
Sonderforschungsbereich 393
Parallele Numerische Simulation für Physik und Kontinuumsmechanik

Peter Benner Enrique S. Quintana-Ort́ı

Gregorio Quintana-Ort́ı

Solving Stable Sylvester Equations

via Rational Iterative Schemes

Preprint SFB393/04-08

Preprintreihe des Chemnitzer SFB 393

ISSN 1619-7178 (Print) ISSN 1619-7186 (Internet)

SFB393/04-08 October 2004

Contents

1 Introduction 1

2 Iterative Schemes for Solving Stable Sylvester Equations 3

2.1 Theoretical background . 3
2.2 The Newton iteration . 5
2.3 The Newton-Schulz iteration . 7
2.4 Halley’s method . 8

3 Factorized Solution of Stable Sylvester Equations 9

4 Iterative Schemes for Solving Generalized Stable Sylvester Equations 12

5 Experimental Results 14

5.1 Accuracy and efficiency of the Sylvester equation solvers 14
5.2 Parallel implementation and performance . 19

6 Conclusions 21

Author’s addresses:

Peter Benner
TU Chemnitz
Fakultät für Mathematik
D-09107 Chemnitz
benner@mathematik.tu-chemnitz.de

Enrique S. Quintana-Ort́ı, Gregorio Quintana-Ort́ı
Depto. de Ingenieŕıa y Ciencia de Computadores
Universidad Jaume I
12.071–Castellón, Spain
{quintana,gquintan}@icc.uji.es

Abstract

We investigate the numerical solution of stable Sylvester equations via iterative schemes
proposed for computing the sign function of a matrix. In particular, we discuss how the
rational iterations for the matrix sign function can efficiently be adapted to the special
structure implied by the Sylvester equation. For Sylvester equations with factored con-
stant term as those arising in model reduction or image restoration, we derive an algorithm
that computes the solution in factored form directly. We also suggest convergence criteria
for the resulting iterations and compare the accuracy and performance of the resulting
methods with existing Sylvester solvers. The algorithms proposed here are easy to par-
allelize. We report on the parallelization of those algorithms and demonstrate their high
efficiency and scalability using experimental results obtained on a cluster of Intel Pentium
Xeon processors.

Keywords. Sylvester equation, matrix sign function, Newton iteration, Newton-Schulz iter-
ation, Halley’s method, model reduction, image restoration, parallel algorithms.

1 Introduction

Consider the (continuous-time) generalized Sylvester equation

AXD + EXB + C = 0, (1)

where A, E ∈ R
n×n, B, D ∈ R

m×m, C ∈ R
n×m, and X ∈ R

n×m is the sought-after solution.
Equation (1) has a unique solution if and only if α + β 6= 0 for all α ∈ Λ (A, E) and β ∈
Λ (B, D), where Λ (Z, Y) denotes the generalized eigenspectrum (or generalized eigenvalues)
of a matrix pencil Z − λY . In particular, this property holds for generalized stable Sylvester
equations, where both Λ (A, E) and Λ (B, D) lie in the open left half plane. The antistable
case, where Λ (A, E) and Λ (B, D) are contained in the open right half plane, is trivially
turned into a stable one by multiplying (1) by −1.

In case D = Im and E = In, (1) reduces to the standard Sylvester equation

AX + XB + C = 0. (2)

Here, the existence and uniqueness of the solution X of (2) is determined by Λ (A) and Λ (B),
the spectra of the corresponding matrices. Also, in case D and E are nonsingular, (1) can be
reduced to a standard equation,

ÃX + XB̃ + C̃ = 0, (3)

using the transformations Ã ← E−1A, B̃ ← BD−1, C̃ ← E−1CD−1. The solution X of (1) is
not altered by this transformation. However, in practice this transformation may introduce
(large) rounding errors in the data and should therefore be avoided.

Sylvester equations have numerous applications in control theory, signal processing, fil-
tering, model reduction, image restoration, decoupling techniques for ordinary and partial
differential equations, implementation of implicit numerical methods for ordinary differential
equations, and block-diagonalization of matrices; see, e.g., [14, 16, 21, 22, 18, 27, 44] to name
only a few references. In some applications, in particular in model reduction using cross-
Gramians [2, 23], image restoration [14], and observer design [17], the right-hand side of (2)
is given in factored form, C = FG, where F ∈ R

n×p, G ∈ R
p×m. If p ≪ n, m then it can

1

often be observed that the solution also presents a low (numerical) rank [30]. It is therefore
beneficial to be able to compute the solution of the Sylvester equation in factorized form
directly. Here, we will discuss a new approach based on the sign function method to achieve
this goal; see also [8].

Also, B = AT and D = ET yields the (continuous-time) Lyapunov equation such that
everything derived here can be used (and simplified) for this type of equations playing a vital
role in many areas of computer-aided control system design (CACSD) [4, 17, 24, 44]. Many
of these applications lead to stable Sylvester and Lyapunov equations.

Standard solution methods for Sylvester equations of the form (2) are the Bartels-Stewart
method [6] and the Hessenberg-Schur method [21, 28], which can be generalized to equations
of the form (1), as shown in [22, 26]. These methods are based on transforming the coefficient
matrices (A, D, E, and B) to Schur or Hessenberg form and then solving the correspond-
ing linear system of equations directly by a back-substitution process. Therefore, these are
classified as direct methods. Several iterative schemes to solve Sylvester equations have also
been proposed. The focus in this paper is on a special class of iterative schemes to solve
stable Sylvester equations that appear in the computation of the matrix sign function. The
basic Newton iteration classically used in this context was first proposed for (2) in [42]; see
also [7, 36]. It can basically be described by the recursive application of the rational function
f(z) = z + 1

z to a suitably chosen matrix. Many other polynomial and rational iteration
functions can be employed, though. We will investigate the application of some of them to
the solution of stable Sylvester equations and will discuss their properties. We will also show
how to generalize the classical Newton iteration in order to solve (1). For other methods
focusing on large sparse systems see, e.g., [14, 31, 37, 47].

Throughout this paper, we will assume that A, B, C, and D are nonsingular and that
A− λE, B − λD are stable matrix pencils. This is a very strong assumption as compared to
the necessary ones (A−λC, D−λB both regular with disjoint spectra) that can be handled by
the Bartels-Stewart and Hessenberg-Schur methods. Therefore, the methods developed here
can only be applied to a limited set of equations of the forms (1) and (2). On the other hand,
so far there is no Bartels-Stewart and Hessenberg-Schur based method to treat the special case
of a factored right-hand side. Furthermore, we will see that the iterative schemes here are very
well-suited for solving large scale Sylvester equations with generally unstructured coefficient
matrices. The proposed algorithms are often more efficient and in general as accurate as the
direct methods as will be demonstrated by several Matlab experiments. Also, the iterative
schemes can easily be adapted to parallel computing environments in contrast to the direct
methods. The Bartels-Stewart and Hessenberg-Schur methods require, at a first stage, the
computation of the Schur form of a matrix/matrix pencil by means of the QR/QZ algorithm.
The parallelization of the QR algorithm on distributed memory architectures has so far proved
to be a difficult task [34] and the performance results are far from those of more common
BLAS-3 operations [29]. The parallelization of the QZ algorithm is even a more ambitious
goal and no parallel version is available yet! In contrast, the iterative methods based on
the sign function are specially attractive in that they can easily be parallelized and deliver
excellent performance on parallel architectures. Similar algorithms have been proposed for
the discrete-time version of the Sylvester equation in [11] and for the Lyapunov equation
in [10, 9].

The rest of the paper is structured as follows. In Section 2 we describe iterative schemes for
the solution of the standard Sylvester equation that are derived from three different iterative
schemes for the computation of the matrix sign function, namely, the Newton and Newton-

2

Schulz iterations, and Halley’s method. In section 3 we derive the new factored iteration.
A variant of the Newton iteration is then used in Section 4 in order to obtain an algorithm
for the generalized Sylvester equation (1). Numerical experiments reporting the numerical
accuracy and efficiency as compared to Matlab and SLICOT Sylvester equation solvers as
well as the parallel performance on a cluster of Intel Pentium Xeon processors are given in
Section 5. In that section we also give some details on how the Sylvester equation solvers
are parallelized using the kernels from ScaLAPACK [12], a parallel linear algebra library for
distributed-memory computers. The paper ends by some concluding remarks in Section 6.

2 Iterative Schemes for Solving Stable Sylvester Equations

As the iterative schemes developed in this section are all based on the matrix sign function,
we will first review some important properties of this matrix function as well as its relation
to Sylvester equations.

2.1 Theoretical background

Consider a matrix Z ∈ R
n×n with no eigenvalues on the imaginary axis, and let Z =

S
[

J−

0
0

J+

]

S−1 be its Jordan decomposition. Here, the Jordan blocks in J− ∈ R
k×k and

J+ ∈ R
(n−k)×(n−k) contain, respectively, the stable and unstable parts of Λ (Z). The matrix

sign function of Z is defined as sign (Z) := S
[

−Ik

0
0

In−k

]

S−1. Many other definitions of the

sign function can be given; see [40] for an overview. Some important properties of the matrix
sign function are summarized in the next lemma.

Lemma 2.1 Let Z ∈ R
n×n with no eigenvalues on the imaginary axis. Then:

a) sign (Z)2 = In, i.e., sign (Z) is a square root of the identity matrix;

b) sign
(

T−1ZT
)

= T−1 sign (Z) T for all nonsingular T ∈ R
n×n;

c) if Z is stable, then
sign (Z) = −In, sign (−Z) = In.

Part a) of the previous lemma suggests that we can apply Newton’s root-finding iteration to
Z2 = In in order to compute sign (Z), if the starting point is chosen as Z. Thus, we obtain
the Newton iteration for the matrix sign function:

Z0 ← Z, Zk+1 ← 1

2
(Zk + Z−1

k), k = 0, 1, 2, (4)

Under the given assumptions, the sequence {Zk}∞k=0 converges to sign (Z) = limk→∞ Zk [42]
with an ultimately quadratic convergence rate. The iteration (4) is driven by the rational
function

f(z) =
1

2
(z +

1

z
),

and thus is classified as rational iterative method in [39]. As the initial convergence may be
slow, the use of acceleration techniques is recommended; e.g., determinantal scaling [13] is
given by

Zk ← 1

ck
Zk, ck = |det (Zk)|

1

n .

3

Another choice, suggested by Higham [35], is optimal norm scaling

Zk ← 1

ck
Zk, ck =

√

‖Zk‖2

‖Z−1
k ‖2

,

which has certain minimization properties in the context of computing polar decompositions.
In order to avoid the computationally expensive spectral norm one can use instead the Frobe-
nius norm. Another alternative is based on using the inequality ‖Z‖2 ≤

√

‖Z‖1‖Z‖∞ as an
approximation, yielding

Zk ← 1

ck
Zk, ck =

(

‖Zk‖1‖Zk‖∞
‖Z−1

k ‖1‖Z−1
k ‖∞

)
1

4

. (5)

Numerical experiments suggest that in the context of solving stable Sylvester equations, where
(4) will be applied to stable matrices Z, the approximate norm scaling (5) performs much
better than determinantal scaling. A theoretical foundation for this observation has yet to
be found.

In order to find the relation of the matrix sign function to Sylvester equations, consider
the following basic decoupling property of the solutions of Sylvester equations. Namely, if X

is a solution of (2), the similarity transformation defined by
[

In

0
X
Im

]

can be used to block-

diagonalize the block upper triangular matrix

H =

[

A C

0 −B

]

(6)

as follows:
[

In X

0 Im

]−1 [

A C

0 −B

] [

In X

0 Im

]

=

[

In −X

0 Im

] [

A C

0 −B

] [

In X

0 Im

]

=

[

A 0

0 −B

]

.

(7)

Using the matrix sign function of H, the relation given in (7), and Lemma 2.1b), we derive
the following expression for the solution of the Sylvester equation (2):

sign (H) =

[

−In 2X

0 Im

]

. (8)

This relation forms the basis of the numerical algorithms considered here since it states that
we can solve (2) by computing the matrix sign function of H from (6). Therefore, we may
apply the iterative schemes proposed for sign function computations in order to solve (2).
This was first observed in [42] and re-discovered, e.g., in [7, 36].

In the following, we will review some of the most frequently used iterative schemes for
computing the sign function and we will show how to adapt these iterations to the solution
of the Sylvester equation. In particular we consider three different rational iteration schemes:
the Newton iteration, the Newton-Schulz iteration, and Halley’s method. The latter two are
obtained from the Padé approximations of the sign function. Specifically, in the corresponding

4

Padé table, Halley’s method is given as the (1, 1) entry while Newton-Schulz represents the
(0, 1) entry [39]. From the computational point of view, it seems that only those two entries
(and the (1, 0) entry which is just the inverse of the Newton iteration (4)) are interesting. All
other entries require higher powers of the iterate which may cause problems due to overflow
and rounding errors, while making these iterative schemes very expensive. Nevertheless, some
of the other iterations that can be obtained from the Padé approximation of the sign function
could also be used to obtain parallel algorithms for computing the matrix sign function [39].
These algorithms exhibit coarse-grain parallelism, but are not considered here for the above-
mentioned reasons.

2.2 The Newton iteration

Roberts [42] already observed that the Newton iteration (4), applied to H from (6), can be
written in terms of separate iterations for A, B, and C:

A0 := A, Ak+1 := 1
2

(

Ak + A−1
k

)

,

B0 := B, Bk+1 := 1
2

(

Bk + B−1
k

)

,

C0 := C, Ck+1 := 1
2

(

Ck + A−1
k CkB

−1
k

)

,

k = 0, 1, 2, . . . , (9)

thus saving a considerable computational cost and workspace. The iterations for A and B
compute the matrix sign functions of A and B, respectively. Hence, because of the stability
of A and B and Lemma 2.1 c), we have

A∞ := lim
k→∞

Ak = sign (A) = −In, (10)

B∞ := lim
k→∞

Bk = sign (B) = −Im, (11)

and, if we define C∞ := limk→∞ Ck, then X = C∞/2 is the solution of the Sylvester equa-
tion (2).

The iterations for A and B can be implemented in the way suggested by Byers [13], i.e.,

Zk+1 := Zk − 1

2

(

Zk − Z−1
k

)

, (12)

with Z ∈ {A, B}. This iteration treats the update of Zk as a “correction” to the approximation
Zk. This can sometimes improve the accuracy of the computed iterates in the final stages of
the iteration, when the limiting accuracy is almost reached. In some ill-conditioned problems,
the usual iteration may stagnate without satisfying the stopping criterion while the “defect
correction” iteration (12) will satisfy the criterion.

A simple stopping criterion for (9) is obtained from Lemma 2.1c) and (10)–(11), respec-
tively. This suggests to stop the iteration if the relative errors for the computed approxima-
tions to the sign functions of A and B are both small enough, i.e., if

max {‖Ak + In‖, ‖Bk + Im‖} ≤ τ, (13)

where τ is the tolerance threshold. One might choose τ = γε for the machine precision ε
and, for instance, γ = n or γ = 10

√
n. However, as the terminal accuracy sometimes can not

be reached, in order to avoid stagnation it is better to choose τ =
√

ε and to perform 1–3

5

Algorithm 1 Newton Iteration for the Sylvester Equation.

INPUT: Coefficient matrices (A, B, C) ∈ R
n×n × R

m×m × R
m×n as in (2), tolerance τ for

convergence of (9).
OUTPUT: Approximate solution X of (2).
1: while max{‖A + In‖1, ‖B + Im‖1} > τ do

2: Use the LU decomposition or the Gauss-Jordan elimination to compute

Ainv := A−1, Binv := B−1, W := AinvCBinv.

3: Compute the scaling parameter c according to (5) using the information contained in
A, B, C (needed for ‖Zk‖) and Ainv, Binv, W (needed for ‖Z−1

k ‖).
4: Set A := 1

2(1
cA + cAinv).

5: Set B := 1
2(1

cB + cBinv).

6: Set C := 1
2(1

cC + cW).
7: end while

8: Set X := 1
2C.

additional iterations once this criterion is satisfied. Due to the quadratic convergence of the
Newton iteration (4), this is usually enough to achieve the attainable accuracy.

The computational cost of (9) is dominated by forming the inverses of Ak and Bk, re-
spectively, and the solution of two linear systems for the sequence Ck. If we consider the
factorizations of Ak and Bk to be available as a by-product of the inversion, this adds up to
2(n3 +nm(n+m)+m3) flops (floating-point arithmetic operations) as compared to 2(n+m)3

flops for a general Newton iteration step for an (n+m)×(n+m) matrix. Thus, e.g., if n = m,
iteration (9) requires only half of the computational cost of the general iteration (4). We would
obtain the same computational cost had we computed the inverse matrices by means of a
Gauss-Jordan elimination procedure and the next matrix in the sequence Ck as two matrix
products. Compared with the traditional matrix inversion procedure, based on the Gaussian
elimination (also known as LU factorization), parallel Gauss-Jordan transformations present
a better load balance and lead to more efficient parallel algorithms [41]. For n = m, the cost
for the Bartels-Stewart method can be estimated to be roughly 56n3 [27], the cost for the
Hessenberg-Schur method is about two thirds of this [44]. With the above considerations we
can conclude that 7 steps of (9) match the cost of the Bartels-Stewart method while already
5 steps are more expensive than applying the Hessenberg-Schur method. As usually, 7–10
iterations are needed for convergence, (9) is not so appealing on first sight. On the other
hand, (9) is rich in BLAS 3 operations in contrast to the two direct methods. Thus it can
be expected that the actual execution times of (9) are at least competitve with the direct
methods. This is confirmed by the experiments reported in subsection 5.1.

Algorithm 1 describes an implementation of the sign function method that can be coded
in a straightforward manner as a Matlab function.

Algorithm 1 can be implemented using workspace for A, B, and C and a scratch array
of size (n2 + nm + m2). Altogether, this adds up to workspace of size 2(n2 + nm + m2) as
compared to 2(n + m)2 for the general iteration (4). For n = m, this saves a workspace for
about 2n2 real numbers.

6

2.3 The Newton-Schulz iteration

For a general matrix Z, with no eigenvalues on the imaginary axis, the Newton-Schulz iteration
is given by

Z0 := Z, Zk+1 :=
1

2
Zk

(

3I − Z2
k

)

, k = 0, 1, 2, (14)

This iteration arises from replacing Z−1
k in (4) by the Schulz iteration for the inverse of a

matrix [43] and has been studied for sign function computations, e.g., in [5, 39, 40]. It can
be interpreted as the matrix version of recursively applying the “rational” (here: polynomial)
function

f(z) :=
3

2
z − 1

2
z3

to the matrix Z. The advantage is that, due to the polynomial function driving the iteration, it
is inversion-free and rich in matrix-multiplication operations which delivers high efficiency on
modern computers [3, 20, 19, 29]. The drawback is that convergence can only be guaranteed
if ‖Z2

0 − I‖ < 1 for some suitable matrix norm. As sign (Z)2 = I, for any iteration converging
to sign (Z) there exists an integer k0 such that ‖Z2

k0
− I‖ < 1. In that case one can switch

to the Newton-Schulz iteration, using Zk0
as starting value. This implies a hybrid algorithm:

start with some globally convergent iterative scheme and switch to Newton-Schulz as soon as
‖Z2

k − I‖ < 1.
Applying Newton-Schulz to H from (6), the iteration can again be simplified. Let

Hk :=

[

Ak Ck

0 −Bk

]

,

then

H2
k :=

[

A2
k AkCk − CkBk

0 B2
k

]

. (15)

Hence, we obtain again three separate iterations:

A0 := A, Ak+1 := 1
2Ak

(

3In − A2
k

)

,

B0 := B, Bk+1 := 1
2Bk

(

3Im − B2
k

)

,

C0 := C, Ck+1 := 1
2

(

−Ak(AkCk − CkBk) + Ck(3Im − B2
k)

)

,

k = 0, 1, 2, (16)

The workspace requirements for this iteration are of size 2 max(n, m)2 plus the space for A,
B, and C. The computational cost is twice as much as that of (9), but for n = m half as much
as for the Newton-Schulz iteration for a general (n + m) × (n + m) matrix. As the Newton
iteration, the Newton-Schulz iteration is quadratically convergent such that the higher cost
compared to (9) is not compensated by a faster convergence. The implementation of this
iteration on parallel computers still has some advantages as matrix products are usually more
efficient than matrix inversion via Gaussian elimination or Gauss-Jordan elimination.

Evaluating the criterion ‖Z2
k − I‖ < 1 requires some extra computation. If the Newton

iteration is used as an initial, globally convergent iteration, then Z2
k is not readily available

(in contrast to the globally convergent Halley’s method described in the next subsection). In
that case, one may use the identity Z2

k − I = (Zk + I)(Zk − I) and the inequality

‖Z2
k − I‖ ≤ ‖Zk + I‖‖Zk − I‖

7

Algorithm 2 Newton-Schulz Iteration for the Sylvester Equation.

INPUT: Coefficient matrices (A, B, C) ∈ R
n×n × R

m×m × R
m×n as in (2), tolerance τ for

convergence of (9).
OUTPUT: Approximate solution X of (2).
1: Use Algorithm 1 to compute A, B, C with

max{‖A + In‖1, ‖Bk + Im‖1} <
√

2 − 1.

2: while max{‖A + In‖1, ‖B + Im‖1} > τ do

3: Compute V := 3Im − B2.
4: Compute W := AC − CB.
5: Compute C := CV .
6: Compute C := 1

2(C − AW).
7: Compute W := 3In − A2,
8: Set A := 1

2AW and B := 1
2BV .

9: end while

10: Set X := 1
2C.

(assuming that ‖ . ‖ is a submultiplicative norm). For stable matrices, Zk → −I so that
‖Zk + I‖ → 0. Using

‖Zk − I‖1 = ‖Zk + I − 2I‖1 ≤ ‖Zk + I‖1 + 2,

a sufficient criterion to ensure that ‖Z2
k − I‖1 < 1 is given by ‖Zk + I‖1 <

√
2 − 1. It has

the advantage that no extra norm computation is needed, but it might be too conservative
occasionally. This can be used to measure the convergence of the iteration for the sequences of
Ak and Bk without squaring these matrices. As the iteration for the sequences of Ak and Bk

are the Newton-Schulz iterations for A and B, respectively, if max{‖Ak + I‖1, ‖Bk + I‖1} <√
2 − 1 convergence of these iterations is guaranteed. This also implies convergence of the

sequence for Ck. This saves two matrix multiplications per Newton iteration, but may lead
to more Newton steps than necessary before switching to the Newton-Schulz iteration as this
estimate often is conservative. In a variety of numerical tests, though, only one additional
Newton iteration was necessary using this relaxed criterion.

The Newton-Schulz method for Sylvester equations can be implemented as described in
Algorithm 2. The algorithmic description is oriented towards an efficient use of the BLAS-3
routine for matrix multiplication and re-use of workspace.

2.4 Halley’s method

As an example of a higher order rational iterative scheme we consider Halley’s method [33, 25].
The same ideas employed here can be used to investigate other high-order schemes as the basic
property that yields the simplification of the iteration scheme is the block-triangularity of H
in (6) and the fact that this property is preserved by matrix multiplication and inversion.

For a general matrix Z, with no eigenvalues on the imaginary axis, Halley’s iteration is
given by

Z0 := Z, Zk+1 := Zk

(

3I + Z2
k

) (

I + 3Z2
k

)−1
, k = 0, 1, 2, . . . , (17)

8

which is based on the rational iteration function

f(z) :=
z3 + 3z

3z2 + 1
.

As an instance of the globally convergent Padé approximations (i.e., the (m, k) entries of the
Padé table for which m ≥ 1 and k ∈ {m, m − 1}; see [39, Theorem 3.3]), this iteration can
also be used as a method to generate a starting value for the Newton-Schulz iteration. On
the other hand, Halley’s method is cubically convergent so that only very few iterations are
needed once ‖Z2

k − I‖ < 1.

Applied to the Sylvester equation (2) it is again possible to write (17) in terms of Halley’s
iterations for the sequences Ak and Bk, and a separate iteration for the sequence Ck. As in
the Newton-Schulz case, we need the square of the current iterate Hk obtained by applying
(17) to H from (6). This was already shown in (15). Using

(I + 3H2
k)−1 =

[

(In + 3A2
k)

−1 −3(In + 3A2
k)

−1(AkCk − CkBk)(Im + 3B2
k)−1

0 (Im + 3B2
k)−1

]

,

and performing some elementary manipulations we obtain the Halley iteration for (2) as

A0 := A, Ak+1 := Ak

(

3In + A2
k

) (

In + 3A2
k

)−1
,

B0 := B, Bk+1 := Bk

(

3Im + B2
k

) (

Im + 3B2
k

)−1
,

C0 := C, Ck+1 := ((Ak − 3Ak+1)(AkCk − CkBk)+

Ck

(

3Im + B2
k

)) (

Im + 3B2
k

)−1
,

k = 0, 1, 2, (18)

Given scratch arrays U, V, W , where U , V are of size (max(n, m))2 and W is of size nm,
this iteration can be implemented as in Algorithm 3 where, for convenience, we have provided
the values of the computed quantities in terms of (18) as comments.

The procedure given in Algorithm 3 requires 20
3 n3 + 6n2m + 4nm2 + 20

3 m3 flops if n < m.
Otherwise the computations can be rearranged so that the cost becomes 20

3 m3+4n2m+6nm2+
20
3 n3. This implementation requires a scratch space of size n2+2(max(m, n))2+max(n, m)m+
nm plus the space for A, B, and C. However, a tradeoff between computational cost and
scratch space is possible so that a larger workspace could be used to reduce the number of
actual flops.

The computational savings compared to applying (17) to H from (6) are not as significant
as in the Newton-Schulz case. The full scheme would require 231

3n3 flops if n = m and, in
general, a workspace of size 3(n + m)2. If n = m, Algorithm 1 requires a workspace of size
6n2 as compared to 12n2 for the full scheme so that half this space can be saved.

3 Factorized Solution of Stable Sylvester Equations

Here we consider the Sylvester equation (2) with factorized right-hand side, that is,

AX + XB + FG, F ∈ R
n×p, G ∈ R

p×m. (19)

9

Algorithm 3 Halley’s Method for the Sylvester Equation.

INPUT: Coefficient matrices (A, B, C) ∈ R
n×n × R

m×m × R
m×n as in (2), tolerance τ for

convergence of (9).
OUTPUT: Approximate solution X of (2).
1: while max{‖A + In‖1, ‖B + Im‖1} > τ do

2: U := A2 % = A2
k.

3: V := In + 3U % = In + 3A2
k.

4: U := 3In + U % = 3In + A2
k.

5: U := UV −1 % = (3In + A2
k)(In + 3A2

k)
−1.

6: V := A % = Ak.
7: A := V U % = Ak+1.
8: U := V C % = AkCk.
9: U := U + CB % = AkCk − CkBk.

10: V := V − 3A % = Ak − 3Ak+1.
11: W := V U % = (Ak − 3Ak+1)(AkCk + CkBk).
12: U := B2 % = B2

k.
13: V := Im + 3U % = Im + 3B2

k.
14: V := V −1 % = (Im + 3B2

k)−1.
15: U := 3Im + U % = 3Im + B2

k.
16: U := UV % = (3Im + B2

k)(Im + 3B2
k)−1.

17: W := WV % = (Ak − 3Ak+1)(AkCk + CkBk)(Im + 3B2
k)−1.

18: B := BU % = Bk+1.
19: V := CU % = Ck(3Im + B2

k)(Im + 3B2
k)−1.

20: C := V + W % = Ck+1.
21: end while

22: Set X := 1
2C.

Applying (9) to (19) the iterations for Ak and Bk remain unaltered, while the iteration for
Ck can be rewritten as follows:

F0 := F, Fk+1 :=
[

Fk, A−1
k Fk

]

,

G0 := G, Gk+1 :=

[

Gk

GkB
−1
k

]

.

Although this iteration is much cheaper during the initial steps if p ≪ n, m, this advantage is
lost in latter iterations since the number of columns in Fk+1 and the number of rows in Gk+1

is doubled in each iteration step. This can be avoided by applying a similar technique as used
in [10] for the factorized solution of Lyapunov equations. Let Fk ∈ R

n×pk and Gk ∈ R
pk×m.

We first compute a rank-revealing QR (RRQR) factorization [15] of Gk+1 as defined above;
that is,

[

Gk

GkB
−1
k

]

= URΠG, R =

[

R1

0

]

,

where U is orthogonal, ΠG is a permutation matrix, and R is upper triangular with R1 ∈ R
r×m

of full row-rank. Then, we compute a RRQR factorization of Fk+1U :

[

Fk, A−1
k Fk

]

U = V TΠF , T =

[

T1

0

]

,

10

Algorithm 4 Factorized Newton Iteration for the Sylvester Equation.

INPUT: Coefficient matrices (A, B, F, G) ∈ R
n×n×R

m×m×R
n×p×R

p×m as in (19), tolerances
τ1 for convergence of (9) and τ2 for rank detection.

OUTPUT: Numerical full-rank factors Y, Z of the solution X of (19).
1: while max{‖A + In‖1, ‖B + Im‖1} > τ1 do

2: Use the LU decomposition or the Gauss-Jordan elimination to compute

Ainv := A−1, Binv := B−1, c := (det(A) det(B))−
1

n+m .

3: Compute the RRQR
[

G/
√

c√
cGB−1

]

=: U
[

R1

0

]

ΠG, with U orthogonal, ΠG a permutation

matrix, R1 ∈ R
r×m upper triangular of full row-rank.

4: Compute the RRQR
[

F/
√

c,
√

cA−1F
]

U = V
[

T1

0

]

ΠF , with V orthogonal, ΠF a

permutation matrix, T1 ∈ R
t×2p upper triangular of full row-rank.

5: Partition V = [V1, V2], V1 ∈ R
n×t, and compute [T11, T12] := T1ΠF , where T11 ∈ R

t×r.
6: Set

F := V1T11, G := R1ΠG, p := r.

7: Set

A :=
1

2
(
1

c
A + cAinv), B :=

1

2
(
1

c
B + cBinv).

8: end while

9: Set Y := 1√
2
F , Z := 1√

2
G.

where V is orthogonal, ΠF is a permutation matrix, and T is upper triangular with T1 ∈
R

t×2pk of full row-rank. Partitioning V = [V1, V2], with V1 ∈ R
n×t, and computing

[T11, T12] := T1ΠF , T11 ∈ R
t×r,

we then obtain as the new iterates

Fk+1 := V1T11, Gk+1 := R1ΠG.

Then from Ck+1 in (9), we have
Ck+1 = Fk+1Gk+1.

Setting

Y :=
1√
2

lim
k→∞

Fk, Z :=
1√
2

lim
k→∞

Gk,

we obtain the solution X of (2) in factored from X = Y Z. If X has low numerical rank,
the factors Y and Z will have the a low number of columns and rows, respectively, and the
storage and computation time needed for the factorized solution will be much lower than that
of the original iteration (9). The resulting algorithm is summarized in Algorithm 4, where for
ease of notation, we used determinantal scaling—implementing approximate norm scaling is
a bit involved here as the Ck-iterate is not available explicitly. A relaxed approximate norm
scaling based on ignoring the contributions of FkCk in (5) can be used, see Example 2 in
subsection 5.1.

Given that r ≪ m, n for all the iterates (that is, the solution X has low numerical rank),
the cost of Algorithm 4 is 2(n3 + m3) + O((n + m)2) flops, where the cubic part comes

11

from computing the matrix inverses either via the Gaussian elimination or Gauss-Jordan
elimination. The required workspace also depends on the numerical rank of X and is about
2(n2 + m2 + 2(n + m)r) real numbers.

Certainly, variants of Algorithms 4 based on the Newton-Schulz or Halley’s method can
be derived but, as no gain in efficiency can be expected regarding the numerical results given
in Section 5, we omit the tedious details of such an algorithm here.

4 Iterative Schemes for Solving Generalized Stable Sylvester

Equations

As outlined in the Introduction, Equation (1) can be solved by first transforming it into a
standard Sylvester equation, and then applying any of the the methods presented in Section 2.
This is equivalent to computing the matrix sign function of

H̃ =

[

Ã C̃

0 −B̃

]

=

[

E−1A E−1CD−1

0 −BD−1

]

.

However, we can also use the equivalence of H̃ − λIn+m to

H − λK :=

[

A C

0 −B

]

− λ

[

E 0

0 D

]

, (20)

given by

H − λK = K(H̃ − λIn+m)L, where K =

[

E 0

0 Im

]

, L =

[

In 0

0 D

]

.

Now, from (8) we know that sign
(

H̃
)

=
[

−In

0
2X
Im

]

so that we can compute the solution of

the generalized Sylvester equation by applying (9) to H̃. In doing so, we obtain in the first
step (omitting scaling)

H̃1 =
1

2
(H̃ + H̃−1) =

1

2
(K−1HL−1 + LH−1K) = K−1

(

1

2
(H + KLH−1KL)

)

L−1.

Repeating this calculation and denoting H0 := H, K0 := K, we obtain

Hk+1 :=
1

2
(Hk + KLH−1

k KL), k = 1, 2, . . . , (21)

so that Hk = KH̃kL. Finally, taking limits on both sides, yields

H∞ := lim
k→∞

Hk = K sign
(

H̃
)

L =

[

−E 2EXD

0 D

]

, (22)

so that X = 1
2E−1H12D

−1, where H12 denotes the upper right n × m-block of H∞.
The iteration (21) is an instance of the generalized Newton iteration formulated in [25] for

a general matrix pair Z − λY , with Y nonsingular:

Z0 := Z, Zk+1 :=
(

Zk + Y Z−1
k Y

)

, k = 0, 1, 2, (23)

12

Using the block-triangular structure of the involved matrix pencil, we obtain from (21) the
generalized Newton iteration for the solution of the generalized Sylvester equation (1):

A0 := A, Ak+1 := 1
2

(

Ak + EA−1
k E

)

,

B0 := B, Bk+1 := 1
2

(

Bk + DB−1
k D

)

,

C0 := C, Ck+1 := 1
2

(

Ck + EA−1
k CkB

−1
k D

)

,

k = 0, 1, 2, (24)

At convergence, the solution of (1) is then obtained by solving the linear matrix equation

EXD =
1

2
lim

k→∞
Ck.

From (22) we have
lim

k→∞
Ak = −E, lim

k→∞
Bk = −D,

which suggests the stopping criterion

max

{‖Ak + E‖1

‖E‖1
,
‖Bk + D‖1

‖D‖1

}

≤ τ, (25)

where again, τ is the tolerance threshold.
Several scaling strategies for accelerating this iteration can be used. Similarly to Section 2,

rather than using the determinantal scaling as suggested for (23) in [25], we use again a norm
scaling, based on equalizing the spectral norm of the two addends in (23) and approximating
the spectral norm by the geometric mean of the 1-norm and the maximum norm. For (21)
we thus obtain

ck :=

(

‖Hk‖1‖Hk‖∞
‖KLH−1

k KL‖1‖KLH−1
k KL‖∞

)
1

4

. (26)

This quantity can be readily computed from the intermediate results in (24).
One step of iteration (24) involves solving two general linear systems, and computing four

matrix products. This adds up to 14
3 n3+2n2m+2nm2+ 14

3 m3 flops. For n = m, we obtain 40
3 n3

flops. The estimates given in [26] for the Bartels-Stewart method are 144n3 flops and 106n3

flops for the Hessenberg-Schur method. Hence, about 8 iterations of (24) are as expensive as
solving (1) by the Hessenberg-Schur method while about 11 iterations are equivalent in cost to
that of the Bartels-Stewart method. The usual observation for iteration (24) combined with
the scaling as suggested in (26) is that 7–10 iterations are required for convergence of fairly
well-conditioned examples. As the computational kernels of (24) can usually be implemented
in a much more efficient way than the QZ algorithm, which is the basis of the codes described
in [26], it is expected that (24) achieves a much higher performance than the Bartels-Stewart
and Hessenberg-Schur methods, especially when implemented on parallel computers.

Algorithm 5 is implements a BLAS-3 variant with efficient memory re-usage for (24). The
scratch space necessary for the iteration includes T of size n2, U of size m2, and V, W , each
of size (max(n, m))2.

A factorized iteration for generalized Sylvester equations with right-hand side C = FG
can be derived in complete analogy to Section 3 defining

F0 := F, Fk+1 :=
[

Fk, EA−1
k Fk

]

,

G0 := G, Gk+1 :=

[

Gk

GkB
−1
k D

]

.

13

Algorithm 5 Generalized Newton Iteration for the Generalized Sylvester Equation.

INPUT: Coefficient matrices A, E ∈ R
n×n, B, D ∈ R

m×m, C ∈ R
m×n as in (1), tolerance τ

for convergence of (24).
OUTPUT: Approximate solution X of (1).

1: while max{‖A+E‖1

‖E‖1
, ‖B+D‖1

‖D‖1
} > τ do

2: Use the LU decomposition or the Gauss-Jordan elimination to compute

T := EA−1, U := B−1D.

3: Compute V := CU .
4: Compute W := TV .
5: Compute V := TE, set T := V .
6: Compute V := DU , set U := V .

{Now T, U, W contain the blocks of the second addend in (21).}
7: Compute c as in (26) from A, B, C, T, U, W .

8: Compute A := 1
2(1

cA + cT).

9: Compute B := 1
2(1

cB + cU).

10: Compute C := 1
2(1

cC + cW).
11: end while

12: Solve EXD = 1
2C.

We leave the details of such an iteration to the interested reader.

5 Experimental Results

In this section we analyze the accuracy and parallel performance of the various Sylvester
equation solvers proposed in this paper.

5.1 Accuracy and efficiency of the Sylvester equation solvers

This subsection briefly analyzes the accuracy of the Sylvester equation solvers based on the
sign function. For this purpose, we implemented Matlab functions according to the Algo-
rithms 1–5. We compare these functions with the Bartels-Stewart method as implemented
in the Matlab function lyap from the Control Toolbox. For completeness, we also include
in our comparison the Hessenberg-Schur method. An implementation of this method is con-
tained in SLICOT and can be called from Matlab via a mex gateway function as routine
slsylv; see [45] for details.

In practice, the accuracy has to be related with the conditioning of the problem. In par-
ticular, the conditioning of the Sylvester equation is given by the sensitivity to perturbations
in the data, and can be measured using the distance between the spectra of the matrix pencils
A − λE and B − λD. This distance can be estimated using an approximation of the func-
tion Dif [(A, E), (B, D)] [38]. In the standard case of the equation this simplifies to the more
well-known separation function, Sep [A, B].

In the evaluation we borrow examples from [1, 45]. All the experiments presented here
were performed on an Intel Pentium M processor at 1.4 GHz with 512 MBytes of RAM using

14

Matlab Version 6.5.1 (R13) and the Matlab Control Toolbox Version 5.2.1. Matlab uses
ieee double-precision floating-point arithmetic with machine precision ε ≈ 2.2204 × 10−16.

Example 1 [45, Example 7]. For the standard Sylvester equation we employ square
matrices A, B, and C generated as follows. First, we construct

Â = diag
(

−1,−a,−a2, . . . ,−an−1
)

, a > 1,

B̂ = diag
(

−1,−b,−b2, . . . ,−bn−1
)

, b > 1,

Ĉ = diag (1, 2, 3, . . . , n) ,

where the parameters a and b regulate the distribution of the spectra of A and B, respectively,
and therefore their separation. The entries of the solution matrix to ÂX̂ + X̂B̂ + Ĉ = 0 are
then given by

X̂ij =
Ĉij

Âii + B̂jj

.

In a second step, we employ a transformation matrix T ∈ R
n×n defined as

T = H2SH1,

where
H1 = In − 2

nh1h
T
1 , h1 = [1, 1, . . . , 1]T ,

H2 = In − 2
nh2h

T
2 , h2 =

[

1,−1, . . . , (−1)n−1
]T

,
S = diag

(

1, s, . . . , sn−1
)

, s > 1,

to transform the matrices of the equation as

A = T−T ÂT T , B = TB̂T−1, C = T−T ĈT−1, and X = T−T X̂T−1.

The scalar s is used here to regulate the conditioning of T . In this example we set the
parameters to a=1.03, b=1.008, and s=1.001. With increasing dimension n, the condition
number of the Sylvester equation increases merely due to an increase in the norms of A and
B rather than a decrease of the separation number. This explains the loss of accuracy of
all considered methods for growing n. Figure 1 shows the accuracy and execution times of
Matlab lyap function, SLICOT slsylv function, as well as the Newton, Newton-Schulz, and
Halley iterations. In this example, the accuracy of the Bartels-Stewart and Hessenberg-Schur
methods is slightly better than that of the sign function-based solvers. While for the Newton
iteration, the accuracy deteriorates only slightly, Halley’s method is much more affected by
roundoff and produces almost useless results for large n. The execution times for the Newton
and Newton-Schulz iterations are astonishing as their pure Matlab implementations even
outperform slsylv which is based on a compiled and optimized Fortran 77 code. This
demonstrates a high potential of the sign function method, in particular when implemented
via the Newton and Newton-Schulz iterations, to provide a highly efficient Sylvester solver.
The high execution time of Halley’s method is partially explained by the large number of
iterations (see Figure 2) needed for convergence as the higher complexity per step is not
compensated by the cubic convergence rate—as a matter of fact, cubic convergence cannot be
claimed for this example. The observed convergence rate is linear with constant 1

3 , and the
iteration stagnates without reaching the same level of accuracy as the Newton and Newton-
Schulz iterations.

15

0 100 200 300 400 500
10

−16

10
−14

10
−12

10
−10

10
−8

10
−6

10
−4

10
−2

10
0

10
2

Problem size (n=m)

||
 X

 −
 X

co
m

p
u

te
d

 |
| F

 /
 |
|
X

 |
| F

Relative Errors in Example 1

Matlab
Newton
Newton−Schulz
Halley
SLICOT

0 50 100 150 200 250 300 350 400 450 500
0

5

10

15

20

25

30

35

40

45
Execution Times in Example 1

Problem size (n=m)
C

P
U

 t
im

e
 (

se
c.

)

Matlab
SLICOT
Newton
Newton−Schulz
Halley

Figure 1: Relative errors and execution times of the Sylvester equation solvers applied to
Example 1.

The left plot in Figure 2 shows the iteration numbers for the three different iterations
considered for solving the Sylvester equation for n = 500 together with the achieved values of
the stopping criterion. Additionally, we show also the values for the Newton iteration (9) with
determinantal scaling (denoted Newton (det) in the figure). In this example, determinantal
scaling requires one iteration more in order to reach the same value of the stopping criterion
with scaling as in (5). Within the Newton-Schulz iteration, switching to the Schulz iteration
is only done in the last two iterations.

Example 2. A possible application of the factored Newton iteration for Sylvester equa-
tions is the computation of the cross-Gramian of a linear time-invariant system

ẋ(t) = Ax(t) + Bu(t), y(t) = Cx(t), (27)

which is defined as the solution of the Sylvester equation

AX + XA + BC = 0. (28)

The cross-Gramian contains information about certain properties of the linear system [23]
and can also be used for model reduction [2].

We apply Algorithm 4 to (28) for a system described in [1, Example 4.2] which comes from
a model for heat control in a thin rod. The physical process is modeled by a linear-quadratic
optimal control problem for the instationary 1D heat equation. Semi-discretization in space
using finite elements leads to a system of the form (27) with A = −M−1K where M and K
are the mass matrix and stiffness matrix, respectively, of the finite element approximation.
Mesh refinement leads to systems of different orders n. The other parameters in this example
are set to a = 0.01, b = 2, c = 1, β1 = 0, β2 = 0.1, γ1 = 0.9, γ2 = 1. We compare the
Bartels-Stewart and Hessenberg-Schur methods with Algorithm 4. There are no variants of
the direct methods that compute the factored solution directly.

16

0 2 4 6 8 10 12
10

−14

10
−12

10
−10

10
−8

10
−6

10
−4

10
−2

10
0

10
2

Convergence of the Sign Function−Based Methods

Iteration no. k

m
a

x
(

||
 A

 +
 I

n
 |
| 1

,
 |
|
B

 +
 I

m
 |
| 1

)

Newton (norm)
Newton (det)
Newton−Schulz
Halley

0 2 4 6 8 10 12 14 16 18 20 22
10

−20

10
−15

10
−10

10
−5

10
0

10
5

10
10

Convergence of the Factorized Iteration

Iteration no. k
m

a
x
(

||
 A

 +
 I

n
 |
| 1

,
||
 B

 +
 I

m
 |
| 1

)

Newton (norm)
Newton (det)
Newton (no)

Figure 2: Iteration numbers of the iterative Sylvester equation solvers in Example 1 (n = 500,
left) and Example 2 (right).

Figure 3 shows the accuracy and execution times of the solvers for various dimensions. As
an exact solution is not known in this case, we show the relative residuals

‖AX̂ + X̂A + BC‖F

2‖A‖F ‖X̂‖F + ‖B‖F ‖C‖F

,

where X̂ denotes the computed solution. All three methods give a relative residual as small
as expected from a numerically backward stable method. It should be noted, though, that for
the comparison we have to build X̂ = Ŷ Ẑ with the computed factors returned by Algorithm 4,
thereby giving away the advantage resulting from working with the factors directly.

The execution times show a fair advantage of the new algorithm even when only im-
plemented as a straightforward Matlab function. For the largest example in the test set
(n = 500), Algorithm 4 is three times faster than slsylv and five times faster than lyap.
The gains would be even greater when taking into account that the Bk-iteration in Algorithm 4
is not necessary for cross-Gramian computation (see [8]).

An interesting aspect of this example is that for increasing n, the separation becomes
smaller. As this affects the convergence of the Newton iteration for the sign function, we test
different scaling strategies: the determinantal scaling (Newton (det)), no scaling (Newton
(no)), and a modification of approximate scaling (5) (Newton (norm)) that does not require
the unavailable Ck-iterate. The modification is merely a simplification, which basically ignores
the contributions of Ck and A−1

k CkB
−1
k needed for computing the scaling factor as in (5).

As can be observed in the right plot in Figure 2, this modified norm scaling outperforms
determinantal scaling and no scaling by far.

17

0 50 100 150 200 250 300 350 400 450 500
10

−17

10
−16

10
−15

Accuracy of Sylvester Solvers in Example 2

Problem size (n)

R
e

la
tiv

e
 r

e
si

d
u

a
ls

Matlab
SLICOT
Newton

0 50 100 150 200 250 300 350 400 450 500
0

5

10

15

20

25
Execution Times in Example 2

Problem size (n)
C

P
U

 t
im

e
 (

se
c.

)

Matlab
SLICOT
Newton

Figure 3: Relative errors and execution times of the Sylvester equation solvers applied to
Example 2.

Example 3 [45, Example 13]. For the generalized Sylvester equation we choose

Â = diag
(

1, a, a2, . . . , an−1
)

, a > 1,

B̂ = diag
(

1, b−1, b−2, . . . , b−(n−1)
)

, b > 1,

D̂ = diag
(

−1,−d−1,−d−2, . . . ,−d−(n−1)
)

, d > 1,

Ê = diag
(

−1,−e,−e2, . . . ,−en−1
)

, e > 1,

Ĥ = vvT ,

Ĉ = −ĤD̂ − ĤB̂,

where the parameters a, b, d, and e regulate the eigenvalue distribution of the corresponding
matrices. We then employ an equivalence transformation defined by T as in example 1 to
transform the matrices of the equation into

A = T−T ÂT T , B = TB̂T−1, D = TD̂T−1, E = T−T ÊT T ,

C = T−T ĈT−1, and X = T−T X̂T−1.

In this example we set the parameters as a = 1.001, b = 1.004, d = 1.002, e = 1.003, and
s = 1.01.

We compare the generalized Newton iteration for (1) as given in Algorithm (5) with the
Bartels-Stewart and Hessenberg-Schur methods. Neither Matlab nor SLICOT provide a
solver for generalized Sylvester equations, so we use their standard Sylvester equation solvers,
applied to (3). As all methods require the solution of linear systems of equations with D
and E as coefficient matrices at the beginning (when using (3)) or the end (Algorithm (5)),
an ill-conditioning of these matrices would affect all methods. Whether or not delaying this
effect to the end is advantageous does not become obvious in this example as D and E are
both well-conditioned with condition numbers less than 100.

Figure 4 compares the relative error in the solutions X for the three different methods
and also shows the execution times needed. The relative errors for all three approaches are

18

remarkably similar. For large problems, the generalized Newton iteration offers the lowest
execution times.

0 50 100 150 200 250 300 350 400 450 500
10

−15

10
−14

10
−13

10
−12

Relative Errors in Example 3

Problem size (n=m)

||
 X

−

X

c
o

m
p

u
te

d

||
F
 /

 |
|
X

 |
| F

Matlab
SLICOT
Newton

0 50 100 150 200 250 300 350 400 450 500
0

5

10

15

20

25
Execution Times in Example 3

Problem size (n=m)

C
P

U
 t

im
e

 (
se

c.
)

Matlab
SLICOT
Newton

Figure 4: Relative errors and execution times of the generalized Sylvester equation solvers
applied to Example 3.

5.2 Parallel implementation and performance

The iterative schemes that we have described in the previous sections are basically composed
of traditional matrix computations such as matrix factorizations, solution of triangular linear
systems, matrix inversion, and matrix products. All these operations can be efficiently per-
formed employing parallel linear algebra libraries for distributed memory computers [12, 46].
The use of these libraries enhances the reliability and improves portability of the Sylvester
equation solvers. The performance will depend on the efficiencies of the underlying serial and
parallel computational linear algebra kernels and the communication routines.

Here we employ the parallel kernels in the ScaLAPACK library [12]. This is a freely
available library that implements parallel versions of many of the routines in LAPACK [3],
using the message-passing paradigm. ScaLAPACK is based on the PBLAS (a parallel version
of the serial BLAS) for computation and BLACS for communication. The BLACS can be
ported to any (serial and) parallel architecture with an implementation of the MPI [32].

Using the kernels in ScaLAPACK, we have implemented in Fortran-77 the following four
computational routines for the solution of Sylvester equations:

– pdgecsne: The Newton iteration for the Sylvester equation.

– pdgecsns: A hybrid algorithm for the Sylvester equation that employs the Newton
iteration until convergence of the Newton-Schulz iteration is guaranteed and, from then
on, switches to the latter iterative scheme.

– pdgecsha: Halley’s method for the Sylvester equation.

19

– pdggcsne: The generalized Newton iteration for the generalized Sylvester equation.

All the experiments presented in this section were performed on a cluster of 20 nodes us-
ing ieee double-precision floating-point arithmetic (ε ≈ 2.2204 × 10−16). Each node consists
of an Intel Pentium Xeon processor at 2.4 GHz with 1 Gbyte of RAM. We employ a BLAS
library specially tuned for the Pentium Xeon processor, that achieves around 3800 Mflops
(millions of flops per second) for the matrix product (routine DGEMM) involving matrices of
moderate dimensions [29]. The nodes are connected via a Myrinet multistage network; the
communication library BLACS is based on an implementation of the MPI communication
library specially developed and tuned for this network. The performance of the intercon-
nection network was measured by a simple loop-back message transfer resulting in a latency
of 18 µsec. and a bandwidth of 1.4 Gbit/sec. We made use of the LAPACK, PBLAS, and
ScaLAPACK libraries whenever possible.

In the following, we report the parallel performance of our Sylvester equation solvers.
In particular, as the performance is independent of the number of iterations, all the results
shown here correspond to one iteration of the algorithms.

Our first experiment reports the execution time of the parallel routines for a system of
dimension n = 2500. This is about the largest size we could solve on a single node of our
cluster, considering the number of data matrices involved, the amount of workspace necessary
for computations, and the size of the RAM per node. The left-hand plot in Figure 5 reports
the execution time of one iteration of the parallel algorithms using np=1, 2, 4, 6, 8, and 10
nodes. The execution of the parallel algorithm on a single node is likely to require a higher
time than that of a serial implementation of the algorithm (using, e.g., LAPACK and BLAS);
however, at least for such large scale problems, we expect this overhead to be negligible
compared to the overall execution time.

0 2 4 6 8 10 12
0

20

40

60

80

100

120

140
Random Sylvester equation of order n=m=2000

Number of processors

E
xe

cu
tio

n
 t
im

e
 (

se
c.

)

pdgecsne
pdgecsns
pdgecsha
pdggcsne

0 2 4 6 8 10 12 14 16
0

0.5

1

1.5

2

2.5

3

3.5

Random Sylvester equation of order n=m=2000*sqrt(n
p
)

Number of processors

G
ig

af
lo

ps
 p

er
 n

od
e

pdgecsne
pdgecsns
pdgecsha
pdggcsne

Figure 5: Performance (of one iteration) of the Sylvester equation solvers.

The figure shows reduced speed-ups when a small number of processors is employed. Thus,
e.g., when np=2, speed-ups of 1.41, 1.55, 1.58, and 1.44 are obtained for routines pdgecsne,
pdgecsns, pdgecsha, and pdggcsne, respectively. In all cases the efficiency decreases as np

gets larger (as the system dimension is fixed, the problem size per node is reduced) so that

20

using more than a few processors does not achieve a significant reduction in the execution
time for such a small problem.

We next evaluate the scalability of the parallel algorithms when the problem size per node
is constant. For that purpose, we fix the problem dimensions to n/

√
np = 2000, and report

the Gflops per node. The right-hand plot in Figure 5 shows the Gflop rate per node of one
iteration of the parallel routines. These results demonstrate the scalability of our parallel
kernels, as there is only a minor decrease in the performance of the algorithms when np is
increased while the problem dimension per node remains fixed.

6 Conclusions

We have proposed several variants of matrix sign function-based schemes for solving stable
Sylvester equations. The resulting algorithms are based on rational iteration functions. Evalu-
ation of these rational functions requires basic linear algebra computations which can be easily
parallelized using a ScaLAPACK-style implementation. We have discussed how to efficiently
implement the rational iterative schemes by exploiting the block-triangular matrix structure
arising from applying the sign function method to solving Sylvester equations. Moreover, we
have introduced a new iteration that delivers the solution of a Sylvester equation in factor-
ized form while allowing significant savings in computation time and memory requirement in
case the solution has low numerical rank. We have also discussed the application of the sign
function method for a class of generalized Sylvester equations.

The experimental results confirm the expected behavior of the sign function-based solvers
regarding numerical accuracy as well as efficiency and report a considerable degree of paral-
lelism in the approach proposed here.

The observation that for stable matrices and matrix pencils with poor stability margin
the norm scaling performs much better than determinantal scaling needs further justification
by a thorough theoretical investigation.

Acknowledgments

We would like to express our gratitude to Vasile Sima of the National Institute for Research
& Development in Informatics, Bucharest, Romania, for providing some helpful suggestions
for improving the manuscript.

References

[1] J. Abels and P. Benner. CAREX – a collection of benchmark examples for continuous-
time algebraic Riccati equations (version 2.0). SLICOT Working Note 1999-14, Nov.
1999. Available from http://www.win.tue.nl/niconet/NIC2/reports.html.

[2] R. Aldhaheri. Model order reduction via real Schur-form decomposition. Internat. J.
Control, 53(3):709–716, 1991.

[3] E. Anderson, Z. Bai, C. Bischof, J. Demmel, J. Dongarra, J. Du Croz, A. Green-
baum, S. Hammarling, A. McKenney, and D. Sorensen. LAPACK Users’ Guide. SIAM,
Philadelphia, PA, third edition, 1999.

21

[4] A. Antoulas. Lectures on the Approximation of Large-Scale Dynamical Systems. SIAM
Publications, Philadelphia, PA, to appear.

[5] Z. Bai and J. Demmel. Design of a parallel nonsymmetric eigenroutine toolbox, Part I.
In R. S. et al., editor, Proceedings of the Sixth SIAM Conference on Parallel Processing
for Scientific Computing, pages 391–398. SIAM, Philadelphia, PA, 1993. See also: Tech.
Report CSD-92-718, Computer Science Division, University of California, Berkeley, CA
94720.

[6] R. Bartels and G. Stewart. Solution of the matrix equation AX + XB = C: Algorithm
432. Comm. ACM, 15:820–826, 1972.

[7] A. N. Beavers and E. D. Denman. A new solution method for the Lyapunov matrix
equations. SIAM J. Appl. Math., 29:416–421, 1975.

[8] P. Benner. Factorized solution of Sylvester equations with applications in control. In Proc.
Intl. Symp. Math. Theory Networks and Syst. MTNS 2004, http://www.mtns2004.be,
2004.

[9] P. Benner, J. Claver, and E. Quintana-Ort́ı. Parallel distributed solvers for large stable
generalized Lyapunov equations. Parallel Processing Letters, 9(1):147–158, 1999.

[10] P. Benner and E. Quintana-Ort́ı. Solving stable generalized Lyapunov equations with
the matrix sign function. Numer. Algorithms, 20(1):75–100, 1999.

[11] P. Benner, E. Quintana-Ort́ı, and G. Quintana-Ort́ı. Numerical solution of discrete stable
linear matrix equations on multicomputers. Parallel Algorithms and Appl., 17(1):127–
146, 2002.

[12] L. Blackford, J. Choi, A. Cleary, E. D’Azevedo, J. Demmel, I. Dhillon, J. Dongarra,
S. Hammarling, G. Henry, A. Petitet, K. Stanley, D. Walker, and R. Whaley. ScaLA-
PACK Users’ Guide. SIAM, Philadelphia, PA, 1997.

[13] R. Byers. Solving the algebraic Riccati equation with the matrix sign function. Linear
Algebra Appl., 85:267–279, 1987.

[14] D. Calvetti and L. Reichel. Application of ADI iterative methods to the restoration of
noisy images. SIAM J. Matrix Anal. Appl., 17:165–186, 1996.

[15] T. Chan. Rank revealing QR factorizations. Linear Algebra Appl., 88/89:67–82, 1987.

[16] C. Choi and A. Laub. Efficient matrix-valued algorithms for solving stiff Riccati differ-
ential equations. IEEE Trans. Automat. Control, 35:770–776, 1990.

[17] B. Datta. Numerical Methods for Linear Control Systems Design and Analysis. Elsevier
Press, 2003.

[18] L. Dieci, M. Osborne, and R. Russell. A Riccati transformation method for solving linear
BVPs. I: Theoretical aspects. SIAM J. Numer. Anal., 25(5):1055–1073, 1988.

[19] J. Dongarra, J. D. Croz, I. Duff, and S. Hammarling. A set of Level 3 Basic Linear
Algebra Subprograms. ACM Trans. Math. Soft., 16:1–17, 1990.

22

[20] J. J. Dongarra, I. S. Duff, D. C. Sorensen, and H. A. van der Vorst. Solving Linear
Systems on Vector and Shared Memory Computers. SIAM, Philadelphia, PA, 1991.

[21] W. Enright. Improving the efficiency of matrix operations in the numerical solution of
stiff ordinary differential equations. ACM Trans. Math. Softw., 4:127–136, 1978.

[22] M. Epton. Methods for the solution of AXD − BXC = E and its application in the
numerical solution of implicit ordinary differential equations. BIT, 20:341–345, 1980.

[23] K. Fernando and H. Nicholson. On a fundamental property of the cross-Gramian matrix.
IEEE Trans. Circuits Syst., CAS-31(5):504–505, 1984.

[24] Z. Gajić and M. Qureshi. Lyapunov Matrix Equation in System Stability and Control.
Math. in Science and Engineering. Academic Press, San Diego, CA, 1995.

[25] J. Gardiner and A. Laub. Parallel algorithms for algebraic Riccati equations. Internat.
J. Control, 54(6):1317–1333, 1991.

[26] J. Gardiner, A. Laub, J. Amato, and C. Moler. Solution of the Sylvester matrix equation
AXB + CXD = E. ACM Trans. Math. Software, 18:223–231, 1992.

[27] G. Golub and C. Van Loan. Matrix Computations. Johns Hopkins University Press,
Baltimore, third edition, 1996.

[28] G. H. Golub, S. Nash, and C. F. Van Loan. A Hessenberg–Schur method for the problem
AX + XB = C. IEEE Trans. Automat. Control, AC-24:909–913, 1979.

[29] K. Goto and R. van de Geijn. On reducing TLB misses in matrix multiplication. FLAME
Working Note 9, Department of Computer Sciences, The University of Texas at Austin,
http://www.cs.utexas.edu/users/flame, 2002.

[30] L. Grasedyck. Existence of a low rank or H-matrix approximant to the solution of a
Sylvester equation. Numer. Lin. Alg. Appl., 11:371–389, 2004.

[31] L. Grasedyck and W. Hackbusch. A multigrid method to solve large scale Sylvester
equations. Preprint 48, Max-Planck Institut für Mathematik in den Naturwissenschaften,
Leipzig, Germany, 2004.

[32] W. Gropp, E. Lusk, and A. Skjellum. Using MPI: Portable Parallel Programming with
the Message-Passing Interface. MIT Press, Cambridge, MA, 1994.

[33] E. Halley. Methodus nova, accurata & facilis inveniendi radices aequationum quarum-
cumque generaliter, sine praevia reductione. Philos. Trans. Roy. Soc. London, 18:136–
148, 1694.

[34] G. Henry and R. van de Geijn. Parallelizing the QR algorithm for the unsymmetric
algebraic eigenvalue problem: myths and reality. SIAM J. Sci. Comput., 17:870–883,
1997.

[35] N. Higham. Computing the polar decomposition—with applications. SIAM J. Sci.
Statist. Comput., 7:1160–1174, 1986.

23

[36] W. Hoskins, D. Meek, and D. Walton. The numerical solution of the matrix equation
XA + AY = F . BIT, 17:184–190, 1977.

[37] D. Hu and L. Reichel. Krylov-subspace methods for the Sylvester equation. Linear
Algebra Appl., 172:283–313, 1992.

[38] B. K̊agström and P. Poromaa. Lapack-style algorithms and software for solving the
generalized Sylvester equation and estimating the separation between regular matrix
pairs. ACM Trans. Math. Software, 22(1):78–103, 1996.

[39] C. Kenney and A. Laub. Rational iterative methods for the matrix sign function. SIAM
J. Matrix Anal. Appl., 12:273–291, 1991.

[40] C. Kenney and A. Laub. The matrix sign function. IEEE Trans. Automat. Control,
40(8):1330–1348, 1995.

[41] E. Quintana-Ort́ı, G. Quintana-Ort́ı, X. Sun, and R. van de Geijn. A note on parallel
matrix inversion. SIAM J. Sci. Comput., 22:1762–1771, 2001.

[42] J. Roberts. Linear model reduction and solution of the algebraic Riccati equation by
use of the sign function. Internat. J. Control, 32:677–687, 1980. (Reprint of Technical
Report No. TR-13, CUED/B-Control, Cambridge University, Engineering Department,
1971).

[43] G. Schulz. Iterative Berechnung der reziproken Matrix. Z. Angew. Math. Mech., 13:57–
59, 1933. In German.

[44] V. Sima. Algorithms for Linear-Quadratic Optimization, volume 200 of Pure and Applied
Mathematics. Marcel Dekker, Inc., New York, NY, 1996.

[45] M. Slowik, P. Benner, and V. Sima. Evaluation of the linear matrix equation
solvers in SLICOT. SLICOT Working Note 2004–1, Sept. 2004. Available from
http://www.win.tue.nl/niconet/NIC2/reports.html.

[46] R. van de Geijn. Using PLAPACK: Parallel Linear Algebra Package. MIT Press, Cam-
bridge, MA, 1997.

[47] E. Wachspress. Iterative solution of the Lyapunov matrix equation. Appl. Math. Letters,
107:87–90, 1988.

24

Other titles in the SFB393 series:

03-01 E. Creusé, G. Kunert, S. Nicaise. A posteriory error estimation for the Stokes problem:
Anisotropic and isotropic discretizations. January 2003.

03-02 S. I. Solov’ëv. Existence of the guided modes of an optical fiber. January 2003.

03-03 S. Beuchler. Wavelet preconditioners for the p-version of the FEM. February 2003.

03-04 S. Beuchler. Fast solvers for degenerated problems. February 2003.

03-05 A. Meyer. Stable calculation of the Jacobians for curved triangles. February 2003.

03-06 S. I. Solov’ëv. Eigenvibrations of a plate with elastically attached load. February 2003.

03-07 H. Harbrecht, R. Schneider. Wavelet based fast solution of boundary integral equations.
February 2003.

03-08 S. I. Solov’ëv. Preconditioned iterative methods for monotone nonlinear eigenvalue
problems. March 2003.

03-09 Th. Apel, N. Düvelmeyer. Transformation of hexahedral finite element meshes into
tetrahedral meshes according to quality criteria. May 2003.

03-10 H. Harbrecht, R. Schneider. Biorthogonal wavelet bases for the boundary element
method. April 2003.

03-11 T. Zhanlav. Some choices of moments of refinable function and applications. June 2003.

03-12 S. Beuchler. A Dirichlet-Dirichlet DD-pre-conditioner for p-FEM. June 2003.

03-13 Th. Apel, C. Pester. Clément-type interpolation on spherical domains - interpolation
error estimates and application to a posteriori error estimation. July 2003.

03-14 S. Beuchler. Multi-level solver for degenerated problems with applications to p-version
of the fem. (Dissertation) July 2003.

03-15 Th. Apel, S. Nicaise. The inf-sup condition for the Bernardi-Fortin-Raugel element on
anisotropic meshes. September 2003.

03-16 G. Kunert, Z. Mghazli, S. Nicaise. A posteriori error estimation for a finite volume
discretization on anisotropic meshes. September 2003.

03-17 B. Heinrich, K. Pönitz. Nitsche type mortaring for singularly perturbed reaction-
diffusion problems. October 2003.

03-18 S. I. Solov’ëv. Vibrations of plates with masses. November 2003.

03-19 S. I. Solov’ëv. Preconditioned iterative methods for a class of nonlinear eigenvalue
problems. November 2003.

03-20 M. Randrianarivony, G. Brunnett, R. Schneider. Tessellation and parametrization of
trimmed surfaces. December 2003.

04-01 A. Meyer, F. Rabold, M. Scherzer. Efficient Finite Element Simulation of Crack Prop-
agation. February 2004.

04-02 S. Grosman. The robustness of the hierarchical a posteriori error estimator for reaction-
diffusion equation on anisotropic meshes. March 2004.

04-03 A. Bucher, A. Meyer, U.-J. Görke, R. Kreißig. Entwicklung von adaptiven Algorithmen
für nichtlineare FEM. April 2004.

04-04 A. Meyer, R. Unger. Projection methods for contact problems in elasticity. April 2004.

04-05 T. Eibner, J. M. Melenk. A local error analysis of the boundary concentrated FEM.
May 2004.

04-06 H. Harbrecht, U. Kähler, R. Schneider. Wavelet Galerkin BEM on unstructured meshes.
May 2004.

04-07 M. Randrianarivony, G. Brunnett. Necessary and sufficient conditions for the regularity
of a planar Coons map. May 2004.

04-08 P. Benner, E. S. Quintana-Ort́ı, G. Quintana-Ort́ı. Solving Linear Matrix Equations
via Rational Iterative Schemes. October 2004.

The complete list of current and former preprints is available via
http://www.tu-chemnitz.de/sfb393/preprints.html.

