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Abstract

The preprint delivers an efficient solution technique for the numerical

simulation of crack propagation of 2D linear elastic formulations based

on finite elements together with the conjugate gradient method in or-

der to solve the corresponding linear equation systems. The developed

iterative numerical approach using hierarchical preconditioners compre-

hends the interesting feature that the hierarchical data structure will not

be destroyed during crack propagation. Thus, one gets the possibility

to simulate crack advance in a very effective numerical manner includ-

ing adaptive mesh refinement and mesh coarsening. Test examples are

presented to illustrate the efficiency of the given approach. Numerical

simulations of crack propagation are compared with experimental data.
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1 Introduction

Fracture of materials and several components of high technology engineering displays one
of the central problems in modern strength analyzes. Today, fracture mechanics forms an
autonomous research area of solid mechanics in order to explain phenomena of fracture,
fatigue, and strength of materials for development of materials which are better failure-
resistant than the conventional materials and to develop design methods that are better
failure-safe than the conventional ones. Although, the entire fracture mechanics approaches
cannot altogether be ascribed to crack type problems, the consideration and examination
of the essential conditions leading to crack propagation, crack deflection and crack arrest
is of highly practical and theoretical interests. Generally, analytical solutions for most
of these crack problems in finite body domains are not attainable. Thus, it is necessary
to develop numerical techniques for strength analysis of cracked structures subjected to
various kinds of loads.

Three well known numerical methods having the ability to solve crack propagation bound-
ary value problems for finite body domains can be mentioned [35]:

• the Finite Element Method,

• the Boundary Element Method,

• the Meshless Galerkin Method.

The Finite Element Method (FEM) is used to solve crack and crack propagation problems
for over 30 years. On the one hand, one can find nowadays a big number of publications
concerning even dynamic crack growth as it follows from the papers [11, 24, 35] and the
references therein as well as from the reviews [6, 25, 26]. On the other hand, crack propa-
gation modeling still represents a complicated problem and different specific definitions of
crack propagation are used in the literature.

• First, it is difficult to describe the changeover from a continuous solid medium hav-
ing strong continuity requirements on the displacements and their derivatives to final
displacement jumps with new free surfaces inside the solid. Generally, the modeling
of this procedure should be based on continuum approaches [27] leading to well-posed
boundary value problems including crack growth. For this purpose, one needs im-
proved cohesive models following from the realized critical stress and deformation
states surrounding the advancing crack tips, in general, for non-linear material be-
havior. It is well known that classical plastic inviscid material models containing
strain softening lead to ill-posed problems, and thus, are not useful to model crack
propagation. It’s quite plain that the well-posedness of such formulations cannot
be restored by means of numerical techniques. The problem formulations have to
prevent ill-posedness in order to get stable solutions depending continuously on the
initial parameters in connection with the application of stable numerics.
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• Second, an essential technical effort is necessary to include the algorithmic extensions
of the FEM technology for the crack advance procedures [20] if the constitutive def-
inition of the fracture process (point one) is established. In this context, Belytschko
and co-workers have worked out the extended Finite Element Method (X-FEM) [4, 5]
by adding enrichment functions to the approximation containing discontinuities for
the crack propagation. This method was already expanded to 3D crack propagation
problems in [14, 23] and induced an essential progress in crack advance simulation.

• Third, the numerical solution procedure for the corresponding boundary value prob-
lem with changing boundaries has to be made as efficient as possible, otherwise more
complicated, that is, more realistic crack growth assemblies are not practicable to
calculate. Thus, it is necessary to have excellent solutions surrounding the tips, in-
cluding the asymptotic behavior, where the fracture process occurs. Away from the
cracks, the numerical solution does not require very high resolution. In fact, one
needs adaptivity of the solution based on a posteriori error estimation [12, 28, 34]
together with effective capable solvers for the discrete solution system at each step
of crack propagation.

The Boundary Element Method (BEM), which reduces the dimensionality of the problem
by one degree can be applied effectively to crack advance problems for linear elastic for-
mulations. On the one hand, the large effort of remeshing during crack propagation is not
necessary by means of BEM. On the other hand, BEM encounters difficulties in connection
with artificial boundaries which must be introduced repeatedly for each increment of crack
extension. The publications [1, 2] and the references therein can be used for more details
about BEM-applications in crack advance problems.

Meshfree methods [18, 19, 21] were used in the past for numerical simulation of non-linear
boundary value problems including elastic-plastic and strain localization problems. They
do not need to generate a connectivity matrix and thus, they are especially suited for adap-
tive refinements and for discontinuous field problems or solutions with high gradients [16].
Meshless methods are capable to reproduce crack growth by means of special enrichments
for the nodal shape functions [13, 37]. On the other hand, the main difficulties of these
methods consist in the imposition of the essential boundary conditions [8] as well as in the
complicated structure of the shape functions [9] leading to difficult integration procedures.
Thus, it seems challenging to combine the advantages of the meshless methods with the
advantages of FEM in order to achieve optimal solutions in the sense of efficiency and
accuracy [16].

In this paper, we focus on efficient solution techniques for the numerical simulation of crack
propagation in 2D linear elastic formulations based on FEM together with the conjugate
gradient method (PCGM) solving the corresponding linear equation systems. The de-
veloped iterative numerical technique using hierarchical preconditioners comprehends the
interesting feature that the hierarchical data structure will not be destroyed during crack
propagation. Thus, one gets the possibility to simulate crack advance in a very effective
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numerical manner including adaptive mesh refinement and mesh coarsening. Test examples
are presented to illustrate the efficiency of the given approach.

2 Formulation of the Problem

Let us consider the governing equations of a linear two-dimensional boundary value problem
for isotropic elasto-statics with an advancing crack as shown in Figure 1. The boundary
of the studied region Ω is subdivided into the following parts: The displacements u∗ are
prescribed on Su of the outer boundary S=Su ∪ ST and stress loads T ∗ are given on ST .
Throughout the paper, bold typed variables denote vectors and tensors of second degree
in R2. Our considerations will be restricted to two-dimensional problems embedded in R3.
In addition to S, the crack surfaces a+ and a− represent an additional boundary inside
Ω together with the crack advance length scales ∆a+ and ∆a− (|∆a+ |=|∆a− |). The
direction and the magnitude of ∆a+ follow from corresponding crack advance models used
in fracture mechanics. Thus, the strong equilibrium equations and the boundary conditions
have the form:

∇·σ = 0 in Ω, σ·n = T ∗ on ST , u = u∗ on Su, (2.1)

σ·n = 0 on a+, a−, ∆a+ and ∆a−. (2.2)

In (2.1) and (2.2) σ, u and n denote the stress tensor, the displacement vector and the unit
normal vector corresponding to the given surfaces, respectively. ∇ represents the Nabla
operator which is defined through

∇ = ei ∂

∂xi

. (2.3)

Recurring indices mean the application of Einstein’s summation convention. The vectors
ei (i=1,2) span the dual basis regarding ei as shown in Figure 1 with respect to the
coordinates xi. The symbol · stands for the scalar (inner) product of two vectors.

Throughout our considerations, we will use the geometrically linear fashion of continuum
mechanics, that is, the deformation tensor ε is related to the displacements u by means of

ε = ε(u) =
1

2

(

∇u+ (∇u)T
)

. (2.4)

(∇u)T denotes the transpose of ∇u. To complete the description of the boundary value
problem, the material equations relating σ to ε have to be established. They will be
applied in the form of an isotropic elastic solid

σ = C :ε = λI1(ε)I + 2µε (2.5)

for plane strain conditions (u = u1(x1, x2)e1 + u2(x1, x2)e2, u
3 = 0). λ and µ denote

Lame’s coefficients, which follow from Young’s Modulus E and Poisson’s ratio ν by means
of

λ =
νE

(1 + ν)(1− 2ν)
, µ =

E

2(1 + ν)
. (2.6)
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Figure 1: Two-dimensional elastic body domain with an advancing crack

I1(ε) = ∇·u and I = eie
i = eiei represent the first invariant of ε and the unit (metric)

tensor of second degree, respectively. The symbol : means twice application of · . So much
about the strong formulation.

Solving problems for finite solids with real crack advance under arbitrary loads on the
boundaries, these strong equations are not useful. Thus, instead of (2.1) to (2.5), the
associated weak formulation(σ·n = T ∗ on ST )

∫

Ω

∫

ε(v) :C :ε(u) dΩ =
∫

ST

v·T ∗ dS, ∀ test displacements v (v = 0 on Su) (2.7)

will be applied. Making use of common finite element approximations for u and v, the
solution of the boundary value problem can be obtained for each specific crack length a.
To model general crack propagation, it is necessary to write (2.7) in the incremental form
for step by step loading based on the load increments ∆T ∗ = ∆σ·n on ST :

∫

Ω

∫

ε(v) :C :ε(∆u) dΩ =
∫

ST

v·∆T ∗ dS −
∫

∆a

v·σ0·n dS, ∀ v (v = 0 on Su) (2.8)

σ0 represents the calculated stresses of the previous load step at the current crack growth
surface ∆a = ∆a+ ∪ ∆a−. The last integral in (2.8) defines the energy released during
crack propagation along ∆a. As assumed above, we will consider quasi-static problems,
i.e., crack propagation displays a sequence of self-equilibrated steps. Thus, it is necessary
to increment the load step by step and look for crack advance on the one hand. On the
other hand, one can use the formulation (2.7) in the case of crack advance, instead of (2.8),
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for the equilibrium at the end of the crack propagation step as a consequence of the linear
quasi-static behavior. This circumstance simplifies the whole solution procedure and will
be used in the following. At each load level, it is necessary to prove the critical crack
advance conditions at the crack tips. If these conditions are fulfilled, the crack prolongates
to a+∆a and the solid gets the new surfaces ∆a+ and ∆a−. In continuum mechanics, the
length scale ∆a has to be assumed as an material parameter depending on the local stress
state of the crack tip, and in general, on constitutive parameters influencing the fracture
process [10]. Throughout the paper, we will suppose |∆a+ |=|∆a−| to be a given constant
material parameter for simplicity.

The crack prolongation conditions are formulated in the classical way given, for instance,
in [10] by means of two approaches. Based on the applied elastic material behavior, these
conditions can be expressed through the two-dimensional J-integrals or through the corre-
sponding stress intensity factors in an equivalent manner. The J-integral vector J is defined
along Γ-contours surrounding the crack tip as shown in Figure 2 (the outer normals of these
contours are labeled by n coinciding with the normal vector label on S).

J =
∫

Γ−+Γ+Γ+

(

(1
2
σ :ε)n−∇u·σ·n) ds (2.9)

For the considered material behavior, J does not depend on the specific choice of the
integration contour surrounding the crack tip. Thus, it characterizes the energy flux to
the tip and renders possible the production of the new surfaces ∆a in the case of crack
advance with an extreme amount of power. The components of J with respect to the local
xy-coordinate system at the crack tip are shown in Figure 2:

Jx = ex·J , Jy = ey·J . (2.10)

They are connected to the stress intensity factors KI and KII for the applied plane strain
model by means of

Jx =
1− ν2

E

(

K2
I +K2

II

)

, Jy = −21− ν2

E
KIKII . (2.11)

KI and KII provide the force criteria basis of fracture mechanics [17].

Applying the energetic approach [10], that is, the crack propagates along the direction of

the J-integral vector J (Figure 2) if the magnitude J =
√

J2
x + J2

y of J reaches the critical

value Jc (J = Jc), the frailure surface F (KI , KII) = 0 is defined through

F (KI , KII) = KIc −KI

(

(1 + ρ2)2 + 4ρ2
)

1
4 = 0, K2

Ic =
JcE

1− ν2
, ρ =

KII

KI

. (2.12)

KIc and ρ denote the fracture toughness and the ratio of KII and KI , respectively. For
a standing crack, (2.12) defines crack advance ∆a along the J-direction with the angle θ
(Figure 2):

θ = arctan
−2ρ
1 + ρ2

. (2.13)
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Figure 2: J-integral contour surrounding the crack tip

The second approach is based on the maximum hoop stress criteria. The crack will propa-
gate perpendicular to the maximum circumferential stress plane if the corresponding stress
intensity coefficient reaches KIc [10]. For this case, the crack direction θh and the failure
surface Fh(KI , KII) result from

θh = 2arctan
1−

√
1 + 8ρ2

4ρ
, Fh(KI , KII) = KIc −KI

4
√
2
(

1 + 3
√
1 + 8ρ2

)

(| ρ |)3
(

12ρ2 + 1−
√
1 + 8ρ2

)3/2
= 0.

(2.14)

Thus, the problem of crack growth in a two-dimensional isotropic elastic solid is formulated.
The next section presents an efficient method for the necessary numerical solution.

3 Numerical solution based on efficient adaptive

Finite Elements and iterative solver techniques

3.1 Adaptive Finite Element solution for fixed crack

The Finite Element simulation of the phenomenon described above requires some modern
features, which are nowadays standard in scientific computing:
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At first, the complicate structure of the solution around the crack tip (and its singularities)
demand an adaptive mesh refinement. Although the position of the actual crack tip is
known, we use an error controlled refinement procedure together with possible coarsening
which is very attractive for later stages where the crack tip has moved on. Here, we apply
locally the well–known residual error estimator [38] as error indicator on each existing finite
element T

η2T =
∑

E⊂T

hE

∥

∥

∥ [σ·n] ∥∥∥2
L2(E)

, (3.1)

which measures the size of the stress jumps [σ·n] over the edges E of T . In the case of
isotropic finite elements the weight hE denotes the edge size divided by Young’s modulus.
Then,

η =

(

∑

∀T

η2T

)1/2

(3.2)

gives an approximation to the total H1–error size up to an unknown constant. Hence, for
an element T with

η2T > αrefine · η2, (3.3)

we should refine T and if
η2T < αcoarse · η2, (3.4)

we should coarsen the mesh around T . (We choose αrefine ≈ 0.8 and reduce it up to 0.05 if
not enough elements are refined and αcoarse = 10−3).

Second, this adaptive procedure requires a series of linear system solutions on each actual
mesh, respectively. The finite element solutions on these meshes mainly have to guarantee
that the error indicators are precise enough for a good mesh control in the refinement
procedure.

Hence, we look for a very time efficient solution process enabling restricted accuracy on
coarser meshes for domains away from cracks and crack tips. This is done with the help
of the following ingredients:

• We store only the element matrices of each element T together with the element data.
The assembly of any total stiffness matrix is not necessary. The solver, applying the
preconditioned conjugate gradient method (PCGM), multiplies easily element by
element. Thus, we can use the advantage only to generate element matrices on the
new elements emerging from the refinement process. The elements away from cracks
and crack tips do not need refinement and remain unchanged.

• The preconditioner uses the hierarchical data structure, which is contained in the his-
tory of subdividing the edges of the mesh. Such hierarchical data are necessary for all
modern Multi–Level preconditioners such as the “Hierarchical Basis Preconditioner”
(HB, see [39]), the BPX–preconditioner (see [7]) or all the well–known Multi-grid
algorithms. For simulation in 2D, the most simple HB–preconditioner leads to a very
quick solver, especially from the following reasons:
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1. All information for implementing HB is contained in the “edge–subdivision–
tree” from the mesh refinement used.

2. The number of arithmetic operations is about 3N for N unknowns in the actual
mesh.

3. On the one hand, the condition number of the preconditioned stiffness matrix
(equal to the condition number of the Finite Element stiffness matrix with
respect to the hierarchical basis of the ansatz space) grows as (logN)2.
On the other hand, we have a very good starting vector embedded into the
adaptive loop on each new solution (only “high frequency error”) leading to
near constant number of iterations during the refinement.

We demonstrate the efficiency of the technique described above at a simple example with
a crack of constant length (“slit–domain”). We start with a coarse mesh of 8 triangles (17
coarse edges, 10 nodes on vertices) for the domain

Ω = (−1, 1)2 \ [0, 1)× {0}.

The node (1,0) occurs twice, as well as we have 2 distinct edges from (0,0) (the crack tip)
to both nodes (1,0). The two adjacent triangles refer to the different edges. The coarse
mesh solution shape and two finer solution shapes with about 1000 and 8000 nodes are
presented in Figure 3.

Figure 3: Mesh refinement on ”Slit Domain” (here: prescribed displacements at bottom
and top)

The following table contains some information about the adaptive refinement until 30 000
nodes. Each row belongs to one linear system solution with the times for generating the
new elements and for the PCGM. Additionally, the number of elements to refine and to
coarsen are given. Mainly, we watch the finite number of about 20 iterations on each mesh.
The computations were realized by means of a Pentium IV with optimized FORTRAN.
These very short running times are challenging for the moving crack situation. In fact, we
should maintain most of the features described above, although the mesh connection will
change in the case of an advancing crack.
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Mesh -Info : |Gener. | PCGM | #Elements |est.Err.

#Nodes/#Elem’s/ #Edges |time[s]| #It time[s] |to ref/coars| (square)

-----------------------|-------|--------------|------------|---------

27 / 8 / 17 | 0.000 | 2 0.000 | 1 0 | 1.1E+01

85 / 32 / 75 | 0.001 | 14 0.001 | 3 0 | 5.2E+00

297 / 128 / 287 | 0.005 | 18 0.005 | 6 2 | 2.6E+00

643 / 254 / 633 | 0.008 | 20 0.011 | 10 84 | 3.5E+00

750 / 272 / 621 | 0.000 | 24 0.015 | 15 56 | 2.0E+00

1099 / 416 / 955 | 0.009 | 23 0.022 | 16 144 | 1.1E+00

1299 / 467 / 1040 | 0.006 | 24 0.027 | 24 115 | 6.2E-01

1702 / 626 / 1389 | 0.012 | 25 0.040 | 27 157 | 3.6E-01

.

.

.

.

6695 / 2822 / 6233 | 0.032 | 16 0.239 | 215 15 | 5.1E-03

8786 / 3803 / 8324 | 0.160 | 15 0.307 | 65 113 | 3.0E-03

9438 / 4088 / 8941 | 0.024 | 16 0.441 | 348 39 | 2.2E-03

12536 / 5534 / 12039 | 0.241 | 15 0.387 | 284 37 | 1.1E-03

15313 / 6845 / 14816 | 0.236 | 15 0.605 | 447 97 | 6.3E-04

19455 / 8747 / 18950 | 0.273 | 15 0.705 | 284 206 | 4.3E-04

22302 / 10088 / 21791 | 0.093 | 15 1.075 | 1059 93 | 3.0E-04

31961 / 14477 / 31450 | 0.574 | 15 1.451 | 230 820 | 2.0E-04

Table 1: The adaptive history: number of nodes, elements and edges, solver times and
error estimators for quadratic triangular elements

3.2 Adaptive Finite Element solution for the crack propagation

If the refinement procedure of the previous section is applied until some small error crite-
rion, we end up with a good Finite Element approximation of the true H1–solution belong-
ing to any corresponding load level of the problem under consideration. The J–integrals
introduced in Chapter 2 yield the propagation information of the crack movement.

Thus, we obtain the direction and the length |∆a+|=|∆a−| defining the new crack tip.
From this information, the segment L (straight line) from P (actual crack tip) to Pnew

(new crack tip) fixes the new crack surfaces which are to incorporate into the existing
mesh as shown in Figure 4. In the usual manner of Finite Element routines, the new mesh
opening can be calculated introducing nodes (hence edges of elements) along L with twice
degrees of freedom. At node x, we define u+(x) and u−(x) the displacements on both
crack flanks. We call an element T a “–”-element if it contains “–”-degrees of freedom.
“+”-elements belong to the other new crack flank and contain “+”-degrees of freedom,
respectively.
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The first step for the crack propagation modeling is the construction of these “–”- and
“+”-elements by means of an (unusual) subdivision of all elements cutting L. Embedded
into the adaptive mesh subdivision routine, this is done easily considering the edges E of
the actual fine mesh and performing the following algorithm:

For each edge E do:

1. Calculate the intersection Q of L with E.

2. If no intersection: continue with next edge.

3. Let E = (a, b) with a, b ∈ R2 the end nodes, then Q = αa+ (1− α) b.

If α near 1 =⇒ correct a to Q and continue with next edge.1

If α near 0 =⇒ correct b to Q and continue with next edge.

Else: Subdivide the Edge E, producing E1 = (a,Q) and E2 = (Q, b).

1
2

3 4

5

P

P

+

−

a

L

Q

b

new

P

P

+

+

+

+
+ +

+
+

+

−

− − −
−

−

− −
−

−

+

−

new

Figure 4: Mesh handling along section L, element 1 with “green”, element 2 and 3 with
“red” and 4,5 with “green” subdivision after node move

After this procedure, the usual mesh refinement routine subdivides all elements T sur-
rounding L in “red” manner, if two adjacent edges of T are intersected by L. The other
surrounding elements are subdivided “green”, if they are intersected by L at one edge
only. All other elements remain unchanged. This simple algorithm introduces the segment
L as a couple of edges into our mesh. See Figure 4 for an example and Figure 5 for the
explanation of “red” and “green” subdivision. This way, it is possible to define the “+”
and “–” degrees of freedom at the new nodes along L.

In this context, we emphasize the important fact regarding the following efficient solver.
Up to now, the hierarchical data structure is given within the subdivision tree of the edges.
If we will double the edges along L this hierarchy will be destroyed and we cannot use an
efficient hierarchical preconditioner anymore. Thus, we define only one edge, as it has been
created from the algorithm above, which refers to the “–”-nodes. Each “–”-node has a copy
as “+”-node in the nodal list and there is a reference from “–”-node to its “+”-partner

1These tests avoid very distorted elements.
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Figure 5: “red” (left) and “green” (right) subdivision

(and back) in the nodal list. Obviously, the “–”-elements refer to degrees of freedom of
usual or “–”-nodes, the “+”-elements to such of usual or “+”-nodes.

In order to construct an efficient preconditioner we append the new unknowns first. By
definition of “–”- and “+”-nodes we have:

n nodes with n usual nodal degrees of freedom 2

d “–”-nodes with d nodal degrees of freedom and
d “+”-nodes with additionally d nodal degrees of freedom.

For this actual mesh, our linear system to solve has N = n + d + d nodal degrees of
freedom, but the hierarchical preconditioner C−1 available from the information of the
edge tree acts on n+ d nodal degrees of freedom only and we won’t destroy this hierarchy
information, as explained above, in order to construct an efficient preconditioner for crack
growth problems. Thus, we introduce a restriction operator R of a fictitious space with
2n+2d nodal degrees of freedom onto our realistic space of n+2d nodal degrees of freedom
by means of:

R =







1
2
I O 1

2
I O

O I O O
O O O I





 . (3.5)

Finally, we guess the necessary resulting preconditioner in form of a two time C−1 - appli-
cation regarding

R
(

C−1 O
O C−1

)

RT . (3.6)

This results in the following procedure:

Let r =
(

rT
0 , r

T
−, r

T
+

)T
be the residual vector in the k–th iteration of the conjugate gradi-

ent algorithm with the parts r0, r− and r+ referring to usual, “–”-nodes and “+“-nodes,
respectively. Then, the preconditioner has to produce the preconditioned residual w as

w = R
(

C−1 O
O C−1

)

RT r, (3.7)

2We write ‘n usual nodal degrees of freedom’ for the indication of two degrees of freedom per node
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which contains two preconditioning calls:
(

w0,−

w−

)

:= C−1
(

1
2
r0
r−

)

(3.8)

and (after copying of r+ to the “–”-data)
(

w0,+

w+

)

:= C−1
(

1
2
r0
r+

)

. (3.9)

This calculates different values on the usual nodes, which are averaged for defining w:

w =







1
2
(w0,+ + w0,−)

w−
w+





 . (3.10)

The two solvers in (3.8) and (3.9) are the cheapest hierarchical basis preconditioners acting
on the nodal degrees of freedom, which are referenced from the edge data, keeping in mind
the hierarchical data structure during crack propagation. Thus, they should produce an
analogous efficient iteration behavior as presented in the previous chapter for a standing
crack.

4 Interaction integral

Based on the crack advance criteria (2.12,2.13) or (2.14) and given ∆a, quasi-static crack
prolongation can be simulated by means of the numerical technique introduced in section
3. This way, the K-factors KI and KII must be determined at each load level. In general,
it is not possible to extract KI and KII from the usual numerical near tip solution without
taking into consideration the special asymptotic behavior in the solution procedure and in
the postprocessing stage. This is the case as well, even though a very fine finite element net
is reached after appropriate adaptive mesh refinement at the crack tip. Therefore, we will
apply the J-integrals defined in section 2 for the numerical determination of the K-factors
exploiting their path independence in order to execute the numerical calculations away
from the tip. This is possible for a general curved crack propagation only, when ∆a may
be assumed as straight lines, whereby the so-called two-dimensional interaction integral
technique [33] can be used.

The essential point of this approach consists in the fact that the integrals along the straight
∆a - contours Γ− and Γ+ (Figure 2), which include the near tip field is excluded from
numerical calculations. The method considers two states of the cracked region:

• State 1 (σ(1), ε(1), u(1)) represents the current FEM-solution for which the K-factors

KI = K
(1)
I and KII = K

(1)
II has to be calculated at a given load level and crack length,

and
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Γ

crack

Figure 6: Finite element mesh with the Jx-integral contour Γ

• State 2 (σ(2), ε(2), u(2)) which is realized either by means of the full field Mode I

eigenfunction [15] with the associated factor K
(2)
I or by means of the full field Mode

II eigenfunction [15] with the associated factor K
(2)
II .

The Jx-integral for the sum of these two states follows from (2.9) and (2.10) and the state
definitions above in the form:

J (1+2i)
x = J (1)

x + J (2i)
x + J (1∗2i)

x , i = I, II (4.1)

with the notation

J (1∗2i)
x =

∫

Γ

[

(σ(1) :ε(2i))ex·n− ex· (∇u(1)·σ(2i) + ∇u(2i)·σ(1))·n] ds, i = I, II. (4.2)

The index i in (4.1) and (4.2) denotes the use of the Mode I eigenfunction (i = I) or the
Mode II eigenfunction (i = II) with respect to the state 2 respectively. Note on the one
hand that the integration contour Γ does not contain any lines of the crack faces including
the parts directly connected to the crack tip as shown in Figure 6 for an example net. This
follows from the fact that only the Jx- components of the J- integral vector are used in
the calculations. These components have no contributions from the straight crack faces
∆a. On the other hand, Γ reaches the crack faces at a distance from the tip which must
be less than |∆a+ |=|∆a−|. The integrals J (1∗2i)

x are proportional to K
(2)
I (i = I) and K

(2)
II

(i = II). On the other hand, the application of the superposition principle for the two
states defined above to relation (2.11) results in the formulae:

J (1+2I)
x = J (1)

x + J (2I)
x +

2

E?

(

K
(1)
I K

(2)
I

)

, J (1+2II)
x = J (1)

x + J (2II)
x +

2

E?

(

K
(1)
II K

(2)
II

)

(4.3)

with E? = E/(1− ν2) (for plane strain). (4.1), (4.2) and (4.3) give the necessary relations
for the K-factors:

KI = K
(1)
I =

E?

2K
(2)
I

J (1∗2I)
x , KII = K

(1)
II =

E?

2K
(2)
II

J (1∗2II)
x (4.4)
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Thus, theK-factors can be calculated numerically by means of (4.4) based on the numerical
solution of the current load step and the corresponding singular eigenfunctions along Γ.

5 Numerical test examples of crack propagation

5.1 Crack propagation of a symmetrically loaded specimen

The first test example (Figure 7) represents the crack propagation simulation of a symmetri-
cally loaded tension specimen (KIc=450MPa

√
mm, |∆a+|=|∆a−|=2.5mm, E=2 · 105MPa,

ν=0.3). Figure 7 shows the geometry together with the initial mesh. Throughout the
following, all geometrical descriptions are given in the length unit mm. The specimen
is loaded by means of uniform displacements u=0.05mm at the left side of the specimen
(Figure 7). The given load induces the crack propagation immediately and the crack propa-
gates continuously up to its arrest. Figure 8 shows the adaptive refined meshes for different
crack lengths. The numbers placed down right in the pictures represent the accumulated
numbers of the realized PCGM-solutions up to the current reached crack length. The pic-
tures indicate mesh refinement and mesh coarsening during crack growth. The mesh of the
region surrounding the old crack tip is coarsened if a certain distance to the current crack
tip is exceeded. The fourth picture in Figure 8 shows the final position of the crack tip
for the given material properties and load conditions, i.e., the crack stops. In this context,
the dependence of the stress intensity factor on the crack length a is given in Figure 9.

Because of the symmetric loading conditions with respect to the crack trajectory resulting
in ρ = 0, the crack advance conditions (2.12) together with (2.13) coincide with the hoop

u

u

20

10
40

Figure 7: Symmetric tension specimen
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Figure 8: Crack propagation stages under symmetric loading
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Figure 9: Change of the stress intensity Factor during crack propagation
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Figure 10: Iteration numbers of the PGCM-solver with respect to each realised

stress criteria (2.14). Thus, we get for both criteria the same crack propagation problems
in this case.

Another interesting point follows from Figure 10, where the development of the iteration
numbers for each PCGM-solution is diagrammed during the crack growth. The marked
points indicate the solution directly after crack extension.

Obviously, the solver needs more iteration when the crack moves on and the mesh has
to be corrected with respect to the new surfaces ∆a. On the other hand, further mesh
refinement leads to a rapid decrease of the iterations almost to their initial numbers. This
circumstance expresses the high efficiency of the applied solution technique (section 3)
and will be explained in a more remarkable sense analyzing the same problem with higher
accuracy at the crack tip.

The accuracy of the solution at the crack tip can be characterized, besides the error esti-
mator based on (3.1) to (3.4), exploiting the J-integral path independence. Thus, the mesh
of the tip neighborhood should be refined up to the instant when the differences between
the J-integrals calculated along three different contours Γ (the maximum of the differences
related to the average value according to the values of J (1∗2I)

x ) are less than a given constant
ε. In the calculations above, ε was chosen to be ε = 10−2. If one changes ε to ε = 10−3,
the solution accuracy growths, i.e., the equation system contains more degrees of freedom
and is more difficult to solve, but the results from Figure 10 change to those of Figure 11.
Regardless the fact that the PCGM-iterations grow up to about 400 in the first solution
step with the new surfaces ∆a, the number of these iterations returns very rapidly to its
initial values of less than 100. This way, the solution technique introduced in section 3
reaches very high efficiency for crack growth problems in fracture mechanics. In addition,
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Figure 11: Iteration numbers of the PGCM-solver with respect to each realised solution
for higher accuracy

it should noticed that the peak values in figures 10 and 11 have to be removed by further
perfectioning of the developed numerical technique. The first step in this direction consists
in the inclusion of the correct asymptotic solution behavior at the crack tip directly based
on the research given in [29, 30, 31, 32]. This procedure will improve the condition number
of the equation system to solve and, thus, reduce the PCGM-iterations.

5.2 Transverse force bending test

The second demonstration example represents the transverse force bending test used in the
literature [36] simulating fatigue crack propagation. The specimen‘s geometry and the load
conditions are shown in Figure 12 (KIc=1·MPa

√
mm, |∆a+|=|∆a−|=3mm, q=100N/mm).

We will compare our numerical crack propagation simulation with the experimental results
of [36]. The connection to the fatigue crack propagation considered there will be realized
through the identification of KIc with the corresponding threshold value ∆Kth which is
given small enough to have continuous crack growth.

Figure 13 shows the results of the simulation for different crack lengths in connection with
the associated refined meshes. The numbers placed down right in the pictures again stand
for the accumulated numbers of the realized PCGM-solutions. The crack advance condi-
tions are based on the hoop stress criteria (2.14). The pictures indicate mesh refinement
and mesh coarsening during crack growth. The mesh coarsening is mainly seen around the
two holes. However, mesh coarsening occurs as well on the crack flanks shortly after the
crack tip has left the corresponding crack surfaces. In contrast to the example in section
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Figure 13: Simulation results for the transverse force bending test specimen
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Figure 14: Comparison of the com-
puted crack path with the experiment
in [36]

5.1, new initial “father”-elements, which are smaller than the coarse elements of the sym-
metric crack arrest test, are produced during crack growth (see Figure 4). This is an effect
of the fact that the crack does not propagate along element edges of the initial coarse mesh
and results in the consequence that coarsening occurs up to the small “new crack growth
initial father”-elements. Thus, one can find relative small elements along the surfaces of
the propagating crack.

Figure 14 presents the comparison of the computed crack path with the realized experiment
of [36]. The simulation shows a very good agreement. The small deviations are due to the
overestimated crack advance parameter ∆a. Finally, it should be mentioned that because
of the small values ρ occurring during crack propagation, the application of the J-integral
vector criteria (2.12, 2.13) instead of (2.14) leads with small differences to the same results
shown above. Big differences between the two criteria appear for higher values of ρ. For
instance, the loading conditions for the specimen shown in the left of Figure 15 lead to
quite different crack paths given in the right of Figure 15.

6 Conclusions

Efficient solution techniques for the numerical simulation of crack propagation of 2D lin-
ear elastic formulations based on FEM together with the conjugate gradient method are
developed. The numerical technique using hierarchical preconditioners comprehends the
interesting feature that the hierarchical data structure will not be destroyed during crack
propagation. Thus, one gets the possibility to simulate crack advance in a very effective
numerical manner including adaptive mesh refinement and mesh coarsening. Although
the PCGM-solver needs more iterations when the crack moves on and the mesh have to
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Figure 15: Model and results for shear loading

be corrected with respect to the new surfaces, further mesh refinement leads to a rapid
decrease of the iterations almost to their initial numbers. The peak values of the PCGM-
iterations should be removed by means of further approach perfectioning. The first step in
this direction consists in the inclusion of the correct asymptotic solution at the crack tip
directly. Test examples are presented to illustrate the efficiency of the given approach.
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[3] E. Bänsch : Local mesh refinement in 2 and 3 dimensions, IMPACT of Computing
in Science and Engineering 3 (1991), 181–191 .

[4] T. Belytschko and T. Black: Elastic crack growth in finite elements with minimal
remeshing. International Journal for Numerical Methods in Engineering 45, pp. 601–
620, 1999.
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