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Introduction

Many mathematical models concerning e.g. field calculations, flow simulation, elas-

ticity or visualization are based on operator equations with global operators, espe-

cially boundary integral operators. In general, traditional discretizations will lead

to possibly very large linear systems with densely populated matrices. Therefore,

the complexity for solving such equations is at least O(N2), where N denotes the

number of equations. This fact restricts the maximum size of the linear equations

seriously.

Modern methods for the fast solution of boundary integral equations reduce the com-

plexity to a suboptimal rate, i.e. O(N logαN), or even an optimal rate, i.e. O(N).

Prominent examples for such methods are the fast multipole method [10], the panel

clustering [12], and related methods like H-matrices [11], in particular the adaptive

cross approximation [1]. Wavelet matrix compression [2] offers a further tool for the

fast solution of integral equations. In fact, a Galerkin discretization with wavelet

bases results in quasi-sparse matrices, i.e., most of the matrix coefficients are negli-

gible and can be treated as zero. Discarding these nonrelevant matrix coefficients is

called matrix compression. It has been shown in [7, 15] that only O(N) significant

matrix coefficients remain.

The major difficulty of the wavelet matrix compression is the construction of suit-

able wavelet bases. The common approach is based on refinement strategies which

requires a parametric representation of the surface by smooth patches [6, 7, 15].

A novel wavelet construction, introduced and applied to the so-called nonstandard

form of the system matrix in [17], employs a coarsening strategy of a given fine mesh

which might be considered also unstructured. In the present paper we prove that

these wavelet bases satisfy the approximation property and establish the inverse

estimate with respect to the Sobolev spaces Hs(Γ) in the range |s| < 1/2. Hence,

we derive the norm equivalence for all |s| < 1/2. This makes us possible to apply

our concept of the wavelet matrix compression to the standard form of the system

matrix. We prove that only O(N logN) matrix coefficients remain relevant, without

deteriorating the stability and accuracy of the underlying Galerkin scheme. Using,

similarly to [14], techniques from the fast multipole method and the panel clustering,

the computation of the compressed system matrix can be performed within subop-

timal complexity. Hence, the present method reduces the complexity considerably

while preserving the advantage of an explicit system matrix. Moreover, the diagonal

of the system matrix defines a good preconditioner in the case of integral operators

of nonzero order [9, 14].
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The outline of the present paper is as follows. First, in Section 1, we introduce the

class of problems under consideration. Then, in Section 2 we introduce the wavelet

bases and prove the desired norm equivalences. The present analysis shows that the

wavelet preconditioning for the single layer operator is nearly optimal. With such

bases at hand we are able to introduce the fully discrete wavelet Galerkin scheme

in Section 3. In Section 4 we present numerical results in order to demonstrate our

algorithm.

1. Problem formulation and preliminaries

1.1. Boundary integral equations. In the present paper we consider the fast

solution of a boundary integral equation on the closed Lipschitz surface Γ of an

(n+ 1)-dimensional domain Ω ⊂ Rn+1

(1.1) Au = f on Γ.

The inner product in L2(Γ) will be denoted by

(1.2) 〈u, v〉 :=

∫

Γ

v(x)u(x)dΓ.

Moreover, for |s| < 3/2 we define the Sobolev spaces Hs(Γ) locally by Lipschitz

continuous coordinates. The associated norms are indicated by ‖ · ‖s.

The boundary integral operator

(Au)(x) =

∫

Γ

k(x, y)u(y)dΓy

is assumed to be a strictly coercive operator of order 2q, that is A : Hq(Γ) → H−q(Γ)

with

〈Au, u〉 & ‖u‖2
q.

This property is up to well known modifications valid for the single layer operator

with q = −1/2. Though, for general Lipschitz domains, the double layer operator is

not always coercive, in many cases it is. So we assume that the double layer operator

satisfies this assertion with q = 0.

We shall further assume throughout this paper that the kernel function k(x, y) under

consideration is an analytic function in the space variables x, y ∈ Rn+1, apart from

the singularity x = y. More precisely, we assume that the kernel function satisfies

the following decay property

(1.3) |∂αx∂
β
y k(x, y)| .

α!β!

(s‖x− y‖)n+2q+|α|+|β|
, s > 0,

uniformly in the (n + 1)-dimensional multi-indices α = (α1, . . . , αn+1) and β =

(β1, . . . , βn+1).
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Under the assumption (1.3), we can expand the kernel in a convergent Taylor series

with center (x0, y0) ∈ Rn+1×Rn+1. Consider rx, ry ∈ R such that ‖x0−y0‖ > rx+ry,

then for all x, y ∈ Rn+1 satisfying ‖x− x0‖ < rx, ‖y − y0‖ < ry we have

(1.4) k(x, y) =
∑

|α|,|β|<p

∂αx∂
β
y k(x0, y0)

α!β!
(x− x0)

α(y − y0)
β + R

(p)
(x0,y0)

(rx, ry)

with the error estimate

(1.5)
∣∣R(p)

(x0,y0)
(rx, ry)

∣∣ .
max{rx, ry}

p

(s[‖x0 − y0‖ − rx − ry])n+2q+p
.

Moreover, an infinite expansion in terms of

(1.6) k(x, y) =
∑

min{|α|,|β|}<p

∂αx∂
β
y k(x0, y0)

α!β!
(x− x0)

α(y − y0)
β +Q

(p)
(x0,y0)

(rx, ry)

yields the error estimate

(1.7)
∣∣Q(p)

(x0,y0)
(rx, ry)

∣∣ .
rpxr

p
y

(s[‖x0 − y0‖ − rx − ry])n+2q+2p
.

In contrast to estimate (1.4), (1.5) the second estimate will give a much sharper

bound of the decay of matrix coefficients. Therefore, this estimate is the key for a

successful wavelet matrix compression.

We emphasize that one may consider any convergent expansion of the kernel different

from the Taylor series (1.4). For example, in three dimensions (n = 2) the common

approach employs spherical harmonics instead of polynomials since less coefficients

are required to achieve a certain accuracy in (1.5). Moreover, in case of double layer

potentials some further modifications are required since the normal to the boundary

appears in the kernel. For sake of clearness of presentation we have chosen the

Taylor expansion. With some minor modifications our ideas are also applicable in

the aforementioned cases.

1.2. Discretization. We shall be concerned with a Galerkin discretization of (1.1)

based on lowest order boundary elements, that are piecewise constant ansatz func-

tions. To this end, we suppose that the boundary Γ under consideration is given by

a set of panels

Γ =

N⋃

i=1

πi,

where each πi is an n-dimensional plane or even curved simplex in Rn+1. More

precisely, for each i a smooth diffeomorphism κi exists mapping a reference simplex

to the panel πi. The intersection of different simplices πi ∩ πj is either empty or a

lower dimensional face. Moreover, we consider the triangulation to be quasi uniform:

Let ρi denote the n-dimensional inscribed ball of the simplex πi, then the step width
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hN := maxNi=1 diam(πi) scales proportionally and reciprocal proportionally with ρi

and N , respectively,
N

min
i=1

ρi ∼ hN ∼ N−1/n.

Let us remark that the class of surface representations under consideration includes

the case of an unstructured mesh with respect to parametric surfaces as well as

polygonal approximations to a given surface. Moreover, it allows in a wide range of

applications also the treatment of complex geometries.

On the given triangulation we consider the space of piecewise constant ansatz func-

tions

VN := span{φi : i = 1, 2, . . . , N},

where each ansatz function is supported on a single simplex

(1.8) φi(x) =





1/

√
|πi|, x ∈ πi,

0, elsewhere.

The Galerkin scheme of (1.1) reads: Seek uN ∈ VN such that

(1.9) 〈AuN , vN〉 = 〈f, vN〉 for all vN ∈ VN .

Equivalently, making the ansatz uN =
∑N

i=1 uiφi we have to solve the linear system

of equations

(1.10) A
φ
Nu

φ
N = f

φ
N

with the system matrix A
φ
N = [〈Aφj, φi〉]

N
i,j=1, the solution vector u

φ
N = [ui]

N
i=1 and

the load vector f
φ
N = [〈f, φj〉]

N
j=1.

Denoting the exact solution of (1.1) by u, the traditional error analysis of the

Galerkin scheme yields the well known error estimate on uN

‖u− uN‖q . ht−qN ‖u‖t

for q ≤ t ≤ 1. If we define the Sobolev spaces Hs(Γ) in the range −5/2 < s ≤ 3/2

by duality with respect to the H−1/2(Γ)-inner product induced by the single layer

operator V , that is

‖u‖s := sup
‖v‖−(1+s)=1

〈V u, v〉,

then we can apply Aubin-Nitsche’s trick to obtain twice the convergence rate asso-

ciated with the energy norm:

Lemma 1.1. Let u be the solution of (1.1) and uN the solution of the Galerkin

scheme (1.10). Then, the following estimate

(1.11) ‖u− uN‖s . ht−sN ‖u‖t
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where 2q − 1 ≤ s < 1/2, s ≤ t, q ≤ t ≤ 1 holds uniformly in N , provided that

u is regular enough. The values s = 2q − 1 and t = 1 lead to the highest rate of

convergence h
2(1−q)
N .

Unfortunately, the Galerkin system (1.10) is densely populated if we use the tradi-

tional single-scale basis {φi}. Hence, we will consider a different basis in the spaces

VN , namely a wavelet basis, which leads to a quasi-sparse system matrix. As we will

see we can sparsify the system matrix without deteriorating the order of convergence

given by (1.11).

2. Wavelet bases

2.1. Cluster tree. In contrast to previous wavelet constructions we cannot use a

refinement strategy since the representation of the geometry automatically limits

the finest level of any finite consideration to a single simplex. Hence, we will employ

a coarsening procedure to define a multiscale hierarchy

(2.12) V0 ⊂ V1 ⊂ · · · ⊂ VJ = VN .

It will be realized by a uniform hierarchical non-overlapping subdivision of the

boundary Γ, called the cluster tree.

A cluster ν is defined as the nonempty union ν = π1 ∪ · · · ∪ πi of a certain set of

simplices πi. It is called the father cluster of ν ′, which will be denoted by ν ′ ≺ ν, if

ν ′ ( ν and no further cluster ν ′′ exists with ν ′ ( ν ′′ ( ν. The cluster ν ′ is then called

a son cluster of ν. If we order these clusters hierarchically concerning the father-son

relation “≺” we arrive at a tree structure, the so-called cluster tree T .

We have to specify some properties of the cluster tree T in more detail:

• Γ is the root of T .

• The leaves are the simplices πi.

• The cluster ν belongs to the level j if there exist j clusters {νi}
j−1
i=0 such that

ν ≺ νj−1 ≺ · · · ≺ ν0 = Γ.

The root Γ of the cluster tree is of the level 0 and J is the maximal level.

We denote the l-th cluster of the level j by νj,l. The union of all clusters of

a level j form a non-overlapping subdivision of the boundary Γ

⋃

l

νj,l = Γ and ν◦j,l ∩ ν
◦
j,l′ = ∅, l 6= l′.
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• The cluster tree is approximately a balanced 2n-tree, which means that the

number of sons k(νj,l) of the clusters νj,l satisfies

k(νj,l) ∼ 2n for all νj,l ∈ T \ {πi}.

• The diameter of the clusters νj,l is local with respect to the level j in terms

of

diam νj,l ∼ 2−j .

Moreover, the number #νj,l of simplices πi contained in a cluster νj,l from

the level j scales approximately like 2n(J−j)

#νj,l ∼ 2n(J−j).

The cluster tree T with the indicated terms should be given for our further con-

siderations. A common algorithm for its construction is based on a hierarchical

subdivision of the (n+ 1)-space. We begin by embedding the boundary Γ in a top-

level cube ν0. The cube is subsequently subdivided into 2n+1 equal cubes and this

process is iterated until a cube encloses less than a predetermined number of sim-

plices, cf. Figure 2.1. Alternatively, one may also consider a cluster tree obtained by

agglomeration starting on the finest grid.

Figure 2.1. Clustering of a given surface.

2.2. Construction of wavelets. With the cluster tree at hand we are in the posi-

tion to construct the wavelet basis. It should realize a hierarchical structure, which

means that the support of wavelet from the level j should be restricted to a single
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cluster from the level j to ensure the locality of the wavelets. Moreover, for matrix

compression, the wavelets should provide vanishing moments of order d̃, that is

(2.13)

∫

Γ

(x− x0)
αψj,k(x)dΓ = 0, |α| < d̃,

where x0 denotes the center of the associated cluster. We like to emphasize that

(x − x0)
α is considered as a spatial polynomial in Rn+1 and only their traces on Γ

enter in definition (2.13).

We consider a cluster ν from the level j and define scaling functions Φν
j = {φνj,k}

and wavelets Ψν
j = {ψνj,k} supported in this cluster as linear combinations from the

scaling functions Φν
j+1 of ν’s son clusters on the finer level j + 1

(2.14)
[
Φν
j ,Ψ

ν
j

]
= Φν

j+1

[
V ν
j,0, V

ν
j,1

]
,

where the matrix [V ν
j,0, V

ν
j,1] is supposed to be orthogonal. For the beginning of the

recursion on the finest level J we have to use the piecewise constant ansatz functions

supported on a single simplex Φπi

J = {φi}. That way, we obtain the multiscale

hierarchy (2.12) via

(2.15) Vj := span{Φν
j : ν is a cluster from the level j}.

Moreover, the spaces

Wj := span{Ψν
j : ν is a cluster from the level j}

satisfy

Vj+1 = Vj
⊥
⊕Wj

due to the orthogonality of the matrix [V ν
j,0, V

ν
j,1].

In order to realize (2.13) we determine the moment matrix

(2.16) Mν
j :=

[∫

Γ

(x− x0)
αΦν

j+1(x)dΓ

]

|α|<ed

of the cluster ν from the level j. Employing the singular value decomposition

(2.17) Mν
j = UΣV ⊤ = U [S, 0]

[
V ν
j,0, V

ν
j,1

]⊤

we obtain the coefficient matrices V ν
j,0 and V ν

j,1, cf. [17].

In the next theorem we prove the approximation property with respect to spaces Vj.

To that end, we have to assume the boundary Γ to be simply connected.

Theorem 2.1 (Approximation property). Let the boundary Γ be simply connected.

Then, the spaces Vj defined via (2.14), (2.15), and (2.17) satisfy the approximation

property

inf
vj∈Vj

‖v − vj‖s . 2j(s−t)‖v‖t
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for all s ≤ t ≤ 1 uniformly in j.

Proof. On each cluster νj we can represent the projections of the traces of all poly-

nomials up to the degree d̃ ≥ 1 onto the piecewise constant functions with respect

to the finest grid, in particular the constant function, which gives us the charac-

teristic function χνj
. Employing local Lipschitz continuous coordinates and observ-

ing that constant functions are preserved under bi-Lipschitz continuous coordinate

transforms, by Bramble-Hilbert theory (see e.g. [4]) we conclude the well known

approximation property

inf
vj∈Vj

‖v − vj‖0 . 2−j‖v‖1.

By standard arguments we obtain the general result. �

Next, to proof the Bernstein inequality we make use of local Lipschitz continuous

coordinates. For sake of simplicity, we assume that each cluster ν has a regular

parametric representation, i.e., there exists a domain Uν ⊂ Rn and a Lipschitz con-

tinuous diffeomorphism such that κν(Uν) = Vν ⊂ Γ, where Vν denotes a sufficiently

large neighbourhood of the cluster ν. The preimage of the cluster itself is indicated

by Ων , that is Ων := κ−1(ν). Without loss of generality we assume κν(x) ∼ 1 for

all x ∈ Uν which can be realized by rescaling. In particular, this condition implies

diam Ων ∼ diam ν. At least from a certain level, the aforementioned assumptions

are valid.

With these preparations at hand we can compute the first order L2-modulus of

smoothness defined by

ω1(φ
ν
i , t)2 := sup

‖h‖≤t

√∫

Uν

|(φνi ◦ κν)(x) − (φνi ◦ κν)(x− h)|2dx

of the scaling functions for t . diamUν . For t & diamUν we simply set ω1(φ
ν
i , t)2 ∼ 1.

Lemma 2.2 (Bernstein inequality). The first order L2-modulus of smoothness with

respect to the scaling functions satisfies

ω1(φ
ν
i , t)2 . min

{
1,

√
t/ diam ν

}
.

Proof. If t ≥ diam Ων , then the supports of φνi ◦ κν and (φνi ◦ κν)(· − h) are disjoint

which leads to

(2.18) ω1(φ
ν
i , t)2 ≤ 2‖φνi ‖L2(Γ) = 2.

Next, we assume t ≤ diam Ων . Abbreviating

Ωh
ν := supp

(
(φνi ◦ κν)(· − h)

)
,
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we find the identity

ω1(φ
ν
i , t)

2
2 = sup

‖h‖≤t

{ ∫

Ων\Ωh
ν

|(φνi ◦ κν)(x)|
2dx+

∫

Ωh
ν\Ων

|(φνi ◦ κν)(x− h)|2dx

+

∫

Ωh
ν∩Ων

|(φνi ◦ κν)(x) − (φνi ◦ κν)(x− h)|2dx

}
.

First, we estimate

|Ων \ Ωh
ν | . ‖h‖(diam Ων)

n−1 ≤ t(diam Ων)
n−1,

which gives
∫

Ων\Ωh
ν

|(φνi ◦ κν)(x)|
2dx . t(diam Ων)

n−1‖φνi ◦ κν‖
2
L∞(Uν)

= t(diam Ων)
n−1‖φνi ‖

2
L∞(Γ).(2.19)

Likewise, we obtain
∫

Ωh
ν\Ων

|(φνi ◦ κν)(x− h)|2dx . t(diam Ωh
ν)
n−1‖(φνi ◦ κν)(· − h)‖2

L∞(Uν)

. t(diam Ων)
n−1‖φνi ‖

2
L∞(Γ)(2.20)

since |Ωh
ν | = |Ων | and ‖κν‖L∞(Uν) . 1.

The restrictions (x−x0)
α
∣∣
Γ
, α < d̃, are Lipschitz continuous on Vν . The projections

of these traces onto the piecewise constant functions with respect to the finest grid

define a d̃-dimensional vector space. Since φνi ◦κν is contained in this space we obtain

the following estimate

(2.21)

∫

Ωh
ν∩Ων

|(φνi ◦ κν)(x) − (φνi ◦ κν)(x− h)|2dx . t2(diam Ων)
n‖φνi ‖

2
L∞(Γ),

analogously to the approximation of Lipschitz functions by piecewise constant func-

tions. Notice that we have also used

|Ωh
ν ∩ Ων | . (diam Ων)

n.

Combining (2.19)–(2.21), and observing t ≤ diam Ων . 2−j, we arrive at

ω1(φ
ν
i , t)

2
2 . t(diam Ων)

n−1(2 + t diamΩν)‖φ
ν
i ‖

2
L∞(Γ) . t(diam Ων)

n−1‖φνi ‖
2
L∞(Γ).

Finally, we employ that a cluster ν on the level j has been supposed to consist of

2(J−j)n panels (cf. Subsection 2.1) which implies that |Ων | ∼ 2(J−j)n. Consequently,

we deduce ‖φνi ‖L∞(Γ) . 2jn/2 ∼ (diamΩν)
−n/2 and hence

ω1(φ
ν
i , t)

2
2 .

t

diam Ων

,

which is together with (2.18) the assertion since diam Ων ∼ diam ν. �



10

Using the equivalence of Sobolev and Besov norms for 0 < s < 1/2, the Bernstein

inequality implies the inverse estimate, cf. [3] for example.

Corollary 2.3 (Inverse estimate). The spaces Vj defined via (2.14), (2.15), and

(2.17) satisfy the inverse estimate

‖vj‖t . 2j(s−t)‖vj‖s, vj ∈ Vj,

for all −1/2 < s ≤ t < 1/2.

The present algorithm computes recursively defined wavelet functions. In addition

to the wavelets we have to add the scaling functions of the coarsest cluster to get a

complete basis. Hence, the wavelet basis is defined by

ΨN := ΦΓ
0 ∪ {Ψν

j : ν ∈ T}.

The next theorem specifies the important properties of our wavelet basis.

Theorem 2.4. The wavelets {ΨN} define an orthonormal basis with respect to the

inner product (1.2). The amount of wavelets on the level j is approximately 2jn

while the diameter of their support scales like 2−j. The wavelets provide vanishing

moments in terms of (2.13) of order d̃.

Proof. The orthogonality is an immediate consequence of the construction, see also

[17]. Further, in each cluster ν of the level j, we obtain O(1) wavelets {ψνj,k} inde-

pendently from N and the level j, which are supported in the cluster ν. Since we

have ∼ 2jn clusters with diameter ∼ 2−j on each level j we have proven the second

assertion.

Because V is orthogonal, (2.17) is equivalent to

U [S, 0] = Mν
j

[
V ν
j,0, V

ν
j,1

]
.

Inserting the definition (2.16) we find

[US, 0] =

[∫

Γ

(x− x0)
αΦν

j+1(x)dΓ

]

|α|<ed

[
V ν
j,0, V

ν
j,1

]

=

[[∫

Γ

(x− x0)
αΦν

j+1(x)dΓ

]

|α|<ed

V ν
j,0,

[∫

Γ

(x− x0)
αΦν

j+1(x)dΓ

]

|α|<ed

V ν
j,1

]

=

[[∫

Γ

(x− x0)
αΦν

j (x)V
ν
j,0dΓ

]

|α|<ed

,

[∫

Γ

(x− x0)
αΦν

j (x)V
ν
j,0dΓ

]

|α|<ed

]
.

Using the refinement relation (2.14) we arrive at

(2.22)

[∫
Γ
(x− x0)

αΦν
j (x)dΓ

]
|α|<ed

= US,
[∫

Γ
(x− x0)

αΨν
j (x)dΓ

]
|α|<ed

= 0,



11

that is the proof of (2.13). �
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Figure 2.2. A scaling function (left) and a wavelet with three van-

ishing moments (right).

The construction of wavelets starts on the finest level where we can determine all mo-

ment matrices directly within O(N) operations. In every cluster we have to compute

the singular value decomposition of the moment matrix to get the coefficients of the

wavelets and the coarse grid scaling functions as well as their moments, cf. (2.22).

These moments can be reused for the further computations after transferring them

to the center of the father cluster. Because of our assumptions on the cluster tree we

have O(N) clusters in all and consequently an over-all complexity for the construc-

tion of the wavelet basis of O(N). A wavelet with three vanishing moments and a

corresponding scaling function can be found in Figure 2.2.

In the sequel we will make use of the following renumbering. All scaling functions

and wavelets on the level j will be called φj,k and ψj,k, respectively, where k is from

a suitable index set of cardinality ∼ 2jn. Remember that the scaling functions and

wavelets on the level j are always supported in a single cluster from the same level.

Following [5, 8], the approximation property (Theorem 2.1) together with the Bern-

stein inequality (Lemma 2.2) prove the norm equivalence in the range |s| < 1/2.

Corollary 2.5 (Norm equivalence). Let the boundary Γ be simply connected. Then,

for |s| < 1/2 and v ∈ Hmax{s,0}(Γ) there holds the norm equivalence

‖v‖2
Hs(Ω) ∼

∑

j,k

2js|〈v, ψj,k〉|
2.

According to [13], as a consequence of this norm equivalence, we obtain the following

result.
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Proposition 2.6. Let A
ψ
N = [〈Aψj′,k′, ψj,k〉](j,k),(j′,k′) denote the Galerkin matrix in

wavelet coordinates corresponding to the single layer operator. The condition number

of the diagonally preconditioned system matrix grows only polylogarithmically

cond
(
(diagAψN )−1/2AψN (diagAψN )−1/2

)
. log2N.

2.3. Discrete wavelet transform. In order to solve (1.1) by the wavelet Galerkin

scheme it will be necessary to switch between the wavelet and the single-scale rep-

resentations

fj =
∑

j,k

〈f, ψj,k〉ψj,k =
∑

i

〈f, φi〉φi.

Likewise to the wavelet construction, we can determine the coefficients recursively

via the fast wavelet transform

[
〈f,Φν

j 〉, 〈f,Ψ
ν
j 〉

]
= 〈f,Φν

j+1〉
[
V ν
j,0, V

ν
j,1

]
, j = J, J − 1, . . . , 0,

which scales linearly. Due to the orthogonality of
[
V ν
j,0, V

ν
j,1

]
we can pass backwards

through this algorithm to gain the inverse wavelet transform. For further details we

refer to [14, 17].

3. The wavelet Galerkin scheme

3.1. Wavelet matrix compression. The idea of the wavelet Galerkin scheme is

just to use the wavelet basis ΨJ for the discretization of (1.9). Making the ansatz

uN =
∑

j,k uj,kψj,k and defining A
ψ
N = [〈Aψj′,k′, ψj,k〉](j,k),(j′,k′), u

ψ
N = [uj,k](j,k), and

f
ψ
N = [〈f, ψj,k〉](j,k), we arrive at the linear system of equations

(3.23) A
ψ
Nu

ψ
N = f

ψ
N .

We denote the convex hull to the support of the wavelet ψj,k by Θj,k. Note that, in

general, Θj,k is just the convex hull of the associated cluster since the support of

the wavelet is identical to this cluster. Employing the Taylor expansion of the kernel
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(1.6), (1.7) we can estimate the size of a single matrix coefficient

|〈Aψj′,k′, ψj,k〉| .

∣∣∣∣
∑

min{|α|,|β|}<ed

∂αx ∂
β
y k(x0, y0)

α!β!

·

∫

Γ

(x− x0)
αψj,k(x)dΓ

︸ ︷︷ ︸
=0

∫

Γ

(y − y0)
βψj′,k′(y)dΓ

︸ ︷︷ ︸
=0

∣∣∣∣

+

∣∣∣∣∣
2−(j+j′)ed

[s dist(Θj,k,Θj′,k′)]n+2q+2ed

∫

Γ

|ψj,k(x)|dΓ

∫

Γ

|ψj′,k′(y)|dΓ

∣∣∣∣∣

.
2−(j+j′)(ed+n/2)

dist(Θj,k,Θj′,k′)n+2q+2ed

provided that dist(Θj,k,Θj′,k′) > 0. That is, the system matrix A
ψ
N is now quasi-

sparse. Employing wavelets with enough vanishing moments most of the matrix

coefficients can be discarded without compromising the stability and accuracy of

the underlying Galerkin scheme. Setting all matrix coefficients to zero for which

the distance of the support of the corresponding ansatz and test functions is bigger

than a level dependent cut-off parameter Bj,j′ is called wavelet compression. For

given parameters

(3.24) a > 1, d < d′ < d̃+ 2q,

we define the cut-off parameter Bj,j′ as

(3.25) Bj,j′ := amax

{
2−min{j,j′}, 2

2J(d′−q)−(j+j′)(d′+ ed)

2( ed+q)

}
.

Theorem 3.1. The system matrix A
ψ
N can be compressed in accordance with

(3.26)
[
A
ψ
N

]
(j,k),(j′,k′)

:=





0, if dist(Θj,k,Θj′,k′) > Bj,j′,

〈Aψj′,k′, ψj,k〉 otherwise,

to only O(N logN) nonzero matrix coefficients without compromising the stability

and accuracy of the underlying Galerkin scheme.

Proof. The stability and accuracy of the wavelet Galerkin scheme is an immediate

consequence of the analysis presented in [7, 15].

Next, we estimate the number of nonzero coefficients in the compressed system

matrix. For fixed levels j and j′ we find only 2(j+j′)nBnj,j′ nonzero matrix coefficients.

Setting M := d′+ ed

2(ed+q)
and observing

2−J2(J−j)M2(J−j′)M = 2
2J(d′−q)−(j+j′)(d′+ ed)

2( ed+q) ,
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we can rewrite the cut-off parameter

Bj,j′ ∼ max
{

2−min{j,j,′}, 2−J2(J−j)M2(J−j′)M
}
.

We count first all coefficients 〈Aψj′,k′, ψj,k〉 for which

dist(Θj,k,Θj′,k′) . 2−J2(J−j)M2(J−j′)M .

This number is bounded by

J∑

j,j′=0

2(j+j′)n2−Jn2(J−j)Mn2(J−j′)Mn = 2Jn
J∑

j,j′=0

2(J−j)(M−1)n2(J−j′)(M−1)n . 2Jn,

since M < 1 due to (3.24). It remains to count the number of coefficients for which

dist(Θj,k,Θj′,k′) . 2−min{j,j′}.

In the case j ≥ j′ this number is bounded by

J∑

j=0

j∑

j′=0

2(j+j′)n2−j
′n =

J∑

j=0

2jn(j + 1) . 2JnJ,

and likewise for j ≤ j′. Due to N ∼ 2Jn and logN ∼ J this finishes the proof. �

The compression pattern generated by the wavelet matrix compression in case of

the single layer operator and n = 1 are plotted in Figure 3.3. Notice that the very

unusual structure issues from the recursive numbering of the wavelets. A reordering

will lead to the well known finger structure.
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Figure 3.3. Compression pattern of the system matrix (N = 2048).
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3.2. Setting up the matrix pattern. A naive check of the distance criterion

(3.26) for each matrix coefficient results in a O(N2)-procedure. To realize sub-linear

complexity, we exploit the underlying tree structure with respect to the supports of

the wavelets, to predict negligible matrix coefficients. We will call a wavelet ψj+1,son

a son of ψj,father if Θj+1,son ⊆ Θj,father. This father-son relation corresponds to the

father-son relation of the associated clusters.

Lemma 3.2. For Θj+1,son ⊆ Θj,father and Θj′+1,son ⊆ Θj′,father the relation

dist(Θj,father,Θj′,father′) > Bj,j′

implies

dist(Θj+1,son,Θj′,father′) > Bj+1,j′, dist(Θj+1,son,Θj′+1,son′) > Bj+1,j+1′.

Proof. The assertion is an immediate consequence of the relation Bj,j′ ≥ Bj+1,j′ ≥

Bj+1,j+1′. �

With the aid of this lemma we have to check the distance criteria only for coef-

ficients which stem from subdivisions of calculated coefficients on a coarser level.

Therefore, the resulting procedure of checking the distance criteria is still of com-

plexity O(N logN).

3.3. Computing the compressed system matrix. Since the boundary represen-

tation is not smooth, we cannot exploit an exponentially convergent hp-quadrature

formula like in [7, 15, 16] to compute the relevant matrix coefficients 〈Aψj,k, ψj′,k′〉.

We propose to employ instead a fast multipole or panel clustering scheme based on

the Taylor expansion (1.4) to compute relevant coefficients efficiently.

Since a wavelet ψj,k is a finite linear combination of scaling functions from the finer

grid (cf. (2.14)), i.e.

ψj,k =
∑

k′

vk′φj+1,k′,

it suffices to provide a method to compute the interactions of scaling functions

〈Aφj′,k′, φj,k〉.

If the relative distance of the associated clusters νj and νj′ is large enough

(3.27) dist(νj, νj′) > ηmax{diam νj , diam νj′} ∼ 2−min{j,j′}η, η >
1

s
,
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then we can exploit the Taylor expansion (1.4) in the centroids x0 ∈ νj and y0 ∈ νj′

〈Aφj′,k′, φj,k〉 ≈
∑

|α|,|β|<p

∂αx∂
β
y k(x0, y0)

α!β!
(3.28)

·

∫

Γ

(x− x0)
αφj,k(x)dΓ

∫

Γ

(y − y0)
βφj′,k′(y)dΓ,

where the error ε is bounded by (cf. (1.5))

|ε| .
max{diam νj , diam νj′}

p(diam νj)
n/2(diam νj′)

n/2

[s dist(νj, νj′)]n+2q+p
.

2−(j+j′)n/2

(sη)n+2q+p
.

Providing precomputed moments

Mj,k :=

[∫

Γ

(x− x0)
αφj,k(x)dΓ

]

|α|<p

,

the evaluation of (3.28) requires p2(n+1) operations.

If (3.27) is violated then we have to subdivide the larger cluster into its son cluster if

j 6= j′ or divide both if j = j′. This can be performed by inserting the refinement re-

lation (2.14) for the scaling functions. Then, one has to check again the admissibility

condition (3.27) for all appearing integrals to make a decision which values can be

computed directly by (3.28) and which one have again to be subdivided. Of course,

the depth of subdivision is bounded by max{J− j, J − j′} since on the finest level J

one computes the near field directly by numerical quadrature. Since on each stage

at most O(1) interactions violate the admissibility condition (3.27) the number of

computed coefficients is bounded by O(J). It is well known that the degree p has to

be chosen ∼ logN ∼ J to achieve a certain accuracy N−α, α > 0. Hence, the com-

putation of a single matrix coefficient requires at most O(log2(n+1)+1 N) operations.

Consequently, the computation of the compressed system matrix requires at most

O(N log2(n+2)N) operations.

Remark 3.3. This complexity estimate is rather crude. For example, in three di-

mensions, using a Taylor expansion of the kernel based on spherical harmonics, we

can reduce the complexity per coefficient to O(N log2n+1N).

Next, we emphasize that the full accuracy is required only for the interactions on the

coarsest grid. As shown in [7] it suffices to compute a single interaction 〈Aφj′,k′, φj,k〉

with a level dependent accuracy

(3.29) εj,j′ ∼ min
{

2−
|j−j′|n

2 , 2
−n(J− j+j′

2
)d′−q

ed+q

}
22Jq2−2d′(J− j+j′

2
)

with d′ ∈ (1, d̃+ 2q) from (3.24). Further, we can exploit different expansion degrees

in the variables if associated clusters belong to different levels. We are convinced

that incorporating these items we can reduce again the polylogarithmical term. Also
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more recent fast multipole versions can be applied for a further reduction. Of course,

since we use the fast multipole method or a similar method for the computation of

the compressed system matrix, the complexity of these methods is inherent in the

precomputational step of matrix generation.

4. Numerical results

This last section is dedicated to a numerical example for the case of two space dimen-

sions (n = 1). Let Γ be defined as the equidistant piecewise linear and continuous

approximation of the following boundary curve

γ : [0, 1] → Γ, γ(t) =
1

20

(
4 + cos(10πt) + cos(2πt)

)
[
cos(2πt)

sin(2πt)

]
.

Note that this curve underlies the clustering in Figure 2.1. On the domain Ω which

is bounded by Γ we want to solve an interior Dirichlet problem for the Laplacian.

For a given function f ∈ H−1/2(Γ) we seek u ∈ H1(Ω) such that

(4.30)
∆u = 0 in Ω,

u = f on Γ.

Choosing the harmonical function

U(x) = ex1 cos(x2)

and setting f := U
∣∣
Γ
, the function U is the unique solution of (4.30).

We consider the indirect formulation for the single respective double layer operator.

Firstly, employing the single layer operator

(V ρ)(x) := −
1

2π

∫

Γ

log ‖x− y‖ρ(y)dΓ(y), x ∈ Γ,

we arrive at a Fredholm integral equation of the first kind for an unknown density

ρ ∈ H−1/2(Γ)

(4.31) V ρ = f on Γ.

With this density at hand the solution u ∈ Ω is given by the potential evaluation

u(x) = (V ρ)(x), x ∈ Ω.

Secondly, the double layer operator

(Kρ)(x) :=
1

2π

∫

Γ

〈n(y), y − x〉

‖y − x‖2
ρ(y)dΓ(y), x ∈ Γ,

yields a Fredholm integral equation of the second kind

(4.32) (K −
1

2
I)ρ = f on Γ
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for the unknown density ρ. Therewith, the solution of (4.30) can be represented by

the potential evaluation

u(x) = (Kρ)(x), x ∈ Ω.

Note that the operators appearing on the left hand side of (4.31) and (4.32) denote

operators of the order −1 and 0, respectively.

We discretize the integral equations (4.31) and (4.32) by the traditional single-scale

basis and the constructed wavelet basis. The resulting systems are solved iteratively

by CG or GMRES. We compute the approximate solutions to ρ by the traditional

single-scale Galerkin scheme, a multipole scheme which just replaces the matrix-

vector multiplication by a fast approximation, and the compressed wavelet Galerkin

scheme. The wavelets have to provide d̃ = 3 and d̃ = 2 vanishing moments in case

of the single and double layer operator, respectively.
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Figure 4.4. Computing times with respect to the single layer oper-

ator (left) and the double layer operator (right).

First, we compare the over-all computing time of the three methods for achieving

the solution uN within discretization error

ǫN = max
i

|u(ξi) − uN(ξi)|

for a set {ξi} of fixed points distributed in the domain Ω. Note that εN . N−3 and

εN . N−2 for the single and double layer operator, respectively, provided that ρ is

smooth enough, cf. [18].

Figure 4.4 is concerned with the over-all computing times. We can see the asymp-

totical inferiority of the single-scale method compared to the other two methods.

Admittedly, Figure 4.4 shows that the present wavelet Galerkin method is about a
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Figure 4.5. Percentage of relevant coefficients in the compressed

system matrix.

factor three slower than the multipole method. This effect issues from the fact that

we apply the fast multipole method for matrix generation. However, the wavelet

compression yields a significant sparsification of the system matrix. In Figure 4.5

the straight lines indicate the ratio of the number of relevant coefficients and the

dense matrix, that is N2. The dotted lines correspond to a linear behaviour.

We shall next compare the setup time versus the solving time in the case of the

double layer operator. In case of the wavelet Galerkin method the computation of

the system matrix has to be performed only once which requires the major part of the

computing time (left plot of Figure 4.6). Nevertheless, the time for solving the quite

sparse system iteratively is nearly negligible since it just requires usual matrix-vector

multiplications. The behaviour of the multipole method is opposite: preparation

and iterative solution are balanced (right plot of Figure 4.6). However, the cpu-

time time of the multipole method heavily depends on the number of iterations

which is governed by the condition number of the arising system matrix. This means

that, particularly for operators of nonzero order in case of n = 2, the solving time

can increase dramatically. Whereas, the time spent on the iterative solution of the

compressed wavelet Galerkin system, even without wavelet preconditioning, will be

only a minor part of the over-all computing time.

These properties demonstrate an advantage of the wavelet Galerkin method, namely

the fast solution of the associated linear system of equations for multiple right hand

sides. In particular, we may conclude that from a certain amount (about five in the

present example) of right hand sides the present wavelet Galerkin method becomes

faster than the multipole method.
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wavelet Galerkin scheme (left) and the fast multipole method (right).
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