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Preface

Many physical problems lead to boundary value problems for partial differential equations which
can be solved with the—, hp—, andp—version of the finite element method. Such a discretiza-
tion leads to a system of linear algebraic equations. One of the most efficient methods in order to
solve systems of linear algebraic equations resulting fserarsion finite element discretizations

of elliptic boundary value problems is the conjugate gradient method with domain decomposi-
tion preconditioners. The ingredients of such a preconditioner are a preconditioner for the Schur
complement, a preconditioner related to the Dirichlet problems in the sub-domains, and an ex-
tension operator from the boundaries of the sub-domains into their interior.

The aim of this monograph is to develop a preconditioner for the problems in the sub-domains.
For the Poisson equation, the preconditioner for this problem can be interpreted as the stiffness
matrix resulting from arh-version finite element discretization of a degenerated operator. The
corresponding systems of finite element equations are solved by a multi-grid algorithm. Al-
ternatively, a preconditioned conjugate gradient method is used, where the preconditioner is a
multi-grid preconditioner, an AMLI preconditioner, or a so-called MTS-BPX preconditioner. A
rigorous mathematical theory analyzing the condition numbers of the preconditioned systems
and the convergence rate of the multi-grid algorithm is given. The analysis is purely algebraic
and basically relies on two ingredients, the strengthened Cauchy-inequality and the construction
of the smoother.

This work has been possible only with the help, stimulation and encouragement of many peo-
ple. | want to thank Prof. Arnd Meyer for the supervision of my dissertation. Furthermore, |
wish to express my particular appreciation to Dr. Michael Jung for many stimulations, fruitful
discussions and proofreading. Chapteromprises the results of a joint work with Prof. Rein-
hold Schneider and Prof. Christoph Schwab. | would like to thank both for their contributions
and ideas. Furthermore, | would like to thank all colleagues of the faculty of mathematics at the
TU-Chemnitz for the stimulating working atmosphere. Special thanks go to Dr. Gerd Kunert
for improving the English and Roman Unger for removing all my problems. This work was
supported by the Deutsche Forschungsgemeinschaft. At last | would like to thank my father for
his support and patience over the years. All this help and support is gratefully acknowledged.



List of symbols

In this section, a list of the most important symbols is given.

e Domains:
d - space dimension,
I = (0,1),
Q= (0,1)
Qg - (0, 1)3,
Re = (—1,1)4
e Bilinear forms:
an(u,v) = fuwvm + uyvy,
as(u,v) = fo ) dz,
am(u,v) = fo r?u(z)v(z) dz,
am(u,v) = fo r%u(x ) dz,
aj(u,v) = as(u,v)+ am(u,v) + am(u, v),
a(u,v) = [ YPugv, + 2Puyuy,
az(u,v) = fg3 TPy Uy + Y U2V + 22Uy Ugy.

e Polynomials:
polynomial degree,

Hbes

i-th Legendre polynomial,
i-th integrated Legendre polynomial,
i-th Chebyshev polynomial.

e Mesh parameter and shape functions:

o

(bf,ijz(x» Y, 2)

- level number,
= 2k
- interval (£, ®1),
n
] n'Oden ( j) H k k: k
- triangle with vertices;; ”H andzy q .4,
k
- triangle with vertlces%, 1 andxm’jﬂ,
k
- squarer] x Tj,
- cuber} x 7F x 7f,

- piecewise linear nodal hat function wity"*( = dij,
- piecewise linear nodal hat function Wlm (xlm) = 0i10jm,
- pleceW|se blllnear nodal hat function chﬂ{jw zh )

o (1) () (2).

e Norms and function spaces:

61[ Jma



L*(Q)
H'(Q)
Hg ()
w(§)

L ((a,b))
[ -
[t -
[ -
H ’ ||a -

I lle -

e (uadratic matrices:

>\maz<M)
r(M)
k(A™'B)

det(M)
trace(M)
diag|a]
tridiag|a, b]

pentdiag|a, b, (]

blockdiag [A;]]

=1

{u:Q+— R, umeasurable [, u* dz < oo},
{u e L*(Q),Vu e (L*(N))%},Q C RY

{u € H'(Q),u = 00noN},

weight function,

{u € L2((a,)), [* w?(z)u(z) do < oo},
L?-norm,

H'-norm,

L?-norm,

energetic-norm,

Frobenius norm of a matrix,

smallest eigenvalue d¥/,

largest eigenvalue a¥/,

condition number of\/ in 2-norm,

condition number ofA='/2BA~1/2 if A andB
are symmetric and positive definite,
determinant of\/,

trace of M,

diagonal matrix with the main diagonal equal to
the vecton,

tridiagonal symmetric matrix with main diago-
nala and first sub-diagonal

penta-diagonal symmetric matrix with main di-
agonak and sub-diagonalsandt,

block diagonal matrix with blocksl;.

e special vectors and matrices:

¢
T

D,
Cy
Ky,

Ckmu

Ck,5,1=Ch,5,u1

Ch
Cr

[1,..., 1%,

5 - tridiag[2e, —¢],

4 - diaglb], whereb = [i? + 1]

Dy ®@T5+ Ty ® Dy,

55 Cy, stiffness matrix for-z2u,, — y®u,, using linear fi-

nite elements,

AMLI preconditioner with the polynomigll —rt¢)* on level
=1,...,k,

Multi-grid preconditioner (1 iteration) on levél with the

smootherS andu cycles on each level,

MTS-BPX preconditioner,

ILU-BPX preconditioner.

n

=1’
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1 Introduction

Many problems in mechanics, natural sciences, and economy can be described by partial differ-
ential equations (pde). Examples are the heat equation of thermodynamics

= Au+f,
the system of Lai@ equations for, = (uV, u® )T of linear elasticity
—plAu— (A +p)graddive = f,
the Schédinger equation of quantum mechanics

h2
th¥, = ——A\If

or the Black-Scholes partial differential equation of pricing of options

2

0*v
Zazcrjpw ]8585 +r ZS@S —rv = 0. (1.2)

zg*

However, for all these pde’s, the exact solution is only known for some academic examples by
giving suitably chosen right-hand sides, initial values and boundary values. For the correspond-
ing applications, it is important to obtain solutions of the pde also for those cases in which an

exact solution is not known.

For thirty years, applied mathematicians have studied discretization methods to obtain approxi-
mate solutions of such pde’s. Examples for such approximation methods are the finite difference
method (fdm), §9], [41], and the finite element method (fem4], [74], [66], [16], which has

its origin in the simulation of aerodynamics for aero-planes.

In order to understand the approximation theory, the Poisson equation

—Au=f

is often used as a reference example. In some cases, the theory can be extended to other examples.
E.g. by using Korn’s inequality, we obtain the same results for the system of the éqnations.
For all methods, the described discretizations lead to a system of linear algebraic equations

Au = f.

Using the vector, an approximation, of the exact solutiom can be constructed by the usual
finite element isomorphism. The erraf — « tends to zero in a suitably chosen norm, if the
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discretization parametér tends to zero. Therefore for the practical implementation of such
algorithms, it is important to choose a discretization paranetey small as possible in order to
obtain a sufficiently accurate approximatiopto the exact solutiom. Then, the dimension
of the vectoru € R™ will be nearly proportional td.~¢, whered is the dimension of the domain
in which the partial differential equation is solved. Using finite differences or finite elements
of low order (.-version of the fem), the corresponding system mattiis a sparse matrix and
is positive definite for elliptic problems. More precisely, the number of nonzero elements is of
ordern. Ford > 1, the matrixA has a banded-like structure. For todays computers, it is no
problem to store such a sparse matrix of dimensions up to some millions.
Instead of finite difference methods or theversion of the finite element method, collocation
methods, $2], and finite elements of high ordep-{ersion), [2], have become more popular
for twenty years. For thé-version of the fem, the polynomial degrg®f the shape functions
on the elements is kept constant and the mesh#sigedecreased. This is in contrast to the the
p-version of the fem in which the polynomial degreés increased and the mesh-sizés kept
constant. The advantage of theersion in comparison to thie-version is that the approximate
solutionw,, converges faster to the exact solutionif « is sufficiently smooth. For example,
for the potential equatior-Au = f with u € C>, the error in theH'-Sobolev norm fulfills
| v —u, |1< Ce™" (with some constant > 0 independent op) in contrast to the algebraic
convergence order of thie-version with|| v — u; [[;< Ch. Thus, the dimension of the fem
ansatz space can be reduced while obtaining an approximate solution with the same accuracy as
in the h-version of the fem. Both ideas, mesh refinement and increasing the polynomial degree,
can be combined. This is called the-version of the fem. Such discretizations lead to a system
of algebraic equations

Apu, = ip (1.2)

with A, € R™*", wheren, ~ p? is the number of unknowns. The question of the solution of
such a systeml,,u,, = ip is more difficult. The structure of the matrix, depends on the choice

of the basis of the fem ansatz space. For/thersion of the fem, it is natural to use Lagrange-
interpolation polynomials as basis. The case ofHversion is more delicate. For some kinds of
elements, e.g. parallelepipeds in two dimensions, hierarchical polynomials are known for which
the matrix.A, has a sparse structure with(n,) nonzero elements. One example is the basis of
the integrated Legendre polynomials.

However, for each parallelepipedian element, the element stiffness mdgthiais a banded struc-

ture. Therefore, by using direct solvers fard), the memory requirement and the arithmetical
cost are not optimal because of fill-in. Hence, iterative methodslf@y ére better, ifp is suffi-

ciently large. In all cases, the matt, is ill-conditioned which means that the ra% IS
(depending on the choice of the basis) of orgfer. . p* for d = 2 andp* or worse ford = 3, see

e.g. B, [57]. Thus, an efficient preconditioner for the matu, is necessary.

Several preconditioners for tipeversion of the fem and for theversion of the boundary element
method (bem) have been derived in the last years. Most of theni{]sg&d], [36], [59], [63], [1],

[49] for the fem, and 2], [7€], [37], [49)], [46] for the bem are based on domain decomposition
techniques. Efficient solvers for the subproblems are necessary for such a domain decomposition
preconditioner. One subproblem solver is the solver for the unknowns corresponding to the



element interfaces which was investigated in two dimensions by Jensen and Ko#isgeangl
Ainsworth, [1], and in two and three dimensions by Guo and Cag], [Another ingredient of the
domain decomposition preconditioner is the solver related to the interiors of the sub-domains. On
the one hand, it is known from the spectral method that the corresponding matrices are spectrally
equivalent to matrices resulting from the discretization of the Laplacian using the Gaul3-Lobatto
points as grid points,30]. On the other hand, using the basis of scaled integrated Legendre
polynomials, this matrix is very similar to discretization matrices of the degenerated elliptic
operator—z?u,, — y*u,, on the domair(0, 1), see P, [53]. Linear or bilinear finite elements

on uniform meshes or finite differences on uniform grids are used as discretization method.

For systems of linear algebraic equations resulting fromitiversion of the fem, additive and
multiplicative solution techniques are known. Examples are multi-grid methéds[{3], the

BPX preconditioner, 41], [81], domain decomposition methods,7, [18], [19], [20], and in

2D, the hierarchical basis preconditione&t(]. In the most convergence proofs for these meth-
ods, uniform ellipticity of the differential operator is assumed which is, e.g., for the Laplacian
fulfilled. For degenerated operators of the typ@(x, y)u, ). — uy,, where0d < b(z,y) < biaz,
Bramble and Zhang proved i2%] a mesh-size independent multi-grid convergence patel.
However, the operator x?u,, — y?u,, does not satisfy the assumptions of Bramble and Zhang.
On the one hand, numerical experiments, d€gdnd [11], for discretizations of differential op-
erators as-z?u,, —y*u,, indicate a mesh-size independent convergenceraté for multi-grid
algorithms with semi-coarsening and line-smoother. On the other hand, BregsSdhieweck,

[70], and Pflaum, §5], derived purely algebraic techniques in order to prove a mesh-size inde-
pendent multi-grid convergence rate. There one only has to verify algebraic assumptions which
are expressed as eigenvalue estimates of small matrices.

In this work, we will derive arithmetically optimal solvers for several discretization methods
of —z?u,, — y*u,, = g¢ in the unit squarg0,1)?. Moreover, nearly arithmetically optimal
preconditioners for the interior problem of thesersion of the fem will be obtained.

The presented work is organized as follows. In chaptesiome preliminary tools, the theory of
simple iterative methods for the solution df. %), properties of the integrated Legendre polyno-
mials, and properties of the Kronecker product, will be given. In chapténe discretization

of the potential equation by theversion of the fem will be described. Furthermore, global
solution ideas will be derived for the systerh4). Focusing on the interior problem, which

has to be solved by applying domain decomposition preconditioners, several properties of the
element stiffness matrix related to a Dirichlet problem will be formulated. Moreover, a first pre-
conditioner for the element stiffness matrix will be proposed. In chaptdegenerated elliptic
problems in one, two and three dimensions will be investigated. It will be proved that the result-
ing discretization matrices are equal to the preconditioners of the element stiffness matrix of the
p-version of the fem as defined in chapger

In chapter5, fast multi-level solvers for discretizations efr?u,, — y*u,, in the unit square

(0, 1) will be derived. For this purpose, we will use a sequence of finite element discretizations
with piecewise linear shape functions on uniform meshesl'he corresponding finite element
spaces denoted By, will be split into the direct sunV, = V,_; @ W,, I > 2. A sequence of
systemsjy, =g, 1 =1,...,k, arises as result of this discretization. In secfos) a multi-grid
(k-grid) algorithm will be formulated which can be interpreted as alternate, approximate projec-
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tion onto the subspacég, ; andW,. Therefore, systems with the matrix;,_; and a matrix

Ky, have to be solved approximately. The matiky, is the stiffness matrix with respect to

the new nodes on levél The convergence rate, of the considered multi-grid algorithm will

be estimated purely algebraic. It depends on the constant in the strengthened Cauchy-inequality
and the convergence rate of the iterative procedure in order to salve) = r. For the system
Kw,w = r, a special line smoothef,; will be defined whose error transion operator is given

by I — CgNllel. Finally, it will be proved that the convergence rateof the multi-grid algo-

rithm for the solution ofX;w = r is bounded by a constaat< 1. Using the matrice§’y,, an
Algebraic Multi-level Iteration (AMLI) preconditioners], [6], will be proposed. In sectiof.4,
condition number estimates for the AMLI preconditioned systems will be given. Sécégaovill
investigate multi-grid algorithms using different smoothersfef u,, — y*u., and similar prob-

lems. A smoother similar to the smooth&y; will be introduced. In numerical experiments, the
application of this smoother instead &f, embedded in the multi-grid algorithm will accelerate

the convergence of the algorithm. However, a convergence result cannot be proved. Moreover,
a symmetric and positive definite multi-grid preconditioner will be derived. It will be shown
that the condition number of the preconditioned system is bounded by a constant independent
of the mesh-sizé. In section5.6, a BPX-like preconditioner, which we call MTS-BPX pre-
conditioner, will be introduced. This preconditioner can be interpreted as BPX preconditioner
with smoothing. It will be proved that the upper eigenvalue of the MTS-BPX preconditioned
system is bounded byt (£ level number) in the case of piecewise linear fem-discretizations for
differential operators of the typex“u,,, — y*u,, (o > 0). In section5.7, it will be proved that

one iteration of all proposed algorithms is arithmetically optimal. Moreover, an interpretation of
the smoothes, ;. as line-smoother will be shown. Finally, numerical experiments of all methods
will be given in sectiorb.8.

In chapter6, the preconditioners for the element stiffness matrix ofitheersion of the fem in

two dimensions will be defined. The main condition number estimates will be given. Further-
more, all proposed preconditioners will be compared numerically. In ch@pseme new ideas
concerning preconditioning the element stiffness matrix ofptiversion of the fem in two and

three dimensions using wavelet bases will be formulated.

10



2 Preliminary Tools

2.1 lterative solution methods for systems of linear
equations

The aim of this section is to consider iterative methods in order to solve a system of linear
algebraic equations. Furthermore, the convergence properties of several iterative methods are
shown and the purpose of an effective preconditioning is motivated.

2.1.1 Simple iterative methods

Most simple iterative methods4(), [3], [62], in order to solve a system of linear equations

Az =b (2.1.1)

can be written as Richardson-iteration, i.e. the new iteréte!) is given by the recursion
) = gt — e (A - b). (2.1.2)

The parametep is a damping parameter and the mattils a good approximation to the matrix
A. The matrixC is called a preconditioning matrix. Choosi@ig= D, whereD is the diagonal
part of A, one obtains the,-Jacobi method, whereas theGaul3-Seidel, or SOR, method is
defined with the choice @ = D + w/L. The matrix. is the strongly lower triangular part of.
The speed of convergence of the sequed®) 1>, to the exact solution* of (2.1.1) depends
on the condition number of the matiix *.4: One obtains

g(erl) . E* — ([ . wcflA>(£(m) . E*)

by adding—z* to (2.1.2 and.Ax* = b. Therefore, the convergence rate in the Euclidian norm is
given gy

(m+1) _ %
H L Y H2 :p(l—wC_lA),

sup
smzo |l zm — z* ||,

where the parametg(B) is the spectral radius of the matik= 7 —wC ' A. If p(I—wC*A) >

1, the method does not converge to the exact solutior_et us assume thad andC are sym-

metric and positive definite. Thu€, ! A has positive real eigenvalues and the optimal damping

parameteww = w,, IS given by

2
Amaz(C7LA) + Apin(C1A)

W = Wopt =

11
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see e.g.40], [3], [62]. Hence, inserting this value far, one achieves

Anaz(CTEA) = A (CTLA)
Amaa:(cilA) + )\mzn(cilA) .

p(I —wCA) = (2.1.3)

Note that for a symmetric and positive definite matix R"*",

H B HQZ V p(B*B) = )‘max(B)

Thus, k(B) =|| B 2] B! |l2= Amaz(B)/Amin(B). Moreover, the symmetric and positive
definite matrixB = C~/2.AC~'/? has the same eigenvalues@s .A. Hence by definition, let

k(C1A) = % be the condition number of the matriX /2 AC~/2. Therefore, by

relation £.1.3,
k(CTA) —1
HCTA) 1

which means that the condition numbepf C~'.4 should be small in order to achieve a small
p(I —wC ' A) < 1. Letm be the number of iterations in order to obtain a relative accuraey of
in the Euclidian norm, i.em is the smallest integer withz™ — z* ||,< ¢ || z(© —z* ||5. Then,

p(I —wC'A) =

m <2k (C'A) |loge|.

Hence, for the convergence of an iterative method of the type 3, a matrixC has to be
constructed which satisfies the following two conditions:

¢ the condition number af—!A should be small,
e dueto @.1.2 for each iteration step, the operation= C~'r should be cheap.

In general, this problem cannot be solved satisfactory. However, nowadays there are several ideas
deriving preconditioner§ using the origin of the matri¥.

2.1.2 Pcg-method

The preconditioned conjugate gradient method for the solutiodzof= b with symmetric and
positive definite4 has been developed by Hestenes and Stiefd], [It is a Krylov subspace
method. It can be used as a direct method because it gives theoretically the exact solution after
iterations, where is the dimension of the system. Because of its fast convergence properties, it
is used as an iterative method. l(ebe a symmetric and positive definite matrix (preconditioner
for A). The sequencér(™1°°_, will be computed as follows, see e.g.q, [3], [62], [73],

— Initialization:

o 10 = Az _p

[ w(o) — g(l) e C_1£(0)1

12



2.2 Cholesky decomposition for banded matrices and related methods

o %= (w®, r®).
— Iteration: Form =1, ..., do

) fU(m) — Aw(m_l)’

o Gy = (M, D), a, = 2,

) E(m) — g(m_l) + amg(m_l)’

) r(m) — r(m_l) + amy(m)

® YV = (_(m)7£(m))’ﬁm = '7:7_;1'

Let z* be the exact solution o2(1.7). Then, the following convergence result can be shown for
the sequencéz(™1>_,. Let

[ 2™ — " 4
p = sup :
smzo |l 2 — % || 4

Then, see4q], [3], [62], [ 73], the relation
k(CTA) -1

<2
= VE(CTA) +1

is valid. This means that the numberof iterations in order to achieve a relative accuracy of

is bounded by
m < %V/{(C‘lA) In (g) + 1.

Hence, the numbers of iterations grow proportionally tq/« (C—'.A) in contrast tax (C~'.A)
for the most simple iterative methods.

2.2 Cholesky decomposition for banded matrices and
related methods

In this section, the memory requiremevtt, and the number of operatio, in order to solve
the linear system
Az =0

with A € R™" symmetric and positive definite are considered. We assumetthata,;|;,_,
has a banded structure with bandwidthi.e. a;; = 0 for |i —j| > m. Determining the Cholesky
decompositiond = LL”, [73], [34], with the lower triangular matrixC = [I;;]},_,, one obtains
the relationg;; = 0 for |i — j| > m. However, the relatiofy; = 0 is not necessarily satisfied, if

13



2 Preliminary Tools

a;; = 0 and|i — j| < m. Therefore, one obtaink/,, < nm and the cost for the computation of
Lis®W, < nm?.

A special case is thad is a symmetric and positive definite tridiagonal matrix. Note, that 1

holds. ThenM,, < n and®,, < n, i.e. the Cholesky decomposition is arithmetically optimal.
However for matrices of five-point stencil structure, the relaiign= 0 holds, if |i — j| ¢
{0,1,m}, wherem? = n. One obtains onlg¥,, = nm? = n2 andM, = n2, which means that

the memory requirement i8(n?2) in order to savet, whereas the memory requirement is about

5n in order to saved. Thus, the Cholesky decomposition is not optimal.

In the seventies, several other direct methods are derived for five- and nine- point stencils. These
methods reorder the unknowns in such a way that the Cholesky decomposition of the reordered
matrix produces less fill-in than the Cholesky decomposition of the usual matrix. The asymptot-
ically most efficient one is the method of Nested Dissection developed by G&#gé32]. In

this method, the corresponding graf@h, V') of the matrix is considered. A separat®rof the
graphG is constructed which divides the graph into the disjoint subgréaphsl; ) and(Gs, V5)

with G = VUV, U SandV; NS = 0,7 = 1,2. Now, the vertices o¥/; are ordered firstly,

next the vertices of; and as last those ¢f. Doing this algorithm recursively fa; andGs, a

new ordering of the vertices is given. Then, the arithmetical cost can be redu¢¥eiy, the
memory requirement t®(m? log(1+m)), [33]. However, this is not optimal, i.8¥,, > O(m?)

andM,, > O(m?). The integern denotes the number of grid-points in one direction.

2.3 Properties of the Legendre polynomials

In this section, the Legendre polynomials are introduced and their most important orthogonality
relations are given. We refer t@ ] for more facts. Let

1 d

, _ 2 1yi
L;(x) 2%‘!dxi($ 1) (2.3.1)
be thei-th Legendre polynomial and
Liw) = [ Lias)ds, iz (2.3.2)
-1

be thei-th integrated Legendre polynomial with the scaling factor

b \/(22—3)(2@4—1)(2@+1)' (2.3.3)
Moreover, let by definition
. 1—
Lo(ZE) = 9 I,
. 1+
Li(z) = — -

14



2.4 Kronecker product

LEMMA 2.1. The following relations are valid between the polynomi&ls (1) and (2.3.9:

d -
— I,
FC))

[A/Z(:):) =
Li(1) =
Li(-1) =
(t+1)Liq(x) +il;q(x) =

Proof: The proof is given in{7].

2.4 Kronecker product

In this work, several properties of the Kronecker product are used. The most important are

summarized in this section.

viLi—i(x), > 2,
2

v 120

d .
E(LH—I(ZE) — Li_q1(x)), i>1,
(-1)', >0,

(2 +1)(2i — 3)
Li - Li— )

0, i>2,
0, i>2

(20 + 1)xLi(z), i>1.

DEFINITION 2.2. LetA € C**' and B € C™*". Then, the matrix

an B a;2B ayB
A ® B QQ?B CLQQB CLQIB c @kmxln
ale CLkQB ale

is called the Kronecker-product between the matridesnd B.

(2.3.4)

(2.3.5)

(2.3.6)
(2.3.7)

i >2, (2.3.8)

(2.3.9)
(2.3.10)
(2.3.11)

(2.4.1)

LEMMA 2.3. LetA € CF*tand B € C™ ™. Furthermore, letv € C andC € CF*!, D € ¢!
and E € C™". The following relations are valid:

(@A) ®B =A® (aB) =

(A B)"
(A+C)® B
(A® B)(D® E)
(Ao B)™!

a(A® B),

= AT ® BT,

- A® B+C® B,
- (AD) ® (BE),
= Ate B,

where the matricegl ¢ C™*! and B € C™*" are non-singular in 2.4.9.

(2.4.2)
(2.4.3)
(2.4.4)
(2.4.5)
(2.4.6)
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2 Preliminary Tools

Proof: The proof can be found in several books about Linear Algebra, see64.gl [
In the following, we assume that € R™*™ andB € R™*". The eigenvalues and eigenvectors
of A ® B can be determined by the eigenvaluesiaind B.

LEMMA 2.4. Let )\ be an eigenvalue and the corresponding eigenvector &f \” andz”
an eigenpair of3. Then,A;“)\jB is an eigenvalue oft ® B with the eigenvectar? ® &f.

Proof: The assertion follows fron2(4.2).0
The next lemma will be used very often in this work.

LEMMA 2.5. Letn; = n3 andny = ny. Let us assume that the matricds € R"™*", and
B; € Rm*™ ¢ =1,2,3,4, are symmetric and positive definite. Furthermore, let

Amin (Bi 7 4) > Ny A (Bi_lAi) <N
fori =1,2,3,4. Moreover, let
A = oA ® Ay + A3 ® Ay,
B = aB; ® By + B3 ® By,
wherea, 3 > 0. Then, the following eigenvalue estimates are valid
Amin (B_lA) > min{ A Ay, AsAs},
Amaz (B‘lA) < max {)\1)\2, )\3/\4} :
Proof: Note that by Lemma.3,
(B @ B;) (A ® Aj) = B 'A; @ B T A;.
Thus, by Lemma.4,
AN < Amin ((Bi @ By) (A @ 4)))
and
Amaz ((Bi @ Bj) ™ H(A; ® Aj)) < NN,
By our assumptions, the matricds and B;, i = 1,2, 3,4, are symmetric and positive definite.
Thus, one concludes

M2 (By ® Byw,v) < (A} @ Ayw,v) < MM (By @ Bav, ) (2.4.7)
and
AsA1 (B ® Byw,v) < (A3 @ Agw,v) < NA* (B ® By, v) (2.4.8)
for all v € R™"™2. Multiplying (2.4.7) by a > 0, (2.4.9 by § > 0 and adding both inequalities
gives
min { A\ A, A3\ } ((aB1 ® By + B3 ® By)v,v) <
aM Az (B ® Byv,v) + BAsAy (Bs ® Byv,v) < (Aw,v)
and
(Av,v) aMAg (B ® Byu,v) + BAsA (Bs @ By, v)
max { A\ A, AsA\y} ((B1 @ By + B3 ® By)v,v)

for all v € R™"2 which is the desired result]

<
<
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3 Discretization by the p-version of the
fem

In this chapter, the discretization of the potential equation in two dimensions ky\tBesion

of the fem is investigated. In the next sections, the derivation of the system of linear algebraic
equations and first general ideas, namely domain decomposition techniques, in order to solve
such a system are explained. One ingredient of such a domain decomposition preconditioner, the
solver for the interior problem, will be focused in sectiéh8and3.4.

3.1 Formulation of the problem in two dimensions

We consider the boundary value problem
—Au = f in Q,

v = 0 on Iy, (3.1.1)
ou

— = on T

an O 2

where); c R?is a domain which can be decomposed into (straight-line) quadrilaterals and
Iy Uy =09, Ty NTy = (. The weak formulation of this problem is:
Findu € Ho() :={u € H (), u |r,= 0} such that

an(u,v) = / Uy Uy + UyUy = fv Yve Hy(th) (3.1.2)
Ql Q1

holds. Problemd.1.1) will be discretized by means of theversion of the finite element method
using quadrilateral®,. Let R, = (—1,1)? be the reference element athd : R, — R, be the
bilinear mapping to the elemet,. We define the finite element space

M := {u < H0(91)7U Rs™— u(q)s(gan)) = @(5777)773 € Qp}’

where @, is the space of all polynomials(¢,n) = pi1(§)p2(n) of maximal degree in each
variable. Now, the discretized problem can be formulated: kihd M such that

an(uf,vP) = foP Yol e M (3.1.3)
1971

holds. Let(vy,...,v,,) be a basis ofM. Then, problem{.1.3 is equivalent to solving the
system of algebraic finite element equations

Apu, = f (3.1.4)
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3 Discretization by the p-version of the fem

where

A, = laa( v,

u, = [ui];Zl?

n= el

Then,u? =" w;¢); is the solution of .1.3. We are interested in finding an efficient solver for
the system of linear algebraic equatiofisi(4).

3.2 Domain decomposition

Domain decomposition techniques3], [17], [19], [19], [20], [60], [61], are efficient iterative

methods in order to solve linear systems of algebraic equations of the3yipd.(The approx-

imation spaceéM will be split into a direct suniM = M; @ ... ® M. It is assumed that this
splitting is stable with respect to the bilinear forin, i.e. the relation

k

Z an(vi,v;) < an(v,v)

=1
is valid for allv; € M, andv = Zle v;. The efficient preconditioner

k
ch = V(A V)Y

=1

can be built, wheré’; is the matrix representation of the orthogonal projeciiddn— M; with
respect to the energetic scalar produgt-, -). Note thatl;” 4,V; is the stiffness matrix of:
Findv; € M; such that

an(vi,w;) = (f,w;) Yw; € M.

Then, the eigenvalue estimatgs;, (C7'4,) > ¢ 2 and ... (C"'4,) < k are valid, cf. 6],
[59].

For our purpose, we have to chodse- 3. The corresponding spaces are defined as follows:

e M; = M, is the space of the vertex functions which are the usual piecewise bilinear

functions of theh-version of the finite element method,
e M, = M., is the space of the edge bubble functions,

e M3 = M;,; is the space of the interior bubbles which are nonzero on one element only.
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3.2 Domain decomposition

An edge bubble function corresponds to an ee@é the mesh. Its support is formed by those
two elements which have this edgen common. Corresponding to this splitting of the shape
functions, the matrix4,, is split analogously into sub-blocks,

Avert Avert,edg Avert,int
Ap - Aedg,vert Aedg Aedg,int . (3 2. 1)
Aint,vert Aint,edg Aint

The indicesvert, edg andint denote the blocks corresponding to the vertex, edge bubble and
interior bubble functions, respectively. Jensen and Kornééy, §nd Ivanov and Korneew4[],

[48], developed preconditioners for tipeversion of the finite element method in a two-dimen-
sional domain using domain decomposition techniquds,They proposed the preconditioning

matrix
Avert O 0

Cp = 0 Acdg  Aedg,int (3.2.2)
0 Aint,edg Aint

corresponding to the splittindl,.,+ & (M.q, & M,,,:) Which is considered in a first step. This
splitting is nearly stable as the following lemma confirms.

LEMMA 3.1. The condition numbet (C, ' A4,) grows as(1 + log p).

Proof: The proof can be found id]], Lemma 2.3.0

Therefore, the vertex unknowns can be determined separately. Efficient solution methods are
direct solvers in the case of theversion of the fem, if the matrix,,.,; is small, or multi-grid
methods, 40], in the hp-version. However, the splittindl.,, © M, is not stable. Therefore,

we can proceed as follows. The sub-block correspondifg g andM,,, is factorized as

~

Aedg Aedg,int o I Aedg,intAi_n%j S 0 I 0
Aint,edg Aint N 0 I 0 Aint A;ﬁAint,edg I
with the Schur complement

S = Aedg - Aedg,intA;,;fAint,edg-

Thus for M,,,;, the subproblem restricted to this space has to be solved, whered.fpra
modified problem is considered. The matr,; corresponds to the interior bubbles having a
support containing one element only. Therefore, the matixis a block diagonal matrix, where

each block corresponds to one element. Hence, in order to compute the interior unknowns, we
have to solve a Dirichlet problem on each quadrilateral. The edge unknowns are computed via

the Schur complemerstand multiplications with the matri% _ } and its transpose.

1
A, ! Aint,edg

wnt
So, in addition to a solver foA,.,;, three tools are required to define a preconditioner for the
matrix of (3.2.2, namely

e a preconditioner for the interior problem,
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3 Discretization by the p-version of the fem

e a preconditioner for the Schur compleméhand

e an extension operator from the edges of a quadrilateral into its interior in order to replace
the matrixA;,} Aint caq-

wnt

lvanov and KorneevA7], [48], derived some preconditionef%; for the Schur complement. The
condition number of’JS‘lS is O(1 + log? p) in the worst case, whereis the polynomial degree.
The solution ofCsz = y can be done by solving triangular systems and fast Fourier transform,
[28]. The problem of the extension operator was investigated by Sabet. al, ).

We focus now on a fast solver fot;,;, = blockdiag [Ag,],, Where Ay, is that block of the
stiffness matrixA,,,; which corresponds to the elemdrt. The following lemma is valid.

LEMMA 3.2. LetdR, € C, t > 2, whereC® denotes the class of all boundaries which
consist of a finite number aftimes continuously differentiable curves and the angles of these
curves at their intersection points @R, are distinct from0 and 27. Then,x (ARS‘lARQ) =
O(1), whereAr, = (—1,1)%.

Proof: The proof can be found id§], Lemma 4.2.0
Hence, it is sufficient to investigate the matrig, in order to find a good preconditioner for
Aine. This will be done in the next sections and chapters.

3.3 Properties of the element stiffness matrix
Letd = 2 be the dimension of the domain. By Lemi3&,

—Au = f in Ryq= (—1,1)d,

u = 0 on I0Ry (3.3.1)

is the typical model problem in order to solve the system
Az =y

of linear algebraic finite element equations. Problén3.() will be investigated in the case
d = 3 as well. Problem3.3.]) is solved by the—version of the finite element method with one
elementR, only. As finite element space,

M. — Hi(R2) Nspan{oy;(z, y) f,j:o for d=2,
P Hp(Rs) Nspan{¢iju(w,y, 2)}, 4o fOr d=3

is chosen, where,;(z,y) = z'y/ andéy;i(, y, 2) = z'y? 2", respectively. The discrete problem
is: Findu? € M,, such that

VuP - VoP :/ foP voP e M, (3.3.2)
Ra
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3.3 Properties of the element stiffness matrix

In order to define a basis iil,, we choose tensor products of the integrated Legendre polyno-
mials L; (2.3.2. More precisely, let

A£z’j<x7y) -
Lijp(z,y,2) =

Sinceii(il) = 0fori > 2, cf. relations £.3.9 and ¢.3.10,

M, = Span{[:ij(x7 y)}ij:Z
for d = 2 and
M, = span{Li(z,y,2)}?
for d = 3. The stiffness matrixiz, for (3.3.2 (with d = 2) is given byAr, = [aijl} ;_s.5, 12
where
Akl = » VLij(z,y) - Via(z,y) dz,y). (33.3)
>

Analogously, the matri¥lz, is defined. The matricedr, can be written explicitely as

Az, = FeD+D®F and (3.3.4)
Ar, = FRF®@D+F®D®F+D®F®F,

where the matrice$’ and D are the one-din]ensional mass matrix and stiffness matrix in the
basis of the integrated Legendre polynomigls(z)}:_,, i.e.

o [/_1 L) L) dxr ,

1 ik=2
1

~

p
D = U L(x) L (x) da:] .
-1 i,k=2
Then using relations2(3.4), (2.3.5 and @.3.9, a simple calculation shows

F = pentdiagle, 0, ],

D = diag[] (3.3.5)
with the coefficients
e = [1,1,...,1)%,
p—2
1 /(20 —3)(2i +5)
p = A . - )
2\ (20 —1)(2i + 3) L,

9

L {(2@ —3)2(2i—|— 1)r

=2
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3 Discretization by the p-version of the fem

cf. [49]. A reorderingP of the rows and columns of the matricEsand D gives

Flo}

o F (3.3.6)

PrPT - [
whereF, = tridiagle,p,] and F, = tridiag[e,p,]. Analogously, with the same permutatiéh
one easily derives

=~ Dy O

T _ 1

PDP' = { 0 D, } :
whereD; = diag[p,] and D, = diag[v.]. The indices» ande denote the odd and even compo-
nents of the vectonsanda. The matrixAz, has some important properties which we summarize
in a proposition.

PROPOSITION 3.3. The following assertions are valid.

(3.3.7)

1. There exists a permutatiaf of rows and columns such that
PAg,PT = blockdiag [@,];_,

holds.

The matriced;, i = 1,2, 3, 4, are sparse.

Moreover, each blocf]; has a 5-point stencil structure.

The condition number &; is of orderp?.

a & w0 DN

The block€d; are spectrally equivalent to each other, i.e(d;,'@;) = O(1) for i,j =
1 4.

g e ey

Proof: We note that the four blocks correspond to the coefficients of the polynomiﬁﬁzn,
Lom.2n+1s Lom+1,2n, @NA Loy, 11 2,4+1. From 3.3.9 and @.3.7), we deduce

Arivj2=F;@D; +D; @ F; 1,5 =1,2.

Thus, the first three assertions follow immediately fré8(4 and @.3.9. By x (D; ' D,) =
O(1) which is trivial andx (Fy 7' F) = O(1), cf. [49], the last assertion follows. The fourth
assertion is proved irip]. O

Similar results are valid fodz,. We introduce the matrices

Byirojih-6=FiQF; @D+ F,®D; ® F,+ D; @ F; ® Fy,
fori, j, k = 1,2. Using similar arguments as in Propositi®:3, the next proposition follows.
PROPOSITION 3.4. There exists a permutatiafi of rows and columns such that

PAg, PT = blockdiag [3,]}_,

holds. The blocks; are spectrally equivalent to each other, i.e.(iﬁfliﬁj) = O(1) for all
i,j=1,...,8.
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3.4 Preconditioner for the element stiffness matrix

In the following, we will focus on finding an efficient preconditioner &y, and¥,. Via Propo-
sitions 3.3 and 3.4, the preconditioner forAz,, d = 2,3 can be constructed. For reasons of
simplicity, we assume thatis odd. Furthermore, let — 1 = 1%1 be the dimension of}, and
D;.

3.4 Preconditioner for the element stiffness matrix

3.4.1 Preconditioner of Jensen and Korneev

In [49], Jensen and Korneev have derived a preconditioner for the mé&fjxor equivalently,
for @,. Usinge = [1,1,...,1]7, the matrices

Dy = ddiag[?]] ], (3.4.1)
1

T, = D3'+ étridiag [2¢, —¢] (3.4.2)

C, = D3®@Ty+T,® Dy (3.4.3)

are introduced. Then, the following lemma holds.

LEMMA 3.5. The following eigenvalue estimates are valid:

)‘min (D3_1D1) = 17 )\max <D3_1D1) = 1, (344)
Ain (TP =<1, e (T ) <1, (3.4.5)
)\min (Cl_lgl) = 17 )\max (Cl_lgl) = 1. (346)

Proof: The estimates3(4.4) are trivial, 3.4.9 are proved in49], and the assertions3(4.9
follow by Lemma2.5from (3.4.4 and 3.4.5.0

In the matrixC;, the same matrix entries are nonzero agdinbut the structure of the nonzero
elements is simpler. However, a fast solverdgris needed as well as fé;.

3.4.2 Modification of the preconditioner in 1D

Now, the preconditioners3(4.1) and 3.4.2 are modified in several steps. The resulting matrices
can be interpreted as stiffness matrices of discretizations of degenerated elliptic problems which
will be shown in chapted. In a first step, the matriX} is simplified. Let

1
T, = §tridiag [2¢, —¢] . (3.4.7)
We prove now the following lemma, cf1().
LEMMA 3.6. The eigenvalues of the matflx 2717, > can be estimated by,;, (1>~ 'T1) > 1

and Ao, (T2 'T1) =< (1 + logn), where the parameter — 1 denotes the dimension of the
matrices; andTs.
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3 Discretization by the p-version of the fem

Proof: The lower eigenvalue estimate is trivial. In order to prove the upper eigenvalue estimate,
we use 8.4.2 and 3.4.7). Then,
)\ma:p <T2_1T1) = )\max <T2_1(T2 + Dgl))
_1 _1
= 14 Mnae (To'D3Y) =1+ Aau(D3 *T5' Dy 7).
The matrix
_1 _1
H = [hza]?]_:11 = D3 2T2_1D3 ’

can be written explicitely, cf.47):

B _ n—2 n-3 n—4 2 1 7
n—1 %5 3 1 n2 n-1
n—2 n—2 n—3 n—4 2 1
2 2 3 4 n—2 n—1
1 n—3 n—3 n—3 n—4 2 1
3 3 3 4 n—2 n—1
H=—
2n
2 2 2 1
n—2 n—2 n—2 n—1
B S S 1 1
L n-—1 n—1 n—1 n—1 n—1 U

Therefore, one easily checks; > hy; > 0fori > kandj = 1,...,n — 1. Thus, by the
harmonic series, the estimate

n—1 n—1 1 n—1 n _]
su hij | = hiyj = — :
P (; j) - 1 2n 4 J
J= J

(2

— o
S
= 27 2n]

< ¢(l+1logn)
can be concluded. Using the Perron—Frobenius theorem for nonnegative maitif;ese [obtain
Amaz(H) < ¢(1 + logn)

which proves the lemmal
In a second step, the diagonal matids is modified. We define the matrik, by
1 n—1
D, = 4 diag [iz + 6} . (3.4.8)

i=1

The next proposition is trivial.

PROPOSITION 3.7. The eigenvalue estimates,;,, (D, 'Ds) = & and Ao, (Ds'Ds) < 1
are valid.
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3.4 Preconditioner for the element stiffness matrix

Now, the matrixD; is changed in another way. Let
D5 = tridiagb, a], (3.4.9)
where
a = [i2+i+ir_2,
10]52y

9 n—1
b = {44%—] .
5 =1

By the following lemma, the condition number of the matfi ' D5 is bounded by a constant
independent of.

LEMMA 3.8. The eigenvalue estimat@s,;,, (D5 ' Ds) =< 1 and A, (D5~ Ds) = 1 hold.

Proof: An easy calculation shows

Hl = [h(l)]n_ll = D;§D5D;§ = trldlag[ga E]?

ij lij=

where

o 1+ 3 n—2
I T CEIE B

1 n—1

= |1+—| .

o = |1

Taking Gerschgorins-disks34], we obtain the estimate
min (h&? - |ny \) < Min(H1) < Moo (Hy) < max <h§;> =3 A 1) |
J#i J#i

Using the structure dfandg, we can conclude

1
uin (h53>—z|h§;> |) . L
' i
63
e (14 191 < 5
i

Hence, the assertions follaw.
Recall that the inverse of the matrix; is required for the definition of the matrik, (3.4.3.
Now, we introduce a tridiagonal matri®; from which we will show that (D3 D) < c. Let

Dg = tridiag[h, t], (3.4.10)
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3 Discretization by the p-version of the fem

where

[(j = 1)In(j — 1) = (j + 1) In(j + 1) + 2In(j) + 2]}~

S =N =

[—2+ (25 + 1) In(j +1) — (2j + 1) In(j)] 7=} .

For reasons of simplicity, the undefined valwd:i 0” is 0 by definition. It will be shown in the
next chapter that the matri®; can be interpreted as a weighted mass-matrix.
The following result is valid.

LEMMA 3.9. The condition number ab;Dg is bounded by a constant independent.pf.e.
K (D3D6) S C

Proof: The proof is similar to the proof of Lemn3a8. More precisely, we determine the entries

of the symmetric tridiagonal matrix

(2) n—1 3 3
Hy = [h;;']; D3 D D3

INES 1=

and take Gerschgorin disks. Then, one easily checks

hﬁ) = 4524+ 452Inj +25%( — 1) In(j — 1) = 25%(j + 1) In(j + 1),

W =2 = 2+ 16+ DG + 1) — (25 + 1) + D Inj — 25(j + 1),

One easily verifies thdt;; > 0 for all ¢, ; € N. Moreover, we obtain

) .
2) @ 3@ _ o, -1 g4
hﬂ}j—l + hj hj j+1 2 (J In = +7In= —1 )
J J
2 . . 1
]] 1+ 4,3+1 J nj2——1+ 7+ nj—1+ i j'—+1

for 7 > 2. The functionf : (1,00) — R,
2 _
f(x) =2 (m2ln$ 5 ! +x1nx+1)
z r—1

is monotonic decreasing far > 2. It attains its maximum of2, co) atz = 2, where

max f(z) = f(2) =12In3 - 161n2. (3.4.11)

T€[2,00)

The functiong : (1,0) — R,

2 r—1 r—1
=2 (5221 82 1 4221
9(x) (x 11.95“4’—1+ v +$na:+1+ . nx—l—l)
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3.4 Preconditioner for the element stiffness matrix

is monotonic decreasing far> 2 and satisfies

inf g(x) = lim g(z) = g, (3.4.12)

x€[2,00) T—00 3

which is its infimum on the interval, co). Moreover, by a direct calculation, the relations
h2 =4 —4mm2andn? = 61n2 — 4 are valid. Thus,

2+ nld = 2m2, (3.4.13)
B2 —pl? = 8—10m2. (3.4.14)

By (3.4.10) and 3.4.13, the lower eigenvalue estimate

follows. By (3.4.19 and (3.4.19, one obtains the upper eigenvalue estimate

)\max (D3D6) S

[GVRI

which proves the lemmal
Now, we introduce the matrix

Ty = Dg + To. (3.4.15)

Then by Lemma3.9, the following conclusion can be drawn.

COROLLARY 3.10. The matrixT; = D3 ' + T; is spectrally equivalent to the matrig, i.e.
K (Tl_lTS) S C.

Proof: Use Lemma.9 and the fact thatD;, Dg and T, are symmetric and positive definite

matrices.O

3.4.3 Modification of the preconditioner in 2D and 3D

Via tensor product and by the relatioris4.1) for D, (3.4.9 for Dy, (3.4.9 for D5, (3.4.7) for
T,, and @.4.19 for T3, the matrices

C, = Ds®@Ts+Ts® Ds, (3.4.16)
Cy = Dy@Ty+To® Ds, (3.4.17)
C, = Dy@Ty+To® Dy, (3.4.18)
Cs = Ds@Ty+Th® Dy (3.4.19)

are introduced. Then, the following theorem holds.
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3 Discretization by the p-version of the fem

THEOREM 3.11. Fori = 3,4, 5, the eigenvalue estimates
)\min (Ci_lgl) =1 and )\max (Ci_lgl) j (1 -+ lOg n)

are valid. Moreover, the condition number of the matfix'@; is bounded by a constant inde-
pendent of:, i.e.
K (Cgilgl) = 1.

Proof: Note thatDs, Dy, D5, T3, andT; are symmetric and positive definite and apply Lemma
2.5to the matrice€’s, Cy, C5, andCs. By Lemma3.5 Lemma3.6, Lemma3.8, Corollary3.10
and Propositiors.7, the assertions follow

In the same way, witth; (3.4.1), D5 (3.4.9, T (3.4.2, 15 (3.4.7), andT3 (3.4.19, the matrices

Co = DsQTT+Ti®D;sTi+Ds Ty @14, (3.4.20)
C; = D31 @To+To @ D3R Ty+ D3 @ Ty @ Ts, (3.4.21)
Cs = Ds@T@Th+Th®Ds;0Ts+Ds T @ Th, (3.4.22)
Co = Ds@T30T5+T50 D5 @Ts+ Ds @ Ty @ T (3.4.23)

are defined. By the same arguments as in The&drf the next theorem can be proved.
THEOREM 3.12. The following eigenvalue estimates are valid:

® \uin (C;7'8) < 1fori =6,7,8,9,

® Ao (Ci7'8y) < 1fori=6,9,

® Ao (Ci7'8y1) < (14 logn)? fori =7,8.

28



4 Interpretation of the preconditioners

In the previous chapter, several preconditioners for the matrh¢esnd Dy, cf. (3.3.69 and

(3.3.7), are derived. In this chapter, we show that these preconditioners can be interpreted as
matrices resulting from the discretization of several auxiliary problems. We distinguish between
the three cases 1D, 2D and 3D, and approximations by finite elements or finite differences.

4.1 The one-dimensional case

4.1.1 Finite differences

Consider the following problem: Find such that

Pu 1
——u+—u+xu = ¢ forze(0,1), (4.1.1)
da?

u(O)—u(l) =0

holds. Problem4.1.]) is discretized by finite differences. Létbe the level number, and let
n = 2*. Moreover, let

be a set of grid points in the interval [0,1]. On the g{tc@“}? 1, let u"C be the (approximated)

value ofu in the pointrg‘?. The terms of4.1.1) at xf are apprOX|mated by

2 .k k _ .k
_d u ~ U]_1+2U] Uj+1

dz? h2 ’
2 k;] 2
ru ~ =h i u

Jn2 J?
1 n? 1

k k
1'2 3]2 h2j2 77

whereh = % Then, the finite difference approximation df{.1) can be rewritten as

1 1 uf ,

7 (—u;?,1 +2uf —ufﬂ) + ﬁ]] + h%j uf = g(u?), j=1,....n—1, (4.1.2)
uf = 0,
ub = 0.
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4 Interpretation of the preconditioners

This problem is equivalent to solving

2 h? 2 4 h?
3 (T» +2D3 ') + T Ds= <ﬁT2 + ngl + ZD?’) u=yg,

whereu = [uf]"~{ andg = [g(u¥)]7Z with the matrices}, (3.4.7) andD; (3.4.1).

4.1.2 Finite elements

Consider now problemd(1.7) in the weak formulation.
Findu € H}((0,1)) N LA_,((0,1))nL?___,((0,1)) such that

ai (U, U) = CLS(U, U) + afﬁ(ua U) + am(“? U) = <gv U) (4.1.3)

holds for allv € Hg((0,1)) N L2_,((0,1)) N L2___.((0,1)). The bilinear formsu,(-, ), am (-, -)
anda,,(-, -) are defined as

as(u,v) = /01 o' (z)v'(x) du,
am(u,v) = /0 e Pu(w)o(e) de.
ol v) = /0 (o)) dr.

This one-dimensional problem.(L.3 is discretized by linear finite elements on the equidistant

mesh
n—1
k
=0

k (z i—l—l)
7=\ -, .
n n

As in the previous subsection, the paramdtatenotes the level number. On this mesh, we
introduce the one-dimensional hat-functions

where

nx—(i—1) on 7F,
@)y ={ (i+1)—nz on F | i=1,....n—1, (4.1.4)

0 else

wheren = 2F. Let V,(j) = span{qﬁgl’k)}?:_f be the corresponding finite element space. Then, the
Galerkin projection of4.1.3 ontow,(:) is:
Findu* € V" such that

ar (u®, o) = (g,v") Wk € V,(:). (4.1.5)
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4.2 The two-dimensional case

Then using 8.4.7), we obtain
n—1
[as<¢§1’k>, ¢§1”“))} — 20 Ty = n tridiag[2e, —]. (4.1.6)
i,j=1
Moreover, an easy calculation shows

n—1

(6", 6|~ = 4Dy (4.1.7)
1,]=
and ) )
|:am(¢] 7¢'L ) ij=1 6n3 5. ( . 8)

By (4.1.9, (4.1.7), and 3.4.15, one checks
n—1
[2a8<¢§1,k)’¢§1,k)) n am(¢§1,k)’¢l('l,k))] — AnT, (4.1.9)

i,j=1

Hence, interpretations of the matricEs € R"~ "~ (3.4.7, Ty € R"1*""1(3.4.19, D5 €
R =1 (3.4.9 andDg € R*1*"~1 (3.4.10 have been given.

4.2 The two-dimensional case

4.2.1 Finite differences

We consider the following second order problem: Finslich that

=2 (YU + 2*uy,) = g in Q=(0,1)%

u = 0 on 0N. (4.2.1)

Problem ¢.2.7) is solved approximately by finite differences on the grid shown in Figute
The approximation ir{*, Z) of  is denoted by, ;. The second order derivatives are approxi-
mated by the usual central difference quotient, i.e.
i) :
?JQUm <ﬁ7 ﬁ) ~ ]2(ui—1,j — 2u;; + Uig1j),
x2uyy (—, l) ~ Zg(uid'_l — 2ui7j + ui,j—&-l)‘

We insert the boundary condition and sort the unknowns in the erdern, o, . . ., w1 -1, U2,

... Un—1,—1. Then, one obtains by tensor product arguments and the results of subgettion
that C5, which is defined in §.4.17, is the system matrix for the resulting system of linear
algebraic equations. Therefore, the following lemma has been proved.

LEMMA 4.1. The discretization of4.2.1) on a uniform grid by finite differences yields to a
system of linear algebraic equations of the type = g.
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4 Interpretation of the preconditioners

ot
|t

~|jw
~|w

(0,0)

IS
o
—_
IS
o
—_

2
7

o

Figure 4.1: Mesh forh-version (left), grid (right).

Considering the matrix’; (3.4.3, a similar result as in Lemm&1 can be shown, cf.53]. We
state this result as a remark.

REMARK 4.2. The discretization of the problem

) ) Ve .
—Q(yum—i-xuyy)—F(E—i-ﬁ)u = g in Q=(01)?
u = 0 on 0N (4.2.2)
as above leads to the linear systéfu = g with C'; defined in 8.4.3.
Hence, interpretations of the system matricg$3.4.3 andC; (3.4.17) have been found.

4.2.2 Linear elements on triangles
Consider the following Dirichlet problem: Finde Hj ,(€) such that

a(u,v) ::/ (w(y))*uzvy + (w(2))uyvy) dedy = / gv dzdy =: (g,v) (4.2.3)
Q Q
forall v € H; () holds. The domaifi? is the unit squaré0, 1)* and
Hy ,(Q) = {u € L*(), w(z)uy, w(y)u, € L*(2),u [oo= 0}

with w(§) = £. We discretize problen(2.3 by finite elements. For this purpose, some notation
is introduced. Le# be the level of approximation and= 2*. Letx};, = (%, <), wherei, j =
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4.2 The two-dimensional case

0,...,n. The domairf? is divided into congruent, isosceles right-angled triangﬁ;&s where
0 <i,j <nands = 1,2, see Figuret.1. The triangler}-* has the three vertices,, #f | ;.
andzf;,,, 7 72" has the three vertices, =7, ;. and:cmj, see Figuret.2.

k k
Lij+1 Lit1j+1
LLk
gl 2,k
k k
Lij Litl,j

Figure 4.2:Introduction of the geometrical notation of a macro-elendnt

Furthermore, le€: = 7.;* U 7" be the macro-element

1 1+ 1 o 7 7+1
n n n n |

Piecewise linear finite elements are used on the mesh

s,kyn—1,n—1,2
T = {75} }icojm0,i=1-

The subspace of piecewise linear functi@ﬁﬁ]swith
5 € Hy(Q), ¢l |sne PHrp)

is denoted byV,, whereP! is the space of polynomials of degreel. A basis ofV, is the
system of the usual hat-function{lei e ', uniquely defined by

O (2],) = 6ubjm (4.2.4)

Y

andgbfj € Vi, whered;; is the Kronecker delta. Now, we can formulate the discretized problem:
Findu* € V; such that
a(uf k) = (g, o) WoF € V, (4.2.5)

holds. Problem4.2.5 is equivalent to solving the system of linear algebraic equations

Kyu, =g, (4.2.6)
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4 Interpretation of the preconditioners

where

Kp = [a(df,, o8]

i l,m=1"
n—1
Y = [Uij]i,j:p
n—1
9. = [<g’¢fm>}z,m:1'

Then,u* = "1, u;¢f; is the solution of¢.2.5).

Figure 4.3:Sketch for the computation of the matrix entry between two adjacent nodes.

We determine now(¢};, ¢}, ;). One obtains by a simple integration, cf. Figdré.

ity = [ [0 8] [5]

i,j—1

LTI S]]

11,
— 4 4.2.7
n? <6 J ) ’ ( )

wheren > i,j andj > 0, buti > 0. By symmetry of the differential operator id.¢.3 with
respect to the variablesandy, it follows

1 /1 .
a(d, Sigr) = —— (8 +22) , (4.2.8)
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4.2 The two-dimensional case

where:; > 0 andj > 0 and

CL( ?j’ ’]Z:j) = —(CL< fj? z+1])+a( 159 Z]+1)+a( R 1] 1)+CL( R f—l,j))

1 9 9 2

Inserting the boundary condition and usifsg4.19, we arrive at

1
after a proper permutation of the unknowns. Thus, an interpretation for the mat(x4.19
has been found. Thus, the following lemma has been proved.

LEMMA 4.3. The discretization of4.2.3 by piecewise linear finite elements on the mesh of
Figure 4.1is equivalent to the system solve of linear algebraic equatidriz g, where K, =
7,201

2n2

4.2.3 Bilinear elements on quadrilaterals
As in the previous subsection, consider problém (3: Findu € H; ,(€2) such that

a(u,v) = /Q (W) uzvs + (w(2)) uyvy) dady = /ng dzdy = (g, v) (4.2.10)

forall v € Hj, (), where the weight functiow satisfiesv(¢) = ¢. The domairt2 is the unit
squarg(0, 1)%. We want to find an approximate solution éf2.10 using bilinear finite elements
on quadrilaterals. The following notations are needed. As in subsettion let k be the level
of approximation ana = 2*. Letxk = (£, 1), wherei, j = 0,...,n. The domain? is divided

into congruent squares; = FUTEt e,

’L]’

gk — [i ”1} y [Z &]
1] Y ) N

n n n n

On the mesh of squares
{ iJ }z] 0’

the piecewise bilinear shape 1‘unctio¢51§C are introduced as tensor products of the one-dimen-
sional functionss\"*, cf. (4.1.9,

ool (2, y) = oM ()" (y) for i j=1,....n—1.

Set\/,&b) = span{gbi’]’-
that

e !, . Now, the discrete problem can be formulated. Fifidc \/ such

a(uf, ") = (g,v%) WoF e \/,(Cb) (4.2.11)

35



4 Interpretation of the preconditioners

holds. Problem4.2.17) is equivalent to solving
Kchgb = gb’ (4212)
where
n—1
Ky = [a( %ﬁ?}k)] o
i,5,l,m=1
n—1
u, = [ug]

n—1
_ b,k
9, = [(97 lmﬂl?ml-

i,j=1"

Then,u* = Zw 1 ”gb is the solution of4.2.11). From @.1.9, (4.1.8§ and 3.4.19, one can
conclude

2n
Ky = s (T, ® D5+ D5 ® T5) ,

_ SLC (4.2.13)

Thus, the following lemma is valid.

LEMMA 4.4. The discretization of problerd (2.1Q by bilinear elements on the me§#: }” '
is equivalent to solving the system of linear algebraic equationsg = g,

Moreover, we consider the following discrete problem. Rifice V;, such that

kb — 9q(u® oF w(r) | W (y) uFok = (0 ok
as(u”,v") = 2a(u”, )—i—/Q <w2(y) +w2(x)) (g,v") (4.2.14)

holds for allv* € V,, wherea(-, -) is the bilinear form defined ir4(2.1Q andw(¢) = &. With
the same arguments as in the proof of Lemiathe following result can be shown.

LEMMA 4.5. Let(C, be defined in3.4.19. Then, the discretization of problem.2.19 by
bilinear elements on the me{iﬁfj}?;:lo is equivalent to solving the system of linear algebraic
equationsChu, = g, 7

4.2.4 Improvement for rectangular elements

In (3.3.7), let us assume that the doma®y = (—1,1)? is replaced by a rectangle, i.RS" =
(—a,a) x (=b,b), wherea,b > 0. The discretization by the-version of the finite element
method using only one elemeﬁig’b leads to a system of the tyge, ;= = y, where

b
Kop = %(F ® D) + E<D ®F)
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4.3 The three-dimensional case

with the matriceg” and D defined via relation3.3.95. The matrice€’; (3.4.17, C, (3.4.19, and

C5 (3.4.19 can be used as preconditioner fo5 ,. However, all eigenvalue estimates will depend
on the geometric parameteisandb. Thus, by a simple scaling, new matrices are developed
such that the estimates for the eigenvalues do not depend on the paranaatdis Similar as

in Proposition3.3, the relation

K, = P blockdiag [@; ,,];_, PT
holds with the same permutation mat#x and

a

b o
Aoiti—2.ap = b(Fi ®Dj)+—(D; ® F}) i,j=1,2.

a
Instead of 4.2.1), we consider the boundary value problem

a o b ,

T Yl — Uy = g in Q=(0,1)2 (4.2.15)
u = 0 on o

The discretization of4.2.15 by finite differences, linear or bilinear elements as described in the
subsectiong.2.14.2.3yields to systems of linear algebraic equations with matiiéges,, Cs o5
andCs , ,, Wwhere

b
Chap = %(T2 ®D;)+-(D;®Ty) i=345.
Now, we are able to formulate the next lemma.

LEMMA 4.6. The condition numbet (C; ., '@;.,) grows as(1 + logn) for j = 3,4,5 and
1=1,2,3,4, where the constants do not depend on the parametarslb.

Proof: The assertions follow by Lemn2ab. O

4.3 The three-dimensional case

Consider the fourth order boundary value problems

ZQUJ:wyy + yQUJ:a:zz + x2uyyz2 = g in Q3 = (Oa 1>37

u = 0 on 095 (4.3.1)

2 2 2
4 (Z Ugayy + Y Ugzzz +x uyyzz)

2 2 2 2 2 2
Y z T z T Y

22 2 22 _ ,
+ <y222 + 17252 + nyz) u = g in Q3=(0,1)"
u = O on 893

Note that the differential operators id.8.1) and @.3.2 do not have a term of a pure fourth
derivative, there are mixed terms only. We will discretize these problems by finite differences or
trilinear finite elements on hexahedrons.
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4 Interpretation of the preconditioners

Figure 4.4:Stencil for discretization of.,,.

4.3.1 Finite differences

Problems 4.3.1) and @.3.2 are discretized by the method of finite differences on the equidistant
grid {1 (i, j, l)}?;;:l, wherek denotes the level number and= 2*. Letw; ;, be the approxima-

tion of » in the point= (i, j,1). The mixed fourth order derivatives are discretized by the stencil
of Figure4.4, e.g. foru,,,,

i gl
2 ~ 272
2 Ugayy (ﬁ’ E’ E) ~ n-l (4ui7]’7[ — 2ui,j,171 — 2ui,j+1,l — 2’&1',1’]"[ — 2'LLZ'+17]'7[

Ui o1 Wit 1 F Wim1 10+ Wikl j+1.0),
the second order derivatives @f.8.2 by the usual central differential quotient.

LEMMA 4.7. This approximation of4.3.J) is equivalent to solving the system of linear alge-
braic equationsC7u = g with C7 defined in 8.4.21). Moreover, the finite difference approx-
imation of problem 4.3.2) is equivalent to solving'su = g, whereC is defined via relation
(3.4.20.

Proof: The left hand side?u,.,, + y*tu.... + 2%u,,.. of the partial differential equation of
problem ¢@.3.1) can be written into the form

-5 Tt

0?0, 0* 0 , 0% 07
Yy 7 7 ) 4.3,
(8302 8y2z * 922”922 dy? 8z2> " (4.33)

The discretization ofa%u by finite differences on an equidistant grid is equivalent to linear
system solve with the matrik, (3.4.7). The discretization of the mass tertfw is equivalent to
linear system solve with the matri; (3.4.1), cf. the discretization of problemt(1.7). Using
tensor product arguments, the structure4o8(3, and the fact that the operatdis : C*(€23) —
C*(Q3), Gyu = yu andF : C2(Q3) = C°(Q), Fu = Z,u are commute, XG, = GoF), the
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4.3 The three-dimensional case

first assertion follows by the definition of the matid% (3.4.2)). In order to prove the second
assertion, we rewrite the differential operator 413 2 into the form

0% 1 |
" (‘Qa_w i y_> (‘2@ i _) ¢
0? 1 0? 1
*(—2@+ﬁ)y < S )

2 1 91N

Using the definition of the matricé§ (3.4.2 andCj (3.4.20, the lemma has been proved.

4.3.2 Trilinear elements

Consider ¢.3.]) in the weak formulation: Find € H such that

as(u,v) 1= / (@) 2tys0y + (0(9))Pthstas + (@(2))Pttayay = / g
holds for allv € H, where
H = {u € L*(Q3),w()ty:, w(y) Uy, w(2)tizy € L*(23), u [90,= 0}

with Q3 = (0,1)3, and the weight function(¢) = £. We discretize4.3.]) by trilinear elements
and introduce the notation of the subsectidris2and4.2.3 The mesh

n—1
= U M
i,5,1=0
is chosen as finite element mesh with the hexahedral elements
Hijo = 1F x 7F < 7f, (4.3.4)

whererf = (£, 1), On this mesh, the piecewise trilinear nodal shape functions

n’ n

o (w,y,2) = o (@) ()i (2) 1< l<n—1 (4.3.5)

are introduced and the conformal finite element approximation space

n—1

\/,(C —Span{¢”l }

‘7]’7[:1

is defined. Then, the Galerkin projection of problefi3(1) onto\/,(f) is
Findu* € VI such that

ag(uk,vk):/ go” (4.3.6)
Q3
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4 Interpretation of the preconditioners

holds for allv* ¢ \/,(f). Then, @.3.9 is equivalent to solving the system of linear algebraic finite
element equation&’; yu = g, where

Ky = [@3(¢(It’k)> )

with the multi-indices = (4, j,1) andI’ = (¢, j/,1'). Using @.3.9, the left hand side of problem
(4.3.9 can be rewritten into the form

k k 1,k 1,k
s o) = [ @
supp ¢; "’

I

upp ¢>§1 *)

R e O R (C T OR S
L ) 0

/Supp o 65 (9)65™ (y) dy /Supp " k>(¢(1 9y ()Y () dz
@@ @) a

/S . d);l,k)(d)?’k))/(y)(@}’“ V() dy /Supp " 2609 ()80 (2) dz

Thus, from relations4.1.9, (4.1.8 and (3.4.29, one concludes
2
K = —Cs.
t.k 3 8

Hence, the following lemma has been proved.

LEMMA 4.8. The discretization of4.3.]) by trilinear elements on the mesh 8.4 leads to the
system of linear algebraic equation§ ,u = g, wherek, ;, = %Cg.

We have shown in subsectidnl.2that

1
Ty = 1 [200607, 60) + a0, 6]

]Zl

see relation4.1.9 and
-1

Ds = 60" |ay (0", oY )}
Jyi= 1
see relation4.1.9. Using tensor product arguments, it follows that the discretization of the
boundary value problemt(3.2 by trilinear finite elements on the tensor product me&B.{)
is equivalent to solving the syste@u = g, see relationd.4.23 for the definition ofCy, the

arguments in the proof of Lemm@a8and the definition of the bilinear forms(-, ), a,,(+,-) and
am(+,+) in (4.1.3. We summarize these observations in the following remark.

REMARK 4.9. The discretization of4.3.2 by trilinear elements on the mesh.§.4) leads to
the system of linear algebraic equatloh’§ku =g, whereKt k= —Cg
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5 Fast solvers for degenerated
problems

5.1 Introduction, aim, direct methods

In this chapter, we primarily consider problerm%.3: Findu € H&W(Q) such that

a(u,v) := /Q(w(y))quv;E + (w(7))*uyv, = /ng =: (g,v) Vv € Hy,,(). (5.1.2)

The domairt2 = (0, 1)? is the unit square. The weight functianis of the typew(¢) = &.

REMARK 5.1. The differential operator ing.1.1) is not uniformly elliptic in the Sobolev space
H; (), an estimate of the type

a(u,u) > || u | Vo€ HY(Q) (5.1.2)
with a constanty > 0 is not satisfied.

Proof: The piecewise linear hat functigfy, € V,, C H}(Q2) on levelk defined in relation4.2.4)
satisfies

I &%) i@ >] 611 )= 2.
By (3.4.19 and ¢.2.9, one concludes(¢%,, ¢%,) = L wheren = 2*. Thus, we have found

% 2
a sequencesy; }i2, with || ¢ |17 g,> 4, buta(¢ly, ¢f;) — 0 for k — oo. Hence, an estimate
of the type 6.1.2 is not possiblél
The integrand on the left hand side #.1.1) is of the type(Vu)T B(z, y) Vv with the diffusion

tensor )
0

Bea)=| Y% 5]
Therefore, the matri¥ is symmetric and positive definite for dlt, y) € 2, but not uniformly
positive definite. Moreover, the matri® is bounded for eackr,y) € €. Such problems are
called degenerated problems. In the past, degenerated problems have been considered relatively
rarely. One reason is the unphysical behaviour of the partial differential equation which is quite
unusual in technical applications. One work focusing on this type of partial differential equation
is the book of Kufner and &dig [p4]. Nowadays, problems of this type become more and
more popular because there are stochastic pde’s which have a similar structure. An example

of a degenerated stochastic partial differential equation is the Black-Scholes patrtial differential
equation which was mentioned in the introduction of this work, cf. equatidi). (
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5 Fast solvers for degenerated problems

We consider now the discretization &f.{.J) by linear elements as described in subsectiGn?
As shown in subsectiof.2.2 the Galerkin projection ofy1.]) onto the spac&/;, is equivalent
to solving the linear systemd (2.9, namelyKu, = g, with

k kN1l 1
Ky, = [a(0m: 053)]; 1y = 220
1
= — (D T +T, ®Dy).
2n2( 1 Lo+ 19 4)

In this chapter, we will derive fast solution methods férA.§. We are not interested in finding

a good finite element mesh in order to approximate (5.1.1), only efficient solution methods

for the resulting system&yu, = 2n2gk, or equivalently,Ku, = g, are focused. Firstly, we
note that the matrix’, is a sparse matrix with 5-point stencil structure &hch?) nonzero matrix
entries, cf. the structure @f, in (3.4.18 and the proof of Propositio8.3.

Therefore, it is important to find a method which solvé2(6) in O(n?) arithmetical operations.
Using the usual Cholesky decomposition with lexicographic ordering of the unknowns, the arith-
metical cost is proportional te*, and the memory requirement is of order Using the method

of nested dissection developed by Geor@e],[see subsectioB.2, the arithmetical cost can be
reduced ta)(n?) and the memory requirementd(n? log(1+n)), if only the nonzero elements

of the matrix are stored. However, this method is not arithmetically optimal, too. Moreover, the
order of the arithmetical cost and memory requirement cannot be improved by taking another
reordering for the Cholesky decompositioa3].

5.2 Slowly convergent iterative methods

Using iterative methods, no additional memory requirement in order to save the matis
necessary. However, the speed of convergence of the sequence of ifefatés_, to the exact
solutionu* depends on the condition number of the matikix. As mentioned in Proposition
3.3 k(Ky) > O(p*) = O(n?). Therefore, efficient preconditioners are needed. For systems
of finite element equations arising from the discretization of boundary value problems as e.g.
—uz, —Uy, = f, efficient solution techniques are developed in the last two decades. Examples for
such solvers are the preconditioned conjugate gradient (pcg) method with BPX preconditioners,
[21], or hierarchical basis preconditioner8(], and multi-grid methods 4[], [43].
However, the differential operator ib.(L.1) is not spectrally equivalent to the Laplacian. It is
an elliptic, but not uniformly elliptic differential operator, cf5.(.9. In a certain way, this
differential operator can be interpreted as an operator with local anisotropies, where the range of
anisotropye goes to zero, if the discretization paramétdends to zero.
A typical anisotropic model problem considered in the literature, 4éeif
Pu  Pu
a2 Coy2
One iterative method with a rate of convergence independent of the chaide thfe multi-grid
algorithm with a line Gau3-Seidel (GS) smoother, c£3][pp.502-533. Bramble and Zhang,

f,  esmall
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5.3 Multi-grid proof for degenerated problems

[22], considered multi-grid methods in a more general case as for the Laplace equation. They
proved multi-grid convergence for differential operators of the typg(z, y)u, ). —(g(x, y)uy )y,

where0 < g(z,9) < gmar ANA0 < frin < f(2,9) < fmaz 1-€. ONe of the coefficients can be
arbitrarily small. However, both coefficients can be arbitrarily smalbid (I). Thus, we have to

find a modified solution technique.

5.3 Multi-grid proof for degenerated problems

In the typical multi-grid proofs, cf. 40], one splits the multi-grid operator in a product of two
operators4 and 3. One proves a smoothing property, see e&y)],[[68], for the operatorA,
whereas an approximation property has to be showrBfoHelpful tools for this aim are the
approximation theorems for finite elements as the Aubin-Nitsche-trick. In order to prove such a
result, the boundedness and the ellipticity of the bilinear form are required in the Sobolev space
H'(Q). However, the ellipticity of the bilinear formb(1.1) cannot be guaranteed, cf. relation
(5.1.2.

Another technique in order to prove a mesh-size independent convergence rate has been intro-
duced by Braess,1p]. In this method, the approximation spatg is split into a direct sum

of the spacéV,_; and a complementary spatE&,. One obtains a multiplicative solver for the
problem onV; by solving the problems olV,_; andW,. Schieweck, T0], and Pflaum, §5],

have extended this technique. This method does not require regularity assumptions to the bilinear
form. Moreover, for triangulations of simple geometry as #2(9, the required assumptions

are quite simple to handle.

In this section, we will prove a mesh-size independent convergence rate for a multi-grid algorithm
using the ideas of Schieweck and Pflaum. The following remark is important for our aim.

REMARK 5.2. Note that the bilinear form(-, -) is positive definite on the spagé..

5.3.1 Multi-grid algorithm
The spacéV,, is represented as the direct sum
Vi = Vi1 & Wy,

where
Wy, = Span{(bfj}(i,j)eNk; (5.3.1)

see e.g. 39, [19], [70], [75], [78]. The index subsel, c N? contains the indices of the new
nodes on levet and is given by

Ni:={(i,j) e N*1<i,j<n—1,i=2m—1orj=2m—1m € N}. (5.3.2)

Let uy € Vy, be the initial guess. One step = MULT(k, uy, g) of the multi-grid algorithm
MULT is defined recursively as follows.

ALGORITHM 5.3 ( MULT). Setl = k.

43



5 Fast solvers for degenerated problems

e If/ > 1, thendo
1. Pre-smoothing oAV;: Solve
a(w,v) = (g,v) — a(ug,v) Yv e W,

approximately by using steps of a simple iterative meth&dthe approximate solu-
tion isw. Setu} = ug + w.

2. Coarse grid correction oivV;_;: Find w € V,_; such that
a(w,v) = {g,v) — a(ug,v) = (r,v) Vv & V,_;.

Compute an approximate solutianby usingy;_; steps of the algorithm
MULT(l —1,0,7). Setu? = u} + w.

3. Post-smoothing ofW;: Solve
a(w,v) = (g,v) —a(ud,v) Yv €W,

approximately by using steps of a simple iterative methégdthe approximate solu-
tion isw. Setu; = uZ + .

e else
— Solvea(w, v) = (g,v) — a(ug,v) Vv € V; exactly.
e end-if.
REMARK 5.4. In a standard multi-grid algorithm, the spad®¥, in 1. and 3. is replaced by,

e.g. the smoother operates on the complete approximation §pace

5.3.2 Algebraic convergence theory for multi-grid

Our aim is to prove the convergence of the multi-grid Algoriter8 MU LT in order to solve
(4.2.9 usingy = 4, = 3 and a special line smoothsr= S, , on levelk which will be defined in
(5.3.49. From [65], [7Q], the following convergence theorem is known for multi-grid algorithms
of the type of the algorithmd/U LT.

THEOREM 5.5. Let us assume that the following assumptions are fulfilled.

e Leta(-, ) be a symmetric and positive definite bilinear formdp Let
I 112:= al-)

be the energy norm.
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5.3 Multi-grid proof for degenerated problems

e LetS be a smoother satisfying
57w la< cp” [fw lla Vw € W, (5.3.3)
where0 < p < 1 independent of andc > 0.
e There is a constarit < v < 1 independent of such that
(a(v,w))* < y?a(v,v)a(w,w) Yw € Wy, Vv € Vi, (5.3.4)
holds.
o Letu;iy ) = MULT (k,ujy, g), letu* be the exact solution ofi(2.6 and let

i1 — 0" [la

O =  sup (5.3.5)

uj p—u* €V H Uik — u* Ha
be the convergence rate 8fU LT in the energy norm witlyr smoothing operations.
Then, the recursion formula
or < o (L= o) (ep” + (1= ep?)y)? (5.3.6)
is valid.

Proof: This theorem has been proved by Schieweck, Theorem 272]okith p = p; = ps3, and
Pflaum, see Theorem 4 @if]. O

The following lemma of the standard multi-grid theory is helpful for the analysis of the recursion
formula (6.3.9.

LEMMAS5.6. Letu, =p € N, >1,and
pw—1

k= (cp” + (1 —cp)y)’ < o (5.3.7)
Then, the elements, of the recursion
Op = 07
o = o+ (1 -0k

are contained in the intervdl, o). Furthermore, the equation
oc=krk+"(1—kK)

has a solutionr € (0,1). More precisely, the sequenge; }7°, is monotonic increasing and
bounded from above by < 1 for 0 < k < % Especially, we have

, 1 for k>3
o= limoy,=4 , for s < L
k—o0 T—r k<3
for = 2 and
1 for x>2
=1 = 5.3.8
o = im o L7 1 for p<? (5.3.8)
for = 3.
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5 Fast solvers for degenerated problems

Proof: The proof can be found in several papers, see e.g. Lemm&3 o [Lemma 3.2 of [ (].

O

Using Theorenb.5 and Lemmab.6, we can prove a mesh-size independent convergence rate
o < 1 for a symmetric bilinear form in the casq: = 2, i.e. theWW-cycle, ifk < %

If K < § one can prove a mesh-size independent convergence katefor p = 3. The number

of smoothing steps which are needed in order to red;uae“T’l = % can be determined from
(5.3.7. This fact is stated as a remark.

In(y/2—y)~In(1—)

T smoothing steps

REMARK5.7. If y =3,c=1in(5.33 and* < %, v >
are required.

5.3.3 Basic definitions and helpful lemmata of the linear algebra

We want to prove a mesh-size independent multi-grid convergence rate for the linear system
(4.2.9 via Theorenb.5. Thus, the bounds forin (5.3.3 andy? in (5.3.4 have to be determined.

In a first part, some lemmata are derived which are helpful for this aim. Let us introduce and
restate some more notation. BY.2.4, we have

Vi = span{ef;} 172,
We decompose the spatg into the spacéd/,_, and a spac&Vv,, i.e.
Vi = Vi1 @ Wy,
cf. relations £.3.1) and £.3.9. In order to prove a sufficient strengthened Cauchy-inequality
(a(v,w))? < ~y?a(v,v)a(w,w) Yv € Vi1, w € Wy (5.3.9)

with 72 < 1, the bilinear formu(-, -) is split into

a(v,w) = /QyQwaijx%ywy
n—1
= / yQUmwz—l—vaywy
ij=0" &L
n—1
k
= Zagi»d(v,w). (5.3.10)

1,j=0

DEFINITION 5.8. LetV be a space of functions di. Let{), C 2. We denote the restriction
of V.onQy by V |q,.

LEMMA 5.9. Leta(-,-) be a symmetric, positive definite bilinear form. Under the assumption
that
(a‘gi’fi (v,w))? < fygk_a‘gfd (v, v)ashs (w,w) 4,7=0,...,n—1 (5.3.11)
Y
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5.3 Multi-grid proof for degenerated problems

forall v € Vi |« andw € Wy, |¢x, One has
1] ]

(a(v,w))* < y2a(v,v)a(w,w) Yo € Vi, w € Wy
with 72 = max; ; 7;_/@_-
¥

Proof: The proof is standardl §], [58]. O
Thus, we can deduce from the local constarjps in (5.3.1) to the global one? in (5.3.9. The

following proposition is required for some boﬁndary elements.
PROPOSITION 5.10. Leta(-, -) be any bilinear form. Assume that
(a(v,w))* < y*a(v,v)a(w,w) Vv eV, Vw e W
is valid. LetV, C V andW, C W. Then,
(a(v,w))?* < ya(v,v)a(w,w) Yo € Vo, Yw € Wy
holds.

Proof: The proof is trivial J
The following lemma, see3pf)], [79], relates the constam;k' of the strengthened Cauchy-

inequality 6.3.1] to the largest eigenvalue of a generalizgd eigenvalue problem. In order to
formulate it, two definitions are needed.

DEFINITION 5.11. Leta(-,-) : V x V — R be any bilinear form. We define
ker a={veV:av,w)=0 YweV}
as the kernel of the bilinear form

DEFINITION 5.12. LetX be a linear (finite dimensional) spac¥,a subspace ak. We define
the differenceX © Y as any linear subspace satisfying

X=Yo XaY).
We note that the choice 6f & Y is not unique.
LEMMA 5.13. Consider the splittingy & W. Let
V =span{¢;}ir,, W =span{¢;}il,,

G = [a(¢i7 ¢j)]?,i:1 , H = [a(gbi, @Z)J)]Tzﬁl , J = [a(d)h ¢j)m:1 .
Furthermore, let
VNW={0}

a7



5 Fast solvers for degenerated problems

and
kera C V.

Let us assume that the bilinear forat-,-) is symmetric and positive semidefinite. Then, the
minimal constanty? with

a(v,w)* < ~*a(v,v)a(w,w) YveV,weW
is equal to the largest eigenvalueof the generalized eigenvalue problem
VIHT J'HVw = \ZVTGVw. (5.3.12)
The matrixV € R"*4, ¢ < n, is chosen arbitrarily such thatnl” = R"Sker G andker VT = 0.

Proof: We have
a(v,w)* < ~y*a(v,v)a(w,w) YveV,weW, (5.3.13)

wherey? is as small as possible. Fore ker a, this inequality is satisfied. Hence, it is equivalent
to restrict ourselves to € V © ker a, v, w # 0. Sincea is positive semidefinite, one can write

a(v, w)? )
a(v,v)a(w, w) =7

forallv € V & ker a,w € W andv, w # 0. Hence, the inequality5(3.13 is equivalent to

2
sup (a(v,w))” .2 (5.3.14)
veVokera a(v, v)a(w, w)
we W
v#0,w#0
Now, we transform the left hand side &f.8.14. Using vectors ofR", we have
2 T [ y)2
72 _ sup (a(v,w)) _ sup T(g %)J .
veVokera a(v, v)afw, w) veR"Skerq ¥ V2L /U
we W w e R™

v#0,w#0 v£0,w#0

Because of our assumptions, the matfiss symmetric and positive definite. Substituting=
J%w, one obtains

) (u”J 2 Ho)?
v = sup TG—T
vER"OkerG Y UEL U
u e R™
u#0,v#0
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5.3 Multi-grid proof for degenerated problems

The right hand side is maximal, if = J*%Hy. Inserting this and = 1y, we have

2 v"H"J 'Hy
T “op - WGy
veR™Sker G,v#£0 v Gu

y'VIHT J'HVYy

= sup
yeragzo  YTVIGVy

This is the largest eigenvalue of the generalized eigenvalue problem
VIHTJ ' HVy = AV GVy,

i.e. Mnae ((VTGV)_lvTHTJ*HV> = ~2, whereVTGV is symmetric and positive definite.
|

The proof of the strengthened Cauchy-inequality relies on an estimate for the eigenvalues of a
2 x 2 matrix. A useful tool is the next lemma.

LEMMA 5.14. Let M ¢ R**? be a matrix with real eigenvalues ada real number with

r = 2a — trace(M) >0 (5.3.15)
and
q = det M + o® — a trace(M) > 0. (5.3.16)
Then, we have
Amaz (M) < a.

Proof: The characteristical polynomial(x) of a2 x 2 matrix M is given by
pe(r) = 2% — trace(M)x + det M. (5.3.17)
Sety =z — a, then

pe(z) = y*+ (2a — trace(M))y + det M + o® — a trace(M),
v +ry+aq. (5.3.18)

Because of our assumptiof/ has real eigenvalues. B%.G.17) and 6.3.19, this polynomial

has 2 real roots. Sincé.(.19 and 6£.3.19, both zeros are nonpositive. Hence, the ragts of

Pe fulfill T1,2 <. O

The following lemma, seed], [79], of the finite element analysis is helpful for the proof of
relation £.3.3. It analyzes the eigenvalue bounds of an assembled matrix by the eigenvalue
bounds of the element matrices.

LEMMAS5.15. Let{%, € R™>*™}" | be afinite set of symmetric and positive definite matrices.
Let

=1
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whereL; € R™>*™ and% € R™ ™. Furthermore, let€; a symmetric and positive definite
preconditioner for the matrisk; with

Amin (€7'8;) =X >0, Ao (€67'%;) =N >0, i=1,...,n (5.3.19)
Let .
¢ =) LI¢L,
=1

Then Ay, (€7'%) > X and A, (€'%) < Xis valid with

Proof: For allv € R™, we can estimate

(Bo,v) = (Z Lﬁ%&g&)

= Z (%iLiQ, LiQ)

=1

Zn: A (@iLiQ» Liﬂ)

i—1
Z A (€; L, Liv)
i—1

= A(€u,v),

IN

IA

where it follows\,,, .. (@‘%) < \. The second assertion can be proved by the same arguments.
O

5.3.4 Discussion of the strengthened Cauchy-inequality on
subelements &f;

Consider the strengthened Cauchy inequabtg @) for the bilinear form
a(u,v) = / W (Y)ugve + Wi (@) u,v,.
Q

Fori, ;7 > 0, we prove the strengthened Cauchy-inequalityrgﬁ andej”“. If i =0,0rj =0,
the result is shown by proving the strengthened Cauchy-inequality on the macro-elé’;’yents
At first, we determine the stiffness matrix on the macro-elemé{ptsith respect to the two level

basis built by the basis functions ®f; |.» andW,..; |¢-. We start with the introduction of the
(%) 1]

basis functions o;. Note that the triangle;" is the union of the triangles};’:", 7,/{1} ,
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k k+1 k
Lt Loit-07+0 Lit1,5+1
1,k41 1,k+1
Toi 2j+1 T2i41,2j4,
2,k+1 2,k+1
T2i2j+1 T2i+1,25+1
E+1 E+1
R 4 k1 L
21,25+ 2i+2,2j+1
Sk 2i11,2j+1 2,25+
1,k+1 ALkt
Toi 2; T2i4+1,2;
2,k+1 2,k+1
Ti 2 T2i+1,2j
k k=1 k
T35 L2i+1,25 Lit1,5+1

Figure 5.1:Local numbering of the nodes and sub-trianglegjpf

2,k+1 2,k+1

1,k+1

Tyt andryity , the trianglerl’k is the union of the triangles,s™!, m/50, 755", and
TQIZT{IQJH The node&f’], D T ! andz},, ;,, are the coarse grid nodes, the no'fz@*gl1 2

k+1 k+1
L9 2j+11 L2i4+2,2j+11 x2¢+1 242

this notation, we have

Vi |ng] = Span{ﬁm}(z,m)eN};’“

and

andxmmj+1 are new in levek + 1, compare Figuré.1 Using

(5.3.20)

(5.3.21)

Wit |5’€ = span{¢y, i} lm)eNWkﬂ-

For reasons of simplicity, we write onlﬁ;[ !instead ofglerl | & for the restriction ofgb’C+1
k - -
& The index sets inq(3.20, (5.3.2]) are given by

N* = {lm)eNg,i<l<i+1,j<m<j+1},

NI = N n{(m) € N2,2i <1<2i+2,2j <m < 2j+2},

)

whereN, ., was defined in%.3.9. Because oWV, C H}(Q), some modifications are necessary

for boundary macro-elemenf%, i.e.withi=0,7=0,i=n—1,0rj=n—1.
On the macro-elemenfgg, we introduce the matrices

Gi' = -CLgfj K s K :|
J | <¢lm rs) (r,s),(l,m)eNi\;k
HT = [E5(or+1 ok ]
ij | ( lm > ¢TS) (r.s)EN, k1, m)ENWk+1 ’
Jii = |aSh (kT gkt ] ‘
/ J( tm ¢ ) (r,8),(L,m)EN; Wit
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In the same way, the matrices

[k
Guij = |0 (¢h, 0]
aij - Im s K
L T (rs),(1m)e N VR
T [ rok kb1 ik
H, .. = |a" ( )
q,%J i lm »¥rs (r,s)GNiqj’Vk,(l,m)GNiqj’wk""'l )

.
T oo g ek k+1]
q,v] | ( Im > ¥rs ) (r,s),(l,m)eNgny"'“
with
Vi . maq Vi
and

&Wetr1 . g Wgt1
NG = T8 N

are defined on the triangleg”, ¢ = 1,2, whereT}}, := {(I,m) € N3,l —m < i — j} and

T = {(I,m) € N§,l —m > i — j}. The ordering of the rows and columns in the matrices
Gq.,» Hyij andJ,;; corresponds to the ordering of the coarse grid nodes and of the new nodes
introduced in the beginning of this subsection, cf. Figbie The entries of the matrices, ;;,

H,;; and J,,;, andG,;, H;; and J;; can be determined by a straightforward calculation. We
compute those for the case of a general weight functi@n in (5.1.1). The following parameters

depending on the integgrare introduced:

1
d] - Z/l k+1 2,k+1 (W(y))Q d(aj7y)7
Tai2j YT2i 2511
1 2
9 = Z[_2,k+1UT2,k+1 (w(y)) d(m’y>7
24,25 2i+1,2j
1 2
B= 3 Lo 0D ) 53.22)

2i,2j+1Y72i+1,2j+1

Note thatd,, e; and f; are independent of the integéer The valuesi;, e; and f; are defined

: . 2.k 1,k = . .
by a pgr_mutatlon of andj, z andy, and7;;" and7;;" in (5.3.2). One obtains the following
proposition.

PROPOSITION 5.16. Let0 < i, 7 < n — 1. Then, we have

di+€i+dj+€j —dj — €5 —di — €; 0
Q. — —dj—ej dz—f—fl—f—d]—f-@] 0 _dz_fz
K —di — € 0 dl + e+ dj + fj —dj — fj ’
0 —d; — [i —d; — f; di + fi+dj + [;

0 0 —d; —di d;+d
i = 0 d 0 d —di—d; |’
—d; —d; 0 0 di+d,
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di + €; 0 0 0 —di
0 e; + dj 0 0 —dj
Ji; = 4 0 0 fi+d; 0 —d, (5.3.23)
0 0 0 di+ f —d;
—d;  —d;  —d;  —d; 2d;+2d,

on the macro-elemenf%}. In the case of matrices on the triangig’“ , One obtains

dj + Gj —dj — €j 0

Goyj = | =dj—¢; dit+fitdit+e; —di—fi|,

0 —d;i — [i di + i
[ 0 —d; d;
(Hyij)' = 2| d dj —di—d; |,

i —d; 0 d;
[ dl + ej 0 —di

JQ,ij = 4 0 fz + dj —dj . (5324)
i —d; —dj d; + dj

By exchanging the indicesandj in (5.3.29, one obtains the matrice€s, ;; = Go j;, H1;; =
HQJZ‘ andJuj = J27ji.
In the following, we assume that(¢) = ¢. Thus, there one easily computes

4852 4 487 + 14

d;, =
J 192n2 ’

4852 4 165 + 2
6j = B s

192n

4852 + 8075 + 34
;o= ) 5.3.25
J; 192n2 ( )

In the case of elements laying on the boundary of the dofathe matrice<x;;, H;; andJ;; in
(5.3.23 and 6.3.29 are similarly defined. However, all rows and columngip, H;; andJ;;
which correspond to boundary nodes have to be canceled.

COROLLARY 5.17. We haveer G ;; C ker H ;; for Tfj”“ andker Gy; C ker H;; for £, where
1<i,j<n-—2.

Proof: In the casé€”

+» there one easily derives

ker Gij = Spaﬂ{[L 17 17 1]T}

and forr",

ker Gig;; = span{[1,1,1]"}.

O
Now, we determine the constant.«. For this aim, we prove the next lemma.
ij
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LEMMA 5.18. For0 < i,5 < n — 1, the inequality

2,k 2,k 2,k

(a™i (v,w))* < ’yffj,ka”j (v,v)a"i (w,w) Yo € Vg ‘Tin,k,w € W1 \szk (5.3.26)
holds withyffj,k = 19—756 The constant is optimal in the case- j = 1.
Proof: Corollary5.17statesker G5 ;; C ker H,;;. By Propositiorb.16and
det Jo;; = diej fi + did; fi + €; fid; + diejd; > 0
(equivalent tdker J, 4 is trivial), Lemma5.13can be applied. We have
ker Gig;; = span{[1,1,1]7}.

Thus, the matrid/ can be chosen as

V=

S O =
S = O

The matrixV” G, ;;V is symmetric and positive definite, afd (Hy ;)" (J2,i;) ' Ha,;;V is sym-
metric. Therefore, the generalized 2 eigenvalue problem

VT (Hyii) (Joij) 'HoysVa = VIGy iV z
has real eigenvalues and is equivalent to the eigenvalue problem
Mz = (VTG V) "W (Hy i) (Jasj) ' HoyjVir = Az
This yields (with a computer algebra system) with= fyf?,k = 19% to

r = 2a — trace(M) > 0 (5.3.27)

and
q = det M + o® — atrace(M) > 0. (5.3.28)

Using Lemmaté&.13and5.14 we have $.3.29. O

REMARK 5.19. We obtain the constar’ytf?_,lc = 19—756 by a direct computation foir = j = 1.

REMARK 5.20. The values (5.3.27 andq (5.3.29 are broken rational functions with respect
to 7 andj. We give the exact values in the appendix on page

Lemmab.18has some important corollaries.
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COROLLARY 5.21. For0 < 7,j < n — 1, the inequality

(@™ (v, w))? < yfl,kanb”“(v, v)a’i (w,w) Vo € Vi |, w € Wigy | 1 (5.3.29)
1] ]

ij

95

is valid with~2, , = 2.,
Tij

Proof: Since the differential operator if.(.1) is symmetric with respect to andy, relation
(5.3.26 is valid for the triangler;;*, too. O

COROLLARY 5.22. For0 < 4,5 < n — 1, the estimate

k

(a%i (v, w))* < fyg_k_agikﬁ' (U,U)agikj (w,w) Vv e Vy \gg,w e W, \55 (5.3.30)

holds With’y;kj =2,
Proof: We use the arguments of Lemm&®. Then, by Lemmé&b.18 and Corollary5.21, the
assertion follows

Hence, we have proved a strengthened Cauchy-inequality on the macro-elé?t{péotso <
1,j < n — 1. The remaining cases are the macro-eleméjjxtsrvhere one or both of the indices
or j are equal t® or n — 1. Relatively simple isthecase=n —1orj =n — 1.

COROLLARY 5.23. Leti,j > 0. The inequality

k

(a%i (v, w))? < ’yggagfj(v,v)a‘gfj(w,w) Yu € Vy, |5£,w € W1 |51k] (5.3.31)

isvalidfori =n —1o0rj =n— 1with7§fj < 2
Proof: Consider the case=n — 1 and0 < 5 < n — 1. We omit the unknowns corresponding to

F oy OF s andgbtl o inthe matricess;;, Hy; and J;; defined in 6.3.23. More precisely,
we have to cancel the second and last row and colunih,irthe second row, the fourth row and
the third column mHZ and the third row and column i};. Note that the assumptian< n — 1
is not used in the proof of Lemnfal8 Hence, this estimate and all corollaries of this lemma are
valid fori =n — 1 and0 < 57 < n — 1, too. By Lemmab.10 one can conclude that a Dirichlet
boundary condition does not increase the constant of the strengthened Cauchy-inequality. The
casesi =n—1,0< i <n—1,and: = j = n — 1 follow by symmetry of the differential
operator or with same arguments.
More difficult is the cas® < i < n — 1 andj = 0. It is not possible to spliffj into 721]’“ and

%, if j = 0 and to prove the strengthened Cauchy-inequalitity on the triangfeandr;". On
the trianglefif’ok, we have no influence of the Dirichlet boundary condition. We would obtain a
constanty .+ which is closer to 1. In order to avoid this phenomengmd Is estimated directly.

%,0 1y

The unknowns corresponding &9, , , ¢}, andcgﬁ’;;fw, namely the first two rows and columns
of G;; and the first row and column of; in (5.3.23, are omitted as the corresponding rows and
columns inH},.
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5 Fast solvers for degenerated problems

By Proposition5.16

W —48n di+ fi +48n |’
Hip = 2 [ —14n 0 0  d;+14n |’
e; + 14n 0 0 —14n
J_ oy 0 fi+14n 0 —14n
v 0 0 di+34n  —d;
—14n —14n —d; 2d; 4 28n

are valid (withn = ﬁ). Sinceker G; o = {0}, the identity matrix is a possible choice for.
Using a computer algebra program, we can prove the following lemma with the same arguments
as in the proof of Lemma.18

LEMMA 5.24. The relation

95
2
it .3.32
Vo < 76 (5.3.32)
isvalidfor0 <7 <n—1and
95
2 - 5.3.33
e = 176 (5:3.33)

isvalidfor0 < j <n—1.

REMARK 5.25. The estimates5(3.329 and 6.3.33 can be extendedto=n—1andj =n—1
using the same arguments as in the proof of CorolRB32

The last case is= j = 0. This case is very simple. By (3.29, one has
do =14n, ey =2n, fo=34n

with n = Furthermore, we note that

1
192n2 "
VkJrl ‘5(’)“0: Span{(b’f,h (ﬁ’figl? gjlv g,J(r)l} N H&(Q> = Span{¢]f,l}'
From Propositiorb.16 we obtain

Goo = [2(do + fo)],
Hyy = [0 0 4do |,

do + fo 0 —dy
J()() = 4 0 dO + fO _dO
—dp —dy 4dy

by canceling the first three rows and columng3f, the first two rows and columns of;, and
the corresponding rows and columnsif in (5.3.23. G is regular. Thus, the matriX = [1]
can be chosen. Using Lemrbal3 a short computation shows

. _ do 7
2= (VT GooV) VT HE Jog! HooV = bl (5.3.34)

Now, the main result of this subsection can be stated.
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5.3 Multi-grid proof for degenerated problems

THEOREM 5.26. Letw(¢) = £ and let the bilinear fornu(-, -) be defined in%.1.7). Then, the
inequality
(a(v,w))?* < ~¥*a(v,v)a(w,w) Yv € Vi, w € Wi,

. . . 2 o 95
is valid withy* = .

Proof: We apply Lemm&.9 and estimateyfjkv. The assertion follows by Corollary.22 for
0 <i,7 < n—1, by Corollary5.23for 0 << n—landj =n—-1,0r0 < j<n-1
and: = n — 1, by relation £.3.39 for i = j = 0, and by Lemmé&.24and Remarls.25for the
remaining cases.

5.3.5 Construction of the smoother

In order to apply multi-grid to the linear system.?2.6, we need an efficient smoother. This
smoother will be contructed by the local behaviour of the differential operator. An idea of Axels-
son and PadiyA], for anisotropic problems is extended to bilinear forms as in probkefnJ).

This smoother operates on the spakg, ; only. We consider the finite element discretization of
(4.2.3 with the bilinear form

a(u,v) = /Q(w(y))zuxvz + (w(z))*uyv, dedy = /ng dzdy =: (g,v)

(see subsection.2.2 and a general weight functido(£))>.

ASSUMPTION 5.27. The weight functioriw(£))? is assumed to be of the forfw(¢))? = ¢
with o > 0.

The most interesting caseds= 1.

Consider the trianglefj’k. For our discussion, only the sub-matricgs;, where0) <i,j <n-—1
ands = 1, 2, are needed which correspond to the nodal basis functiof¥ on. The two cases
1 < jand: > j are discussed. We start with< j. By Propositior.16

dz‘ + 6]‘ 0 —dz
JQ’Z'J' =4 0 f7, + dj —dj
—d;  —d; di+d;

The indexk is omitted. For < j, the matrix

di + €; 0 0
Ty =4 0 fi+d;  —d (5.3.35)
0 —d; di+d;

is introduced. In the matri€, ;;, we set all off diagonal entries of, ;; to 0 which have relatively
small absolute values in comparison to the corresponding main diagonal entries. wSgice
monotonic increasing, the relatiah < d, is valid fori < j. Thus, we set the-d; entries ofJ, ;;

in €, ;; to 0. We prove now the following lemma.
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5 Fast solvers for degenerated problems

LEMMA 5.28. For0 <i < j < n, the eigenvalue estimates
1
Amin (€245 " Jaij) > 1— §\/§ and
1
Amaz (€255 " ays) < 1+ g\/g

hold.

Proof: Let
B =d;f; + did; + fid;.

Then, we have

—d;
L0 g
@g’}j Joij = 5 10
—d; fi—did;
— 5 0 1

This matrix has the characteristical polynomial

d; d.f. + d.d,

B dl + €; dzfz + dzd] + f,dj
The roots)\;, i = 1, 2, 3, of this polynomial are

A= 1
Ao = 1£4/p,
where
4 d; fi + did;
di +e; dif; + did; + fid;
Note that for alk andj, the valuesi;, e; and f; are mean values of the positive functien(y))?

over the union of two triangles having a volumeg—;%;. By the monotony of the weight function,
the inequalityd; < f; holds for alli € N, cf. (5.3.22 and Figures.1. Therefore,

d; fi + d;d,; < d; fi + d;d,; _ Ji +d; _ 1
di fi + didj + fz‘dj T difi + Qdidj fi+ de 1+ fil

|
d;

o (5.3.36)

Moreover, by; < j — 1 and the monotony of the weight function, one hds) < w(y) for all
x,y € Tf]k Thus, by integration over sub-trianglesm?]f’C with volume X5, cf. Figure5.1,

8n2?

st / @) d(zy) < - / (w()? d(z,y) = d;,

4 | 2k+1 Ur2:k+1 4 | 1641 Ur2:ik+
2i41,25972i41,25+1 2i41,2972i41,25+1

4= / (@) dzy) < 5 / o e @O ) =

2,k+1, _1,k+1
24,25 YT2ix1,25 20,25 “©T2i+1,25
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5.3 Multi-grid proof for degenerated problems

Therefore, we obtain the estimates

< = 5.3.37
and q .
Lo< 2 5.3.38
i <3 (5.3.38)
Inserting the estimate$ (3.37 and 6.3.39 into (5.3.36, one has

1 1
1— — < <A< <1 —.
\/;_ 3 A1 S A S +\/;

Hence, the assertion follows immediately.
Now, consider the case> ;. Introducing the matrix

di + €j 0 —dz
@2,7;.]' = 4 0 fz —I— dj 0 y (5339)
—d; 0 d;+d,

we will show thatx (@271-]-‘1J27Z-j) < ¢ independent of the parameters:, andn. In order to
prove this result, the following estimate concerning the weight function is necessary.

LEMMA 5.29. Letw(-) satisfy AssumptioB.27. Then, one has the inequality

2
og(w@H7%)>st@DQVyz%, (5.3.40)

where the constant c is independent:aindy.

€+15 2a_ 1 2c 3 2a_
<5+1) _(1+2§+2> S(ﬁ) -

holds for all¢ > 0 anda > 0 with ¢ = (g)m. Thus,

The inequality

3 2
(§+§) < c(E+1)°, or

3 2c 2a
() = <(5)
n n
e+3\)2 2 S
with somen > 0. Using(w(¢))? = €22, we have<w (T2>> < c(w(1))7, or, substituting

+1
y:%'

0< (v (y+%)) < clwl)? Vy> -

which is the desired resulf)
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5 Fast solvers for degenerated problems

LEMMA 5.30. For0 < j <i < n, one has

Amin (€255 ' J2z) =< 1 and
)\maz (QIQ,ij_IJQ,ij) = 1.

The constants are independent of andn. For w(&) = &, the eigenvalue estimates
2
Amin (@2,ij_1t]2,ij) > 1- ﬁv 11 and
2
Amaz (€255 " oyy) < 1+ ﬁv 11

are valid.

Proof: We start with the case< n — 1 and;j > 0. The proof is similar to the proof of Lemma
5.28 A short calculation yields

dj + fl diGj + dzd] + €jdj

By ¢ > j and the monotony of the weight functian we have

o @@ d(@y) = /+ (w(2))? d(=,y) (5.3.41)

> / d(z,y)
L2 k41

27+1,2¢

- \/7:1 k+1 :L" y)

21,25+1

> / d(z,y).
7_1 k+1
2i+41,25
For the same reason,
[ e@Pdens [ @) dey) (5.3.42)
T24,2j T2i41,2j
Using (6.3.40) and £.3.42),
=1, @@ dzy) 2 [ () day) =d,.  (5.3.43)
T2 +1 2,k+1 2,k+1 1,k+1

2i+1,2;Y72i41,2j+1 Toi25 YToit1,25

By Lemma5.29 we have

(@)
A
7N
S
VR
Neg
+
[N}
:|H
N—
N———
[N}
AN
o
&
=
e
<
Ny
\Y%
3|~
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5.3 Multi-grid proof for degenerated problems

Integration over;1} . gives

/72,k+1 (“’ (y + %))2 d(z,y) < C/TM+1 (w(y))* d(z.y)

2i+1,25 2i+1,25

with ;7 > 1. With a change of variableg = y + % in the left integral, the integration will be
done now over,*t!

2i+1,25+11
2 2
e W) dlmy) s e / o @) d(y). (5.3.44)
2i4+1,25+1 2i41,2;
Using (.3.49,
/ (w(y))* d(x,y)z/ (w(y))? d(z,y),
skt 2,k+1
T24,2j T2i+1,2j
and
2 2
Lo COP i< [ ) )
2i+1,25 2i+1,2j+1
we have
_ 1 2 C 9 B
dj—Z/TLkH N (D) d(‘”’y>§1/Tz,k+1 v @@)*d(@y) =¢;.  (5.3.45)

2i+1,2;Y72i41,2j+1 21,25 YUT2i41,2;

For the caser = 1, the constant can be chosen by the more accurate estimate2, cf. the
explicit structure otl; ande; in (5.3.29. Using 6.3.49 andd; < d; for j <4, one can estimate

€jd]’ + djdz < (C + 1)€Jdl
Equivalently, one obtains
(C + 2)(ejdj + djdi) < (C + 1)(€jdi +e;d; + djdi)-

Together with §.3.43, the assertion follows as in the proof of Lemmag
Consider now = n — 1. Then, the second row and column®f;; and.J, ;; has to be canceled.
Thus, the matrices,,,_, ; and.J,,_; ; are identical and

A€o0y Jon-15) = Aa(€5p_y ;Jam—15) = 1.

The last case i3 = 0. We have to omit the first row and columndy;, and.J;;o. A short
calculation shows
do  do
fi+dodo+d;

Sinced, < d; andd, < f; fori > 0, cf. relation 6.3.43, % < 1 and do‘fgf_ < 1 follows.
Hence, the estimates

det(\ — @5370J27i,0) =(A—1)?

<A <A <

DN | —
Do | o
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5 Fast solvers for degenerated problems

are obtained for the roots of the characteristical polynomial of the megrix.J2 ;. O
In (5.3.39, (5.3.39, we have defined a local preconditiod®y;; for the macro-element stiffness
matrices/s ;; correspondlng to the trlangkfr * . On the triangles;", we define matriceg; gl

the same way a8, ;; for 7'

l]’

( [ €; + dj 0 —dj i
4 0 d; + f; 0 for <y,
i —d; 0 d; +d; ]
Q= ) i (5.3.46)
e; + dj 0 0
4 0 d, +f; —d; for i>j.
\ i 0 —d; d;+d; ]

REMARK 5.31. By the symmetry of the differential operator with respect to the variabéex
y, we obtain the same results for the triangk%é“ as in Lemmat®.28and5.30

Now, a global preconditionefyy, ,, for Ky, ., is defined using the local matric&s,;, where
0 <i,j <n-1,s = 1,2. The matrixKy,,, is defined as stiffness matrik.,, (4.2.9
restricted to the spac@/; 4, i.e.

K, = la(¢n,' é5 )]

(compare §.3.2, (5.3.3). The matrix Kw,,, is the result of assembling the local stiffness
matrices/,;;, s = 1,2andi,j =0,...,n — 1, i.e.

l m)ENk+1

Kw,,, = Z Z LT, T L. (5.3.47)

s=14,j=0
The matriced., ;; € R¥**'~2" are the usual finite element connectivity matrices. Since
(2F —1)2 — (21 —1)2 = 3. 41 ok
the dimension of, ;; is 3 x 3 - 451 — 2,
DEFINITION 5.32. We define the matri@yy, ., by

Cy,,, = Z Z LT, @, ;L (5.3.48)

s=1 1,7=0

Because of the properties of the local preconditiodkrs, the matrix€yy, ,, is a good precon-
ditioner for Ky, ,,. This result is stated as the main theorem of this subsection.

THEOREM 5.33. Letw(&) satisfy Assumptioh.27, let€y, ,, and Ky, ,, be defined ing.3.49
and (6.3.47), respectively. Then, one obtains

/\min ((@Wk+1)_1KWVk+1) = 1’
Amaz ((@Wk+l>_1Kwk+l) = L
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5.3 Multi-grid proof for degenerated problems

In the casev(&) = &, the eigenvalue estimates

2

Amin ((@Wk+1)71KWk+1) > 1- ﬁ\/ﬁ7
_ 2
Amaz ((@warl) 1KWk+1) < 1+ ﬁ\/l_l

are valid.

Proof: By 6.3.47% and 6£.3.49, the assumptions of Lemnfal5are satisfied for the matrices
Jsij and€, ;;. By Lemma5.28and Lemmégb.30 and Remarls.31, the assertions follow]

REMARK 5.34. This result can be extended to more general weight function§he weight
function should fulfill an estimate of the tyge3.49 which means that the weight function does
not change rapidly. Another possible assumption is that the weight function> 0 satisfies
the following properties:

e w IS monotonic increasing,
e w is Lipschitz-continuous with a Lipschitz constdnt
e w(§) = ¢ forg €(0,6), 6 > 0 with somer > 0.

Proof: Using the last assumption and the monotony,of

Vy >

S|

w(y) >

c
on '

Therefore £ + w(y) < (1+ £) w(y). By the monotony ofv and the Lipschitz continuity, one

derives
bo) <ot < (142 w()
wyZn_Qn W) = Cwy
which gives £.3.45.0

Applying Theorenb.33 a preconditioned Richardson iteration can be built as a preconditioned
simple iteration method. The error transion operatgy,, of this method is defined by

Sokr1 =1 — C(@wkﬂ)*l[(wkﬂ, (5.3.49)

where Sy 1 denotes the matrix representationf, ,, by the usual fem-isomorphism. This
smootherS = S, ;. ; can be used for the Algorithah/U LT

COROLLARY 5.35. Let
lw o= a(w,w)

be the energy norm of the bilinear foram Then, for allw € W,

156 51w la=< px | @ [la
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5 Fast solvers for degenerated problems

holds, where
(=1
is the optimal choice of andp, < p < 1. Especially,
2
m:ﬁ¢ﬁ' (5.3.50)

holds forw(¢) = &.

Proof: By calculation and the definition of the smootherar8(49, we have

2 | §o,k+1w ||§

IO - Sup 2
wEWg41,w#0 || w ||a

(Kwk+150,k+1w, So7k+1w)

= sup
w (Kwk+1waw)
_1 1
— su ((KWk+1) QSg:k—&-lKWkHSO,k-‘rl(KWkH) ‘u, Q)
. ()

[NIES

)‘m(w((KWVk+1) Sgﬂk+1KWk+1SO,k+1(KWVk+1)7
>\max ((I CKWkH (@Wk+1)_1KWk+1§)2>
_ 1.2
- (Amax [ CKWk+1 @WkJrl 1KWk+12)>
= (Amax(SQk—i-l))Q-

The assertion follows using Theore&nB830

)

5.3.6 Application of the multi-grid theory to ~ —z%u,, — y*u., = g

We apply now the theory of subsectibrB.2to problem ¢.2.5 with the weight functionv(§) =

£. By Theorem5.26 assumption.3.9) is fulfilled with 2 < f’—fﬁ The second assumption,
(5.3.3, of Theorenb.5is fulfilled for the smoothes, ;. defined in £.3.49, cf. Corollary5.35
Hence, we can prove a bound< 1 for the convergence rate of the multi-grid Algoriths3
MULT for o > 3, if we do sufficiently many smoothing steps. The convergenceorate 1
does not depend on the level numberSincey? > % no mesh-size independent convergence
rate can be proved far < 2. We summarize the results in the following theorem.

THEOREM 5.36. Consider the linear system .6 with the exact solution*. Forj =1, .. .,
let the new iterate:; , be defined recursively ag., , = MULT(k,u;y, g). Let us assume that
w=p >3forl=1,... kandr > 3. Then, the rate of convergence

[ i1 — " [l

op =  sup
uj p—u* €V || Ujk — u* ||a

on levelk can be bounded by
o <o <l1.
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5.4 AMLI method

1% g
<2 1
3| 0.89385
4 | 0.80549
8 | 0.70649
oo | 0.69283

Table 5.1:Estimates for the boundsof the convergence rates for i = 3.

Proof: If k < § the assertion follows by Theorem5, cf. relation 6.3.7). Using Lemmab.6,
the number of smoothing stepsrequired for a convergence rate< 1 can be analyzed. We
have

k=cp’+ (1 —cp’)y’
with ¢ = 1, 4* = 2 andp = 211 by relation £.3.5Q. Using Remarlks.7, we have a

176
mesh-size independent convergence sate o < 1 for

v~ 2.33,

i.e.v>3.0
Table 5.1 displays the bounds of the theoretical convergence ratdsr several values of
obtained by Lemma&.6for ;= 3.

5.4 AMLI method

In section5.3, a mesh-size independent convergence rate has been proved for the Algorithm
5.3 The two main ingredients in this proof are the estimate for the constant of the strengthened
Cauchy-inequality%.3.4 and the construction of a smoothg&y;, = I — (Cw, ) ' Kw, < Sox

which satisfies®.3.3. Equivalent to relationH.3.3 is, cf. Corollary5.35 thatx ((@\Wk)_lK\Wk)

is bounded by some constanihdependent of the mesh-size

Another multi-level method is the preconditioned conjugate gradient method (pcg) with Alge-
braic Multi-Level Iteration preconditioner (AMLIY, ., derived by Axelsson and Vassilevski,

[5], [6]. Let K, be the stiffness matrix4(2.6 for the discretization of problem}(2.3 on page

32. One can show that <é,;r17MKk) is bounded by some constantfor all £ € N under the

following assumptions:
e the relation $.3.4) is valid with some constant* < 1,
o 1 ((Cw,) 'Kw,) < cis valid with a constant independent of the mesh-size

In subsectiorb.4.1, we will give a general definition of the AMLI preconditioner. In subsection
5.4.2, we will introduce a special AMLI preconditioné&r;, ., for K, (4.2.69 and will show that

K (é—l Kk) < cforallk € N.

k,rop
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5 Fast solvers for degenerated problems

5.4.1 Convergence theory for AMLI

We define now the Algebraic Multi-Level Iteration preconditioner (AMLI) of Axelsson and Vas-
silevski, ], [6]. Consider the stiffness matrik;, (4.2.6. We assume that the unknowns are
ordered in such a way that
K Kiog
K, = ’ ’
g [ Ko Kogg }

whereKs, , = Ky, corresponds to the nodal basis functiondi and

n_y

Kll,k = [a(ﬁbgmma ¢§i,2j)} :

i,5,l,m=1

corresponds to nodal basis functions of nodes on levell. Let (522,1 be a preconditioner for
Ky, satisfying

Amin <K22,l_1é22,l) > 1,
Amaz (KQQ,flézzl) < 1+0b (5.4.1)
with some constarit> 0 for/ =1, ..., k. We introduce
? f(ll k KlQ k 1
Ke=1| " ’ 5.4.2
‘ { Ko Koy (5-42)

which is the stiffness matrix with respect to the two level basis, i.e.

k—113-1
{ i Jig=1 € Vi

and

This basis corresponds to the splittivg = V,_; & W,. We assume that there exists a constant
v? < 1, the constant in the strengthened Cauchy-inequality, with

2
2= sup (a(v, w)) , (5.4.3)
vE Vi a(v,v) - a(w, w)
w € Wy,
v#0,w#0

or, equivalently,
(a(v,w))?* < ~¥*a(v,v) - a(w,w) Vv € Vi_i,w € Wy,

From (6.4.2, we have
Kll,k = Kj_1.
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5.4 AMLI method
Obviously, there
K = 3035

holds with the finite element interpolation matrix

| T Fok
%_{0 I ]

We define now, seé], [50], the AMLI preconditioning matri@k,w.
DEFINITION 5.37. Let P, , be a polynomial of degree satisfying
P, (0)=1 (5.4.4)

and
0<P,,(t)<1l for 0<t<1

andr € R. Let C”QQJC be a matrix which fulfills %.4.7). Then, we define the preconditioning
matrix Cy, ., recursively by

( [ éﬁq,w Ko + 3’12,13(K22,k — Cap) }
. 0 I Caz 0 for k> 2,
Crop =19 x| A- -~ 5.4.5
o { Cos (K1 + (Koo g — Coo)F1os) 1 ] (543)
L K, for k=
with
(Cg—l,r,u)_l = ([ - PM,T‘(Ck__lLr#Kk—l))Kk__ll' (546)

Examples for the choice of the polynomig| , are given in §], [6]. We consider there

T 1+a—2t

(1) = Aaewhi (5.4.7)

P
T, (%) +1

2
'u"1+a

with somel < a < 1 (r = Hia), whereT),(z) denotes the:-th Chebyshev-polynomial first
kind, i.e.

T,(x) = cos(parccos(z)).

The following theorem is valid.

THEOREM 5.38. Consider the preconditione@k,r,u (5.4.95 with the polynomial defined by

relation (5.4.7). Let us assume that

1
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5 Fast solvers for degenerated problems

Thus, the two eigenvalue estimates,, (C*,;iy#KO > ¢17 and A\ (C‘,;;uKk) < 1 hold for
all k € N, where

a2 (1+ vay + (1= yay\ '\
C”‘“‘”(”((H@u—(l—@u)> |

The constant is the constant of the strengthened Cauchy-inequdity., the parameteb the
constant of the eigenvalue estimafed(1). The parametew is the smallest positive solution of
the polynomial equation

2

(1+ V' + (1= vt )
2 (V= Vet
Proof: The proof can be found ig] O

We describe now the algorithm in order to solve a linear system with the n@ﬂf’g’u (5.4.9.
From (.4.4), we can deduce

11— =th+ < (5.4.9)

I
P,(t) = at’,
j=0
whereq, = 1 (P,(0) = 1). Hence, we obtain
(C(l?—l,r,u)il = (I - PH'<C~(]€7—11,T”U,K’€71))KI;—11

I
= (I - Z%(Ck_l1,r,uf(k1)j> K

J=0

n
= - Z aj(ék_—ll,r,uKk—l)ij_—ll
j=1
= —C‘,;flmu(al + Kk_lék_jlmu(ag + ...
o KO +a K G L) ).
Thus, a linear system with the mat@g_lm can be solved by linear systems solves with the
matrix C_1 -

5.4.2 Application to —z%u,, — y*u., = g.

We apply now this theory to problem.¢.5. By Theorenb.26 the constant in the strengthened
Cauchy-inequality%.4.3 can be estimated by

2 < ﬁ
T =176
Thus, we have
1 4+/11
= < 2.
1—72 9

68



5.4 AMLI method

Using (6.4.9, 1 = 2 can be chosen. Hence, by
T, (z) = Ty(x) = 22 — 1,

the polynomial

2t \?
Py (1) = (1 - a) (5.4.10)

is obtained. Furthermore, we have to ensure relatiof.{). Using Theoren®.33 we have the
following two eigenvalue estimates between the matrigs (5.3.49 and Ky,
Amin (@kalevk)
)\ma:p (@Wk_levk) C19
forall £ € N, whereci;g = 1 — %\/11 andc;g =1+ %\/11. Equivalent to this fact is
Amin (Kw, 'Cw,) > ¢y,
)\max (Kwk_l@wk) S Cfgl-

18,

IN IV

We introduce the matrix )
Ca = c19€Qw, (5.4.11)
forl =2,..., k. Hence, the relation
~ c
(Kav,v) = (Kw,v,v) < (Cagv,v) < C—lg(Kmy? v)
18
is valid for allv € R™, e.g. 6.4.]) is satisfied with

~ c9g 4 8 9153
b=—-14+4—==V1l+-< —. 5412
+ C18 7 + 7 2992 ( )
With b = 2333 and+? = 2., the smallest positive solution d§.¢.9 is
1
o= —.
17
Thus, we choose
17 \°
Pty =(1-5t) . (5.4.13)

We summarize these observations in the next theorem.

THEOREM 5.39. LetCy,., be the matrix of Definitios.37 whereCy, ;, 1 = 2, . . ., k, is defined
in (5.4.17 and the polynomiaPz,% (t) is defined via relationg.4.13. Then,

v

Amin (C*];le[(k) 20,
/\maa: (O];;NKk:) S 1
hold for all £ € N, where
402 B
a2(4b+1) +1+2a 3105

oo = (1 —~?) ~ 0.00547.
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5 Fast solvers for degenerated problems

5.5 Other multiplicative multi-level algorithms

In the previous sections, the discretization of the degenerated problgr {ia finite elements

is considered. Now, we will focus additionally on the finite difference discretization$.sfj

and @.2.1), too. We will derive algorithms which are more efficient in numerical experiments
as the algorithms described in sectidn8 and5.4. However, we cannot prove a mesh-size
independent convergence result.

5.5.1 Multi-grid for finite element discretizations

The theory of TheoremS.39and5.36 i.e. the condition number of the AMLI preconditioner
(5.4.9 and the convergence rate of the multi-grid Algoritbr8 MU LT, is confirmed in numer-

ical experiments, cf. sectioh.8. However, the absolute number of iterations can be reduced.
Furthermore, if the number of cycles per level for the algorithM/U LT, or the degreg: of

the polynomial iteration for the AMLI preconditioner is equal to one, the numerical results are
not satisfactory. The usual multi-grid algorithm, cf. Remar¥ is very similar to Algorithm

5.3 Important for such an algorithm is the choice of a proper smodthehnich operates on the
spaceV,, [ =2,..., k. Asimple Jacobi or Gau3-Seidel smoother cannot handle the anisotropies
of the differential operator in5(1.1). It is referred to the preprintlfl] for numerical examples.
Therefore, more appropriated smoothers have to be considered.

The first one is the product of the line Gaul3-Seidel smootherdirectionS, ,, see [L1], [40],
whose error transion operator is given by

Ser =1 — 2n® (D4 Ty +Tr ® D4)_1 K,

and the line Gaul3-Seidel smootlgyr;, in y-direction, whose error transion operator was given
by
Syr=1—2n% (Dy@ Ty + T @ Dy) " Ky

The matrixT, denotes the lower triangular partBf (3.4.7), i.e.

2 O ... O
_ 1| =
n_l|-1 2 o0
2| . )
0o -1 2
Then, let
Sak = Sz Sy.k (5.5.1)

which is used as pre-smoother. As post-smoother, Wé;gj§e
The second considered smoother is an extension of the smaather S, (5.3.49 operating
on W, to the spacé/,. More precisely, a matrixX is defined by setting all that off-diagonal
entries of the matrix¥<;, cf. (4.2.9, to 0 which are relatively small in comparison to the main
diagonal entries of that row and column. Let

Kk = [ak}

ij

Tj=1’ m = (n—1)2
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5.5 Other multiplicative multi-level algorithms

Then, the matrix
Le = [I5];,_, (5.5.2)
is defined with the entries
o af, if 4| af; |> max{al, af;
u 0 else

We introduce the smoothéf ;, by its error transion operator, i.e.
Sip=1—-wL,'Kj. (5.5.3)

This construction is very similar to that 6f ;, (5.3.49, compare the definition of the matrices
¢, s=1,2,in(5.3.39, (5.3.39 and £.3.49.
The third smoother is the ILU-smoother. Its error transion operator is defined as

Sy =1 —w(Dy + Uy) ' Dp(Dy + U)K, (5.5.4)

whereD;, is a diagonal matrix/, = [uf]™ _, is a strongly upper triangular matrix arit, =
[aF]m._,. The matrix(Dy + UF)D, ' (Dx + Uy) is called the incomplete LU-decomposition

(ILU) of the (symmetric) matrixi,, if the following conditions are fulfilled:
o If af, = 0, thenu®, = 0.

o LetK, = (Dk + Ug)Dk_l(Dk + Uk) + B, WhereBk = [bfs]m If (LITCS 7é 0, thenbfs = 0.

r,s=1"

Using these conditions, the ILU-decomposition can be computed for matrices with 5-point stencil
structure ag<;, (4.2.9, [42]. One obtains

u

ko affs if 1<r<s<m,
10 if m>r>s>1

(n—1,n—1)

for the entries ofJ;,. Moreover, the entries of the matrix, = diag[m], m = [m ;)] ", 5

be computed recursively by the relations

can

k

May = agy,
miy = af, s=n-1)@GE-1)+1, i>2
k .

Maj) = a5, J =2,

-2 1 6 2 -2 1 6 2
wey = a GRS @ERVER
(7]) SS

M(i—1,5) m; 1)

5.5.2 Multi-grid preconditioner

If a mesh-size independent convergence rate can be proved in the energy norm, a multi-grid
preconditioner can be built. Then, the condition number of the preconditioned system is bounded
by a constant independent of the level numbewe write the Algorithmb.3in order to solve

Kyuy, = g,
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5 Fast solvers for degenerated problems

in terms of matrices. Let, , be the initial value. The new iterate
Uy = Mysutgy, + (I — Mys,) Ky 'g, (5.5.5)
will be computed as follows:
e Pre-smoothing: Day, , , = Sy .t + (I = S} ,,.) K g, with

Sk,pre =1- wf(il

k,pre

K. (5.5.6)

Calculation and restriction of the defect: Set

dpq = i_l(gk — Kiugqp)

with the finite element restriction matri@; .

Solve the coarse grid systel)._,w,_, = d,_, by a direct solver fok = 2 and by
Qj,k—l = Mk*LS,M/I_Lj—l,k—I + (I - Mk*LS,#)Kk_—lldk—h j = 17 R 2

for k > 2. Setw,,_, = u,, , (the initial vector is the vectdp, . .., 0]").

Interpolation and correction of the defect: 3gt,, = v, + QY _w,, whereQ¥ | =
@

e Post-smoothing: Da, ;, = S} .t + (I — S} ,,.)K; ' g, with
Stpost = 1 — WK K. (5.5.7)

Thus, one iteration of the multi-grid algorithm can be interpreted as one iteration of a simple
iterative method, i.e.

Uy =gy, — Crg,(Kitlg, — g,)

with the preconditioneC,;}g# = (I — Mys,)K,'. However, more efficient iterative meth-
ods with preconditioning are introduced in subsecttoh One example is the preconditioned
conjugate gradient method. The following result can be proved.

THEOREM 5.40. Let us assume that the following assumptions are satisfied:
() LetK;,l=1,...,k, be symmetric and positive definite matrices.

(i) Forl=2,... k, the matricesS,,,. (5.5.9 and.S; . (5.5.7) are adjoint in thek; scalar
product:

(Sl,preua Q) K, = (Qv Sl,posty) K vﬂa .
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5.5 Other multiplicative multi-level algorithms

(i) Forl=2,...,k, the restriction and interpolation operatorg, ' and Q! are adjoint in
the Euclidian scalar product

(Q'w,v) = (w,Q_v) Vuv.
(iv) The mg-operator ing.5.5 satisfies the estimate

(Muc» QLk)
sup

K, <
Eo,lﬂéo (QO,IWHO,IC)K}C N

forall k € Nwith0 < o < 1.
Furthermore, we define the preconditioner
Crbo; =T =M g )K" jeN. (5.5.8)
This preconditioner is symmetric and positive definite. Moreover, there
Min (Ch i KR) = 1—07,

N 1 J even
1 —
/\max (Ck,S,,u,ij) - { 1+ O'j .] odd

hold.

Proof: The proof is a special case of Theorem 2.15iij yvith C), = K, see alsojg], Theorems
6.5. and 6.6
We note that the finite element restriction and interpolation oper@b‘r]sand Q! _, fulfill as-
sumption (iii). By Remark5.2, the matricesk; are symmetric and positive definite. Thus,
assumption (i) holds. For the SmoOthéliS,os/pre = 1 — WK, post/pre K1 €€ 6.5.9, (5.5.7), of
the Richardson type with

Kkpost K,We, (5.5.9)

one obtains
] wK 1

l,pre

(Sl,prega Q)Kl Kl)u U)

K;

! K))u, v)

l pre

(
(m—wm
(Km (I wmeKQ>

= (Qa Sl,posty)Kl

which means that assumption (ii) is satisfied. By the symmetry of the méxix(5.3.49,

the smootherS,; (5.3.49 fulfills relation (5.5.9 and so assumption (ii). By same arguments,
assumption (i) is valid for the smoothefs§; (5.5.3 andSy; (5.5.4. However, the smoother
Ss; (5.5.7) does not fulfill relation $.5.9. In this case, seb;,,.. = S3; and S posr = S?fl.
Then,S; . is the product of forwards line Gaul3-Seidel smoother-iandy-direction, whereas
St post 1S the product backwards line Gaul3-Seidel smoother indz-direction. Moreover by
Theoremb.36 assumption (iv) of Theore®.40is valid for the smoothes,; < S, withv > 3
andyu = 3. Therefore, the following theorem has been proved.
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5 Fast solvers for degenerated problems

THEOREM 5.41. The symmetric and positive definite matfix s, , 5 ;, see 6.5.9, satisfies
K (C‘,;}qo k’&ij) < c with a constant independent of the level numbefor all j € N.

In the following, we consider the cage= 1in (5.5.9, i.e. one iteration multi-grid per precondi-
tioning step, only. Then, the last indexd s, ; is omitted, €.9Cy s, := Ci.5..1-

5.5.3 Multi-grid for finite difference discretizations

In this subsection, the finite difference discretizations of problehis1) and @.2.2 are investi-
gated. As result of this discretization, the systems

Csu, = g, and (5.5.10)
Chu, (5.5.11)

I
2 |
>

have to be solved, cf3(4.17 for the definition ofC5 and @.4.3 for the definition ofC;. Similar
asKiu, = #C&k = g, the systems5.10 and 6.5.1) will be solved by a standard multi-
grid algorithm.

Via the matricesz (4.2.9, or Cy, cf. relations 4.2.9 and 3.4.19, preconditioners foAx, =
blockdiag [@ ] _, (3.3.9 can be built, where the condition numbers of the preconditioned sys-
tems grow agl + log p). The reason of this logarithmic term is the condition number estimate
k(Cy'@;) < (1 +logp), cf. Theorem3.11 Sincex (C;~'@;) = O(1), cf. Lemma3.5 a
spectrally equivalent preconditioner fdr;, (3.3.4 can be developed via the matrix

Ci=Ds®T + T ® Ds.

Therefore, it is important to derive a fast solver Gy, the discretization of problemi(2.2 by
finite differences. LetS;, be the ILU-smoother fo€; and letS; . be the product of the line
Gaul3-Seidel smoother irtdirection and the line Gaul3-Seidel smootheydirection for .
For reasons of a simple notation, we denote these smoothef$ foith S, ,, andSs ;, as well as
the smoothers; ;. (5.5.4 andSs . (5.5.7) for Cy — K. The first index ofS indicates only the
construction method for the smoother, iZfor the ILU smoother an@ for the product of the
line Gaul3-Seidel smoothers. The systénb (1)) is solved by a standard multi-grid algorithm
for finite difference discretizations with bilinear interpolation. The used smootheiS,arés
pre- and post-smoother), 6 ; as pre-smoother anﬂ£ » as post-smoother. The corresponding

multi-grid operator is denoted bi]k,syu, whereS denotes the kind of smoother, the integahe
number of cycles per level ariddenotes the level number. Moreover, we define

Crsp = (I = Mys,)C;" (5.5.12)

as the corresponding multi-grid preconditioner égrwith one iteration multi-grid.
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5.6 BPX preconditioner

5.6 BPX preconditioner

5.6.1 Definition of the preconditioners

Recall the finite element discretization of problefm(3 in subsectiont.2.2
Findu € V,, such that

/Q(wQ(y)uxvm—i—w2(x)uyvy) d(z,y) :/va d(z,y) (5.6.1)

holds for allv € V;, with a weight functionv(¢) satisfying Assumptiors.27.
For the efficient solution of systems of linear equations arising from discretizations of uniformly
elliptic problems by finite elements, Bramble, Pasciak, and Xu have developed a preconditioner,
[21], which was called the BPX preconditioner. For this preconditioner, the spectral equivalence
to the original stiffness matrix can be shown. Later, this preconditioner has been improved
by the multiple diagonal scaling versiorgl]. As mentioned in sectiob.2, cf. [1(], a BPX
preconditioner with multiple diagonal scaling does not show good numerical results in order
to solve Ku = g the system of linear algebraic equations resulting from the finite element
discretization of $.6.1). One reason is that this preconditioner cannot handle the anisotropies
resulting from the degenerated elliptic operator. However, with a modification, the so called
multiple tridiagonal scaling BPX (MTS-BPX), this behaviour of the BPX preconditioner can be
improved, [LZ]. In subsectiorb.5.1, several smoothers of Richardson-type are considered.
One smoother is, cf5(5.3,

Sip=1I-wL.'Kj.

In this smoother, the matrix, is a preconditioner fo¥{; which can handle anisotropies. The
idea is to apply the matrik, as "scaling” on each level instead of a diagonal scaling. We expect a
stabilization of the BPX preconditioner. The following MTS-BPX preconditioner is now defined.
Let QF, I = 1,...,k be the basis transformation matrix from the ba{&b%}zgfl € V, to the

basis{¢}; f;;i € Vi, wheren, = 2. Let Q! be the transposed operator. Furthermorel.Jelbe

the matrix 6£.5.9). Then, we define the preconditioner
. k
ol => QL 'QL. (5.6.2)
=1

This preconditioner is called the MTS-BPX preconditioner £gr.
Choosing the ILU-decomposition of the matu,, another additive multi-level preconditioner
can be defined. Let, cf5(5.9),

L' = (Dy+Up) ' Dip(Dy + U

be the inverse ILU-decomposition of the maté. Then, we define the ILU-BPX precondi-
tioner

k
Gl =Y Qfcral. (5.6.3)
=1
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5 Fast solvers for degenerated problems

As for the preconditionef’;, (5.6.9, we expect a better handling of the anisotropies.

For the correct analytical definition of the MTS-BPX preconditiofigrwe recall the notation of
subsectiont.2.2and introduce some new notation. (& = span {asfj}j’;;i wherek denotes
the level number ana, = 2*. Moreover, letk’ < k. The domain() is decomposed into

overlapping stripe§2§, le.

nk—l
re) Nk
a=U o
Jj=1

Y — Ok 11Ok wi
whereQ2? = Q7 U Q7 with

¢ -1 41
O, = {(%Z/)GRQ,OSygx,jn <rp<? }’

¢ Jg—1 j+1
Q;y {(I’y>€R2’0§ISy7 n Syf }7

see Figuré.2. According to this decomposition, let

o]}

5,y

[ J =N

oolw

el

A3
QQ,x

4
8

olw

1 6
8 8

Figure 5.2:Stripes2* for k = 3 andj = 2, 5.

v = span {05}/7) @ span {04}, (5.6.4)

be the corresponding finite element subspaces to the sub-doﬁfailmz)te that all shape func-
tions¢* € V¥ vanish on the boundary @T;f The additive Schwarz splitting of the finite element
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5.6 BPX preconditioner

spaceV,, i.e.
k nk/fl

V=3 S v

E=1 j=1
is considered. Following Zhang3]], let K, : V), — V, andK, , : VI — V7 be the operators
(Kiu,v) = a(u,v) Yu,v € Vg,

(K;pu,v) = a(u,v) Yu,v eV}
Moreover, letP;, : V, — V¥ be the energetic projection arg ;. : V, — V¥ be the
L?-projection, i.e.

a(Ppu,v) = alu,0) Yoe VY,

(Qipu,v) = (u,v) YveVF,

whereu € V;. Then, the preconditioneﬁ,,c and thek-th level additive Schwarz operatéy, are
defined by

k nk/—l

O = 3 ) EQue (5.6.5)
kAll i=1 R
P = Cy Ky=> > P (5.6.6)

k'=1 i=1

Note that the matrice&;, (4.2.9 and ¢, (5.6.9 denote the matrix representationsfof, and
C,. by the usual fem-isomorphism. For technical reasons, we investigate the additive Schwarz
splitting

k
V=) UY oUf, (5.6.7)
k'=1
where
vy = Wevie---oVh , and (5.6.8)
Uy = VieVie oV, ,

as well (cf. 6.6.9). Let i ,: UF — UF, Pyp: Vi — U¥ and @yt Vi — UY be the
operators

<K5,ku7 U> = a(ua U) VU,, v e Uljy
a (ﬁs,k/u, v) = a(u,v) YueV,velU",
<Qs,k’u7 U> = <U, U> Yu € Wk, NS Ulzl,

wheres = 1,2. Thus, the preconditionejk (5.6.95 and thek-th level additive Schwarz oper-
ator P, can be obtained as multi-level additive Schwarz preconditioner and projection operator
corresponding to.6.7).
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5 Fast solvers for degenerated problems

LEMMA 5.42. The relations

k 2
¢ = Y S k.0, and (5.6.9)

k'=1 s=1

k 2
P = > Y P (5.6.10)

k'=1 s=1
are valid.

Proof: Note thatu(u,v) = 0 and(u,v) = 0 forallu € V¥ andv € V¥ with [i — j| > 2.
Thus, the sums in5(6.9 are orthogonal sums with respectdo,-) and(-,-). Hence, thel?
and the energetic projection frofd, onto U, is the sum of the projections onw§;_2+s,

i=1,...," 4 1-s,ie.

%—&—l—s
Qspu = E Q2i—24 s, (5.6.11)
i=1
AT
Ps,k’u = E Poi o su
i=1

hold for allu € V,, C V,. Therefore, relationy.6.10 has been proved. Moreover, let

"y
= tl=s

K’ K
U= E U291, quVj,UEUS,S:LQ.
=1

Sincea(u;, u;) = 0 for all u; € V¥ andu; € V¥ with |i — j| > 2,

nps

2 +1—s 2 +1-s

. . . -1 . -1
K, pu= E Ky oy sptiziars OF <K5,/«> U= E (K%—Q—i—s,k’) U2i—2+s5

=1 =

nps

follows. Together with%.6.11) and 6.6.9, the assertion3.6.9 has been proved:

5.6.2 Proof of the upper eigenvalue estimate

We prove now the estimatg,,..(P:) < ck with a constant independent of the mesh-size

Two proofs are given.

The first proof is similar to the proof of Zhang for the upper eigenvalue bound of the MDS-BPX
preconditioned system matrix given i@l]. Zhang has proved that the condition number of the
preconditioned system is bounded by a constant independent of the level number, if the bilinear
forma(-, -) is uniformly elliptic and bounded. Using the techniques of Zhang, we can only prove

the result),, .. (C*k‘lKk> = Anae(Pr) < ck for the MTS-BPX preconditioner. The second
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5.6 BPX preconditioner

proof uses the multi-level additive Schwarz splittivg = >_F,_, UY @ UL (5.6.7. Using

this space splitting, the result,...(P:) < ck can be established by a short proof. This proof
requires the positive definiteness of the bilinear faifm -) only. The Zhang-like proof is given

in order to show thak,,...(P) < c cannot be concluded by a more rigorous estimate. Numerical
experiments indicate that the upper eigenvalu@ofirows as the level numbér

Now, we start with the first proof. For this aim, the following lemma is useful. (Recall Figure
5.1for the definition of the triangles* andr,*.)

LEMMA 5.43. For weight functions satisfying Assumptior27, the estimate

/ L9 W) d(z,y) = / @) d(z,y) (5.6.12)

r

is valid for all r, s € Ny

Proof: By the monotony of the weight function, one easily checks

/ L9 ) dlay) < / P(y) d(z,y). (5.6.13)

; 1,k
Trs Trs

By Lemma5.290n pages9, we have

0< (w (y+ })) < c(w(y)? V> —.

T

Integration with respect to the variahjagives

Ang 1 2 g 5 .
wly+— dy < ¢ w*(y) dy Vj € Ny, or,
4542 4dny, 4542

Anyg Anyg
4j+4 4543
MRy dy < e WPy dy VjeN
b, Wdy < ef Wiy dy Ve No
J+3 4542
anyg Ang

By integration with respect to the variabterom g to ‘ijkl one conclude§in,, = 2¢+2)

/ Wy dlz,y) < e / ) d(ey) Vi, j € N
gk+2 gk+2

43,4543 44,4542

= c/ w(y) d(z,y) Vi,j € No. (5.6.14)
gk+2

4i43,45+2

For the last estimate, it is used that the integrand does not depend on the varidldte that

5fii%74j+2 C rf]k cf. Figure5.3. Thus, the inequality

/ L @) d(zy) < / w*(y) d(z,y) (5.6.15)
ght2 72k
4i+43,45+2 i7
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4544
Any
k+2
54i,4j+3
k+2
g4i+3,4j+2

4542
4TLk
A
My 4i+3 4i+4

Nk 47‘Lk 4T’Lk
i . i kE _ Lk 2,k — ok

Figure 5.3Notation for&’, = 7,;" U 72", ny = 2.

holds for alli, j € Ny. Moreover, byéffij‘;+2 C rllj’“ and the monotony of the weight function,

one easily deduces

s [, ez [P0 de). (5.6.16)
& z‘J,r42j+3 Tzle
Combining the estimate$.6.19, (5.6.19, and £.6.169, one checks
[ dwy <se [ o) ey, (5.6.17)

By (5.6.13 and 6.6.17), the assertion follows immediately
Equivalent to the estimat®& (.12 is that

/T L@@ dlz,y) Z e / w?(x) d(z,y)

rs £k

is valid foru = 1,2, andr, s € N, with a constant independent of, s, andk. The main tool
in order to estimate the upper eigenvalue of the BPX preconditioner is Leémibavhich is a
strengthened Cauchy-inequality of the type

(R 307

/ 2 ! / /
(oz(ui?C wf)) < 2K Ha @k uF)a(uk, uk) (5.6.18)

for all ¥ € V¥ andu} € V¥. Our aim is to prove.6.19. We split this proof into several
lemmata. The first lemma says that the mean value of the weight funetigrover %" N Q?w
can be bounded by the mean value ovgt'.
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LEMMAS5.44. Foru=1,2,r,s € No, k' <k, 7 € N, the inequalities

Tg.r
C e ze [ W) da) (56.19)
T St s Ok,
and
%/ Wi(z) d(x,y) > c/ w(z) d(z,y) (5.6.20)
M S N ndk,
are valid.

Proof: Forrs" N Q% = 0, the assertion is triviald(= 0). We assume that;" N Q, # 0.
Then, there

c— =< (5.6.21)
% N Nt
holds. Now, with §.6.12 and Assumptiorb.27, we estimate
(5.6.12)
[o@dey 2 )y
el ek
r+1 s+1
= c/ * / Y Wi (z) dy da
r+1
w(&)=E£> 1 e
(€=t c / Y da
Ngr J_r_
Nt
c (r+1)%> 1 /r+1\*
> = (5.6.22)
Ny Ngr2et! N2 T
Moreover, one concludes
[ @@ day) < [ @) day)
sk nak ERNQE
s+l g+l
< /k , " W (x) da dy
OVl
i+l
1 [
= — [ " de
nk" j—1
nk
c J2a c ] 2
< — - 5.6.23
ny N3t T g <nk> ( )
Using (6.6.20) and £.6.23, there
c r+1 20
/ w?(z) d(z,y) < ( ) (5.6.24)
ik Ok AN
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5 Fast solvers for degenerated problems

holds. Combining%.6.29 and 6.6.22, the inequality $.6.20 follows immediately. The esti-
mate £.6.19 can be proved with similar arguments.
Let ag. be the restriction of the bilinear formto %, i.e.

aﬁﬁ(u,v) = /Qk (w?(y)uzvy + WP (z)uyv,) d(z,y).

Using Lemmab.44 the following result can be shown.

LEMMA 5.45. Letu! € V¥. Then fork’ < k, the estimate

2 Fa(uy uf) > ¢ Agp (i’ uf)

is valid.

Proof: For each triangle* ¢ QF

7,2

(5.6.19 and 6.6.20 of Lemma5.44

/ (PO ) + @) W), ), = /Tu,kfw2<y><u§’>i+ / () (uf )y

(Vul)T is constant ons*". Therefore, using the estimates

u,k’

>
T8 TS L]

e (uf )3 (y) + (uf )y (),

u,k! A
M S n@k

By symmetry of the differential operatot.@.3, the same result is valid for each triangle” C
QF . Summation over all triangles;*" c QF gives

/ () + ()" @)) ) 2 et | ((@l)220) + @) () dla)

Ny

or equivalently,
’ ’ n / / ’ / /
a(uf ,uf') > e—agi(uf uf ) = 2 ¥ ag (uff uf)
nk’ J J
which proves the lemmaul
The next lemma gives a relation for the cosine of the angle between the ﬁpiaenuj\/f with

respect tai(-, -) which in general is defined as

a(u,v)

Yo,y =  Sup . (5.6.25)
wely Valu,u)a(v,v)
veV
u,v # 0

LEMMA 5.46. Letk’' <kandie {1,...,npy —1},5€{1,...,n, —1}. Then,

k=K
yéklw,?gmax{CQ 2 ,1}.
)
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5.6 BPX preconditioner

Proof: The proof is similar to the proof of Lemma 3.2. Bi[. Letu! € V¥ andu? € V¥,
Then, by the usual Cauchy-inequality @g. (-, -) and Lemméb.45

(ol )" = (ags (')

< aﬁf(uf ,uf)a(uf,uf)
< e Fa(ul uf) a(ul ub)
which shows the assertian.
Following Zhang, 81], let
k/’kl/
@:[ezj }
(Z7k )7(]7k )

where
k’,k‘”

2
i = ,ny/,W?N’ 1 S k:/, k” S k

Our aim is to prove an estimate of the type
11O [l2< ck.

For this purpose, the following propositions and lemmata are helpful.

PROPOSITION 5.47. Letk’, k be fixed withk’ < k. If 0" # 0, then
(i —1)28F < j < (i +1)28",

. k . Nk . Nk . Nk o k;”k;_
Proof: By definition,p € \{j satisfiessupp ¢ C Q. If int(Q}) Nint () = 0, thend;;™ = 0.
By definition of the stripes)%, the assertion follows:

Now, we consider one block of the mat#x i.e.
k/ k’” k/ k" nk’vnk”
’ e 8,.’ i| .
© [ 7 li==1
Then, the following proposition is valid.

PROPOSITION 5.48. The Frobenius norm ad**" can be estimated by a constant, indepen-
dent of the mesh-sizg i.e.

| O |p< e forl <k k' <k

Proof: Without loss of generality, léf < k”. By Proposition5.47, each row of©**" has
maximal2*”~*+1 11 nonzero matrix entries, and each column maximal 2 nonzero matrix entries.
Therefore, the total number of nonzero matrix entries is less than or eqfal tot? + 2. By

Lemma5.46 65" < 27 holds. Summing up over alb’,*")? gives

| OFF lp=> "(O5")? < 2" 7F(2F 72 1 2) < 6e
i,J
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5 Fast solvers for degenerated problems

which proves the lemma.

The following lemma, §1], gives a relation between the Frobenius norm of the block métrix
and the Frobenius norm ¥, where the entries of the matré are the Frobenius norms of the
blocks of6.

LEMMA 5.49. Let © be an x n block matrix, i.e. © = [©]"

n 7i—1- Moreover, letd =
[H 61’]’ ”F]i,j:y Then, i
| ©[r=[© || .

Proof: Let

Then,

Telz=>_> 62)

g Ll
Moreover,| ©;; [[7= 3, . (‘95]1)2 and

s E:HGUHF > )’

47 Ul
The assertion has been demonstrated.
LEMMA 5.50. The estimatd © ||< ck is valid, where: is independent of the level number

Proof: As in Lemméab.49 we introduce the block-matrix
@Mm:[%W}J 1<K K <k,
2,

and the matrix

B k
@ = H’ G)k’,k” HF]kl7k//:1 .
By Proposition5.48 || Oy ||#< ¢. Computing the Frobenius norm 6f, one has
16 [13< ek®.

By Lemma5.49 one easily checks
1 7=l © ||lr< ck

which is the desired result]
The main result of this section is the upper eigenvalue estimate of the MTS-BPX preconditioner.

THEOREM 5.51. For u € Vy, let

lll* = ,in E:}: uj, up)

”lei

Then, one obtains
a(u,u) < ck ||| uw|l*.
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5.7 Implementational details

Proof: We give two proofs. The first proof follows by Lemma 3.1 and Lemma 3.5 of Zhang,
[81], the fact|| A ||o<|| A ||r and Lemm&b.5Q

In the second proof, we investigate the splittiiig = >_,_, U¥ @ U% (5.6.7. Now, let® be a

k x k block matrix consisting o2 x 2 matrices, i.e.

! 12 k ! 1
O = [ek ok ] with 9k L [ ’ H:|
i Yoy s

2

,j=1

By the usual Cauchy-inequality, the cosings .+ , cf. (5.6.29, of the angles betwedd* and

U*" are bounded from above by 1. Thuis¢"*" ||z< 2 follows. This is the analogous result
of Proposition5.48for the space splittings(6.7). Using Lemmab.49and the proof of Lemma
5.50 the assertion followsa

REMARK 5.52. The eigenvalue estimate,,, <(§,;1Kk> < ck of the MTS-BPX preconditioner
C, for K, defined via relationq.6.2), follows immediately.
REMARK 5.53. The constant in Theorem51depends linearly on the level number. The reason

is the splitting into the spacég!, not the differential operator. For the Laplacian, i©(z) = 1,
only this result can be proved using this space splitting.

For this MTS-BPX preconditioner, Tabk 2 gives the lower and upper constants in the norm
equivalence

cllull® < a(u,w) <efull® Vue V.
The constants are computed by a vector iteration and inverse vector iteration for the correspond-
ing matrices in the case of the weight functiang) = 1 andw(§) = ¢£. One can see that the
constant seems to be proportional to the level number for the weight functiggs = 1 and
w(€) = ¢ which indicates that the estimate of Theorém1is sharp. The lower constant
seems to be bounded from below by a constant of abdé8. However, we cannot prove the
boundedness affrom below.

5.7 Implementational details
5.7.1 Fast solver for Cyw, and L,
Using the Algorithm5.3 MU LT, linear systems of the type
Cwu=g9g, 1=2,..k, (5.7.1)

have to be solved in order to apply the smoothigr (5.3.49, whereCwy, is defined via relation
(5.3.49. Moreover, in order to apply the AMLI preconditioning systemv(5

_ A1
u= Ck,uvrf_]’
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5 Fast solvers for degenerated problems

Level c c
w=1w@=¢|w@=1]wlE=¢
2 0.607 0.748 1.86 1.7
3 0.522 0.647 2.73 2.59
4 0.495 0.583 3.44 3.39
5 0.489 0.543 4.00 4.03
6 0.488 0.524 4.45 4.52
7 0.488 0.512 4.81 491
8 0.488 0.504 5.11 5.23
9 0.488 0.498 5.35 5.60
10 0.488 0.495 5.55 6.11

Table 5.2:.Lower and upper eigenvalue bounds of the MTS-BPX preconditioner.

systems of linear algebraic equations with the matricgs = (1 + 2v/11) Cw,, 1 = 2,... .k,

cf. (5.4.1)), have to be solved. Therefore, it is important to find an efficient solution technique
for the system&.7.1). In this subsection, it will be shown thaty, is a block diagonal matrix
consisting of tridiagonal blocks. Then, using Cholesky/Crout-decomposition, the systed) (

can be solved i (m;,) arithmetical operations, wherey, is the number of unknowns on leviel

cf. subsectior?2.2. Furthermore, we will show that the smoottigr, (5.3.49 is a line smoother
operating on line¥,,,_; which will be defined below. According t&(3.39, (5.3.39, and
(5.3.49, the matrixCy, has the structure

CWk = DWk + R7

where Dy, is the diagonal part of the matrikyy, defined in £.3.47. The matrixR will be
defined below. Leb : W, x W, — R be the following non-symmetric bilinear form uniquely
determined by the values of the basis functic{)azlg}(i,j)eNk c W,

1=1=2r—1, j=2,...;i,, m=j—1
j=m=2r—1, i=2,...,5, l=i—1
0 otherwise

b o) = { (000 0) T

75

forr =1,..., 3. By this definition,a( v, 0r,) is equal to the elemerit, j), (1, m) of the matrix
Kpifi=1l=2r—1,7=2,...;iim=j—1,0orj=m=2r—1,1=2,...,j,l=i—1. The

matrix R is defined as the symmetric part of the bilinear fdrnMore precisely, let

After a proper permutatio®?, we have

Cw, = P blockdiag [Cyy, ]2, P
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5.7 Implementational details
with

a(gF, o ) . for r>0
C\wk’“:{ | o ot for r=0 "

[a< ijo ¢lm)] (i), (Lm) €Ut 2™ (Nop NNk 4 1)

The index sefV, is defined as
—{Zj (Lm)e{l,...,r}*:i=l=r or j=m=r} (5.7.2)

andN; has been defined i5(3.2). Thus, the matriceSw, ,, » > 1, are tridiagonal matrices and
the matrixCw, o is a diagonal matrix. The shape functions of one blogk, , correspond to
one edge of the left picture of Figue4 which is marked by a bold line. Therefore, the system
(5.7.7) can be solved using Cholesky decompositiodim?) flops. Hence, the operatid ,w

is arithmetically optimal. Additionally, a smooth&i , = I — (L' K}, (5.5.3 has been built in

Figure 5.4: Nonzero entries of the matricés(left) and R (right).

subsectiorb.5.1which uses the ideas 6f) 5, (5.3.49. This smoother operates on the spage
The matrixL; can be interpreted as follows: Let
Ly, = diag(l) + R,
o k k] (n—1,n—1)

wheret = [a(¢};, ij)](i,j):(l,l) and

- - (n—1,n—1)

e A ]
with the bilinear formb : V;, x V;, — R,

) a(oh ok ) it i=l=r, j=2,...,i, m=j—1
b<¢i?j’¢fm): i) Flm or j=m=r, i=2,...,7, l=i—1 (5.7.3)
0 otherwise
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5 Fast solvers for degenerated problems

forr =1,...,n—1. As well asSy; (5.3.49, S; is a line smoother. However, it operates
on each bold line in the right picture of Figused. So, we expect better convergence rates of a
standard multi-grid algorithm (cf. Rematk4) in contrast to the smoothé, .. The matrixLy,

is a block diagonal matrix consisting of tridiagonal blocks. After a proper permut&tion

Ly = P™blockdiag [Ly,]"—| P,

where
Lk,r = [CL( ij ¢lm)] (i,j),(l,m)eNr

with the index sefV, (5.7.9. The matriced;, , are tridiagonal. The shape functions of one block
Ly, correspond to nodes marked by one bold line in the right picture of Fig§drénalogously
to Sy, the operation

Sl,kw =r
can be done arithmetically optimal é(n?) flops using Cholesky- or Crout-decompostion. The
same result is valid for the operation

A—1

w:Ck T’,

cf. relation 6.6.2.

5.7.2 Complexity of the algorithm
In this subsection, the arithmetical costs for the operations
u g = MULT (k,upk,g), cf. ALGORITHM 5.3 (5.7.4)

using one of the smoothers; (5.3.49, 51, (5.5.3, Sy, (5.5.9, or S3; (5.5.1) on levell =
2,...,k are considered. Moreover, it will be shown that the total cost for applying the AMLI
preconditioner%.4.5 and the MTS-BPX preconditiones 6.2, i.e.

s (AMLI) (5.7.5)
r (MTS-BPX) (5.7.6)

(S

(S

is arithmetically optimal.

THEOREM 5.54. Letm,; be the number of unknowns on le¥el Then, the arithmetical cost
for each of the operations(7.4, (5.7.9, (5.7.9 is O(my), if the following assumptions are
satisfied:

e n<3for(5.7.9and 6.7.9,
o v fixed for 6.7.9.

Proof: At first, we consider the iteratio.(.4. The number of arithmetical operations for
(5.7.9) is denoted byy,. By the definition of the parameter;,,

my = (20 —1)°
holds. The algorithmM/ U LT reads as follows:

88



5.8 Numerical examples

1. pre-smoothing withy pre-smoothing steps,

2. calculation and restriction of the defect,

3. solving the coarse grid system recursively foe 1,. . ., u,
4. interpolation and addition of the coarse grid correction,
5. post-smoothing withy post-smoothing steps.

The cost of the stepon levell is denoted by¥, ;. Then, the cost for step 1 and the cost for step
5 can be estimated by
W, =5, < civmy,

if one of the smoothers, ;, i = 0, ..., 3 is used, cf. subsectidh7.1for Sy, andsS; i, see 0]
for S5, and see4?2] for S, ;. SinceK), (4.2.9 is a sparse matrix, one easily checks

Wy < comy and W, <camy.

Moreover, by the definition of step #5;, = y¥,_,, [ > 2. Then, by

5
W => W,
=

the recursive estimate
wl S ml(21/cl + co + 04) + ,U/wl_l (577)

isvalid. Forl =2, ..., k, the geometric series gives

k
wk < Zml(2ucl + Co + C4),uk7l + wlﬂkil
=2

k 2
2l —1
= (21/61 + Cco + c4)mk E ,uk_l (ﬁ) + mguk_l
=2
< vemy,

if © < 4. Therefore, the assertion has been established for the aétiod)( The remaining
cases follow by the same argumernts.

5.8 Numerical examples
In this section, numerical experiments in order to sol/€ @, i.e.

Kru, =g, (5.8.1)
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5 Fast solvers for degenerated problems

are given. In subsectiof.8.1, the multi-grid algorithm in the version of the Algorithin3
MULT or Remark5.4 is used as solution technique. In the following subsections, a precondi-
tioned conjugate gradient method is the solver f08(1). The preconditioners are the multi-grid
preconditioner §.5.9, cf. subsectiorb.8.2 the AMLI preconditioner %.4.9, cf. subsection
5.8.3 and the BPX preconditioners.6.2, (5.6.3, cf. subsectiorb.8.4

5.8.1 Convergence rates of multi-grid

In all experiments of this subsection, the multi-grid Algoritthn® MU LT is used in order to
solve 6.8.1). Written in vector form, the algorithm

Uik = Uik — (I - Mk,Sw)ch_l(Kkﬂj,k - ﬂk)

is used, wheré/,, s, denotes the multi-grid operator with smootiteand the number of cycles
w. The following cases of initial values, , and right hand sidegin (5.1.1) are considered:

(A) g =0andugy =1,
(B) g =1andug, = 0.

Using vectors ofR™, the conditiong = 1 meansg, = cll,..., 1]T (all trianglesﬁ;’k of the

triangulation have the same volume), ang, = 1 meansu,, = [1,.. ., 1]". Two kinds of con-
vergence rates are measured, the convergenceratehe Euclidian norm and the convergence
rateoy, cf. (5.3.9, in the energy norm. More precisely, let

2
wp = sup " "
u A0 (W — U Uy —u

o2 — sup (Kk(ﬂj+1,k - Q*)7gj+17k - ?_L*)
‘ u; 70 (Kk (@j,kz - ﬂﬂ»@j,k - @*)

(ﬂjﬂ,k —u’, Uik — u*)
)

where(-, -) is the Euclidian scalar product, amtl denotes the exact solution d¢f.8.1). In case

(A), wi Is measured, in case (B), the convergence satén the energy norm is considered.
Moreover, in all experiments, the algorithm is stopped, if the relative error in the Euclidian norm
or in the energy-norm is less thar= 10~". The upper tabular in Tabk 3 displays the numbers

of iterations and the convergence ratgof the multi-grid algorithm for (B) using the smoother
Sox (5.3.49 for p = p, = 1,...,4. The lower tabular in Tabl&.3 shows the same results for

wy in the case (A). Thé -cycle (u = 1) has clearly growing numbers of iterations. Fop 3,

we have mesh-independent convergence rates. It is not clear, if the rates of convejgaree
bounded from above by < 1 for thelW-cycle (x = 2). The convergence rates do not depend

on the choice of the right hand side and the initial value. More precisely, the maximal variance
in the values ofr;, is 0.005 in all test examples considered for. Moreover, the number of
smoothing steps > 1 has no significant influence for the multi-grid convergence.

The convergence rates, do not differ substantially from the convergence rates in the energy
normoy. For the smoothes,, ;, the rates are a slightly larger for> 2 and lower fory = 1.
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Level = = = =4
It O It (% It (% It (o
18| 0.4070| 18 | 0.4070| 18 | 0.4070| 18 | 0.4070
32| 0.6017| 24 | 0.4997| 22| 0.4778| 22 | 0.4722
50| 0.7239| 25| 0.5221| 22 | 0.4698| 21 | 0.4583
72| 0.7974| 27| 0.5449| 22| 0.4770| 21 | 0.4582
97| 0.8463| 30 | 0.5755| 24 | 0.5035| 22 | 0.4719
128 | 0.8814| 34 | 0.6201| 25| 0.5156| 22 | 0.4788
176 | 0.9123| 37| 0.6432| 26 | 0.5282| 23 | 0.4838
247 0.9373| 41 | 0.6724| 26 | 0.5339| 23 | 0.4847
346 | 0.9545| 44 | 0.6901| 26 | 0.5380| 23 | 0.4841
Level pw=1 =2 w=3 =4
It Wi It Wi It Wi It Wi
18| 0.4013| 18 | 0.4013| 18 | 0.4013| 18 | 0.4013
30| 0.5779| 21 | 0.4621| 20 | 0.4409| 20 | 0.4359
45| 0.6946| 22 | 0.4709| 20 | 0.4463| 20 | 0.4462
60| 0.7611| 27| 0.5399| 22| 0.4775| 22 | 0.4711
74| 0.8040| 30 | 0.5806| 25| 0.5156| 23 | 0.4914
93| 0.8409| 35| 0.6253| 26 | 0.5370| 24 | 0.5078
127| 0.8800| 39 | 0.6583| 28 | 0.5550| 25 | 0.5200
171| 0.9098| 43 | 0.6852| 29 | 0.5690| 26 | 0.5294
10| 235| 0.9336| 48 | 0.7105| 30 | 0.5803| 26 | 0.5371

|_\
O OWoOO~NOUITE,WN

O©CoOo~NOOUThE,WN

Table 5.3:Mg-convergence rates, (below) ando;, (above) using smoothéf; 5, (v = 1).

For the V-cycle, the results are not satisfactory. The reason for the bad convergence of the
V-cycle is the smoothe$, ,, which operates on the nodes corresponding to the spacenly.

In subsectiorb.5.], cf. relations $.5.3, (5.5.9), (5.5.7), smoothersS; ;, ¢ = 1,2, 3 are defined
which work on the spac¥®,. The multi-grid Algorithm5.3in the version of Remark.4 shows
mesh-size independent convergence rajesc o < 1 for the V-cycle using these smoothers,

cf. Table5.4for case (B). For the smoothef§ ;, and.S; i, the parameter = 0.8 is chosen in
relations §.5.3 and 6.5.4). This relaxation parameter shows the best mg-convergencesiates

For thelV-cycle, the convergence rates using these smoothers do not change significantelly from
that of thel/-cycle. We refer to the preprint& ], [11] for more numerical examples.

Now, we compare all these smoothers. On the left picture of FigLxehe multi-grid conver-
gence rates;, for all smoothers are compared. The time measured in seconds which is needed
in order to reduce the relative error in the energy norm up to a facter=efl0~7, is displayed

on the right picture. For a better visibility, the time is scaled with the number of unknowns.

It can be concluded from the results that the ILU-smoofer(5.5.4 and the line Gaul3-Seidel
smoothersS; ;. (5.5.1) are the best smoothers. Moreover, the mg-algorithm using these smoothers
are the fastest ones. The smoother for which Thedeitiholds, the smoothef, ;. with ;1 = 3,

91
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Level Sl,k S2,k SS,k
It (% It O It (%
2| 9/0.1611| 6 | 0.0614| 3 | 0.0014
3111 0.2290| 8 | 0.1007| 5| 0.0234
4| 13| 0.2723| 8 | 0.1224| 6 | 0.0512
5| 15| 0.3250| 9 | 0.1348| 6 | 0.0639
6| 16| 0.3517 9| 0.1399| 7 | 0.0705
7|16 0.3619| 9| 0.1421| 7 | 0.0780
8117 ]0.3680| 9| 0.1434| 7 | 0.0853
9117|0.3720| 9| 0.1447| 7 | 0.0912
10| 17| 0.3750| 9 | 0.1470| 7 | 0.0960

Table 5.4.Convergence rates, of multi-grid algorithmM U LT using smoothers; ;, i = 1,2, 3
with v = 1.

presents high convergence rates and is relatively expensive.

Now, consider the convergence raigs We will see that these rates can depend on the special
choice of the initial value. The convergence rate is given by the spectral radius of the mg-operator
My,,.,s. Usually, the vector,, , has a non-vanishing component in the eigenbasigof ,, to that
eigenvector which corresponds to the dominant eigenvalue. However, it can be possible that we
have chosen an, , with zero component to that eigenvector. For this reason, several examples
are considered. In all examples, we get 0, whereas the initial value, ; is chosen as follows:

(@) ugy, = ¢, oy is considered instead af,,
(b) uyr = vy, ® wy, wherev, andwy, are chosen randomly,
(c) Uy =6

(d) wg . = vy ® wy, wherey, = e andwy, is chosen randomly,

i }n—l
n—11;=1"

(e) ugy = v, ® wy, wherey, = [sin -2 }’7_1 andwy, = [cos

n—11;=1

(f) woy = vy +wy, wherev, = [sin -2 L:ll ®eandw, =t ® [cos - }7—1

n—1 n—11;=1"

with
e=1[1,...,1".

The following smoothers for the multi-grid algorithm are considered:
(i) smootherSs (5.5.0) with =1,
(i) ILU-smootherS, ;, (5.5.4 with 4 =1 andw = 0.8,

(i) smootherS;  (5.5.39 with =1 andw = 0.8,
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Figure 5.5:Comparison of all smoothers, mg-convergence (left)(right), wheret . .. time in
secondsk . . . level number.

(iv) smootherS; ; (5.3.49 with ;o = 3.

The convergence rates are displayed in FigurB.6.

One can see that the convergence ratedepend on the choice of the initial value. In case (iii)
only, the convergence rate, is lower thano,. The examples (c), (e) and (f) show nearly the
same convergence rates in all cases. For (ii) and (iv){.tmeg-convergence rate, is slightly
higher than the energetic multi-grid convergence sate

5.8.2 Multi-grid preconditioner

In the following three subsections, the preconditioned conjugate gradient method is used as
solver for 6.8.]). In this subsection, cf. subsectiérb.2 the preconditionery 5.9, i.e.

Crsp=U =M, ,s)K. ",

isused. Inall experimentgk =[1,...,1]" is chosen as right hand side 6{8.1). The algorithm

is stopped, if the relative error in the preconditioned energy norm is reduced up to a factor of
107%. Table5.5displays the number of iterations of the pcg-method using the smoathers
(5.3.49, S1, (5.5.9 with w = 0.8, Sa (5.5.9 with w = 0.8, S5, (5.5.1) and the Gaul3-Seidel

(GS) smoother.

For Sy, with o = 1, there is a logarithmic growth of the number of iterations. The multi-grid
preconditioner with the Gau3-Seidel smoother (GS) shows clearly growing number of iterations.
In all other cases, the results indicate the boundedness of the numbers of iterations by some small
constant.
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5 Fast solvers for degenerated problems
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Figure 5.6:Comparison olv, for several examples.

5.8.3 AMLI preconditioner

Consider §.8.1) and solve this linear system with the preconditioned conjugate gradient method.
The algorithm is stopped, if the relative error measured in the preconditioned energy norm is
lower thans = 10~°. The right hand sidg, = [1,..., 1]7 is chosen. Now, the AMLI precondi-

tionerCy,., (5.4.9 is used as preconditioner féf;, with the polynomialsP, ,.(t)

P.a(t) = (1—t» for p=1,23,
Poy(t) = (1—rt)? for r=224 (5.8.2)

and the matri>(j22,l defined in relation§.4.11). Note that Theoreny.39 holds for P, ,.(t) =

PQ’%(t). Table 5.6 displays the number of iterations for the AMLI preconditioners with the
polynomials £.8.2. Recall that for the definition of the polynomis), ,.(t) of the AMLI precon-
ditioner (6.4.9, the eigenvalue bounds,;,, (€w, " K, ) and... (€w, ' Kw, ) are required,

see b.4.9. However, the eigenvalue boundls;,, (€, ' Ky, ) andA e, (€w, " Kw, ) in The-
oremb5.33are estimates and the exact values are not known. Probably, the exact values can be
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5.8 Numerical examples

Level So.k S1k Sak S5, GS
p=1lp=2p=3p=1|p=1|p=1|p=1

2 7 8 7 7 6 5 8

3 12 12 11 9 7 6 11

4 15 13 13 10 7 6 13

5 16 14 13 10 7 6 18

6 18 14 13 11 7 6 25

7 21 15 13 11 7 7 33

8 23 16 14 11 7 7 44

9 25 16 14 11 7 7 59

Table 5.5:Number of iterations of the pcg-method using a multi-grid preconditidrﬂg’rs with
S:SZ'JWZ':O,...,?).

Level Plﬁl(t) P271<t> P27%(t) PQV% (t) Pgﬁl(t) mixed
2 8 8 8 8 8 8
3 17 16 16 16 16 18
4 23 17 17 18 17 21
5 28 18 17 19 18 23
6 33 19 17 21 18 24
7 39 20 18 21 18 25
8 46 21 18 21 18 26
9 52 22 17 22 18 26

Table 5.6:Number of iterations of the pcg-method with AMLI preconditioners.

better. The ponnomiaPZ%(t) is that polynomial 1 — r¢)? with the smallest number of itera-
tions on level 9 for- = 35, 38 .. 8. Furthermore, we used the AMLI preconditioner on level
using the polynomial — ¢ on the levels = 1, 3, ... and the polynomia(l — %t)2 on the levels
l=2,4,...,wherel < k. This case is denoted by mixed in the last column of Talkte

The number of iterations are bounded by a constanﬁ% (1), Py 11 (t), P51(t) and for the case

of P, ;(t) on each odd anrﬂ’z%(t) on each even level. However, they grow proportional to the

number of levels forP, 1 (t) and P 1 (t).

5.8.4 BPX preconditioner

Finally, numerical results are given in order to sol%e3(1) with the pcg-method and the MTS-
BPX preconditioneiC, (5.6.2 and the ILU-BPX preconditionet; (5.6.3. As before,gk =

[1,...,1]" is chosen. Tabl&.7 displays the number of iterations for several relative accuracies
¢ in the preconditioned energy norm. The results are compared with the results of the BPX pre-
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5 Fast solvers for degenerated problems

Level | MDS-BPX MTS-BPX ILU-BPX

e=10"° [e=107]e=107"[e=10"10] e =107
2 9 8 9 9 8
3 16 11 18 27 14
4 24 14 23 37 19
5 33 15 26 44 21
6 44 16 28 49 23
7 58 17 30 52 24
8 76 17 31 56 25
9 97 18 32 58 26

Table 5.7Number of iterations of the PCG-method in order to sakjg., = ip with the pre-
conditioners’, andC;.

conditioner with multiple diagonal scaling (MDS), se&)]. The multiple tridiagonal scaling
procedure and the ILU-decomposition stabilizes the BPX preconditioner. The number of iter-
ations grow moderately. In comparison to the multi-grid preconditioners of subséc8dh

the numbers of iterations are larger. However, the solution of a preconditioned system with a
BPX-like preconditioner is cheaper than the solution with a multi-grid preconditioner.
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6 Multi-level preconditioner for  p-fem

In this chapter, we return to theversion of the fem. The linear system of algebraic finite element
equations

Apyu, = f | (6.1)

with the matrixAz, (3.3.4) is considered.

6.1 Final estimates of the condition numbers

We are interested in a good preconditioner for the matyix (3.3.4), the element stiffness matrix
for the interior unknowns o, = (—1, 1)? with respect to the basis of the integrated Legendre
polynomials{ﬁij}ﬁjzz. Two preconditioners will be introduced. Lét be the permutation of
Proposition3.3, C“km the AMLI preconditioner §.4.9 with the polynomialP, ,.(t) andCy s,

be the multi-grid preconditione5(5.9 with smootherS. Via these matrices, the multi-level

preconditioners

- . 4

M., = P'blockdiag [2712016#,#}1.:1

4
1

=

P, (6.1.1)
M., = Pblockdiag [2n°Chs,]._ P (6.1.2)
are defined, wherk denotes the level number,= 2* andp = 2n — 1 is the polynomial degree.

THEOREM 6.1. The eigenvalue estimates

Aomin (m,;;HA%) =1, A (m,;i,uARz) <1+ logp, (6.1.3)

Amin (m,;gﬁuA%) =1, A (m,;g#%) < 1+logp (6.1.4)

are valid for the polynomiaP, () = (1 — %t)2 and the matrixCy, ;. (5.4.19 in (6.1.3, and
for 1 = 3 and the smoothe$ = Sy (5.3.49 in (6.1.4.

Proof: By Theorenb.41, we have
Ck,S,u = Kk

for p =3 andS = Sy defined in §.3.49. By Theorenb.39 we have

Chop = K,
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6 Multi-level preconditioner for p-fem

with the parameterg = 2 andr = 137 in (5.4.13, whereK}, is the matrix ¢.2.9. Furthermore
by Lemma4.3 K = #04 follows, cf. (3.4.19. Hence, one can deduce

Using Theoren8.11with A, (C4~'@;) < 1 and e, (C2~'@;) < 1+ logn, and Proposition
3.3with @; < 4@, fori = 2, 3, 4, one can conclude that

)\mm <(2n2@k,5#)71g¢> = 1,
2 A —1
)\maac <(2n Ck,S,u) gz) j 1+ 10gp7
Amin ((20%Cipy) ') = 1,
Amaz ((2n2(§’k,r,u)flgi> < 1+ logp,

wheren = 7%1 By the first assertion of Propositiéh3, i.e.
Ag, = PTblockdiag [@;];_, P

holds with some permutatioR, the assertions follow immediately.
Thus, we have found two nearly asymptotically optimal methods in order to solve the system of
linear algebraic equation§.().

6.2 Numerical results

In this subsection, numerical results in order to solve
Ar,u, = ip (6.2.1)

using the preconditioned conjugate gradient method are given. In all experiments, the right hand
side

f=[11...1]

is chosen. The algorithm is stopped, if the relative error in the preconditioned energy norm is
reduced up to the facter= 10~°. All calculations are done on a Pentium-IIl, 800 MHz.
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6.2 Numerical results

p Mk,Sl i1 Mk,so,kg Mk,SO 2 Mk,so 3
It time It time It time It time
[sec] [sec] [sec] [sec]
7|15 0.004| 16 0.004| 16 0.004| 16 0.004
15| 17 0.015]| 20 0.015]| 20 0.023] 20 0.031
31| 20 0.059| 26 0.074| 23 0.094| 23 0.141
63| 21 0.250| 31 0.352| 24 0.371] 24 0.578
127 | 22 1.21 | 36 1.87 | 26 1.78 | 25 2.53
255 | 23 6.08 | 42| 10.5 28 837 | 26| 11.5
511| 24| 315 50| 61.0 29| 41.6 27| 55.1
1023 | 24 | 133. 59 | 303. 30 | 186. 28 | 249.

Table 6.1:Numbers of iterations of the pcg-method fdf, using several multi-grid precondi-
tionersf; g ,,.

6.2.1 Multi-grid preconditioner

Table6.1displays the numbers of iterations and the time to reduce the error using the precondi-
tioner M, 5, with S = S, ;. defined in 6.3.49 for u = 1,2,3, andS = S defined in 6.5.3

for 4 = 1. In the two casesi; s, , 1 andf, s, 3, the numbers of iterations grow slightly. For
M. 5, .1, there is a stronger increase of the numbers of iterations. The precondgiqner ;,

for which Theoren®.1 holds, is relatively slow in reducing the error in comparison to all other
preconditioners. For examplé;, s, , 1 is faster forp < 255, although the numbers of iterations
grow relatively fast.

However, the numbers of iterations are not bounded by a constant indepengentadifexper-
iments. Next as preconditioner f@, we consider the multi-grid preconditionég,s,# (5.5.19

arising from the discretization oft(2.2, cf. Remark4.2, i.e.

2 2 oy ; 2
_2(yum+xuyy)+ E—FE u = g InQ=(0,1)%,

v = 0 onofd.

The corresponding system of linear algebraic equations of the finite difference discretization of
this problem, cf. subsectidn5.3 can be solved by a multi-grid algorithm using a smoothier

Let
4

mk,s,” = PTblockdiag [ék757u:| P (622)

=1
be the corresponding multi-grid preconditioner, wh2rdenotes the permutation of Proposition
3.3 Table6.2 displays the numbers of iterations for the mg-preconditiogiéss , andi@lk,s,,t
with ¢ = 1 and the smootherS = S, defined in §.5.49 andS = S, defined in §.5.7) for
K (4.2.9 and( (3.4.3, respectively. One can see that, in contrast to the mg-convergence rates
considered in sectiof.8, the choice of the smoothefs = S, ;, cf. Table6.1, S = S;, or
S = S3 for the preconditionef;, s, does not influence the results so significantelly. However,
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6 Multi-level preconditioner for p-fem

p Mk,sg 1 Mk,smg Mk,sg 1 Mk,s3 i1
It time It time It time It time
[sec] [sec] [sec] [sec]
71|15 0.004| 16 0.004| 15 0.008| 16 0.008
15| 17 0.019]| 16 0.019]| 17 0.023]| 16 0.027
31|19 0.062| 16 0.062| 20 0.105]| 16 0.105
63| 21 0.269| 16 0.254| 21 0.461| 16 0.453
127 | 22 1.30 | 16 1.16 | 21 1.99 | 16 1.94
255| 23 7.03 | 16 577 | 22 9.19 | 16 8.43
511| 23| 34.8 16| 26.6 23| 41.3 16| 359
1023 | 23 | 147. 16| 111. 23| 168. 16 | 146.

Table 6.2:Numbers of iterations of the pcg-method fég, using several multi-grid precondi-
tioners;, s andM, s, andS = Sy, S = S5 .

from the preconditionerﬁlh&l with the three smoothers, ., S, ., andSs ;, the preconditioner
with § = S, i, is cheaper than the other ones and the fastest. The best multi-grid preconditioner

are the preconditioneg;. 5, which indicate constant numbers of iterations.

6.2.2 AMLI preconditioner

P M1q Mo My, 1 My 2
It | time It [ time It | time It | time
[sec] [sec] [sec] [sec]

7|16 0.008| 16 0.004| 18 0.008| 17 0.008
15| 22 0.016| 22 0.031]| 23 0.023| 22 0.023
31|28 0.101]| 25 0.125] 26 0.133| 26 0.125
63| 34 0.531| 28 0.602| 29 0.617| 28 0.593
127 | 43 3.27 |31 3.09 |31 3.04 | 29 3.86
255| 51| 20.6 33| 16.2 33| 16.0 30| 14.6
511 | 61 | 130. 35| 87.8 34| 84.3 31| 77.0
1023 | 73 | 671. 37| 411. 34 | 375. 31| 342.

Table 6.3:Numbers of iterations of the pcg-method f%, using several AMLI preconditioners
Mk,r,y-

In this subsection, the systerd.{) is solved by the pcg-method with the AMLI preconditioner
M, ., (6.1.0). Table6.3 displays the numbers of iterations and time to reduce the error in the
preconditioned energy norm up to a factor® using the polynomial iteration

Pun(t) = (1 —rt)™.
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6.2 Numerical results

A slight increase of the numbers of iterations can be seen in the two Béges: (1 — +t)* and
P(t) = (1 — Y¢)%. ForP(t) = (1 —t), similar to theV-cycle of multi-grid, there is a stronger
growth of the numbers of iterations. The method using the precondiﬂ&@’egg, in which the

polynomial P(t) = (1 — 22t)? is used, is the fastest AMLI preconditioner.

However, the comparison of the results for the AMLI preconditioners of TaBlieith the multi-

grid preconditioners of Tablé.2 and Table5.1 shows substantially lower numbers of iterations
for most multi-grid preconditioners than for each of the AMLI preconditioners. Moreover, less
time is needed in order to reduce the error.

If we compare the preconditionefi#, s, , 5 andjﬁ%‘[,f%,2 of Theoren®.1, the numbers of iterations

are lower forff, s, , 3. However, solving.1) using the preconditiong#l;. s, , 5 requires about
two third of the time in order to reduce the error up to a factor(of’ of the time needed using
the preconditionemk%?z.

6.2.3 BPX preconditioner

In this subsection, the MTS-BPX preconditior@ (5.6.9 or the ILU-BPX preconditione€,,
(5.6.3 is considered on each blo&. Via the permutation matrix’ of relation ¢.1.1), the

preconditioner
4

M, = P blockdiag {Mék] P (6.2.3)
=1

is introduced. If we replacé), by Cy in (6.2.3, the preconditionef,, ;. is defined. Tablé.4

displays the numbers of iterations and the time to reduce the error up to a faeter ab—*

in order to solve .1) using M, or jﬁﬂk,]w as preconditioner. The numbers of iterations grow

p | MTS-BPX | ILU-BPX
It time It
[sec]

7117 0.004 17
15| 24 0.008 24
31| 28 0.039 28
63| 32 0.195 32
127 | 37 1.18 36
255 | 42 6.41 40
51146 | 31.6 44
1023 | 50 | 141. 47

Table 6.4:Numbers of iterations of the pcg-method with preconditiofierand ;. ;..

asl1 + logp. In comparison to the multi-grid preconditioneﬁsﬁ,svu (6.2.2 and ;. 5, (6.1.9),

the preconditionerﬁ%‘lk andi@‘lMLU show relatively large numbers of iterations. However, the
time in order to reduce the error is about the same. In the next subsection, a more pro-founding
comparison is given.
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6 Multi-level preconditioner for p-fem

6.2.4 Comparison of all preconditioners

In this subsection, the time is measured which is required to reduce the error up to a factor of
e = 107Y in order to solve the linear syste.{). The results are displayed in Figusel. For
reasons of a better visibility, all results are scaled withwherep is the polynomial degree. For

the time, a logarithmic scaling is used. The following preconditioners are considered:

~— MGWith S, and p=1
MG with So,k and p=1
& MG with Sox and pu=3
MG with Sz,k and p=1
.= MG with S2,k and mass term
< AMLI with r=66/35 and p=2

= MTS-BPX

] —— Diagonal prec.

o, L —
E

|
A
T

=
o

10°
polynomial degree p

Figure 6.1:Comparison of several preconditioners.

the multi-grid preconditionef;. s, , 1, denoted by MG with; , andy = 1,

the multi-grid preconditionef;. 5, , 1, denoted by MG with6, andp = 1,

the multi-grid preconditionef;. 5, , 5, denoted by MG with6, andp = 3,

the multi-grid preconditioneﬁﬁk,s%l, denoted by MG withb, , andu = 1,

the multi-grid preconditionejﬁtk,g&k,h denoted by MG with5, ,, and mass term,

the AMLI preconditioneﬂfi@‘lk%z, denoted by AMLI withr = 1—97 andy = 2,

e the MTS-BPX preconditionet,, denoted by MTS-BPX,

¢ the diagonal preconditioneliag[v], whereu is the main diagonal ofix, .

For polynomial degrees < 100, the multiple-tridiagonal scaling BPX preconditioridy, (6.2.3

is the fastest method in order to sol&1). For polynomial degregs > 100, the preconditioner
mk,sg,k,l beats the MTS-BPX preconditioner. However, these two preconditioners and the pre-
conditionergi;, s, , 1 andf, s, , ; lie in a relatively small time range, e.g. for= 1023 between

111 and147 seconds, cf. Tables.1, 6.2and6.4. The two preconditioners, for which Theorem

6.1 holds, the multi-grid preconditioneft; s, , 3 and the AMLI preconditioneﬂﬁﬂk’1?772 need
about twice as many time as the other ones.
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7 Future work-wavelets

In chapter4, we have considered finite element and finite difference discretizations for several
problems in one, two and three space dimensions. Most of the discretizations in 2D and 3D are
tensor-product discretizations of corresponding problems in one dimension.

In this chapter, we will derive wavelet preconditioners for the solution of the corresponding
systems of linear algebraic equations. We will give only some ideas, the condition number
estimates will be proved in the future. Moreover, we will propose preconditioners for the element
stiffness matrices of the-version of the femAx, and Az, (3.3.9.

7.1 1D case, motivation

We consider problen¥(1.3: Findw € Hj((0,1)) N L2((0,1)) N L2_,((0,1)) such that
ar(u,v) = /0 (v ()0 (z) + W (x)u(z)v(z) + w u(z)v(z)) do = (g,v) (7.1.2)

holds for allv € Hj((0,1)) N L2((0,1)) N L2_,((0,1)). The weight functionv?(z) is speci-
fied later. As described in subsectidrl.2 we discretize problem7(1.1) by piecewise linear
elements on the mesh, = U;:Ol (£,41), wheren = 2* andk denotes the level number. Let

{gzﬁf.l’k)}?;f be the basis of the usual hat functiodsl(4). We introduce the matrices

n—1

ME = [ ol
2= [ @ Yem]

where(:, ), denotes the.2 ((0, 1)) scalar product, i.e.

In subsectiont.1.2 see 4.1.6, (4.1.§ and @.1.7), we have shown thﬂ;jﬁz1 = 20Ty, M?_, =
#Dg,, and Mle/m = 4nDg. The matricesl,, Ds; and Dy are defined via relations3(4.7),
(3.4.9 and @.4.10. Moreover, the matrice®; and Dg corresponding to the mass pafts-),,
and (-, )1 of the bilinear forma,(-,-) (7.1.1) are spectrally equivalent to the diagonal ma-
trix D3 (3.4.1) and its inversei)gl, cf. Lemma3.8 and Lemma3.9. However, for the matrix

T, € R *"~1 corresponding to the stiffness part in the bilinear farnt, -), it is not known
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7 Future work-wavelets

a diagonal matrixD € R"'*"~! such that the condition number &7 is bounded by a
constant independent of the dimension- 1. Let {qﬁgl’l)}(i,l) be the hierarchical basis, see

[80], on levelk. The index sef, is given by

Gfk,

Li={(,1)eN*1<I<ki=2m—1,1<m<2"",meN}.
et (LI (1)
Téh Ll ' (1, N
v = [((9;77) (9 7) D=t G.Gel

be the matrix corresponding to the stiffness part of the bilinear farm 1) with respect to the
hierarchical basigs!""} i, Then, by a simple calculation, the matflY”", is a diagonal

matrix. More precisely, one obtains
(S () o = 28y

Thus, we have found a basis in which the stiffness part of the bilinear dotm) is spectrally
equivalent to a diagonal matrix. However, a diagonal mafriss not known such that the mass

matrix W
h _ [ L) (1 ]
(0570 (i.0), (Al

with respect to the hierarchical basis satisfies the condition number estirfite' M2") < ¢
independent of the dimension of the matrices.
Consider {.1.1) with the weight functionv(z) = 1. In the wavelet theory, see e.29, [71],

it is known that it can be constructed a bagig },<, with span{¢}};<, = spam{cb(1 k)}" ' such
that the matrices

MY = [ Lot w:} and
- W Yadoma |

) _ U\ 1\’
= () @ ea]
are spectrally equivalent to diagonal matrices. More premsel;DMa:lL1 be the identity matrix
IandD, . = diag [u], wheren = [2%] (- Then, seeqd], [71], there
K ((DW ) 1M;f:1> = 0Q), (7.1.2)

K ((DTw 1)_1ij’:1) — 0Q) (7.1.3)

w=

holds. These facts can be used to derive a precondition@¥fqrandM°_,. LetQ be the basis
transformation from the nodal bas{$ (L) }2 ! to the wavelet baS|$wj}l§k. Then,

Y, =Q"T Q.

By <(DTV,:1)*1T;”:1> = O(1), the condition number estimates

K ((DT;ﬁ:l) QT 1Q> o) < =& <Q(DTff

=1

QT ) = 0(1)
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7.2 2D and 3D case

are valid. Similarly,x (Q(DMw,l)’lQTMfﬂ) = O(1) is valid. Thus, we have found precon-
ditioners for7?_,, andM?_,.

In the case of the singular weight function$z) = = andw(z) = 1, a result of the type
K (Q(DM‘%;)_IQTM:?) = O(1) is not known for a wavelet basig)}};<;. This result will be

shown in the future work. Because of the importance, we add the results here. We will formulate
the corresponding theorem only.

THEOREM 7.1. It exists a wavelet basi@/;é-}lgk C V,, such that the following assertions hold:

e The matrixZ'"_, is spectrally equivalent to the matriz,.. = diaglb],
_ T —17y _
wheres = 2217 ie.x <(DTL1) Tw:1> = 0(1).

e The matrix)M " is spectrally equivalent to the matrix vy = diagft],

wheret = [w2(275)] (. ie.s <(DM$)‘1M;¢> —0(1).

(j
Proof. The proof will be given in a forthcoming paper together with Reinhold Schneider and
Christoph Schwahi

7.2 2D and 3D case

Using a wavelets bas{spj.}lgk, preconditioners can be derived for the systems of linear algebraic
equations arising from the discretizations 4f4.10, (4.2.19, (4.3.7), and ¢.3.2. We explain
the idea in the case of probler.2.14 with the bilinear form

as(u,v) = /Q 2w (@) uyv, + 2w (y)ugv, + (Zzg; + zzE?) uv.

For the problems4.2.10, (4.3.7), and @.3.2, it can be done by the same arguments. The
discretization of4.2.14 by piecewise bilinear finite elements on the mégryields to a system
of linear algebraic equations of the type

Cou = ((Iz+ Ds) @ D5 + D5 @ (1> + Ds)) u, (7.2.1)
= ¢ ((2T:?:1 +MP_ )@ MS_, + M, ® (2T, + Mf:ﬂ)) u=y

2, M?__, and M?_,, we propose a
preconditioner of the typ€)~7DQ !, whereD is a properly chosen diagonal matrix. More
precisely, we choose

cf. Lemma4.5. For each of the involved matriceg?

o for7%_: Q "Dy Q7

o for MJ_,: Q"D Q7Y
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7 Future work-wavelets

o for M°__ 1 Q7 TD, Q.

w=x"

Therefore, cf. the properties of the Kronecker product in Ler@rbathe matrix

5 = (@T0Q") (@D + Dy

w=x"

DM;/’:I (039 <2DT5’:1 + DMw:x_1 )) (Q*l ® Qfl)

)@ Dy + (7.2.2)

is the preconditioner fof,, see 8.4.19. Since

D;ﬁ - (DT:f):l + DMw 1) ® DM:JL]:x + DM}JZ}:ac ® (DT:le + DMw )

w=x - w=z—1

is a diagonal matrix, the inverse 65” can easily be computed, i.e.
€™ = (QeQ) (DY) (QT®Q"). (7.2.3)

The matrix@ denotes the one dimensional fast wavelet transformation, the cagtfas O(n).
Thus, the total cost for the multiplicatigi®’y ) ~!r is arithmetically optimal, i.e©(n?). In the
same way, we define the wavelet precondition@&fs C¢’, andCy’ given by their inverses,

(CH™ = (QeQ) (DY) (QTeQ"), (7.2.4)
CH™ = QeQeQ) D) Q"o "), (7.2.5)
(CH™ = QeQReQ) DN (Q"2Q"2Q") (7.2.6)

for C5 (3.4.19, Cs (3.4.29 andCy (3.4.23. The matricesD?, DY and D! are the diagonal
matrices
D;f} = DT¢:1 X DMZ/,):I + DMif):z (%9 DT”’:l’
Df = D ®Dpw ®@Dyy +Dyw ©Dyy ®Dpw
+DM:/J):I ® DTTZ)Z ® DTw=17
Dy = (2D +Dyw )®(2Dgw +Dyw )@ Dy
+<2DT5L1 + DM:f:fl) © Dy, @ (QDTff:l + DMf:z )

+Dyw  ©(@2Dgw + Dy )@ 2D +Dyw ).

w=x - w=x

REMARK 7.2. Using TheorenT.1, therex ((Cf)flCO = O(1) holds fori = 2,5,8,9.

7.3 Example of a wavelet basis

In this section, a wavelet basis is given which satisfies Theardnn the case of the weight
functionw(z) = 1. We refer to the paper2$] and [26] for the construction of such a multi-
resolution basis. The so called mother wavelet is a linear combination of the nodal hat functions
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7.3 Example of a wavelet basis

¢(1,k),j =1... ,5, see 4149’ i.e.

J

1 1 3 1 1
W) = —gol" @) = 50y (@) + 105V (@) - 3oV (@) - 2ol V@) (7.3.)

SN—
W

—x if ze€]|
8z —2 if ze|
[

[

N[00 = O
| COND [ =00 |G [
e e g —

= —81:—1—1745 if ze

In the wavelet literature/[1], this wavelet is denoted as, because it has two vanishing moments
on the primal and dual side. The family of wavel@;gj} are constructed via translations and
compressions. More precisely, let

Yl = 25y (%(2% —2(j - 1))) 1<j<2723<1<k,j,leN. (7.3.2)

Figure7.1displays one wavelet of the famiIW;.}. On the boundary at = 0, we define, 25|,

1

L L L L L L L L L
01 0.2 0.3 0.4 05 0.6 0.7 0.8 0.9 1

Figure 7.1 Wavelet:)..

7 1 1
2@) = gotV(@) = 708"V (@) — 5ol V() (7.3.3)
7w if xe0,4]
B —9r+2 if x€ [%,i]
B v—1 if zel ]

0 else
andyl (z) = 2243(2!-32). On the boundary at = 1, let

Uiy () = Yg(1 —x) for >3,
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7 Future work-wavelets

Moreover, let by definition

Yix) = ¢\ (z) for j=0,1,2.

l—2+1

Now, the system of wavelet functioﬁ%bf}fj2 o isabasisiniV.

7.4 Application to the p-version and numerical
experiments
Similarly as the multi-grid preconditioners in chapfeme can use the wavelet preconditioners

oy, cy, g, CY, (7.2.3-(7.2.9 as preconditioner for thg-version element stiffness matrices
Ag, andAg, (3.3.9. For Ag,, we define the preconditioners

4
W, = PTblockdiag [Cﬂ P for i=25 (7.4.1)
j=1
with the permutation matri¥ of Proposition3.3. For Ax,, let
. 8 .
W, = PTblockdiag [Cﬂ P for i=89 (7.4.2)
=1

=
be the preconditioners. The matiikdenotes the permutation matdkof Proposition3.4.
THEOREM 7.3. The following condition number estimates are valid:

o k(W5 'Ag,) < c(1+logp),

e k(W '4g,) <o,

o k(W5 ' Ag,) < c(1+logp)?,

* K (WQ_IARS) <e.
The parameter denotes a constant which is independent of the polynomial degree

Proof: The result follows from Propositiods3, 3.4, Theorems3.11and3.12 Theorem/.1and
Remark7.2.0

Now, we give some numerical examples. All calculations are done on a Pentium Ill, 800 Mhz.
The systems of linear algebraic equations

(7.4.3)
(7.4.4)

A'RQQ -

Ar,u =

[~ I

are solved using the preconditioned conjugate gradient method. In all numerical experiments, it
is chosen arelative accuracy=of= 10~ in the preconditioned energy norm. The preconditioners
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7.4 Application to the p-version and numerical experiments

Ws andW, (7.4.7) are chosen as preconditioner fég,. For Az, we apply the preconditioners
" defined via rela-

Ws andW, (7.4.2). The corresponding wavelets are the wave{ezt}:}ff; o

tions (7.3.1) and (7.3.3. Table7.1displays the numbers of iterations of the pcg-method and the
time reducing the error up to a factorof= 10~ in order to solve {.4.3 with the precondition-
ersWs; andW,. The numbers of iterations of the pcg-method in order to solvé 4 with the

p Ws Wo
It time It
[sec]

3| 3 0.001| 3
7|22 0.002| 23

15| 30 0.010| 31
31| 36 0.044| 36
63 | 40 0.192| 41
127 | 46 1.066| 45
255 50 5.34 | 49
511| 55| 2401 | 54
1023 | 58 | 120.6 57

Table 7.1:Numbers of iterations of the pcg-method fGr4.3 using the preconditione?d/s and
Ws.

preconditionersVy andW, are displayed on Tablé.2. The numbers of iterations do not differ

p| Ws | Wy

3 3 3

7| 41| 43
15| 50| 52
31| 56| 57
63| 64| 63
127| 74| 70

Table 7.2:Numbers of iterations of the pcg-method f@r4.4) using the preconditioneid’s and
W.

significantelly betweenV; andW,, and, Wy andW,. In all cases, the numbers of iterations
grow slightly. In comparison to the most multi-grid precondition#ss, (6.1.2 and,{rﬁlk,sw
(6.2.2, and the AMLI preconditionerﬁthw (6.1.7), of chapters, the total numbers of iterations
of the pcg-method are relatively high for the wavelet preconditiongyand)V,. However, the
cost in order to applyV, 'r, i = 2,5 is cheaper than the cost for the multi-grid preconditioning
operation(#; 5 ,)~'r, or (M. s,)"'r. So, the time in order to reduce the error up to a factor of
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7 Future work-wavelets

19_9 is as good as for the fastest multi-level preconditioners like the MTS-BPX preconditioner
Mm, (6.2.3.
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Remarks to the estimate of the
strengthened Cauchy-inequality

Here, we give the exact values for the parametgfs 3.27) andq (5.3.29. We set

r = 1t—1,

s = j7—1

Then, we obtain the following results fprandg.

p = m(5857266360 s + 4407665790 r + 1508755050 + 146252736 s°
+ 1111426560 s° + 27808704 r° + 302620032 r° + 9324984713 52
+ 5434977449 r* 4 3923127840 s* + 7936810608 s*

+ 3647255568 13 + 1415409600 r* + 9269249088 s r

+ 8601027360 s* 2 + 20130620928 s r + 20920075392 s> -2

+ 17559686400 s* r* + 6376566048 s* r* + 12919365888 5 13

+ 4918733952 st 4 124830720 52 15 + 1326974976 5% r°

+ 3982219776 s* 3 + 3786647040 s* r* + 11609339904 s> 13

+ 277115904 s° r? 4 328872960 s° r 4 2493112320 s°

+ 999364608 s* 1 4+ 2094465024 s° 12 + 151621632 s -5

+ 735657984 s> r° 4 69672960 s° r® + 108158976 s° r*

+ 779452416 s° 1> + 14432256 s* r® + 14432256 s° 1+

+ 103514112 5% r® + 1047619584 s r° + 97625088 s 1°

+ 28493849120 52 12 4 25194885712 5% r 4+ 19809599216 s 12

+ 16586949280 s ) /(20 7 + 17 4 6 7?) (82016 5 + 76846 7

+ 65589 5% + 58245 12 4 47232 5% r? 4 93456 52 r + 93168 572
+ 139936 57 + 4896 s + 26112 s> 4+ 2112073 + 3168 7+

+ 5760 st + 1728 s* % + 30720 s> + 9216 5% % + 11520 52 3
+ 1728 52 r* 4 30720 5 r® + 4608 57 + 39930)(6 5% + 165 + 11))
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7 Future work-wavelets

4= 3300 4(3175524000 s + 10752404850 r + 925888320 s°
+ 3527193600 s° + 153679680 7% 4 2180787840 1°
+ 6123829635 s 4 25829259555 1% + 5339341800 s*
+ 5845588560 s + 24034055760 r> + 10651944600 7+
+ 18162835680 s* r + 24937019664 s* r* 4 42653867520 s° r
+ 81996584832 5% 1 + 120359893824 5% 13 + 52045531152 52 1+
+ 90435290880 5 7> + 39407913600 s r* + 742404096 5% °
+ 10535067648 5% r® + 17602460928 s* r* + 29858095872 5% r*
+ 70165140480 3 13 + 1735243776 s° r* + 2071802880 s° -
+ 7892582400 s° 1 + 6669527040 s* r* + 6610452480 s° 12
+ 1260582912 s* ° 4+ 5998067712 s> ° 4 422682624 s> 1-°
+ 338411520 s° r* 4 2450718720 s° 13 + 88833024 s 76
+ 88833024 s° r* + 643313664 s° > + 8005662720 s 1°
+ 564157440 s % + 136254292064 s% r? + 65646211760 s> r
+ 100770474640 s r* 4 46577704800 s ) /(20 7 + 17 4+ 6 72)(
82016 5 4 76846 r + 65589 5% + 58245 1% + 47232 52 2
+ 93456 5% r + 93168 s 72 + 139936 s 7 + 4896 s* + 26112 5°
+ 2112073 4+ 3168 7% + 5760 s r + 1728 s* r2 + 30720 s* r
+9216 5% r? + 11520 s* r® + 1728 52 r* + 30720 s > 4 4608 5 r*
+39930)(6 s° + 16 s + 11))

Obviously,p > 0 andg > 0 hold fori, j > 1. Moreover, we can conclude
g=0<«<=i=1 and j=1.

Hence, the estimate of Lemngal8is sharp.
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Theses

Multi-level methods for degenerated problems with applications tgy-versions of the fem
Dipl.-Math. Sven Beuchler
Chemnitz University of Technology, Faculty of Mathematics

1. Computer simulations of many problems in natural and engineering sciences are based on
the mathematical description of these problems by means of partial differential equations
and appropriate boundary conditions. In most cases, these boundary value problems (bvp)
cannot be solved analytically. A powerful tool to compute an approximate solution is the
finite element method (fem). Mesh refinements or an increasing polynomial degree of the
ansatz functions lead to an increasing accuracy of the approximate solution, if it is known that
the exact solution of the bvp is sufficiently smooth. The first possibility is cdllgdrsion
and the second oneversion of the fem. The combination of both givesversions. As a
result of the discretization one gets, in general, a large-scale system of algebraic equations

Au=f. 1)

Usually, the matrixA4 is sparse. For symmetric, elliptic bvp’s, the matdxs symmetric and
positive definite, but often ill-conditioned. Therefore, one needs appropriate preconditioners
in order to get efficient solvers for the system of equatidysi( the theses, the construction

of preconditioners for systems of finite element equations resulting froprtieesion of the

fem are discussed.

2. Most preconditioners for systems lik&) (that arise from the discretization of bvp’s by the
p-version of the fem are based on domain decomposition (DD) techniques. For this purpose,
we suppose that the considered domain is dividedgmon-overlapping sub-domains. For
two dimensional problems, the basis functions of the fem ansatz space are chosen in such a
way that they can be divided into three groups:

(vert) the vertex functions,
(edg) the edge bubble functions,

(int) the interior bubble functions.
Analogously, the matri¥4 gets a block-structure:

Avert Avert,edg Avert,int
A = Aedg,vert Aedg Aedg,int
Aint,vert Aint,edg Aint
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In a first step, one defines the preconditioner

] 0 0 A'uelrt 0 0 ] 0 0
=10 I Ol 0 S 0 | |01 —AggmAns |,
0 —A Aieay I 0 0 A,][00 I

whereS = A.qy — Aedg,mtA;n}tAdeQ is the Schur complement. The condition number

of C’;lA grows asl + log p, wherep denotes the polynomial degree. The application of
the preconditioner’, requires the solution of systems of equations with the matix.,

the Schur complement matri, and the sub-domain stiffness matrix,,;. In general, this

is too expensive. Thereforel,.,;, S and A;,; in the preconditioneq[,‘1 are replaced by
appropriate preconditioners. The matr;,} A, .q, IS replaced by an extension operator
acting from the sub-domain boundaries into the interior of the sub-domains. Korneev and
co-authors derived several preconditioners for the Schur compleshdite problem of the
extension operator was discussed by Bauet al. ForA,.,;, direct solvers or multi-grid
methods can be applied.

. The considered domain is the union of quadrilaterals. Each quadrilateral forms one sub-
domain of the domain decomposition. Then, the mattjy; is a block-diagonal matrix
consisting of blocks4;,,,; which correspond to a particular sub-domain. A spectrally equiv-
alent preconditioner for the matriX;,,; is C;,; = blockdiag [A,]]_,. The matrix Az,

is the element stiffness matrix related to the Dirichlet problem on the reference element
R, = (—1,1)% In the case of Poisson’s equation, scaled integrated Legendre polynomials
Li;(z,y) = Li(z)L;(y), 2 < i,j < p are usually used for the basis of the interior functions.
Then, the matrixd, has aboubp? nonzero elements and the condition number grows as
p?. For Ag,, we propose preconditioners of the typg, = P blockdiag [K}];_, PT, where

the matrix K, can be interpreted as a discretization matrix of a degenerated elliptic bvp us-
ing linear/bilinear finite elements or finite differences on uniform meshes or grids. Such
degenerated problems are

— W (T)uyy — wQ(y)u:m = g or (2)
w(y) | w?(z)
_WQ(x)Uyy Y) Uz + 2 (WQ (2) )) = 9 3)
inQ = (0,1)%,u = 00n0S, wherew(§) = £. The matrixP is a suitably chosen permutation

matrix. The condition number (CR2 ARQ) grows asl +log p for (2), whereas the estimate
k (Cr, ' Ag,) < cis valid for (3).

. Problem @) with w(§) = ¢ is discretized by thé-version of the fem. A sequence of finite
element discretizations with piecewise linear shape functions on uniform méstmssist-

ing of congruent, isosceles, right-angled triangles is investigated. The sequence of meshes
{T}}¥_, is generated by a uniform refinement of the mé&sh The corresponding finite el-
ement spaces are denoted Wy and can be split into the direct suw, = V,_; P W,,

k
[ > 2. A sequence of system%Klgl = gl} arises as result of this discretization. A
—Jil=1



multi-grid (k-grid) algorithm which can be interpreted as alternate, approximate projection
onto the subspaces,_; andW, is investigated. Therefore, systems with the matfftix

and a matrixiy, have to be solved approximately. The mathixy, is the stiffness matrix

with respect to the new nodes on levelThe convergence ratg, of the considered multi-

grid algorithm can be estimated purely algebraic. Firstly, it depends on the constant in the
strengthened Cauchy-inequality and secondly on the convergencg rate- 2,... &k of

the iterative solution procedure é&fw,w = r. For problem 2), an estimate of the constant

of the strengthened Cauchy-inequality is derived. For the iterative solution of the system
Kw,w = r, a special line smoothe$,, is built. Its error transion operator is given by

I - O{,Vllel. Moreover, this construction is generalized to weight functiofe = £* in

(2), wherea > 0. The convergence rate 6%, in order to solvelKw,w = r is bounded by

a constanp < 1. If the systemi;_yu,_, =g, ., =2,....k, is solved by at least > 3
iterations of the multi-grid algorithm fof;_;, the convergence rate, for the multi-grid
algorithm satisfies the estimate < o < 1. The arithmetical cost for one iteration of the
multi-grid algorithm is proportional to the number of unknowns on the finest rigsh

. The ideas, which are used to define the matfix,, can be transfered to the definition of a
matrix R;. Consequently, the matrik, corresponds to the space of all nodes on Iévélithe
unknowns are permuted, this matrix occurs as tridiagonal matrix. The smagthevhose

error transion operator is given I ; = I —wR; ' K;, can be interpreted as anJacobi-like
smoother along the union of a horizontal and vertical line. The smogétheyperates on the
whole approximation space. Numerical experiments indicate a multi-grid convergence rate
o, < o < 1 for a standard multi-grid algorithm witk’-cycle (x = 1) and smoothef, ;,
l=2,...,k.

. The multi-grid algorithms discussed in the thedeend5 are used to define implicitly pre-
conditionersC), s .. Here,S denotes the used smoother. The parameisrthe number of
iterations in order to solve the coarse grid problems. The matrix,, is symmetric positive
definite and the condition numberﬁf,;;u[(k is bounded by a constant independent of the
mesh-sizé: for 4 > 3andS = S ;. The application of the preconditione®$ s , embedded

in a preconditioned conjugate gradient method accelerates the convergence in comparison to
the multi-grid algorithm applied to solvku;, = f, .

. Forthe analysis of Algebraic Multi-level Iteration (AMLI) preconditioné}lg,u, itis assumed
that the nodes are numbered hierarchically, i.e. first the nodes in the coars&;meahd
then the new ones i, i.e. K1; = K;_; and Ky = Ky,. The AMLI preconditione@m IS
recursively defined by

él,u = = Lu = ~—1 A T ’
’ 0 bo (K1 + (Ko — Co)Jiy) 1

Cr Ko + Ji2(Kae — C~122) } { I 0
Cao

with
(Cchl,u)fl = (I - PM<Cz:11,MKlfl))Kz:11
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fori=2,... k andéw = K for [ = 1. The interpolation matrix/;, is defined in analogy
to the interpolation matrix in the multi-grid algorithm. The matéi, is a preconditioner
for Ky, = Ka. ForCy, the matrix(Ana. (Cw, 'Kw,)) Cw, is chosen. Taking a poly-
nomial iteration with a Chebyshev polynomig| of degree: > 2, the condition number of
(C,.x)" 'K} is bounded by a constant independent of the meshksize

. In numerical experiments, the BPX preconditiongrwith multiple diagonal scaling for the

matrix K, shows a behaviour of (C; ' K;) > k?, wherek denotes the level number. This
behaviour can be improved by choosing a so called multiple tridiagonal scaling (MTS)-BPX
preconditioneC;.. In the case of the MTS-BPX preconditioner, a tridiagonal mafixsee
thesisb) resulting from the smoothét, ; is used as scaling on each levet 2. ... k. Then,

the upper eigenvalue estimatg,,.. (C‘,;lKk> < ¢(1 + k) holds for weight functions of the

typew(§) = £* with « > 0. Numerical experiments indicate that,;, ((?,glKk) > cand
that the upper eigenvalue estimate is sharp.

. The linear systemiz,u = f (see thesis}) can be solved irO(y/1 + log p) arithmetical

operations by a preconditioned conjugate gradient method with the preconditidpet
P blockdiag [Mk]le PT. The matrix)M, is a preconditioner fof;,, and P is a permutation
matrix. The condition number oM ' Az, is O(1 + log p) for the AMLI preconditioner
My, = (:L,k (with o > 2) and the multi-grid preconditione¥/;,, = Uk%sovk (with o > 3).
This estimate of the condition number is confirmed by numerical examples.

Wavelet preconditioners can be applied for systems arising from the fem-discretization of the
one dimensional bvpu” +w?(z)u+w ?(z)u = gin (0, 1) andu(0) = u(1) = 0 with piece-

wise linear elements on a uniform mesh. Preconditioﬁ%rsfor the corresponding tensor
product problems in two and three dimensions are developed by tensor product arguments.
These preconditione@,ﬁ’ are used to derive preconditioneéfs, ;, j = 1, 2 for the p-version
element stiffness matricedr, of the reference eleme®,; = (—1,1)¢ in two and three
dimensions withd = 2 or d = 3, respectively. These preconditioners satisfy the condition
number estimates (W, 'Ax,) < O(1 +1logp)®!, andx (Wao "Ag,) = O(1).
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