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Abstract

This document has two objectives: decomposition of a given
trimmed surface into several four-sided subregions and creation of a
diffeomorphism from the unit square onto each subregion. We aim at
having a diffeomorphism which is easy and fast to evaluate. Through-
out this paper one of our objectives is to keep the shape of the curves
delineating the boundaries of the trimmed surfaces unchanged. The ap-
proach that is used invokes the use of transfinite interpolations. We will
describe an automatic manner to specify internal cubic Bézier-spline
curves that are to be subsequently interpolated by a Gordon patch.
Some theoretical criterion pertaining to the control points of the inter-
nal curves is proposed and proved so as to ensure that the resulting
Gordon patch is a diffeomorphism. Numerical results are reported to
illustrate the approaches. Our benchmarks include CAD objects which
come directly from IGES files.
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1 Introduction

We address the problem of design with trimmed surfaces ([17, 26]) which are fundamental
entities in CAGD. The majority of CAD objects, even among the simplest ones such
as closed cylinders, are partly or completely composed of trimmed surfaces. Therefore
completely ignoring treatment of trimmed surfaces is a major inacceptable restriction if
one wants to deal with real-world CAD data.
In this document we want to consider the problem of decomposing the surface of a CAD
object into subregions that are images of parametric functions from the unit square. For
untrimmed surfaces , such as Bézier, polynomial and rational B-splines ([9]), that objective
generally does not induce any difficulty. For a trimmed surface we have to face two main
problems. First we have to split the trimmed surface into four sided subregions. Then for
each subregion, we are to find a parametric function x, which is a diffeomorphism, from
the unit square onto the subregion. The property that x should be a diffeomorphism is
not required during the design process. It is only used in a subsequent application (which
is not treated in this paper) of numerical solution of integral equations ([6, 7, 23, 15]) on
CAD objects. We need also that the function x is easy to evaluate because it will have to
be invoked repeatedly in future applications.
The general approach of obtaining a splitting into four-sided subregions is done in several
stages. First one takes coarse approximations of the curves which bound the trimmed
surface. Then one splits the resulting polygon P into convex sets. We will describe a way
to have a convex splitting in which all boundary nodes reside on the boundaries of the
initial trimmed surface. The boundaries of the polygon P might thus change during the
course of the convex splitting. We will describe also an efficient way to make the number
of nodes of each convex set even by adding internal extra nodes. Our approach tries to
use very few extra nodes by using a weighted graph corresponding to the convex splitting
and by utilizing shortest paths in the graph. A quadrangulation ([18, 20]) of the convex
sets is the next stage. In this paper we will not describe any method for achieving the
quadrangulation. Finally the quadrilateral cells are transformed into four-sided regions by
replacing the straight edges which are next to the boundaries by the boundaries of the
initial trimmed surface.
The major technique, upon which our generation of parametrization from the unit square
onto a four-sided domain is based, is the use of transfinite interpolations ([11, 12, 9]). In
most practical cases using the Coons interpolation already gives a diffeomorphism. But
sometimes Coons interpolation gives an undesired overspill phenomenon. We recourse to
the idea of Gordon in order to find a remedy for the overspill phenomenon. We will describe
a way to automatically find the internal curves which have to be interpolated by a Gordon
patch.
In the next section we will describe the problem to be solved more specifically. An outline
of the method for tessellating a trimmed surface will be seen in the third section. In the
following two sections, we will treat in detail the shifted convex splitting approach and the
converting of odd convex sets into even ones. After recalling the main idea of transfinite
interpolation using Coons and Gordon patches in section six, we will describe in detail a
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way of automatic elimination of the overspill phenomenon in section seven. A theoretical
result which serves as recognizing whether the resulting Gordon patch is diffeomorphism
will be provided and proved. Further we will give some benchmarks which result directly
from CAD data stored in IGES files ([26]). Runtimes about tessellation, parameterization
and evaluations of the resulting mapping will also be reported.

2 Problem setting

Definition 1 A composite curve C with N constituents is a set of planar parametric curves
Ci defined on [ai, bi] ⊂ R (i = 1, ..., N) such that

Ci(bi) = Ci+1(ai+1) for i = 1, ..., N − 1 .

By defining {
t0 := 0
tk := tk−1 + (bk − ak) k = 1, ..., N,

the curve C is defined on [t0, tN ] by

C(t) := Ci(t− ti) if t ∈ [ti, ti+1]. (1)

Remark 1 Throughout this document, we consider only closed composite curves which do
not have any double point, that is, there do not exist two different parameters a, b ∈]t0, tN [
such that C(a) = C(b). In practice composite curves are composed of line segments, circular
arcs, polynomial or rational B-splines.

Definition 2 A trimmed surface S is a multiply connected region in R2 such that each
boundary curve is the image of a closed composite curve.

For a given trimmed surface S, the objective of this paper is twofold

1. Tessellate S into m four-sided domains Fi

S =
m⋃

i=1

Fi . (2)

2. For each four sided subregion Fi, i = 1, ...,m, generate a diffeomorphism xi which
maps the unit square [0, 1]2 onto Fi.

Remark 2 In the first problem, we try to keep the number m of the four-sided domains
small. The second problem is a very well known one in the context of complex analysis (see
[16] and reference there). A common approach is to approximate the boundaries of Si by
a polygon and generate a conformal mapping from the unit square to the polygon. That
method is numerically supported by the method of Schwarz-Christofel ([25, 16]) where
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(a) (b)

Figure 1: (a) B and D are G1 vertices. A and C are not (b) a four sided domain having a
G1 vertex

the mapping is given in the form of an integral requiring numerical evaluation. Some
coefficients in the integral should be determined in which one has to solve a nonlinear
system of equations.
Some generalization of the Schwarz-Christofel approach by approximating the boundary
with piecewise polynomials is described in [4, 5]. The following two points are of great
importance in our objective

• Retaining the exact geometry of the trimmed surface S.

• Easy and fast evaluation of the resulting mappings xi i = 1, ...,m.

We will achieve those two objectives by following the idea of transfinite interpolation
described by Gordon and Hall in [12] and by giving an efficient approach of finding the
curves to be inserted.

3 Outline for multiply connected regions

In this section, we would like to outline our way of splitting a multiply connected trimmed
surface S into several four-sided domains Fi (see relation (2)). Before doing that, let us
see some few interesting properties.

Definition 3 Consider a parametric curve C(t) which is supposed to be a composite curve.
A point v = C(t0) on the curve is called a G1 vertex if we have G1-geometric continuity
(see [17, 9]) there and v does not reside strictly within a line segment. In Fig. 1(a) B and
D are G1 vertices. A and C are not.

Remark 3 We do not want to have a four sided subregion F in which one (or more) of
its four vertices is a G1 vertex (as in Fig. 1(b)). That is due to the fact that we cannot
find any diffeomorphism x from the unit square D = [0, 1]× [0, 1] to such an F such that
x transforms the four vertices of D to those of F .
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We want to outline now our general approach in which we will denote the boundary of S
by Bout, and Bi

in i = 0, ..., N − 1 where N is the number of internal boundary curves. The
algorithm has four steps:
Step 1: Take a coarse polygonal approximations Pout, Pi

in of the boundaries of S and call
P the resulting multiply connected polygon.
Step 2: Take a ”shifted” convex partitioning of P. We will show a method for generating
the convex partition in which all boundary nodes lie on the boundaries Bout, Bi

in of the
initial trimmed surface S. In other words, we avoid the idea of splitting the polygon P
and then shifting any newly generated boundary nodes of P to the boundaries of S. Our
method will demonstrate to be efficient when there are G1 vertices.
Step 3: Quadrangulation of the resulting convex splitting. After completing this step we
have m four-sided domains Qi whose edges are still line segments.
Step 4: We generate the four-sided subregions Fi from the quadrilateral Qi in the following
way. For each quadrilateral Qi, we test if two consecutive nodes A and B of Qi belong to
the same boundary curve of S. That is A = Bout(tA) and B = Bout(tB) (resp. A = Bj

in(tA)
and B = Bj

in(tB) for some j). In that case, we replace the straight edge [A,B] of Qi by
the curve portion of Bout (resp. Bj

in) between the parameter values tA and tB.

Remark 4 There are already a lot of papers treating the quadrangulation in step 3. See
for example [8, 3, 18, 20] and the reference there. So we will not give any detail about
quadrangulation. In our implementation we have used the quadrangulation in [18] for
three reasons. First, it does not use additional boundary nodes. Second, it keeps the
number of quadrilaterals small. Finally, it is comparatively easier to implement it than
other methods.

In the next sections, we will give details about how to efficiently treat step 2. We will give
an accurate description of how to make the number of vertices of each convex subregion
even. That is an essential preliminary step before quadrangulation.

4 Shifted convex splitting

Let us describe a way of tessellating a polygon P into convex sets Ri. For now we assume
that P is simply connected. We will present a way of decomposing a multiply connected
polygon into simply connected ones at the end of this section. The main idea behind
having a shifted convex partitioning is that instead of inserting a new boundary node
on the simply connected polygon P, we choose a node which lies exactly on the curved
boundaries Bout, Bj

in of the initial trimmed surface. Of course, the polygon P will undergo
a modification in the course of this process. The objective is to join a G1 vertex or a reflex
vertex (i.e. a vertex where the internal angle is strictly greater than π) to another suitably
chosen point of P or to another point on the boundaries of the initial trimmed surface S.
We will follow a similar idea as Joe ([19]) who has treated domains with line segments as
boundaries. The main difference is twofold. First, we remove also G1 vertices. Second, we
allow the corresponding points to lie on the curved boundaries of S. We want to split P
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into ∪Ri recursively. The convex splitting is complete when there is no G1 or reflex vertex
left in the splitting. The algorithm is as follows. As initialization we have R1 := P and
the number of subregions is p = 1. Suppose now that we have p subregions Ri i = 1, ..., p.
Test if Ri contains a G1 or a reflex vertex.
In the positive case, we split Ri into two subregions S1, S2. We overwrite Ri by S1 and we
append S2 to the end of the subregion list. We have certainly to increment the number of
subregions p. Note that a G1 vertex could be a reflex one. In this case we consider it as
a reflex vertex and we consider only G1 vertices those which cannot be treated as reflex
ones. In the next discussion. we will show how to split the subregion Ri into S1 and S2.

Remark 5 Throughout the whole algorithm, we assign flags to vertices. A vertex v has
flag -1 if it lies on the exterior boundary curve Bout. It has flag j ≥ 0 if it lies on the
j-th interior curve Bj

in. Otherwise its flag is −2. Further, for a vertex v having flag −1 or
j ≥ 0, we consider v as a temporal entity, that is, we specify the time t at which it resides
on the curve v = Bout(t) or v = Bj

in(t).

Suppose now that Ri has a reflex vertex or a G1 vertex v. We want to split Ri by
inserting a separating edge from v to another vertex w which we want to specify in the
next description.
Suppose the vertices of Ri are given in counter-clockwise orientation. Let u (resp. z) be
the vertex which precedes (resp. follows) v. Define F to be the region in the plane which
is in the intersection of the half-planes (uv)− and (zv)+. In Fig. 2, F is graphically shown
by the shaded areas. The desired point w should lie in F and it is determined as follows.
We traverse the edges of Ri. For each edge e, let A and B be its endpoints. We distinguish
two main cases for the edge e = [A,B].
Case 1: A, B have the same flag which is not equal to −2 (see Fig. 2(a)). That is to say,
they both reside on the same curve D := Bout or D := Bj

in for some j = 0, ..., N − 1.
Case 2: A, B have different flags or they have the same flag but it is -2 (see Fig. 2(b)).
If case 1 applies, suppose A = D(tA) and B = D(tB). We search for w = D(t) in
F ∩D([tA, tB]) which is visible from v and which maximizes the expression

γe := min{α0, α1, β0, β1}. (3)

The new node w will then have the same flag as A and B.
If case 2 applies, we do the same thing but w should now lie on F ∩ [A,B]. We repeat the
same thing to all edges e and choose w which maximizes γe.

Remark 6 In order to decompose a multiply connected polygon P into simply connected
ones, one can use similar idea as [19] in which the author inserts a line segment between
the top node Nt of each internal curve and some point w ∈ P lying above Nt and another
line segment between the bottom node Nb and another node z ∈ P below Nb. Contrarily
to [19], we allow the points w and z not to belong to the polygon P, that is, they could
be placed on the boundary of the initial trimmed surface S following the same spirit as we
have done in the shifted convex splitting.
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(a) (b)

Figure 2: (a) Finding a corresponding point to a reflex vertex (b) Finding a corresponding
point to a G1 vertex

5 Even convex

Suppose that we have a polygon P which has possibly some polygonal holes. We make the
assumption that the number of its vertices n is even. At this point P is supposed to have
been split into several convex subregions Ri (Fig. 3(a))

P =
p⋃

i=1

Ri.

We would like to immediately note that the number of vertices of the subregions Ri is
not necessarily equal to n. That is because non-boundary nodes may be generated in the
course of the former convex splitting.
Although we do not give any quadrangulation method in this paper, we would like to note
the following characterization.

Theorem 1 (see [18, 3]) A convex set can be split into quadrilaterals if and only if the
number of its vertices is even.

A prerequisite of being able to quadrilate is therefore to have convex sets Ri which all have
even number of boundary nodes. The problem that we want to solve in this section is how
to make the number of points of each convex set Ri even. At first sight, this problem is
apparently very easy to solve. Considering the fact that we do not want to insert any new
vertices in the boundary of P and that there might exist convex sets Ri which have no
contact at all with the boundary of P (see Fig. 3(a)) and that we do not want to introduce
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(a) (b)

Figure 3: (a)A convex splitting with some internal odd convex sets (b)Process of making
two odd convex sets even

many new vertices, solving the former problem efficiently is not straightforward. Before
describing our approach for solving such a problem, let us see the following facts

Definition 4 A polygon is called even (resp. odd), if the number of its vertices is even
(resp. odd).

Remark 7 Suppose that we have two odd convex sets that are separated by s convex
regions which are all even (see Fig. 3(b)). Adding one extra vertex between every two
adjacent sets will make the parities of the boundary convex sets even. The parities of the
intermediate convex sets are kept unchanged (i.e. even). That is due to the simple fact
that adding a vertex in a convex set will invert its parity.

Theorem 2 Let P be a polygonal region which may have some holes (that are also polyg-
onal). Suppose that the number n of nodes of P is even. Let Ri i = 1, ..., p be a convex
splitting of P

P =
p⋃

i=1

Ri

Let r be the number of odd convex sets among Ri. Then r must be an even number.

Proof

Let us prove it by contradiction. Suppose that r were odd. Without loss of generality we
can assume that r = 1 (if r = 2k + 1 with k nonzero then apply remark 7 to the first 2k
odd convex sets). We also assume that Rp is the only convex set which is odd. Consider
E the union of the first (p− 1) convex sets and let us compute the parity of e which is the
number of boundary edges of E. Since the number of edges of each Ri i = 1, ..., p − 1 is
even and internal edges of E cancel in pair, e must be even. We want to consider now the
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union E ∪Rp. Let m denote the number of common edges to E and Rp and c the number
of edges of Rp. The number of boundary edges of E ∪Rp is therefore

e+ c− 2m = even + odd− even = odd, (4)

which is in contradiction to the fact that the number of edges of P is even, E ∪ Rp being
P itself.

Having all these properties in mind, we want to describe now our approach of making all
convex sets even. The fundamental idea consists in joining the odd convex sets two by two
by using the process described in remark 7. Because we do not want to introduce many
extra points, we introduce the following definition.

Definition 5 To a set of convex regions Ri i = 1, ..., p, we associate a weighted graph G.
Each node Ni of the graph corresponds to a convex region Ri and two nodes Ni and Nj

are linked if Ri and Rj are adjacent. Each node in the graph will be assigned a flag ODD
or EVEN depending on the parity of the corresponding convex region. Each edge Ei in
the graph is also assigned a flag KEEP or INSERT. Such a graph will be called the convex
graph of Ri.

Algorithm:

We use the following algorithm to transform the parity of the odd polygons.

Step 0: Initialization: Set all flags of the edges in the convex graph G to KEEP and the
weights to unity.

Step 1: Find the closest pair of ODD nodes Ni and Nj in the convex graph and let P be
the closest path in the convex graph which joins those two nodes.

Step 2: For each edge Ei on the path P , invert its flag.

Step 3: Edges Ei having flag KEEP are assigned a weight 1.0 and those having flag INSERT
a weight ε << 1.0. Change the flags of the nodes Ni and Nj to EVEN and go to step 1 if
there are still ODD nodes in the convex graph.

After running this algorithm on the convex graph, we want to resume to the convex split-
ting. By considering all adjacent convex sets Ri and Rj, if the flag of the edge between
the nodes Ni and Nj is INSERT in the convex graph, we insert one node in one common
edge of the convex sets Ri and Rj.

Searching for the closest nodes in the graph and the corresponding path can be efficiently
done with the help of the Dijkstra algorithm (see among others [2, 21]) or a similar one.
Throughout our description, lengths of paths depends on the weights. The shortest path
is the one which has the smallest weight. At the beginning where all weights are unity,
shortest path means having the fewest number of edges. We assign very small weights
ε to INSERT edges so that paths including these edges are short. That gives thus the
likelihood for those INSERT edges to be inverted into KEEP edges. Recall that we want
as few INSERT edges as possible because the number of INSERT edges is the same as the
number of extra points to be inserted.
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(a) (b)

Figure 4: (a)A four sided domain for Coons patch, (b)A network of curves for Gordon
patch

6 Transfinite interpolation

Since our method of generating a mapping from the unit square to a four sided domain F is
based on transfinite interpolation, let us introduce briefly some definitions and interesting
properties. We will only state things which are immediately related to our problems. We
direct the readers to [11, 12, 13, 14, 24] for more complete information.

6.1 Coons patch

Let us consider four continuously differentiable parametric curves (See Fig. 4(a)) α, β, γ,
δ defined on the interval [0, 1]. They are supposed to fulfill the compatibility condition:

α(0) = δ(0) , α(1) = β(0) , γ(0) = δ(1) , γ(1) = β(1). (5)

We are interested in generating a parametric surface x(u, v) defined on the unit square
[0, 1]2 such that the boundary of the image of x coincides with the given four curves:

x(u, 0) = α(u) x(u, 1) = γ(u) ∀u ∈ [0, 1]
x(0, v) = δ(v) x(1, v) = β(v) ∀ v ∈ [0, 1] .

(6)

Such a mapping is usually referred to as transfinite interpolation which can be created by
means of Coons patch. Its construction is done first by considering two functions φ and η

φ(0) = η(0) = 0 φ(1) = η(1) = 1 (7)

and then by introducing two operators P and Q:

(Px)(u, v) := (1− φ(v))x(u, 0) + φ(v)x(u, 1) (8)

(Qx)(u, v) := (1− η(u))x(0, v) + η(u)x(1, v). (9)
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Figure 5: Diffeomorph Coons patches

These operators are known completely if one knows the boundary values in (6). One verifies
easily that the following Boolean sum satisfies the boundary conditions (6):

P ⊕Q := P +Q−PQ. (10)

The functions φ, η which are better known as blending functions can be chosen in several
ways (see [9, 11, 17, 24]). The simplest case is to take the bilinear blending function:

φ(t) = η(t) = t . (11)

We suppose in the sequel that the blending functions are sufficiently smooth. According
to (10) we can express the solution to (6) in matrix form as:

x(u, v) =
[

1− η(u) η(u)
] [

δ(v)
β(v)

]
+[

α(u) γ(u)
] [

1− φ(v)
φ(v)

]
−[

1− η(u) η(u)
] [

α(0) γ(0)
α(1) γ(1)

] [
1− φ(v)
φ(v)

]
.

(12)

By using (6), we can still reduce it in a more compact way:

x(u, v) = −

 −1
1− η(u)
η(u)


T  0 x(u, 0) x(u, 1)

x(0, v) x(0, 0) x(0, 1)
x(1, v) x(1, 0) x(1, 1)


 −1

1− φ(v)
φ(v)

 (13)

which is more suitable for implementation purpose.

6.2 Overspill phenomenon

The Coons patch x given by (12) interpolates the prescribed boundary curves. Our ob-
jective is not simply to have a mapping which interpolates the boundary but also to have
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Figure 6: Undesired overspill phenomena

a diffeomorphism. The boundary curves α, β, γ, δ being continuously differentiable, the
differentiability of x is guaranteed if the blending functions are chosen to be differentiable
as well. The real problem in having a diffeomorphism is then the invertibility and nonva-
nishing of the Jacobian. In most practical cases (like in Fig. 5) a Coons patch is already
a diffeomorphism. Still, sometimes two unsatisfactory situations may occur. First, some
isoline curves may reside partly outside the boundary like the case in Fig. 6(a). Another
problem is that all isolines reside inside the domain but some of them overlap as in Fig.
6(b). These situations better known as ”overspill phenomenon” are not suitable to our
objective. Before describing some remedy let us review the idea of Gordon patch.

6.3 Gordon patch

Consider two sequences {u0, ..., uM} ⊂ [0, 1] and {v0, ..., vN} ⊂ [0, 1]. In our case we have
u0 = v0 = 0 and uM = vN = 1. Suppose we have two families of curves fj, gi, j = 0, ..., N ,
i = 0, ...,M (see Fig. 4(b)) satisfying the compatibility condition:

xij := gi(vj) = fj(ui) (i, j) ∈ {0, ...,M} × {0, ..., N}. (14)

A Gordon patch ([12]) is a parametric surface x which is defined on [0, 1]× [0, 1] and which
interpolates all the curves fj and gi:

x(u, vj) = fj(u) ∀ j = 0, ..., N ∀u ∈ [0, 1],
x(ui, v) = gi(v) ∀ i = 0, ...,M ∀v ∈ [0, 1].

(15)

By choosing two sets of functions ϕi(u) and ψj(v) i = 0, ...,M and j = 0, ..., N satisfying:

ϕi(uk) = δik ψj(vl) = δjl, (16)

we define the Gordon patch ([14]) as:

x(u, v) :=
M∑
i=0

gi(v)ϕi(u) +
N∑

j=0

fj(u)ψj(v)−
M∑
i=0

N∑
j=0

xijϕi(u)ψj(v). (17)
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Figure 7: (a)Local structure of Gordon patch, (b)Final Gordon patch of Fig. 6(a) without
overspill

7 Generation of internal curves

We eliminate the overspill phenomena by first inserting some curves (see [12]) fj, j =
1, ..., N −1 and gi, i = 1, ...,M −1 inside the four-sided domain F and then by considering
the Gordon patch x which interpolates those curves. Since we only know the equations of
the curves delineating the boundary of F , we need an automatic method of generating the
internal curves. Our approach consists of three stages:

• Find suitable points xij in the four-sided domain F . These points will be the future
intersection of the curves fj and gi (see relation (14)).

• Determine the parameter values u0, ..., uM and v0, ..., vN (see relation (15)).

• Interpolate the points xij with cubic Bézier-splines to obtain fj and gi:

gi(v) =
3∑

k=0

gikB
3
k((v − vj−1)/(vj − vj−1)) ∀ v ∈ [vj−1, vj] , (18)

fj(u) =
3∑

l=0

fjlB
3
l ((u− ui−1)/(ui − ui−1)) ∀u ∈ [ui−1, ui] . (19)

We are going to give in the next section a rigorous method of recognizing if a Gordon patch
is a diffeormorphism.
Determining the internal points xij is done in three stages. First one generates a mesh M
on the four-sided domain. Then, one uses the shape preserving parameterization method
described in [10] to find a mesh T on the unit square and a function κ such that κ transforms
T to M. Finally xij is defined to be κ(i/M, j/N) for i = 1, ...,M − 1 and j = 1, ..., N − 1.
Let the intersection of gi and α (resp. γ) be α(ui) (resp. γ(ũi)) and that of fj and δ (resp.
β) be δ(vj) (resp. β(ṽj)).
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Define ui := 0.5(ui + ũi) and vj := 0.5(vj + ṽj). In order that the compatibility condition
(14) is fulfilled at the boundaries, one has to reparameterize α, β, γ, and δ. To that end,
one searches for reparameterization functions sα, sβ, sγ, and sδ which are monotonically
increasing functions from [0, 1] to [0, 1] and which satisfy

sα(ui) = ui , sγ(ui) = ũi , sδ(vj) = vj , sβ(vj) = ṽj. (20)

One replaces afterward the boundary curves α, β, γ, and δ by:

α̃ := α ◦ sα , β̃ := β ◦ sβ , γ̃ := γ ◦ sγ , δ̃ := δ ◦ sδ. (21)

In order to determine the unknown control points {gik}, {fjl} in (18) and (19), one solves
some linear system which depends only on xij, ui and vj and which is diagonal dominant
(see [17] for details).

8 Termination test

In this section we would like to investigate a condition in terms of the control points from
relations (18) and (19) so that the corresponding Gordon patch is a diffeomorphism. That
could serve in practice as a termination test about how many curves fj and gi should be
inserted. Let us see first some preliminary properties pertaining to Coons patch.

8.1 Preliminaries about Coons patch being diffeomorphism

Suppose that the boundary curves α, β, γ, δ for the Coons patch are Bézier curves of
degree n and that their control points are αi, βi, γi, δi i = 0, ..., n respectively. The
blending functions are supposed also to be a polynomial:

φ(t) = η(t) =
n∑

i=0

φiB
n
i (t) . (22)

We suppose that the degrees n are the same (otherwise one can apply degree elevation
technique as in [9]).

Theorem 3 Consider the following three conditions:

(C1) There exists some F > 0 such that for i = 0, ..., n

‖(βi − δi) + φi(γ0 − γn + αn − α0) + (α0 − αn)‖ ≤ F/ρ (23)

‖(γi − αi) + φi(αn − γn + γ0 − α0) + (α0 − γ0)‖ ≤ F/ρ (24)

where ρ := supt∈[0,1] |φ′(t)|.
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(C2) There exists some κ > 0 such that for all ζ, u, χ, v ∈ [0, 1]

det(Ku,ζ , Lv,χ) ≥ κ where

Ku,ζ := (1− ζ)α′(u) + ζγ′(u) , (25)

Lv,χ := (1− χ)δ′(u) + χβ′(u) . (26)

(C3) There is some M with

‖Ku,ζ‖ ≤M and ‖Lv,χ‖ ≤M ∀ζ, u, χ, v ∈ [0, 1]. (27)

Under these conditions the Coons patch with respect to α, β, γ, δ is a diffeomorphism if

2MF + F 2 < κ. (28)

Proof
Some few computations reveal that the partial derivatives of the Coons patch are

xu(u, v) = φ′(u)Su + Cu , xv(u, v) = φ′(v)Sv + Cv where (29)

Su := β(v)− δ(v) + [(1− φ(v))α(0) + φ(v)γ(0)]− [(1− φ(v))α(1) + φ(v)γ(1)] ,

Sv := γ(u)− α(u) + [(1− φ(u))α(0) + φ(u)α(1)]− [(1− φ(u))γ(0) + φ(u)γ(1)] ,

Cu := (1− φ(v))α′(u) + φ(v)γ′(u) ,

Cv := (1− φ(u))δ′(v) + φ(u)β′(v) .

Therefore we obtain

Su =
n∑

i=0

(βi − δi)B
n
i (v) + φ(v)(γ0 − γn + αn − α0) + (α0 − αn) , (30)

Sv =
n∑

i=0

(γi − αi)B
n
i (u) + φ(u)(αn − γn + γ0 − α0) + (α0 − γ0) . (31)

After a few rearrangements one obtains

Su =
n∑

i=0

[(βi − δi) + φi(γ0 − γn + αn − α0) + (α0 − αn)]Bn
i (v) , (32)

Sv =
n∑

i=0

[(γi − αi) + φi(αn − γn + γ0 − α0) + (α0 − γ0)]B
n
i (u) . (33)

By using (C1) one obtains

|φ′(u)|.‖Su‖ ≤ F and |φ′(v)|.‖Sv‖ ≤ F. (34)
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Because of multilinearity of the determinant function we have

det(xu,xv) = φ′(u)φ′(v)det(Su, Sv) + φ′(u)det(Su, Cv) + (35)

+φ′(v)det(Cu, Sv) + det(Cu, Cv). (36)

≥ det(Cu, Cv)− {|φ′(u)φ′(v)det(Su, Sv)|+ (37)

+|φ′(u)det(Su, Cv)|+ |φ′(v)det(Cu, Sv)|} (38)

≥ κ− (F 2 + 2FM) > 0 due to (34) (C2) and (C3). (39)

That means the Jacobian is nowhere zero. The inverse function theorem ensures therefore
that the Coons patch is a diffeomorphism.

Remark 8 Condition (C2) has some geometric interpretation. If ones consider any convex
combination K of the tangent vectors α′(u) and γ′(u) and L of δ′(v) and β′(v), then K
and L are bounded away from being collinear and they are never zero in norm.

Remark 9 Condition (C3) can be replaced by (C̃3): For i = 0, ..., n− 1 and j = 0, ..., n

n‖φj(γi+1 − γi + αi − αi+1) + (αi+1 − αi)‖ ≤M (40)

n‖φj(βi+1 − βi + δi − δi+1) + (δi+1 − δi)‖ ≤M. (41)

The idea of the proof remains fundamentally unchanged. Condition (C̃3) is easier to check
than (C3) because (C̃3) involves only discrete information. Effectively (C̃3) implies the
following bounds

‖(1− φ(v))α′(u) + φ(v)γ′(u)‖ ≤ M , (42)

‖(1− φ(u))δ′(v) + φ(u)β′(v)‖ ≤ M . (43)

8.2 Diffeomorph Gordon patch

The usual way ([9]) of generating the function ϕi, i = 0, ...,M and ψj, j = 0, ..., N of
relation (16) is with the help of the Lagrange polynomials. The support of such functions
is therefore the whole interval [0, 1]. That method and similar ones are called elastic in
[14] because a perturbation of one curve fj or gi propagates to the whole domain. For our
method, we prefer to use a local method in which ϕi and ψj are defined by

ϕi(u) :=


φ[(u− ui−1)/(ui − ui−1)] if u ∈ [ui−1, ui]
1− φ[(u− ui−1)/(ui − ui−1)] if u ∈ [ui, ui+1]
0 otherwise,

(44)

ψj(v) :=


φ[(v − vj−1)/(vi − vj−1)] if v ∈ [vj−1, vj]
1− φ[(v − vj−1)/(vj − vj−1)] if v ∈ [vj, vj+1]
0 otherwise,

(45)

where φ is a function defined on [0, 1] with φ(0) = 0 and φ(1) = 1.

15



The resulting Gordon patch is known to be plastic because every perturbation is kept local
due to local support of the blending functions. We want to analyze the Gordon patch in
the cell Rij := [ui−1, ui] × [vj−1, vj] whose image is bounded by fj−1, fj, gi−1 and gi (see
Fig. 7(a)).

Corollary 1 Consider the following three conditions:

(G1) There exists some F > 0 such that for k = 0, ..., 3

‖(gik − gi−1,k) + φk(xi−1,j − xij + xi,j−1 − xi−1,j−1) + (xi−1,j−1 − xi,j−1)‖ ≤ F/ρ ,

‖(fjk − fj−1,k) + φk(xi,j−1 − xij + xi−1,j − xi−1,j−1) + (xi−1,j−1 − xi−1,j)‖ ≤ F/ρ ,

where ρ := supt∈[0,1] |φ′(t)|.

(G2) There exists some κ > 0 such that for all u ∈ [ui−1, ui], v ∈ [vj−1, vj], ζ, χ ∈ [0, 1]

det(Ku,ζ , Lv,χ) ≥ κ where

Ku,ζ := (ui − ui−1)[(1− ζ)f ′j−1(u) + ζf ′j(u)] , (46)

Lv,χ := (vj − vj−1)[(1− χ)g′i−1(v) + χg′i(v)] . (47)

(G3) There is some M such that for all u ∈ [ui−1, ui], v ∈ [vj−1, vj], ζ, χ ∈ [0, 1]

‖Ku,ζ‖ ≤M and ‖Lv,χ‖ ≤M. (48)

Under these conditions the Gordon patch is a diffeomorphism in Rij if

2MF + F 2 < κ. (49)

Proof
One can check that in the domain [ui−1, ui] × [vj−1, vj] the Gordon patch, which has (44)
and (45) as blending functions and which interpolates the internal curves in (18), (19),
coincides with the Coons patch with respect to the boundary curves α, β, γ, δ defined for
u, v ∈ [0, 1] by:

α(u) := fj−1(u(ui − ui−1) + ui−1) , β(v) := gi(v(vj − vj−1) + vj−1) ,

γ(u) := fj(u(ui − ui−1) + ui−1) , δ(v) := gi−1(v(vj − vj−1) + vj−1).

We need to apply the results in theorem 3 to complete the proof.

Remark 10 The objects which are used in the following numerical tests stem from IGES
files ([26]). So far we have only treated planar trimmed surfaces. Spatial trimmed surfaces
are provided in IGES format in the following way. An initial parametric surface R is given
from a rectangular (which can supposed to be the unit square after scaling and shifting)
parameter domain D to the space R3. Afterward, a planar trimmed surface S is defined
inside D. The eventual spatial trimmed surface is then the image of S by R. Splitting a
spatial trimmed surface R into four-sided domains can therefore be done by splitting the
planar trimmed surface S and then by taking the image by R. In general the base surface
R is supposed to be already a diffeomorphism. Hence, the final diffeomorphism in case of
spatial trimmed surface is the composition of a Gordon patch and the base surface R.
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(a) (b)

Figure 8: (a)Object with 5 trimmed surfaces and 25 untrimmed, (b)Object with 79 four-
sided subregions

(a) (b)

Figure 9: (a)Object with 2 trimmed surfaces and 8 untrimmed, (b)Object with 36 four-
sided subregions
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(a) (b)

Figure 10: (a)Object with 10 trimmed surfaces and 20 untrimmed, (b)Object with 54
four-sided subregions

9 Numerical tests

In this section, we want to present some practical samples obtained from the formerly
presented methods. We want particularly to present the runtimes of the approaches. The
following tests have been done with an Intel Pentium 4 processor 2.66 GHz running Win-
dows XP. First we will present numerical results pertaining to the tessellation. Then we
will give some for the parameterization.
We consider three objects which have 30, 10 and 30 patches respectively (see Fig. 8(a),
9(a), 10(a)). We have used the afore mentioned methods to tessellate them into four-sided
subregions. In Fig. 8(b), 9(b), 10(b) we see the final tessellations. After the tessellations,
the objects have respectively 79, 36 and 54 four-sided subregions.

Information extraction Tessellation
Object 1 0.301 sec 2.073 sec
Object 2 0.291 sec 0.801 sec
Object 3 0.381 sec 1.512 sec

Table 1: Runtimes for tessellations (CPU)

In Table 1 we gather the time needed to perform the tessellation. The information extrac-
tion includes automatic loading of the corresponding IGES files and establishment of the
information pertaining to the trimmed as well as untrimmed surfaces.
As for the second test, we want to generate a Gordon patch for the domain in Fig. 6(a).
In Table 2, we find the time needed to generate the gridpoints xij, and the time for finding
the internal curves {fj} and {gi}. The result of the Gordon patch is found in Fig. 7(b).
One notes that determining the internal curves needs only to be done once and the values
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Tasks CPU time
Searching for the gridpoints 4.306 sec
Finding the internal curves 0.080 sec
Evaluation at 100 positions 0.090 sec

Table 2: Runtimes for parameterization

of the control points in equations (18) and (19) can be stored for any future purpose. We
are also interested in the computational cost of evaluating the resulting Gordon patch. In
the last row of Table 2, we report the time needed to evaluate the Gordon patch at 100
parameter values (uk, vk) ∈ [0, 1]× [0, 1].
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