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1 Introduction

Non-linear eigenvalue problems arise in several fields of mathematics including the anal-
ysis and numerical solution of higher order systems of ordinary differential equations, for
example, in the robot model with electric motors in the joints, see Schiehlen (1990) or
Mehrmann and Watkins (2002). Although solvers for quadratic eigenvalue problems are
known, see, for example, Bai (2002), the common way is to linearize the eigenvalue problem
and to transform it to a standard eigenvalue problem, for whose efficient solution many
algorithms exist; a good summary is given by Watkins (2002).

We focus on polynomial eigenvalue problems of order two. Quadratic eigenvalue prob-
lems are treated, for instance, in the analysis and algebra communities as well as in the en-
gineering community. Depending on the underlying model problem, the resulting quadratic
operator eigenvalue problem might have a considerable structure which can be exploited
in the further analysis and computations. Our numerical interest in a detailed analysis of
such a structure arose from papers including work by Leguillon (1995), Kozlov, Maz’ya, and
Roßmann (2000), Apel, Sändig, and Solov’ev (2002b) and Apel, Mehrmann, and Watkins
(2002a), who studied the linear elasticity problem in the neighbourhood of polyhedral cor-
ners. The computation of the singular part of the solution to the linear elasticity problem
near a polyhedral corner involves the solution of a quadratic eigenvalue problem of the
form: Find λ ∈ C, u ∈ H, such that for all v ∈ H

λ2m(u, v) + λg(u, v) = k(u, v), (1)

where H is a given Hilbert space. The functions m, g, k are sesquilinear forms defined on
H×H, where m and k are Hermitian and g is skew-Hermitian.

It is well-known that such eigenvalue problems which are associated with elliptic bound-
ary value problems have a considerable structure: the eigenvalues appear in pairs (λ,−λ)
if λ is real or purely imaginary and in quadruplets (λ,−λ, λ,−λ) otherwise, see Figure 1.
This property is called Hamiltonian eigenvalue symmetry or Hamiltonian structure of the
spectrum, motivated by the spectral properties of a Hamiltonian matrix, see, for example,
Mehrmann and Watkins (2002).
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Figure 1: The Hamiltonian structure of eigenvalues
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The Hamiltonian structure for eigenvalue problems which are associated with certain
elliptic boundary value problems in the neighbourhood of three-dimensional polyhedral
corners was observed, for instance, by Leguillon (1995) as a generalization of the two-
dimensional case or by Kozlov, Maz’ya, and Roßmann (2000) (see also referenced therein)
who applied a Mellin transformation to the given boundary value problem.

Under which assumptions is the Hamiltonian eigenvalue symmetry guaranteed for prob-
lem (1), in general? The focus in this paper lies on eigenvalue problems of type (1) without
any specific application in the background. Obviously, the Hamiltonian structure is not
always given. Consider, for instance, g(u, v) = i m(u, v), k(u, v) ≡ 0, where i ∈ C with
i2 = −1. Then λ = −i is an eigenvalue of the problem

λ2m(u, v) + λi m(u, v) = 0,

but λ = i is not. We traced the spectral properties of problem (1) and formulated a series
of conditions which imply the Hamiltonian structure. Since the conditions are formulated
in an easy-to-check state, they are sufficient, but not urgently necessary as is demonstrated
in some examples in Section 4. Still, they are satisfied in the practical applications that
we have in mind.

The Hamiltonian eigenvalue symmetry is of interest in the further analysis of the prob-
lem like an efficient solution of its discrete formulation. Adapted Arnoldi and Lanzcos
algorithms can be applied then which exploit the underlying structure. For a descrip-
tion of such algorithms, we refer to Freund (1994); Benner and Faßbender (1997, 2000);
Mehrmann and Watkins (2001); Apel, Mehrmann, and Watkins (2002a); Watkins (2004).

We could not find a self-contained proof or a summary of conditions for the Hamiltonian
structure of the spectrum of a quadratic eigenvalue problem in the linear algebra, functional
analysis or numerical analysis literature. On few pages, we give in this paper an overview
of the most important ingredients and definitions, followed by a list of assumptions and
a read-on-proof of the Hamiltonian eigenvalue symmetry, including a discussion of the
necessity of the assumptions. Of course, there exist other methods to prove this result,
suggested, for example, by Kozlov, Maz’ya, and Roßmann (2000), but they usually employ
more background information of the given problem and refer to further literature.

As the derivation requires ingredients from several fields of the mathematical sciences,
we give an overview of the most important terms in Section 2. For details, we refer
to standard work in functional analysis, operator theory, spectral theory, algebra and
numerical analysis. In Section 3, we discuss spectral properties of problem (1) and an
associated eigenvalue problem for an operator pencil. We conclude the paper with a few
examples including an application of the results in Section 4.
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2 Operators in Hilbert spaces

2.1 General notation

Let HR be a (separable) real Hilbert space and denote by HC its complexification

HC = HR ×HR = {u = (u1, u2) | u1, u2 ∈ HR}

with the operations

(u1, u2) + (v1, v2) = (u1 + v1, u2 + v2) ∀ui, vi ∈ HR,

(a + ib)(u, v) = (au− bv, bu + av) ∀a, b ∈ R, ∀u, v ∈ HR.

Each element uR ∈ HR shall be identified with the element (uR, 0) ∈ HC , so that HR ⊂ HC

and each element u = (u1, u2) ∈ HC can be written as u = (u1, 0) + i(u2, 0) = u1 + iu2.
Moreover, we define the conjugate of u = (u1, u2) ∈ HC by

u = u1 + iu2 = u1 − iu2.

Definition 2.1 (Sesquilinear form). A map a : HC ×HC → C is called a sesquilinear
form over HC, if

a(µu, v) = µa(u, v), a(u, µv) = µa(u, v) ∀µ ∈ C, ∀u, v ∈ HC

and

a(u + w, v) = a(u, v) + a(w, v) ∀u, v, w ∈ HC

a(u, v + w) = a(u, v) + a(u, w) ∀u, v, w ∈ HC .

Let 〈·, ·〉HC
: HC × HC → C denote an inner product on HC , that is a Hermitian,

positive definite sesquilinear form. A norm in HC is then given by ‖u‖HC
:=

√
〈u, u〉HC

.

Definition 2.2 (Real operator). A linear, bounded operator A : HC → HC is called a
real operator, if A(HR) ⊂ HR, i.e., if AuR ∈ HR for all uR ∈ HR.

Definition 2.3 (Spectrum of an operator pencil). Let A : C → L(HC , HC) be an
operator pencil; that is, A(α) : HC → HC for fixed α ∈ C. The set

Σ(A) := {α ∈ C | A(α) has no bounded inverse}

is called the spectrum of A(·). The number α0 ∈ Σ(A) is called eigenvalue of A(·), if there
exists an element uα0 ∈ HC \{0} so that A(α)uα0 = 0. We denote the set of all eigenvalues
of A(·) by σ(A):

σ(A) := {α ∈ C | ∃u ∈ HC \ {0}, so that A(α)u = 0}.
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Eigenvalue problems for operator pencils have already been considered, for example,
by Kozlov, Maz’ya, and Roßmann (2000).

Remark 2.4. We say that an operator J : X → Y is invertible (or that J −1 exists), if for
all y ∈ Y there is a unique element x ∈ X, so that J x = y. In some books, the invertibility
is defined by substituting Y by the range R(J ) of J ; then, the operator J is surjective by
definition and the invertibility is equivalent to the injectivity of J .

Note that the sets Σ(A) and σ(A) are equal for finite-dimensional operators; but they
might differ for operators in infinite-dimensional spaces. The set Σ(A) \σ(A) is called the
continuous spectrum of A(·). The equivalence of ker(A(α)) = {0} and the invertibility of
A(α) is given only for special linear operators A(·), see Section 2.2.

2.2 Compact operators and Fredholm operators

In this subsection, we give the definitions and, for our purposes, the most important prop-
erties of compact and Fredholm operators. For details and proofs, consult Alt (1999);
Werner (1997); Prößdorf (1974); Cotlar and Cignoli (1974) or any standard book on func-
tional analysis or operator theory.

Let H be a separable Hilbert space with an inner product 〈·, ·〉H : H ×H → C on H.

Definition 2.5 (Compact operators). A linear, bounded operator C : H → H is called
compact, if for each bounded sequence {xn} in H, there is a subsequence {xnk

} so that
Cxnk

converges in H, that is, if

‖xn‖H < ∞ ∀n =⇒ ∃xnk
, y? ∈ H : ‖Cxnk

− y?‖H −→ 0 as k →∞.

Remark 2.6. Let K(H) denote the set of all compact operators on H. Then K(H) is a
subspace of the space L(H) of all bounded, linear operators on H, see Werner (1997, Satz
II.3.2 (a)). This means, in particular, that the sum of two compact operators as well as a
scalar multiple of a compact operator is in K(H) and therefore compact.

Definition 2.7 (Compact embedding). We say that a space V is compactly embedded
into a space H ⊃ V , if the corresponding embedding operator is compact, that is, if for
each bounded sequence {un} in V there is a subsequence {unk

} with strong convergence in
H.

We denote by R(A) and ker(A) the range and the kernel of the linear, bounded operator
A : H → H, respectively, and by R(A?) and ker(A?) the range and the kernel of its adjoint.

Lemma 2.8. The relations

ker(A)⊕R(A?) = H and ker(A?)⊕R(A) = H

hold for each linear, bounded operator A : H → H.

Lemma 2.8 is a well-known result in functional analysis, see, for example, Werner (1997,
Satz III.4.5).
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Definition 2.9 (Fredholm operators). A linear, bounded operator T is called Fredholm
operator if dim ker T < ∞ and dim ker T ? < ∞. For a Fredholm operator T , the number
Ind T = dim ker T − dim ker T ? is called the index of T .

Lemma 2.10. For each linear, bounded operator T the following properties are equivalent:

(a) T is Fredholm and Ind T = 0.

(b) There is a compact operator C and an invertible operator J , so that T = J − C.
Remark 2.11. Suppose that (a) is true in Lemma 2.10. Then dim ker T = dim ker T ?

and thus ker T = {0} if and only if ker T ? = {0}. As a consequence of Lemma 2.8, we
have that R(T ) = H if and only if R(T ?) = H. Hence, T is invertible if and only if
ker T = {0}. Moreover, T is invertible if and only if T ? is invertible.

3 The quadratic eigenvalue problem

3.1 Definitions and assumptions

Let m, g, k : HC ×HC → C be sesquilinear forms over the Hilbert space HC with

k(u, v) = k(v, u), g(u, v) = −g(v, u), m(u, v) = m(v, u) ∀u, v ∈ HC .

We consider the quadratic eigenvalue problem (1): Find λ ∈ C, u ∈ HC \ {0}, such that

λ2m(u, v) + λg(u, v) = k(u, v) ∀v ∈ HC .

A solution (λ, u) ∈ C × (HC \ {0}) to problem (1) is called an eigenpair of problem (1);
the number λ is then called eigenvalue and u is called eigenelement.

Definition 3.1 (Hamiltonian eigenvalue symmetry). We say that problem (1) pos-
sesses a Hamiltonian eigenvalue symmetry or that its spectrum has a Hamiltonian struc-
ture, if the eigenvalues are placed symmetric with respect to the real and the imaginary
axes; that is, if λ ∈ C is an eigenvalue of problem (1), then so are −λ, λ̄, −λ̄.

Remark 3.2. A real two-by-two block matrix H is called Hamiltonian, if

(JH)> = JH with J =

(
O I
−I O

)
.

The term Hamiltonian eigenvalue symmetry is motivated by the structure of the spectrum
of Hamiltonian matrices.

The question is under which conditions on m, g, k and HC the Hamiltonian eigenvalue
symmetry is given. In the derivation of the desired properties, we followed the ideas of
Apel, Sändig, and Solov’ev (2002b), where a quadratic eigenvalue problem of type (1) is
treated and transformed to an eigenvalue problem for an operator pencil.

In the following assumptions, we summarize conditions that are sufficient for the Hamil-
tonian structure. They are usually easy to check and satisfied in the applications that we
have in mind.
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(I) V := HC := HR ×HR is the complexification of a separable real Hilbert space HR,
and H ⊃ V is a Hilbert space into which V is compactly embedded.

(II) The functions m : H ×H → C, g, k : V × V → C are sesquilinear forms with

m(u, v) = m(v, u) ∀u, v ∈ H, k(u, v) = k(v, u) ∀u, v ∈ V,

(III) The functions m, g, k are real, that is,

m(u, v) = m(u, v), g(u, v) = g(u, v), k(u, v) = k(u, v) ∀u, v ∈ V.

(IV) The sesquilinear form m satisfies

|m(u, v)| ≤ c‖u‖H‖v‖H ∀u ∈ H.

(V) There is a sesquilinear form d : H × V → C so that g(u, v) = d(v, u)− d(u, v) for all
u, v ∈ V and

|d(u, v)| ≤ c‖u‖H‖v‖V ∀u, v ∈ V.

(VI) The operator K : V → V induced by k(u, v) = 〈Ku, v〉V ∀u, v ∈ V is invertible; and
for each fixed element u ∈ H, there is a constant ck > 0, so that |k(u, v)| ≤ ck‖v‖V

for all v ∈ V .

Alternatively, it is sufficient that the sesquilinear form k is positive definite, that is,

k(u, u) ≥ 0 ∀u ∈ V, k(u, u) = 0 ⇐⇒ u = 0.

In the following, V and H denote the Hilbert spaces introduced by assumption (I).

Remark 3.3. Given a skew-Hermitian sesquilinear form g : V × V → C, there is always
a map d : V × V → C so that g(u, v) = d(v, u)− d(u, v), for example, d(u, v) = −1

2
g(u, v).

Assumption (V), however, demands that the sesquilinear form d is defined on a larger
space, on H × V , so that d = −1

2
g is not necessarily the desired function. That is why we

cannot simply omit d or g. Still, the function g has to be defined only on the space V × V ,
whereas m has the largest domain H ×H due to assumption (II).

The condition (III) that the functions m, g and k are real does not mean that they are
real-valued, but only that they have real values for real arguments. This is equivalent to

m(uR, vR) ∈ R, g(uR, vR) ∈ R, k(uR, vR) ∈ R, ∀uR, vR ∈ HR.

If k(·, ·) defines an inner product on V , that is, if k(·, ·) is positive definite, we can
choose 〈u, v〉V = k(u, v) for all u, v ∈ V . Then, the operator K in condition (VI) equals
the identity operator I on V and is therefore invertible.
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For the inner products 〈·, ·〉V in V and 〈·, ·〉H in H, the corresponding norms are given
by ‖u‖2

V = 〈u, u〉V and ‖u‖2
H = 〈u, u〉H . Due to assumption (I), the space V is embedded

into H. Thus, the relation
‖u‖H ≤ c‖u‖V (2)

holds for all u ∈ V , where c is a generic constant independent of u.
In the remaining section, we prove that the Hamiltonian eigenvalue symmetry is actually

given under these assumptions. When a weaker condition is sufficient in one or another
step, we will point this out.

3.2 The eigenvalue problem for an operator pencil

Corresponding to the sesquilinear forms m, g and k, we introduce the linear operators
M,G,K : V → V by

Mu ∈ V, 〈Mu, v〉V = m(u, v) ∀v ∈ V,
Gu ∈ V, 〈Gu, v〉V = g(u, v) ∀v ∈ V,
Ku ∈ V, 〈Ku, v〉V = k(u, v) ∀v ∈ V.

The adjoint operators M?, G? and K? are given by

〈Mu, v〉V = 〈u,M?v〉V ∀u, v ∈ V,
〈Gu, v〉V = 〈u,G?v〉V ∀u, v ∈ V,
〈Ku, v〉V = 〈u,K?v〉V ∀u, v ∈ V.

Lemma 3.4. The operators M, G and K are well-defined.

Proof. The Riesz representation theorem states: Let 〈·, ·〉X be an inner product on a Hilbert
space X. Then for each bounded linear functional F ∈ X?, there is a unique element
uF ∈ X, so that 〈v, uF 〉X = F (v) for all v ∈ X, see, for example, Alt (1999).

We choose X := V and 〈·, ·〉X := 〈·, ·〉V as well as F (v) := Fm,u0(v) := m(u0, v) for a
fixed element u0 ∈ V . Indeed, Fm,u0(v) is a linear functional; but for its boundedness, we
have to assume that |m(u0, v)| ≤ c‖v‖V for all v ∈ V and for each fixed u0 ∈ V with a
generic constant c independent of v. Then, there is a unique element uFm,u0

∈ V , so that

〈v, uFm,u0
〉V = m(u0, v), and therefore, 〈uFm,u0

, v〉V = m(u0, v) for all v ∈ V . Consequently,
Mu0 is given by Mu0 = uFm,u0

.
Analogously, there exist unique elements uFg,u0

, uFk,u0
∈ V , so that Gu0 = uFg,u0

and
Ku0 = uFk,u0

, respectively, if we assume that |g(u0, v)| ≤ c‖v‖V and |k(u0, v)| ≤ c‖v‖V for
all v ∈ V and for each fixed u0 ∈ V .

These boundedness conditions on m, g and k are satisfied thanks to the assumptions
(IV), (V), (VI) and the embedding property (2).

Lemma 3.5. The operators satisfy M? = M, G? = −G, K? = K.
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Proof. The assertion follows from

〈Mu, v〉V = m(u, v) = m(v, u) = 〈Mv, u〉V = 〈v,M?u〉V = 〈M?u, v〉V
〈Gu, v〉V = g(u, v) = −g(v, u) = −〈Gv, u〉V = −〈v,G?u〉V = 〈−G?u, v〉V
〈Ku, v〉V = k(u, v) = k(v, u) = 〈Kv, u〉V = 〈v,K?u〉V = 〈K?u, v〉V .

From the definition of M?, G?, K?, we conclude that M?? = M, G?? = G, K?? = K,
since 〈Mu, v〉V = 〈u,M?v〉V = 〈M?v, u〉V = 〈v,M??u〉V = 〈M??u, v〉V and, analogously,
〈Gu, v〉V = 〈G??u, v〉V and 〈Ku, v〉V = 〈K??u, v〉V for all u, v ∈ V .

We introduce the operator pencil B(·) : C → L(V, V ) by

B(λ) := K − λG − λ2M, λ ∈ C (3)

and define the adjoint operator pencil

B?(λ) := [B(λ)]? = K? − λ̄G? − λ̄2M?, λ ∈ C.

Lemma 3.6 (Operator eigenvalue problem). The quadratic eigenvalue problem (1) is
equivalent to the operator eigenvalue problem for B(·): Find λ ∈ C, u ∈ V \ {0}, such that

B(λ)u = 0. (4)

Proof. We know from the definition of M, G, K that

〈B(λ)u, v〉V = 〈(K − λG − λ2M)u, v〉V = 〈Ku, v〉V − λ〈Gu, v〉V − λ2〈Mu, v〉V
= k(u, v)− λg(u, v)− λ2m(u, v).

Furthermore, (λ, u) ∈ C×V is an eigenpair of problem (1) if and only if k(u, v)−λg(u, v)−
λ2m(u, v) = 0 for all v ∈ V , that is, 〈B(λ)u, v〉V = 0 for all v ∈ V . This is equivalent to
B(λ)u = 0, since 〈·, ·〉V is positive definite, and therefore, (λ, u) is an eigenpair of problem
(4).

The assumptions (IV), (V), (VI) were made so that the operatorsM and G are compact
(we will prove this in Section 3.3) and that the operator K is invertible. It follows from
Lemma 2.10 and Remark 2.6 that the operator B(λ) is a Fredholm operator with Index
IndB(λ) = 0 for each λ ∈ C.

Thanks to Remark 2.11, we know that B(λ) is invertible if and only if the equation
B(λ)u = 0 has only the trivial solution u = 0. Hence, we can write

σ(B) = {λ ∈ C | ∃u ∈ V \ {0}, so that B(λ)u = 0} = {λ ∈ C | B(λ) is not invertible}.
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3.3 Compactness of M and G
The aim of this subsection is the verification that the operators M and G are compact
under the assumptions (I), (IV) and (V).

We consider any bounded sequence {un} in V . Since V is compactly embedded into
H due to assumption (I), there is a subsequence unk

which converges in H. For the sake
of simplicity of notation, we denote this subsequence by {un} and omit the subindex k.
We conclude that {un} is a Cauchy sequence in H. Assumption (IV) and the embedding
property (2) imply that

‖Mun −Mum‖2
V = |〈Mun −Mum,Mun −Mum〉V | = |m(un − um,Mun −Mum)|

≤ c‖un − um‖H · ‖Mun −Mum‖H

≤ c‖un − um‖H · ‖Mun −Mum‖V .

Division by ‖Mun −Mum‖V yields

‖Mun −Mum‖V ≤ c‖un − um‖H .

Since {un} is a Cauchy sequence in H, we obtain that {Mun} is a Cauchy sequence in V .
Exploiting that V is complete, we conclude that {Mun} converges in V , which proves the
compactness of M.

By analogy with the operator M, we introduce the operator D : V → V by

〈Du, v〉V = d(u, v) ∀u, v ∈ V.

Then, with the same arguments as above, we get from assumption (V) that the operator
D is compact. Hence, the adjoint operator D?, which is given by

〈Du, v〉V = 〈u,D?v〉V ∀u, v ∈ V,

is compact as well, see Werner (1997, Satz von Schauder (III.4.4)). Moreover, we have for
all u, v ∈ V that

〈Gu, v〉V = g(u, v) = d(v, u)− d(u, v) = 〈Dv, u〉V − 〈Du, v〉V
= 〈v,D?u〉V − 〈Du, v〉V = 〈D?u, v〉V − 〈Du, v〉V = 〈(D? −D)u, v〉V .

Therefore, by Remark 2.6, the operator G = D? −D is compact.

3.4 Proof: λ ∈ σ(B) =⇒ −λ ∈ σ(B)

Returning to the eigenvalue problem for the operator pencil B(·) and the Hamiltonian
structure of the spectrum, we start with the proof that with λ ∈ C also −λ ∈ C is an
eigenvalue of problem (4).

Lemma 3.7. The relation B?(λ) = B(−λ) is true for all λ ∈ C.
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Proof. Each λ ∈ C satisfies B?(λ) = K? − λG? − λ
2M? = K − (−λ)G − (−λ)2M =

B(−λ).

Lemma 3.8. The operators B and B? have the same eigenvalues, that is, σ(B) = σ(B?).

Proof. Since B(λ) is a Fredholm operator with index 0, we have that λ ∈ σ(B) if and only
if B(λ) is not invertible. By Remark 2.11, this is true if and only if B?(λ) is not invertible,
which is equivalent to λ ∈ σ(B?).

Corollary 3.9. If λ ∈ σ(B) then −λ ∈ σ(B).

It remains to show either that λ ∈ σ(B) or that −λ ∈ σ(B) given λ ∈ σ(B). The
existence of the fourth eigenvalue that completes the Hamiltonian structure follows then
immediately from Corollary 3.9.

3.5 Proof: λ ∈ σ(B) =⇒ λ ∈ σ(B)

The essential condition for this subsection is that the sesquilinear forms are real, see as-
sumption (III). We use this property to evaluate the term B(λ)u.

Lemma 3.10. The relations Mu = Mu, Gu = Gu, Ku = Ku are true for all u ∈ V .

Proof. Assumption (III) implies for each u ∈ V that

〈Mu, v〉V = 〈Mu, v〉V = m(u, v) = m(u, v) = 〈Mu, v〉V ∀v ∈ V,

which proves the assertion for Mu. The relations Gu = Gu and Ku = Ku follow analo-
gously.

Corollary 3.11. The relation B(λ)u = B(λ)u is true for all u ∈ V .

Proof. Lemma 3.10 yields for each u ∈ V that

B(λ)u = (K − λG − λ2M)u = Ku− λGu− λ2Mu = Ku− λGu− λ
2Mu = B(λ)u.

Corollary 3.12. If λ ∈ C is an eigenvalue of B(·) then so is λ.

Proof. If λ ∈ C is an eigenvalue of B(·), then there is an element u ∈ V \ {0}, so that
B(λ)u = 0. Consequently, we have that B(λ)u = 0. Corollary 3.11 implies that B(λ)u = 0,
that is, λ is an eigenvalue of B(·), since u ∈ V \ {0}.

This part of the proof holds even if B(λ) is not Fredholm, this means that the compact
embedding part of assumption (I) and the special structure of g formulated in assump-
tion (V) were not used here. Neither was condition (II) employed. The boundedness
conditions in (IV)–(VI), however, can not be omitted, because we used them in the proof
that the operators M, G and K are well-defined, see Lemma 3.4.
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3.6 The Hamiltonian eigenvalue symmetry

The following theorem is the consequence of the previous results.

Theorem 3.13 (Hamiltonian eigenvalue symmetry). If the assumptions (I)–(VI) are
satisfied, then, the spectrum of the quadratic eigenvalue problem (1),

λ2m(u, v) + λg(u, v) = k(u, v),

is symmetric with respect to the real and imaginary axes, that is, if λ ∈ C is an eigenvalue
of problem (1), then so are −λ, λ, −λ.

The theorem is easily proven by the use of Corollary 3.9 (λ ∈ σ(B) ⇒ −λ ∈ σ(B)),
Corollary 3.12 (λ ∈ σ(B) ⇒ λ ∈ σ(B)) and Lemma 3.6 which states that λ ∈ C is an
eigenvalue of problem (1) if and only if B(λ)u = 0.

Remark 3.14. The same symmetry is given for non-linear eigenvalue problems of higher
order,

n∑
i=0

λimi(u, v) = 0,

with alternating sequences of Hermitian and skew-Hermitian sesquilinear forms mi(·, ·),
if −m0 satisfies condition (VI), the other Hermitian forms fulfil condition (IV), and (V)
holds for the skew-Hermitian forms. Polynomial eigenvalue problems of this form were
treated, for example, by Mehrmann and Watkins (2002).

4 Examples

Example 4.1. Consider the counter-example of the introduction: g(u, v) = i m(u, v),
k(u, v) ≡ 0. Obviously, k is not positive definite and the operator K induced by k(·, ·)
is the zero operator and therefore not invertible. Hence, the Fredholm theory cannot be
applied.

Note that, in general, we cannot conclude from this that the desired eigenvalue symmetry
is not given; in this example, however, λ = −i is an eigenvalue, but λ = i is not.

Example 4.2. Let V be a finite-dimensional complex Hilbert space; without loss of gener-
ality, V = Cn, n ∈ N. Let m, g, k be given by

m(u, v) = v>Mu, g(u, v) = v>Gu, k(u, v) = v>Ku ∀u, v ∈ V,

where M , G, K are complex n× n-matrices.
Let 〈·, ·〉V denote the usual inner product, 〈u, v〉V := v>u. The operator M induced by

m(u, v) = 〈Mu, v〉V for all u, v ∈ V is then defined by m(u, v) = v>Mu, that is, M = M .
Analogously, we have that G = G and K = K. Hence, the eigenvalue problem is equivalent
to the matrix eigenvalue problem: Find λ ∈ C, u ∈ Cn, such that

λ2Mu + λGu = Ku.
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The assumptions (II) and (III) imply that M , G and K are real matrices with M = M>,
G = −G> and K = K>.

Indeed, the Hamiltonian eigenvalue symmetry can be proven then: Assuming that λ is
an eigenvalue, we get by conjugating and transposing the equation that −λ is an eigenvalue,
too. The characteristic polynomial det(λ2M +λG−K) has real coefficients, which implies
that λ is an eigenvalue as well, and therefore so is −λ.

Note that (VI), demanding the invertibility of K, needs not to be satisfied, here; nor are
(IV) or (V) essential. Nevertheless, it is necessary that M , G and K are real. Indeed, one
easily finds complex counter-examples, compare M = I, G = 2i I, K = 2I, where λ = i + 1
and −λ = i− 1 are eigenvalues, but λ and −λ are not.

Finally, let us consider a quadratic eigenvalue problem that arises in numerical prac-
tice. In the neighbourhood of polyhedral corners, the singular part of the solution to the
linear elasticity problem has a special structure. The computation of the corner singular-
ities can be reduced to a quadratic eigenvalue problem of type (1), which we learnt from
Leguillon (1995). Since the underlying problem is an elliptic boundary value problem, Ko-
zlov, Maz’ya, and Roßmann (2000) suggested to apply a Mellin transformation from which
the Hamiltonian eigenvalue structure can be obtained as well. Further details including
the operator eigenvalue problem formulated in Section 3.2 are given by Apel, Sändig, and
Solov’ev (2002b).

Example 4.3. The study of corner singularities leads to the consideration of a ball cir-
cumscribing the polyhedral corner. Using spherical coordinates and a specific approach for
the structure of the solution to the linear elasticity, we obtain the eigenvalue problem

λ2m(u, v) + λg(u, v) = k(u, v)

with λ ∈ C, u, v ∈ V , where V = H1
0 (Ω)3 and H = L2(Ω)3 are spaces of vector functions

over a subdomain Ω of the unit sphere in R3. This eigenvalue problem was written down
in a slightly different form by Leguillon (1995); we refer also to the work by Apel, Sändig,
and Solov’ev (2002b), which was the basis for the derivation of the Hamiltonian eigenvalue
symmetry in this paper.

The space H1
0 (Ω) is compactly embedded into L2(Ω), hence so is V into H. The assump-

tions on m, g, k are satisfied in the given problem; therefore the suggested symmetry of
the spectrum can be concluded, as it was done rather shortly by Apel, Sändig, and Solov’ev
(2002b, Theorem 10) or Leguillon (1995) or only for the discrete formulation, for instance,
by Apel, Mehrmann, and Watkins (2002a, Proposition 1), see also Mehrmann and Watkins
(2002) and references therein.

5 Summary

We studied a quadratic eigenvalue problem and formulated conditions under which the
Hamiltonian eigenvalue symmetry can be proven. To derive the Hamiltonian structure, we
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transformed the problem into an eigenvalue problem for an operator pencil and applied
Fredholm theory. Since it is usually difficult to check whether a given operator is a Fredholm
operator with index 0 or not, we formulated simplified conditions in (I)–(VI) which imply
the Fredholm property. At last, we proved that under these assumptions the spectrum of
the quadratic eigenvalue problem

λ2m(u, v) + λg(u, v) = k(u, v)

has the desired structure. In general, these conditions are easy to check, once the functions
m, g, k are given.

Finally, we presented an application and discussed the necessity of the assumptions in
two further examples.
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