations we choose: o = 0.75, v, = 0.7, 7, = 4.0 and
Vn = 1.0 together with nzged = 0 for all K € 7. The corresponding results are
shown in Tables 2, 3 and Figures 4-6, 13, 16, 19. As we observe, Strategy I performs
well in both cases. In the case of Example 3.3 we obtain the expected p-method
after a few mesh refinement steps; Example 3.4 features a strong mesh refinement
towards the singularity at the reentrant corner and p-refinement in the remainder of
the domain where the solution is smooth. In comparison to the other strategies, we
obtain a slightly increased number of h-refinements and relatively large polynomial
degree of px € {4;5} for the elements at the reentrant corner. A possible reason
for the increasing number of h-refinements in Table 2 at higher iteration levels could
be limitations of computational accuracy. In such a case the error does not decrease
further and consequently the algorithm always suggests h-refinement.

e Strategy II: The computations are based on: o = 0.75, § = 1.0. Moreover, in order
to obtain a sufficing number of Legendre expansion coefficients, which is necessary
to achieve a good estimation for the decay coefficient b, we start with an initial
polynomial degree distribution px = 3 for all K € 7. As we can see (Table 4, Figure 7
and following), for both cases, Example 3.3 and Example 3.4, the algorithm performs
well. In Example 3.3 the error appears to have reached the limit of computational
accuracy after 18 iterations.

e Strategy III: For our computations we choose: §; = 0.07, §, = 0.7. We observe that
in the case of Example 3.4 the algorithm performs well but it performs a considerable
number of h-refinements for the analytic solution on the unit square. However, this

Lsee [11]
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“failure” is predictable: If we consider Algorithm 4.8, we observe that the algorithm
is not designed for problems whose solution is smooth on the whole domain. In fact, it
is impossible to achieve pure p-enrichment since for nearly uniform error distributions
the algorithm opts for a pure h-refinement. This happened, for example, in Level 13.

Remark 4.9. Throughout all of our computations we observed that the majority of the
wrong decisions concerning h- or p- refinement, in particular an increasing of the poly-
nomial degree in regions where the solution is not smooth, occur in the initial steps of
the iteration. Wrong decisions in later stages are rather an exception. (See the mesh
and polynomial degree distribution near the reentrant corner of the L-shaped domain.) We
therefore expect an improvement by combining the strategies above with a proper coarsening
algorithm that corrects excessive p-refinement in regions where the solution is not smooth.
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Figure 4: Strategy I - L-shaped domain - Iteration levels 0, 15, and 25
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Figure 5: Zoom near reentrant corner: Iteration level 15 (magnification factor 22 ) - Itera-
tion level 25 (magnification factor 219)
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Table 2: Strategy I - L-shaped domain - Number of elements, maximum polynomial degree,
h- and p-refinements per level

Level #T Pmazx href Dref Level #T Pmaz href Dref
0 12 1 12 0 13 238 ) 14 10
1 40 1 8 26 14 262 6 14 20
2 48 2 8 14 15 286 6 22 36
3 60 3 0 26 16 | 318 7 14 32
4 60 3 0 20 17 | 342 7 14 28
S 60 4 6 16 18 | 366 7 14 34
6 70 D 14 12 19 390 8 42 42
7 94 D 14 8 20 | 442 8 34 50
8 118 ) 14 12 21 490 9 32 50
9 142 5) 14 20 22 536 10 18 54
10 166 d 14 10 23 | 568 10 26 78
11 190 5) 14 14 24 612 10 26 80
12 | 214 ) 14 8 25 | 656 10 36 82

Table 3: Strategy I - unit square - Number of elements, maximum polynomial degree, h-
and p-refinements per level

Level #T Pmax href DPref Level #T Pmaz href DPref
0 16 1 12 0 11 104 6 0 33
1 40 1 12 14 12 104 6 0 35
2 52 2 12 12 13 104 7 0 32
3 64 2 16 23 14 104 8 0 41
4 92 3 8 37 15 104 9 0 37
5) 104 3 0 50 16 104 9 0 49
6 104 4 0 36 17 104 9 0 49
7 104 4 0 34 18 104 10 0 37
8 104 ) 0 44 19 104 11 0 36
9 104 5) 0 42 20 104 12 0 42
10 104 6 0 46
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Figure 7: Strategy II - L-shaped domain - Iteration levels 0, 15, and 25
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Figure 8: Zoom near reentrant corner - Iteration level 15 (magnification factor 2'! ) -
Iteration level 25 (magnification factor 2%!)
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Table 4: Strategy II - L-shaped domain - Number of elements, maximum polynomial
degree, h- and p-refinements per level

Level #T Pmazx href Dref Level #T Pmaz href Dref
0 12 3 10 0 13 | 292 6 16 20
1 30 3 10 4 14 | 316 6 16 28
2 40 4 14 2 15 340 7 16 44
3 o8 4 12 0 16 | 364 7 16 42
4 76 4 16 0 17 | 388 8 16 48
S 100 4 16 0 18 | 412 8 16 48
6 124 4 16 0 19 | 436 8 16 68
7 148 4 16 14 20 | 460 9 16 68
8 172 4 16 20 21 484 9 16 76
9 196 4 16 10 22 208 9 16 80
10 | 220 d 16 6 23 | 532 9 16 100
11 244 5) 16 2 24 | 556 10 16 92
12 268 ) 16 14 25 580 11 16 112

Table 5: Strategy II - unit square - Number of elements, maximum polynomial degree, h-
and p-refinements per level

Level #T Pmaz href DPref Level #T Pmazx href DPref
0 16 3 0 4 11 80 9 16 33
1 16 4 8 4 12 104 9 0 28
2 32 4 0 8 13 104 10 0 34
3 32 ) 0 16 14 104 10 0 42
4 32 6 12 4 15 104 11 0 34
S o6 6 0 16 16 104 11 0 26
6 o6 6 0 12 17 104 12 0 24
7 o6 7 0 34 18 104 13 0 43
8 26 8 16 9 19 104 13 0 44
9 80 8 0 28 20 104 13 0 47

10 80 9 0 24
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Figure 10: Strategy III - L-shaped domain - Iteration levels 0, 15, and 25
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Figure 11: Zoom near reentrant corner - Iteration level 15 (magnification factor 2% ) -
Iteration level 25 (magnification factor 2'9)
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Table 6: Strategy III - L-shaped domain - Number of elements, maximum polynomial
degree, h- and p-refinements per level

Level #T Pmax href Pref Level #T Pmax href Pref
0 12 1 6 2 13 | 262 6 14 32
1 26 2 8 18 14 | 286 6 14 36
2 34 2 12 10 15 310 6 14 28
3 52 3 16 18 16 | 334 6 14 46
4 68 4 28 14 17 | 358 6 14 40
3 112 4 6 42 18 | 382 7 14 44
6 118 3 12 10 19 | 406 7 14 48
7 136 d 6 2 20 | 430 8 14 40
8 142 D 14 8 21 454 8 14 56
9 166 3 14 18 22 | 478 8 14 82
10 | 190 3 14 22 23 | 502 8 14 66
11 214 d 14 32 24 | 526 8 14 82
12| 238 d 14 34 25 | 550 9 14 96

Table 7: Strategy III - unit square - Number of elements, maximum polynomial degree, h-

and p-refinements per level

Level #T Pmazx href DPref Level #T Pmaz href Dref
0 16 1 8 0 11 512 6 144 115
1 28 1 12 12 12 768 7 48 135
2 40 2 12 20 13 832 7 500 92
3 64 3 44 12 14 1868 7 20 8
4 132 3 68 44 15 | 1888 7 68 951
) 240 3 64 104 16 | 1972 7 16 152
6 340 4 56 104 17 12000 7 164 182
7 408 4 28 48 18 12208 7 40 40
8 444 4 16 36 19 2248 7 204 258
9 460 4 16 202 20 | 2564 8 16 495
10 | 476 ) 24 132
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Figure 13: Strategy I - Performance of hp-adaptive algorithm
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Figure 14: Strategy II - Performance of hp-adaptive algorithm
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Figure 15: Strategy III - Performance of hp-adaptive algorithm
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Figure 16: Strategy I - L-shaped domain - Polynomial degree distribution along the line
from (0,0) to (-1/2,1) - Iteration levels 15 and 25
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Figure 17: Strategy II - L-shaped domain - Polynomial degree distribution along the line
from (0,0) to (-1/2,1) - Iteration levels 15 and 25
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Figure 18: Strategy III - L-shaped domain - Polynomial degree distribution along the line
from (0,0) to (-1/2,1) - Iteration levels 15 and 25
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5 Analytic functions on tetrahedra

The hp-adaptive strategies of Section 4 can be applied to three-dimensional problems. In
this section, we present the theoretical underpinning for the extension to 3D of Strategy
IT, which relies on estimating the decay of the coefficients when expanding a function in
orthogonal polynomials. The main result of the present section is Theorem 5.7, which is
the three-dimensional analog of Proposition 4.6.

We start with the introduction of some reference elements and transformations:

Definition 5.1 (reference elements). Let the reference triangle T2, the reference tetra-
hedron T3 and the i-dimensional reference cube Q° be given by:

T = {(z,y)| —1<zy A z+y<0},
T3 {(z,y,2) | —1<z,y,2 N z+y+2z<—1},

Definition 5.2 (transformations). Let the transformations Dy, D3 be given by:

Do+ (mom) = (G4m0 =) = 1)

Do s (o) = (4000 = m)(1 =) = 130+ w0 =) = L)

Lemma 5.3 (inverse transformations). Let the transformations D, D3 be given by
Definition 5.2. Then the inverse maps are:

;' = <§1,§2)H(21f2—1,§2),

1+& 1+§2_1§3>.

1,2

e e

The following lemma shows an important relationship between the reference elements 7
and Q.

Lemma 5.4. Fori = 2,3 let the reference elements T*, Q' and the transformations D; be
gwen by Definition 5.1, Definition 5.2. Then we have

T =D;(Q), i=23. (7)
Proof. Direct calculation. O
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5.1 Orthogonal polynomials on tetrahedra

Similar to the case of the triangle in two dimensions, we introduce the set (¢pg)p q.ren, Of
polynomials that are orthogonal on the reference tetrahedron.

Definition 5.5 (orthogonal polynomials on the tetrahedron). Let D3 be given by
Definition 5.1 and denote by pe? (n) the n-th Jacobi polynomial with respect to the weight
(1 —n)*(1+n)P. Then, for p,q,7 € Ny, we define

Ypgr = Ypgr © D:;la

where ,lvz)pqr (77) = ,lvz)pqr (7717 M2, 773) is given by

B 1_772 D 1_n3 pt+q
) = FLOD ) P10 v 0520 (L5 ) (A5 ) 0

The following lemma shows that the functions 1), are L*-orthogonal polynomials on the
reference tetrahedron 73.

Lemma 5.6. Let the reference tetrahedron T3 be given by Definition 5.1. Then the func-
tions Vg defined in Definition 5.5 satisfy Vpgr € Ppigrr(T3) and they are orthogonal on
T3 with respect to the usual L*(T?) inner product. We have

2 2 2
2p+1)(2p+2¢+2)(2r+2p+2q+3)

(Vpgr ¢p’q’r’)L2(T3) - Op/pOq’qOrr-

Proof. See [18] together with [20] where a two dimensional version of this Lemma is proved.
O

5.2 Orthogonal polynomials and analytic functions

The following theorem characterizes functions that analytic in a neighbourhood of a tetra-
hedron:

Theorem 5.7. Let the reference element T and the polynomials 1y, be given by Defini-
tion 5.1 and Definition 5.5. Let the function u € L*(T?) be written as

U= Z UpgrUpqr-

p,q4,7€No
Then u is analytic on T if and only if there exist constants C,b > 0 such that
[Upgr| < ClebPFatr) Vp,q,r € Np. (8)
Before proving this result, we need to introduce some notation:
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Definition 5.8. In the complex plane, for p > 1, we introduce the ellipse &, given by:
E={z€C|lz+1+]z=1<p+p'}.

Remark 5.9. A calculation shows that

12
dist(9E,, 1) = (p2 Di
p

Lemma 5.10. For o, § > —1 denote by Pq(a’ﬁ) (n) the g-th Jacobi polynomial with respect
to the weight (1 —n)*(1+n)°. Then, for each q € Ny, the function

~ 1 P(avﬁ) t
w Qf}a’ﬁ)(w) = / (1—1)*(1+¢t)P~L—2 ( )dt
-1 w—1
is holomorphic on C\[—1,1] and for p > 1 we have
~ 2m
0,0 —(g+1
@] < e e,
~ 2a+2 +_2
(a,0) } < q —(g+1) 0E,.
Proof. [20, Lemma 3.2.10, Corollary 3.2.11] O

Proof of Theorem 5.7.  First, we assume (8) and show that »_ -\ pgriper Tepresents
an analytic function. To that end, we chose p > 1 so small that Inp < b/2 and set

Uy = Z UpgrVpgr k=0,1,...,.

p+q+r<k

Lemma 5.14 ensures the existence of an open complex neighborhood 7" of T’ such that

[Wpgr | poe 7y < e(b/2)(pt+a+r)

In combination with (8) we obtain that the sequence (uy)32,, converges uniformly on 7"
Since all the functions uy, are analytic on 7”7, the limit function u is analytic on 7" (see,
e.g., [16, Cor. 2.2.4]).

We now turn to the second part of the theorem, where we show that analyticity of v on a
neighborhood of the closure of the reference tetrahedron 7°. Since the polynomials 1,
are L*(7T3)-orthogonal, we compute

(Vpgrs ) 2 (T3) 1 /
Upgr = = u ’QZ) " dQ
" prqr”%%TS) prqTH%?(T% "

T3

We need to show the existence of C', b > 0 such that

< Qe blotatr) (9)

(Vpgr u>L2(T3)
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Denoting by U, the function defined in Lemma 5.13, the transformation of 72 to the cube

Q3 via Dy yields
1 ) ) ) 1 _ ng (p+q+2)
= / PP () (T) Upq(n3)dns| -
-1

(Vpgr U)L2(T3)

Lemma 5.13 asserts that U, is holomorphic on &, for some p > 1 and has a zero of
multiplicity p + ¢ at n3 = 1. Hence, we may apply Cauchy’s integral theorem to the
holomorphic function 1z — Upy(n3)/(1—n3)?P*9 and obtain a first bound for (¢pgr, w) r2(73):

’(wpqra )L2 7‘3) (10)

2—p—q—2 ! 1— (2p+2q+2) UPQ<T]3) P(2p+2q+2,0) d
( 713) (1 — 773)p+q r (7)3) 13
—1

Rl SRV (SRR
2mi C3€0E, (1—¢g)ptra ™" 3)dCs
length(9€E,)
(dist(9€,, 1))(p+q)

o~ (prat2) , ( 2p )p+q o~ b(pta) 2(2p+2q+2) (r+2) ey
(p—1)? (2p+2q+3)(1—1/p)
< CyPFT, .

2~ (P+a+2)

VAN

Q£2p+2q+2,0) || L (o€,

|| quLoo(agp) || )

IA

with 6 > 1 and C', v, 0 independent of p,q,r. Next, making use of the Cauchy-Schwarz
inequality, exploiting orthogonality relations of Jacobi polynomials and Lemma 5.13 we
obtain a second bound for (Ypg, u)2(73)

1 ) ) ) 1 _ ,',]3 (p+Q+2)
/ P( PRt 0)(773) (7) qu<773)d773

(Vpgr, 1) 12 (T3) 9

(2p+2q+2) ) 2
< / (PPrr2at20) () dny | x

( / 1 o pq<ng>2dng)é

3
C —b(p+a) < re~bpta) 12
<2p+2q+2r+3) ‘ = (12)
We combine inequality (11) and (12) to achieve
] < Crmin{e~20+0) ypragr}. (13)

If v < 1, then (13) implies immediately (9). We may therefore assume v > 1. We choose
A > 0 such that v*/d =: ¢ < 1 and distinguish two cases:
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1. For (p+ q) < Ar we have
|qur| < nyp+Q5*7" < C(,Y)\/é)r — qu _ qu/2+r/2 < Cq% min{l,l/)\}(r+p+q)’
which is the desired bound (9).

2. For (p+ q) > Ar we have
A
(p+a)z5p+atr)
and the desired result follows from

|upq7’| < Ce_b(p+q) < Ce_b%(p—kq-i-r) < C'e_b/(p+‘1+7‘)'

5.3 Auxiliary Results

Lemma 5.11. Let D3 be given by Definition 5.2 and let u be analytic on T>. Then there
exist C > 0,90 >0, p> 1 depending only on u such that:

1. The function u o D3 s holomorphic on @3 and can be extended to a function u
holomorphic on &£, x £, x €, with

@]l Loo(ezy < C-

2. Forallns,ms € (—1,1) the function n — @(ni,n2,n3) s holomorphic on E14s/((1—n)(1-ns))
and we have
sup @l 72, )|l 22 €141y =) < C
(7727773)€QQ
3. For all ni,n3 € (—=1,1) the function ny — U(n1,n2,n3) is holomorphic on E14 5/ —y,)
and we have

sup ||a(n, -, 773)HL°°(51+5/(1—773)) <C.
(7717773)€Q2
Proof. Since u is analytic on 73, there exists a complex open neighbourhood 7" C C? of

T’ such that u is holomorphic and bounded on 7’. Thus, because of the continuity of Ds,
there exists p > 1 such that Dg(c‘f;’) C 7" and the first claim is proved. In order to prove
the second claim, we have to show that for arbitrary e > 0 there exists d(e) > 0 such that

(M, m2,m3) € G := { (1,10, m3) | M € Epy, (2, m3) € Q)

with
)

(1 —=m2)(1—m3)

pr=1+ (14)

implies
inj3 | Ds(m1,m2,m3) — x| < e (15)

xeT

To that end, we set 71 = a + bi, § < %e and distinguish three cases:
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1. For a < —1 we have Ay := D3(—1,m2,13) € T with:

|D3(?717 712, 773) - A1|

— Lm0 w1 < 0w [ )
I R L 6 . 6
= g S T T —m) +3

< €.

2. For |a| < 1 we have Ay := Ds(a,n2,1m3) € T’ with:

| D3 (11,12, m3) — As
- 3(1 — o) (1 — n3)[b| < %(1 —12)(1 = n3)lp1 — p1'|
1 B 5 200 —m)(—mg) £
= 8(1 n2)(1 —ns3) (1—m)(1—=n3) (1 —n)(1—n3)+6 =6

3. For a > 1 we have Az := D3(1,19,7m3) € T and obtain analogously to the case
a < —1:

NG
| Ds(n1,m2,m3) — As| < ?5 < e.

To prove the third claim we proceed similarly. O

Lemma 5.12. Let the transformation D3 be given by Definition 5.2 and let the function
u be analytic on T For p € Ny let the function (12, n3) — U,(n2,n3) be defined by:

1

%%m@:/ffmmMO%MmmWML
-1

Then there exist p > 1, 6 > 0, C' > 0 depending only on w such that:

1. The function Uy, is holomorphic and bounded on &, x &, with
||Up||Loo(gp><gp) S Cp_p'
2. For each ns € (—1,1) the function ny — U,(n2,7m3) is holomorphic on Eyys/(1—p,) with

sup ”Up('v773)HL°°(51+5/(177,3)) <C.
7736(_171)

3. The function U, has zeros of multiplicity p at n, =1 and n3 = 1.
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Proof. The second claim follows from Lemma 5.11-3 and U, holomorphic on &, x &, fol-
lows from Lemma 5.11-1. To prove [|Up||re(e,xe,) < Cp~P, we exploit Cauchy’s integral
representation formula and obtain with Lemma 5.10:

Up(C2, G3)| = 27“/7{ CI’CQ’CB (00)( 1)d¢dm

-1 (1€08,

= L f ﬂ(Cl,CQ,Cs)QéO’O)(Cl)dQ

2mi
¢1€9€,
length(&,) | - ~ B
< Tp||U||L°°(£,§)||Q;(;O’O)||L°°(aep) <Cp™®

By Lemma 5.12-1 U, is holomorphic on £, x £,. In order to show that it has a zero of
multiplicity p at 7, = 1 and n3 = 1, it suffices to prove the existence of C' > 0 independent
of 19, m3 such that

\Up(n2,m3)| < C(L—=m2)P(1 —m3)? Vo, m3 € (=1, 1).

Lemma 5.11-2 together with Cauchy’s integral representation formula yields

|U (712,773 27”/ % C1,TI27773 P(O’O)(Th)dﬁdm

—1(1€08)y,

with p; given by (14). Appealing again to Lemma 5.10, we get

length(9E,,) . . ~
LSO s P i,

1-m)1—m) \’
C<5+O—Wﬁﬂ—n@)’

where C' depends solely on u. Since § > 0 and ny,73 € (=1, 1), we arrive at
[Up(n2,m3)| < C67P(1 —ma)P (1 — m3)",
which is the desired bound. O

|Up(2,m5)| - <

Lemma 5.13. Let the transformation D3 be given by Definition 5.2 and let the function
u be analytic on T°. For p,q € Ny let the function n3 — Uy,(ns) be defined by:

U ( - lU P(2p+10) 1_772 p+1d
wa(3) = 1 (112, 73) (172) 5 iy

where U, denotes the function of Lemma 5.12. Then there exist p > 1, b > 0, C' > 0
depending only on u such that:
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1. The function Uy, is holomorphic on €, and has a zero of multiplicity (p+q) at n3 = 1.

2. Forall Gz € E,
|Upqg(3)] < ClebP+a)

Proof. The holomorphy of U, follow from Lemma 5.12-1. To show that U,, has a zero of
multiplicity (p+ ¢) at n3 = 1, it suffices to show the existence of C' independent of 73 such
that

Upg(m3)| < C(L—n3)"™ Vs € (=1,1).

From Lemma 5.12 we know that for each 3 € (—1,1) the function U, (-, n3) is holomorphic
on &, = &145/(1-n;) and has a zero of multiplicity p at 7, = 1. Hence, we may apply
Cauchy’s integral theorem to the holomorphic function 7y — U,(12,13)/(1 — 12)? to arrive
at

_ 1 1 iy <C27 773) P(2p+1 0 (772) D
Upg(ns) = o (5) % (-G 2= (1= n2)** dnpd(y
“1

(2€0&,,

_ p(C2,m3) ~ (2p+1,0)
_ ¢ f LG (16)

1— ()P
(2€0E,,

Thus, we obtain

length(9€,,) | = 2p11.0)
‘UPQ<773)| S (dlst(8€p2, 1))p HQ P H 2 (0Epq) ”U ( n3)HL°°(592)

< sz((fb— )2) (22p+3 q+2 p(q+1>)
- 205 2p+2(1—1/ps)?"™"

Pt 1—nz+0)P 72
(oo — 172 = ct 352p+2> (1= )"

< C

where C'is independent of n3. Since 6 > 0 and 13 € (—1, 1), we arrive at

|Unq(11)] < C(1 = n5)™™,

which is the desired bound. We proceed similarly for the second claim. We use the bound
(16) but take as the contour of integration 0&,, i.e.,

UnGll = €| § PSP
(€0,
1 h(0& ~
%”prﬂ’o)”mwm 10U (G2, Gl oo ez
P

2p p 22p+3 q+2 B B
< O (¢+1) < ' p=a~P
p<<p—1>2) pr2(-1/p2" =0T
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with C, v independent of p,q, and 7n3. A second bound for |U,,(¢3)| follows from the
Cauchy-Schwarz inequality together with Lemma 5.12-1 and basic properties of Jacobi
polynomials:

1 . p+1
Unicol = [ Up(nz,C?,)Pq(z”“’O)(m)(l "2) dny

1 2
' 1—n : 1 2 (1 — 1\ 2! 3
< {/ |Up(712,C3)|2( 5 2) an} / (PCPH10) (1)) ( - 2) gy
< Cp_p# < Cp".
B 2p+2q+2 —

Combining the last two bounds as in Theorem 5.7 gives the desired result
Uy(C3)| < Ce™PPra) ey e &
pq P
O

Lemma 5.14. Let v, be given by Definition 5.5. Then for arbitrary p > 1 there exists
C and an open complex neighborhood T' C C3 with T’ T such that

||wpq7"||L°°(T’) <C(p+q+ T)3Pp+q+r Vp, g, € No.
Proof. For univariate polynomials we have (see [10, Chap 4, Thm. 2.2])
||u||L°°(Sp) S Pp||u||L°°(—1,1) \V/p >1 Yu € Pp.
Thus, by tensor product arguments, we obtain

lullz=ces, ) < Pllulliesy Vo >1 VueQy(Q),

which implies that for arbitrary p > 1 there exists an open complex neighborhood Q" D @3
such that

lillimio) < Pllull g, Vu € Qu(QY). (17)

An affine change of variables shows that (17) holds for an arbitrary closed parallelepiped
P. That is, for all p > 1 there exists an open complex neighborhood P’ of P such that

lullzery < PPllullpemy  Vu € Qp(QY). (18)

Now, since it is possible to find, for example, ten not necessarily disjoint parallelepipeds
P, .. P such that

10
T =JP,
=1
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we obtain for each p > 1 a complex neighborhood 77 := U, P"* of T° with P" given by
(18) and

10 10
lullpe iy = max [[ul poe priy < p" max|lull i) < pllull iz (19)

for all u € P,(7?). In order to replace the L> bound on the right-hand side by an
L?-bound, we need the following polynomial inverse estimate:

lull ity < CP*lull e, V1€ Po(T); (20)

this estimate can be obtained using the same arguments as in the two-dimensional situation
proved in [25, Thm. 4.76]. Inserting (20) into (19) gives for the polynomial v,

||¢pq7’||L°°(T/) < C(p +q+ T)gpp+q+r||wpqr”L2(T3)'

The claim of the lemma now follows from Lemma 5.6, which gives us the bound
||wpq7"||L2(T3) S 2/\/§ for all p,q, T € INO‘ ]
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