
Technische Universiẗat Chemnitz
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Preface

Many physical problems lead to boundary value problems for partial differential equations which
can be solved with theh−, hp−, andp−version of the finite element method. Such a discretiza-
tion leads to a system of linear algebraic equations. One of the most efficient methods in order to
solve systems of linear algebraic equations resulting fromp-version finite element discretizations
of elliptic boundary value problems is the conjugate gradient method with domain decomposi-
tion preconditioners. The ingredients of such a preconditioner are a preconditioner for the Schur
complement, a preconditioner related to the Dirichlet problems in the sub-domains, and an ex-
tension operator from the boundaries of the sub-domains into their interior.
The aim of this monograph is to develop a preconditioner for the problems in the sub-domains.
For the Poisson equation, the preconditioner for this problem can be interpreted as the stiffness
matrix resulting from anh-version finite element discretization of a degenerated operator. The
corresponding systems of finite element equations are solved by a multi-grid algorithm. Al-
ternatively, a preconditioned conjugate gradient method is used, where the preconditioner is a
multi-grid preconditioner, an AMLI preconditioner, or a so-called MTS-BPX preconditioner. A
rigorous mathematical theory analyzing the condition numbers of the preconditioned systems
and the convergence rate of the multi-grid algorithm is given. The analysis is purely algebraic
and basically relies on two ingredients, the strengthened Cauchy-inequality and the construction
of the smoother.
This work has been possible only with the help, stimulation and encouragement of many peo-
ple. I want to thank Prof. Arnd Meyer for the supervision of my dissertation. Furthermore, I
wish to express my particular appreciation to Dr. Michael Jung for many stimulations, fruitful
discussions and proofreading. Chapter7 comprises the results of a joint work with Prof. Rein-
hold Schneider and Prof. Christoph Schwab. I would like to thank both for their contributions
and ideas. Furthermore, I would like to thank all colleagues of the faculty of mathematics at the
TU-Chemnitz for the stimulating working atmosphere. Special thanks go to Dr. Gerd Kunert
for improving the English and Roman Unger for removing all my problems. This work was
supported by the Deutsche Forschungsgemeinschaft. At last I would like to thank my father for
his support and patience over the years. All this help and support is gratefully acknowledged.
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List of symbols

In this section, a list of the most important symbols is given.

• Domains:
d - space dimension,
I = (0, 1),
Ω = (0, 1)2,
Ω3 = (0, 1)3,
Rd = (−1, 1)d.

• Bilinear forms:
a4(u, v) =

∫
uxvx + uyvy,

as(u, v) =
∫ 1

0
u′(x)v′(x) dx,

am(u, v) =
∫ 1

0
x2u(x)v(x) dx,

am(u, v) =
∫ 1

0
x−2u(x)v(x) dx,

a1(u, v) = as(u, v) + am(u, v) + am(u, v),
a(u, v) =

∫
Ω
y2uxvx + x2uyvy,

a3(u, v) =
∫

Ω3
x2uyzvyz + y2uxzvxz + z2uxyvxy.

• Polynomials:
p - polynomial degree,
Li - i-th Legendre polynomial,
L̂i - i-th integrated Legendre polynomial,
Ti - i-th Chebyshev polynomial.

• Mesh parameter and shape functions:
k - level number,
n = 2k,
τ ki - interval

(
i
n
, i+1
n

)
,

xkij - node 1
n

(i, j),
τ 1,k
ij - triangle with verticesxkij, x

k
i,j+1 andxki+1,j+1,

τ 2,k
ij - triangle with verticesxkij, x

k
i+1,j andxki+1,j+1,

Ekij - squareτ ki × τ kj ,
Hk
ijl - cubeτ ki × τ kj × τ kl ,

φ
(1,k)
i - piecewise linear nodal hat function withφ(1,k)

i ( j
n
) = δij,

φkij - piecewise linear nodal hat function withφkij(x
k
lm) = δilδjm,

φkb,ij - piecewise bilinear nodal hat function withφkb,ij(x
k
lm) = δilδjm,

φkt,ijl(x, y, z) = φ
(1,k)
i (x)φ

(1,k)
j (y)φ

(1,k)
l (z).

• Norms and function spaces:
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L2(Ω) - {u : Ω 7→ R, u measurable,
∫

Ω
u2 dx <∞},

H1(Ω) - {u ∈ L2(Ω),∇u ∈ (L2(Ω))d}, Ω ⊂ Rd

H1
0 (Ω) - {u ∈ H1(Ω), u = 0 on ∂Ω},

ω(ξ) - weight function,
L2
ω((a, b)) - {u ∈ L2((a, b)),

∫ b
a
ω2(x)u2(x) dx <∞},

‖ · ‖0 - L2-norm,
‖ · ‖1 - H1-norm,
‖ · ‖ω - L2

ω-norm,
‖ · ‖a - energetic-norm,
‖ · ‖F - Frobenius norm of a matrix,

• quadratic matrices:
λmin(M) - smallest eigenvalue ofM ,
λmax(M) - largest eigenvalue ofM ,
κ(M) - condition number ofM in 2-norm,
κ (A−1B) - condition number ofA−1/2BA−1/2, if A andB

are symmetric and positive definite,
det(M) - determinant ofM ,
trace(M) - trace ofM ,
diag[a] - diagonal matrix with the main diagonal equal to

the vectora,
tridiag[a, b] - tridiagonal symmetric matrix with main diago-

nal a and first sub-diagonalb,
pentdiag[a, b, c] - penta-diagonal symmetric matrix with main di-

agonala and sub-diagonalsb andc,
blockdiag [Ai]

j
i=1 - block diagonal matrix with blocksAi.

• special vectors and matrices:
e = [1, . . . , 1]T ,
T2 = 1

2
· tridiag[2e,−e],

D4 = 4 · diag[b], whereb =
[
i2 + 1

6

]n
i=1

,
C4 = D4 ⊗ T2 + T2 ⊗D4,
Kk - 1

2n2C4, stiffness matrix for−x2uyy − y2uxx using linear fi-
nite elements,

C̃k,r,µ - AMLI preconditioner with the polynomial(1−rt)µ on level
l = 1, . . . , k,

C̄k,S,µ=C̄k,S,µ,1 - Multi-grid preconditioner (1 iteration) on levelk with the
smootherS andµ cycles on each level,

Ĉk - MTS-BPX preconditioner,
Ĉk - ILU-BPX preconditioner.
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1 Introduction

Many problems in mechanics, natural sciences, and economy can be described by partial differ-
ential equations (pde). Examples are the heat equation of thermodynamics

ut = 4u+ f,

the system of Laḿe equations foru = (u(1), u(2), u(3))T of linear elasticity

− µ4u− (λ+ µ)grad div u = f,

the Schr̈odinger equation of quantum mechanics

i~Ψt = − ~2

2m
4Ψ,

or the Black-Scholes partial differential equation of pricing of options

∂v

∂t
+

1

2

d∑
i,j=1

σiσjρijSiSj
∂2v

∂Si∂Sj
+ r

d∑
i=1

Si
∂v

∂Si
− rv = 0. (1.1)

However, for all these pde’s, the exact solution is only known for some academic examples by
giving suitably chosen right-hand sides, initial values and boundary values. For the correspond-
ing applications, it is important to obtain solutions of the pde also for those cases in which an
exact solution is not known.
For thirty years, applied mathematicians have studied discretization methods to obtain approxi-
mate solutions of such pde’s. Examples for such approximation methods are the finite difference
method (fdm), [69], [41], and the finite element method (fem), [24], [74], [66], [16], which has
its origin in the simulation of aerodynamics for aero-planes.
In order to understand the approximation theory, the Poisson equation

−4u = f

is often used as a reference example. In some cases, the theory can be extended to other examples.
E.g. by using Korn’s inequality, we obtain the same results for the system of the Lamé equations.
For all methods, the described discretizations lead to a system of linear algebraic equations

Au = f.

Using the vectoru, an approximationuh of the exact solutionu can be constructed by the usual
finite element isomorphism. The erroruh − u tends to zero in a suitably chosen norm, if the
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1 Introduction

discretization parameterh tends to zero. Therefore for the practical implementation of such
algorithms, it is important to choose a discretization parameterh as small as possible in order to
obtain a sufficiently accurate approximationuh to the exact solutionu. Then, the dimensionn
of the vectoru ∈ Rn will be nearly proportional toh−d, whered is the dimension of the domain
in which the partial differential equation is solved. Using finite differences or finite elements
of low order (h-version of the fem), the corresponding system matrixA is a sparse matrix and
is positive definite for elliptic problems. More precisely, the number of nonzero elements is of
ordern. For d > 1, the matrixA has a banded-like structure. For todays computers, it is no
problem to store such a sparse matrix of dimensions up to some millions.
Instead of finite difference methods or theh-version of the finite element method, collocation
methods, [52], and finite elements of high order (p-version), [72], have become more popular
for twenty years. For theh-version of the fem, the polynomial degreep of the shape functions
on the elements is kept constant and the mesh-sizeh is decreased. This is in contrast to the the
p-version of the fem in which the polynomial degreep is increased and the mesh-sizeh is kept
constant. The advantage of thep-version in comparison to theh-version is that the approximate
solutionup converges faster to the exact solutionu, if u is sufficiently smooth. For example,
for the potential equation−4u = f with u ∈ C∞, the error in theH1-Sobolev norm fulfills
‖ u − up ‖1≤ Ce−rp (with some constantr > 0 independent ofp) in contrast to the algebraic
convergence order of theh-version with‖ u − uh ‖1≤ Ch. Thus, the dimension of the fem
ansatz space can be reduced while obtaining an approximate solution with the same accuracy as
in theh-version of the fem. Both ideas, mesh refinement and increasing the polynomial degree,
can be combined. This is called thehp-version of the fem. Such discretizations lead to a system
of algebraic equations

Apup = f
p

(1.2)

with Ap ∈ Rnp×np , wherenp ≈ pd is the number of unknowns. The question of the solution of
such a systemApup = f

p
is more difficult. The structure of the matrixAp depends on the choice

of the basis of the fem ansatz space. For theh-version of the fem, it is natural to use Lagrange-
interpolation polynomials as basis. The case of thep-version is more delicate. For some kinds of
elements, e.g. parallelepipeds in two dimensions, hierarchical polynomials are known for which
the matrixAp has a sparse structure withO(np) nonzero elements. One example is the basis of
the integrated Legendre polynomials.
However, for each parallelepipedian element, the element stiffness matrixAp has a banded struc-
ture. Therefore, by using direct solvers for (1.2), the memory requirement and the arithmetical
cost are not optimal because of fill-in. Hence, iterative methods for (1.2) are better, ifp is suffi-
ciently large. In all cases, the matrixAp is ill-conditioned which means that the ratioλmax(Ap)

λmin(Ap) is

(depending on the choice of the basis) of orderp2 . . . p4 for d = 2 andp4 or worse ford = 3, see
e.g. [8], [57]. Thus, an efficient preconditioner for the matrixAp is necessary.
Several preconditioners for thep-version of the fem and for thep-version of the boundary element
method (bem) have been derived in the last years. Most of them, see [7], [35], [36], [59], [63], [1],
[49] for the fem, and [2], [76], [37], [45], [46] for the bem are based on domain decomposition
techniques. Efficient solvers for the subproblems are necessary for such a domain decomposition
preconditioner. One subproblem solver is the solver for the unknowns corresponding to the
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element interfaces which was investigated in two dimensions by Jensen and Korneev, [49], and
Ainsworth, [1], and in two and three dimensions by Guo and Cao, [23]. Another ingredient of the
domain decomposition preconditioner is the solver related to the interiors of the sub-domains. On
the one hand, it is known from the spectral method that the corresponding matrices are spectrally
equivalent to matrices resulting from the discretization of the Laplacian using the Gauß-Lobatto
points as grid points, [30]. On the other hand, using the basis of scaled integrated Legendre
polynomials, this matrix is very similar to discretization matrices of the degenerated elliptic
operator−x2uyy − y2uxx on the domain(0, 1)2, see [9], [53]. Linear or bilinear finite elements
on uniform meshes or finite differences on uniform grids are used as discretization method.
For systems of linear algebraic equations resulting from theh-version of the fem, additive and
multiplicative solution techniques are known. Examples are multi-grid methods, [40], [43], the
BPX preconditioner, [21], [81], domain decomposition methods, [17], [18], [19], [20], and in
2D, the hierarchical basis preconditioner, [80]. In the most convergence proofs for these meth-
ods, uniform ellipticity of the differential operator is assumed which is, e.g., for the Laplacian
fulfilled. For degenerated operators of the type−(b(x, y)ux)x − uyy, where0 < b(x, y) < bmax,
Bramble and Zhang proved in [22] a mesh-size independent multi-grid convergence rateρ < 1.
However, the operator−x2uyy − y2uxx does not satisfy the assumptions of Bramble and Zhang.
On the one hand, numerical experiments, see [14] and [11], for discretizations of differential op-
erators as−x2uyy−y2uxx indicate a mesh-size independent convergence rateρ < 1 for multi-grid
algorithms with semi-coarsening and line-smoother. On the other hand, Braess, [15], Schieweck,
[70], and Pflaum, [65], derived purely algebraic techniques in order to prove a mesh-size inde-
pendent multi-grid convergence rate. There one only has to verify algebraic assumptions which
are expressed as eigenvalue estimates of small matrices.
In this work, we will derive arithmetically optimal solvers for several discretization methods
of −x2uyy − y2uxx = g in the unit square(0, 1)2. Moreover, nearly arithmetically optimal
preconditioners for the interior problem of thep-version of the fem will be obtained.
The presented work is organized as follows. In chapter2, some preliminary tools, the theory of
simple iterative methods for the solution of (1.2), properties of the integrated Legendre polyno-
mials, and properties of the Kronecker product, will be given. In chapter3, the discretization
of the potential equation by thep-version of the fem will be described. Furthermore, global
solution ideas will be derived for the system (1.2). Focusing on the interior problem, which
has to be solved by applying domain decomposition preconditioners, several properties of the
element stiffness matrix related to a Dirichlet problem will be formulated. Moreover, a first pre-
conditioner for the element stiffness matrix will be proposed. In chapter4, degenerated elliptic
problems in one, two and three dimensions will be investigated. It will be proved that the result-
ing discretization matrices are equal to the preconditioners of the element stiffness matrix of the
p-version of the fem as defined in chapter3.
In chapter5, fast multi-level solvers for discretizations of−x2uyy − y2uxx in the unit square
(0, 1)2 will be derived. For this purpose, we will use a sequence of finite element discretizations
with piecewise linear shape functions on uniform meshesTl. The corresponding finite element
spaces denoted byVl will be split into the direct sumVl = Vl−1

⊕
Wl, l ≥ 2. A sequence of

systemsKlul = g
l
, l = 1, . . . , k, arises as result of this discretization. In section5.3, a multi-grid

(k-grid) algorithm will be formulated which can be interpreted as alternate, approximate projec-
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1 Introduction

tion onto the subspacesVl−1 andWl. Therefore, systems with the matrixKl−1 and a matrix
KWl

have to be solved approximately. The matrixKWl
is the stiffness matrix with respect to

the new nodes on levell. The convergence rateσk of the considered multi-grid algorithm will
be estimated purely algebraic. It depends on the constant in the strengthened Cauchy-inequality
and the convergence rate of the iterative procedure in order to solveKWl

w = r. For the system
KWl

w = r, a special line smootherS0,l will be defined whose error transion operator is given
by I − C−1

Wl
KWl

. Finally, it will be proved that the convergence rateσk of the multi-grid algo-
rithm for the solution ofKkw = r is bounded by a constantσ < 1. Using the matricesCWl

, an
Algebraic Multi-level Iteration (AMLI) preconditioner, [5], [6], will be proposed. In section5.4,
condition number estimates for the AMLI preconditioned systems will be given. Section5.5will
investigate multi-grid algorithms using different smoothers for−x2uyy−y2uxx and similar prob-
lems. A smoother similar to the smootherS0,l will be introduced. In numerical experiments, the
application of this smoother instead ofS0,k embedded in the multi-grid algorithm will accelerate
the convergence of the algorithm. However, a convergence result cannot be proved. Moreover,
a symmetric and positive definite multi-grid preconditioner will be derived. It will be shown
that the condition number of the preconditioned system is bounded by a constant independent
of the mesh-sizeh. In section5.6, a BPX-like preconditioner, which we call MTS-BPX pre-
conditioner, will be introduced. This preconditioner can be interpreted as BPX preconditioner
with smoothing. It will be proved that the upper eigenvalue of the MTS-BPX preconditioned
system is bounded byck (k level number) in the case of piecewise linear fem-discretizations for
differential operators of the type−xαuyy − yαuxx (α ≥ 0). In section5.7, it will be proved that
one iteration of all proposed algorithms is arithmetically optimal. Moreover, an interpretation of
the smootherS0,k as line-smoother will be shown. Finally, numerical experiments of all methods
will be given in section5.8.
In chapter6, the preconditioners for the element stiffness matrix of thep-version of the fem in
two dimensions will be defined. The main condition number estimates will be given. Further-
more, all proposed preconditioners will be compared numerically. In chapter7, some new ideas
concerning preconditioning the element stiffness matrix of thep-version of the fem in two and
three dimensions using wavelet bases will be formulated.
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2 Preliminary Tools

2.1 Iterative solution methods for systems of linear
equations

The aim of this section is to consider iterative methods in order to solve a system of linear
algebraic equations. Furthermore, the convergence properties of several iterative methods are
shown and the purpose of an effective preconditioning is motivated.

2.1.1 Simple iterative methods

Most simple iterative methods, [40], [3], [62], in order to solve a system of linear equations

Ax = b (2.1.1)

can be written as Richardson-iteration, i.e. the new iteratex(m+1) is given by the recursion

x(m+1) = x(m) − ωC−1(Ax(m) − b). (2.1.2)

The parameterω is a damping parameter and the matrixC is a good approximation to the matrix
A. The matrixC is called a preconditioning matrix. ChoosingC = D, whereD is the diagonal
part ofA, one obtains theω-Jacobi method, whereas theω-Gauß-Seidel, or SOR, method is
defined with the choice ofC = D+ ωL. The matrixL is the strongly lower triangular part ofA.
The speed of convergence of the sequence{x(m)}∞m=1 to the exact solutionx∗ of (2.1.1) depends
on the condition number of the matrixC−1A: One obtains

x(m+1) − x∗ = (I − ωC−1A)(x(m) − x∗)

by adding−x∗ to (2.1.2) andAx∗ = b. Therefore, the convergence rate in the Euclidian norm is
given gy

sup
x(m) 6=0

‖ x(m+1) − x∗ ‖2

‖ x(m) − x∗ ‖2

= ρ(I − ωC−1A),

where the parameterρ(B) is the spectral radius of the matrixB = I−ωC−1A. If ρ(I−ωC−1A) ≥
1, the method does not converge to the exact solutionx∗. Let us assume thatA andC are sym-
metric and positive definite. Thus,C−1A has positive real eigenvalues and the optimal damping
parameterω = ωopt is given by

ω = ωopt =
2

λmax(C−1A) + λmin(C−1A)
,

11



2 Preliminary Tools

see e.g. [40], [3], [62]. Hence, inserting this value forω, one achieves

ρ(I − ωC−1A) =
λmax(C−1A)− λmin(C−1A)

λmax(C−1A) + λmin(C−1A)
. (2.1.3)

Note that for a symmetric and positive definite matrixB ∈ Rn×n,

‖ B ‖2=
√
ρ(B∗B) = λmax(B).

Thus,κ(B) =‖ B ‖2‖ B−1 ‖2= λmax(B)/λmin(B). Moreover, the symmetric and positive
definite matrixB = C−1/2AC−1/2 has the same eigenvalues asC−1A. Hence by definition, let

κ (C−1A) =
λmax(C−1A)
λmin(C−1A)

be the condition number of the matrixC−1/2AC−1/2. Therefore, by
relation (2.1.3),

ρ(I − ωC−1A) =
κ(C−1A)− 1

κ(C−1A) + 1
,

which means that the condition numberκ of C−1A should be small in order to achieve a small
ρ(I − ωC−1A) < 1. Letm be the number of iterations in order to obtain a relative accuracy ofε
in the Euclidian norm, i.e.m is the smallest integer with‖ x(m)−x∗ ‖2≤ ε ‖ x(0)−x∗ ‖2. Then,

m ≤ 2κ
(
C−1A

)
| log ε|.

Hence, for the convergence of an iterative method of the type (2.1.2), a matrixC has to be
constructed which satisfies the following two conditions:

• the condition number ofC−1A should be small,

• due to (2.1.2) for each iteration step, the operationw = C−1r should be cheap.

In general, this problem cannot be solved satisfactory. However, nowadays there are several ideas
deriving preconditionersC using the origin of the matrixA.

2.1.2 Pcg-method

The preconditioned conjugate gradient method for the solution ofAx = b with symmetric and
positive definiteA has been developed by Hestenes and Stiefel, [44]. It is a Krylov subspace
method. It can be used as a direct method because it gives theoretically the exact solution aftern
iterations, wheren is the dimension of the system. Because of its fast convergence properties, it
is used as an iterative method. LetC be a symmetric and positive definite matrix (preconditioner
for A). The sequence{x(m)}∞m=1 will be computed as follows, see e.g. [40], [3], [62], [73],

– Initialization:

• r(0) = Ax(0) − b,

• w(0) = q(1) = C−1r(0),

12



2.2 Cholesky decomposition for banded matrices and related methods

• γ0 =
(
w(0), r(0)

)
.

– Iteration: Form = 1, . . . , do

• v(m) = Aw(m−1),

• δm =
(
v(m), q(m−1)

)
, αm = γm−1

δm
,

• x(m) = x(m−1) + αmq
(m−1),

• r(m) = r(m−1) + αmv
(m),

• w(m) = C−1r(m),

• γm =
(
w(m), r(m)

)
, βm = γm−1

γm
,

• q(m) = w(m) + βmq
(m−1) .

Let x∗ be the exact solution of (2.1.1). Then, the following convergence result can be shown for
the sequence{x(m)}∞m=1. Let

ρ = sup
x(m) 6=0

‖ x(m+1) − x∗ ‖A
‖ x(m) − x∗ ‖A

.

Then, see [40], [3], [62], [73], the relation

ρ ≤ 2

√
κ (C−1A)− 1√
κ (C−1A) + 1

is valid. This means that the numberm of iterations in order to achieve a relative accuracy ofε
is bounded by

m ≤ 1

2

√
κ (C−1A) ln

(
2

ε

)
+ 1.

Hence, the numbersm of iterations grow proportionally to
√
κ (C−1A) in contrast toκ (C−1A)

for the most simple iterative methods.

2.2 Cholesky decomposition for banded matrices and
related methods

In this section, the memory requirementMn and the number of operationsWn in order to solve
the linear system

Ax = b

with A ∈ Rn×n symmetric and positive definite are considered. We assume thatA = [aij]
n
i,j=1

has a banded structure with bandwidthm, i.e. aij = 0 for |i−j| > m. Determining the Cholesky
decompositionA = LLT , [73], [34], with the lower triangular matrixL = [lij]

n
i,j=1, one obtains

the relationslij = 0 for |i− j| > m. However, the relationlij = 0 is not necessarily satisfied, if

13



2 Preliminary Tools

aij = 0 and|i − j| < m. Therefore, one obtainsMn � nm and the cost for the computation of
L is Wn � nm2.
A special case is thatA is a symmetric and positive definite tridiagonal matrix. Note, thatm = 1
holds. ThenMn � n andWn � n, i.e. the Cholesky decomposition is arithmetically optimal.
However for matrices of five-point stencil structure, the relationaij = 0 holds, if |i − j| /∈
{0, 1,m}, wherem2 = n. One obtains onlyWn � nm2 = n2 andMn � n

3
2 , which means that

the memory requirement isO(n
3
2 ) in order to saveL, whereas the memory requirement is about

5n in order to saveA. Thus, the Cholesky decomposition is not optimal.
In the seventies, several other direct methods are derived for five- and nine- point stencils. These
methods reorder the unknowns in such a way that the Cholesky decomposition of the reordered
matrix produces less fill-in than the Cholesky decomposition of the usual matrix. The asymptot-
ically most efficient one is the method of Nested Dissection developed by George [33], [32]. In
this method, the corresponding graph(G, V ) of the matrix is considered. A separatorS of the
graphG is constructed which divides the graph into the disjoint subgraphs(G1, V1) and(G2, V2)
with G = V1 ∪ V2 ∪ S andVi ∩ S = ∅, i = 1, 2. Now, the vertices ofV1 are ordered firstly,
next the vertices ofV2 and as last those ofS. Doing this algorithm recursively forG1 andG2, a
new ordering of the vertices is given. Then, the arithmetical cost can be reduced toO(m3), the
memory requirement toO(m2 log(1+m)), [33]. However, this is not optimal, i.e.Wm > O(m2)
andMm > O(m2). The integerm denotes the number of grid-points in one direction.

2.3 Properties of the Legendre polynomials

In this section, the Legendre polynomials are introduced and their most important orthogonality
relations are given. We refer to [77] for more facts. Let

Li(x) =
1

2ii!

di

dxi
(x2 − 1)i (2.3.1)

be thei-th Legendre polynomial and

L̂i(x) = γi

∫ x

−1

Li−1(s) ds, i ≥ 2 (2.3.2)

be thei-th integrated Legendre polynomial with the scaling factor

γi =

√
(2i− 3)(2i− 1)(2i+ 1)

4
. (2.3.3)

Moreover, let by definition

L̂0(x) =
1− x

2
,

L̂1(x) =
1 + x

2
.

14



2.4 Kronecker product

LEMMA 2.1. The following relations are valid between the polynomials (2.3.1) and (2.3.2):

d

dx
L̂i(x) = γiLi−1(x), i ≥ 2, (2.3.4)∫ 1

−1

Li(x)Lj(x) dx = δij
2

2i+ 1
, i ≥ 0, (2.3.5)

(2i+ 1)Li(x) =
d

dx
(Li+1(x)− Li−1(x)), i ≥ 1, (2.3.6)

Li(−1) = (−1)i, i ≥ 0, (2.3.7)

L̂i(x) =

√
(2i+ 1)(2i− 3)

4(2i− 1)
(Li(x)− Li−2(x)), i ≥ 2, (2.3.8)

L̂i(1) = 0, i ≥ 2, (2.3.9)

L̂i(−1) = 0, i ≥ 2, (2.3.10)

(i+ 1)Li+1(x) + iLi−1(x) = (2i+ 1)xLi(x), i ≥ 1. (2.3.11)

Proof: The proof is given in [77].

2.4 Kronecker product

In this work, several properties of the Kronecker product are used. The most important are
summarized in this section.

DEFINITION 2.2. LetA ∈ Ck×l andB ∈ Cm×n. Then, the matrix

A⊗B =


a11B a12B · · · a1lB
a21B a22B · · · a2lB

...
. ..

ak1B ak2B · · · aklB

 ∈ Ckm×ln (2.4.1)

is called the Kronecker-product between the matricesA andB.

LEMMA 2.3. LetA ∈ Ck×l andB ∈ Cm×n. Furthermore, letα ∈ C andC ∈ Ck×l,D ∈ Cl×s

andE ∈ Cn×r. The following relations are valid:

(αA)⊗B = A⊗ (αB) = α(A⊗B), (2.4.2)

(A⊗B)T = AT ⊗BT , (2.4.3)

(A+ C)⊗B = A⊗B + C ⊗B, (2.4.4)

(A⊗B)(D ⊗ E) = (AD)⊗ (BE), (2.4.5)

(A⊗B)−1 = A−1 ⊗B−1, (2.4.6)

where the matricesA ∈ Cl×l andB ∈ Cn×n are non-singular in (2.4.6).
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Proof: The proof can be found in several books about Linear Algebra, see, e.g. [64].2
In the following, we assume thatA ∈ Rm×m andB ∈ Rn×n. The eigenvalues and eigenvectors
of A⊗B can be determined by the eigenvalues ofA andB.

LEMMA 2.4. LetλAi be an eigenvalue andxAi the corresponding eigenvector ofA, λBj andxBj
an eigenpair ofB. Then,λAi λ

B
j is an eigenvalue ofA⊗B with the eigenvectorxAi ⊗ xBj .

Proof: The assertion follows from (2.4.2).2
The next lemma will be used very often in this work.

LEMMA 2.5. Let n1 = n3 andn2 = n4. Let us assume that the matricesAi ∈ Rni×ni, and
Bi ∈ Rni×ni, i = 1, 2, 3, 4, are symmetric and positive definite. Furthermore, let

λmin
(
Bi

−1Ai
)
≥ λi, λmax

(
Bi

−1Ai
)
≤ λi

for i = 1, 2, 3, 4. Moreover, let

A = αA1 ⊗ A2 + βA3 ⊗ A4,

B = αB1 ⊗B2 + βB3 ⊗B4,

whereα, β > 0. Then, the following eigenvalue estimates are valid

λmin
(
B−1A

)
≥ min {λ1λ2, λ3λ4} ,

λmax
(
B−1A

)
≤ max

{
λ1λ2, λ3λ4

}
.

Proof: Note that by Lemma2.3,

(Bi ⊗Bj)
−1(Ai ⊗ Aj) = B−1

i Ai ⊗B−1
j Aj.

Thus, by Lemma2.4,
λiλj ≤ λmin

(
(Bi ⊗Bj)

−1(Ai ⊗ Aj)
)

and
λmax

(
(Bi ⊗Bj)

−1(Ai ⊗ Aj)
)
≤ λiλj.

By our assumptions, the matricesAi andBi, i = 1, 2, 3, 4, are symmetric and positive definite.
Thus, one concludes

λ1λ2 (B1 ⊗B2v, v) ≤ (A1 ⊗ A2v, v) ≤ λ1λ2 (B1 ⊗B2v, v) (2.4.7)

and
λ3λ4 (B3 ⊗B4v, v) ≤ (A3 ⊗ A4v, v) ≤ λ3λ4 (B3 ⊗B4v, v) (2.4.8)

for all v ∈ Rn1n2 . Multiplying (2.4.7) by α > 0, (2.4.8) by β > 0 and adding both inequalities
gives

min {λ1λ2, λ3λ4} ((αB1 ⊗B2 + βB3 ⊗B4)v, v) ≤
αλ1λ2 (B1 ⊗B2v, v) + βλ3λ4 (B3 ⊗B4v, v) ≤ (Av, v)

and

(Av, v) ≤ αλ1λ2 (B1 ⊗B2v, v) + βλ3λ4 (B3 ⊗B4v, v)

≤ max {λ1λ2, λ3λ4} ((αB1 ⊗B2 + βB3 ⊗B4)v, v)

for all v ∈ Rn1n2 which is the desired result.2
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3 Discretization by the p-version of the
fem

In this chapter, the discretization of the potential equation in two dimensions by thep-version
of the fem is investigated. In the next sections, the derivation of the system of linear algebraic
equations and first general ideas, namely domain decomposition techniques, in order to solve
such a system are explained. One ingredient of such a domain decomposition preconditioner, the
solver for the interior problem, will be focused in sections3.3and3.4.

3.1 Formulation of the problem in two dimensions

We consider the boundary value problem

−4u = f in Ω1,

u = 0 on Γ1, (3.1.1)
∂u

∂n
= 0 on Γ2,

whereΩ1 ⊂ R2 is a domain which can be decomposed into (straight-line) quadrilaterals and
Γ1 ∪ Γ2 = ∂Ω1, Γ1 ∩ Γ2 = ∅. The weak formulation of this problem is:
Findu ∈ H0(Ω1) := {u ∈ H1(Ω1), u |Γ1= 0} such that

a4(u, v) :=

∫
Ω1

uxvx + uyvy =

∫
Ω1

fv ∀v ∈ H0(Ω1) (3.1.2)

holds. Problem (3.1.1) will be discretized by means of thep-version of the finite element method
using quadrilateralsRs. LetR2 = (−1, 1)2 be the reference element andΦs : R2 → Rs be the
bilinear mapping to the elementRs. We define the finite element space

M := {u ∈ H0(Ω1), u |Rs= u(Φs(ξ, η)) = ũ(ξ, η), ũ ∈ Qp},

whereQp is the space of all polynomialsp(ξ, η) = p1(ξ)p2(η) of maximal degreep in each
variable. Now, the discretized problem can be formulated: Findup ∈M such that

a4(up, vp) =

∫
Ω1

fvp ∀vp ∈M (3.1.3)

holds. Let(ψ1, . . . , ψnp) be a basis ofM. Then, problem (3.1.3) is equivalent to solving the
system of algebraic finite element equations

Apup = f
p
, (3.1.4)
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3 Discretization by the p-version of the fem

where

Ap = [a4(ψj, ψi)]
np
i,j=1 ,

up = [ui]
np
i=1 ,

f
p

=

[∫
Ω1

fψi

]np
i=1

.

Then,up =
∑

i uiψi is the solution of (3.1.3). We are interested in finding an efficient solver for
the system of linear algebraic equations (3.1.4).

3.2 Domain decomposition

Domain decomposition techniques, [63], [17], [18], [19], [20], [60], [61], are efficient iterative
methods in order to solve linear systems of algebraic equations of the type (3.1.4). The approx-
imation spaceM will be split into a direct sumM = M1 ⊕ . . . ⊕Mk. It is assumed that this
splitting is stable with respect to the bilinear forma4, i.e. the relation

k∑
i=1

a4(vi, vi) ≤ c2a4(v, v)

is valid for allvi ∈Mi andv =
∑k

i=1 vi. The efficient preconditioner

C−1 =
k∑
i=1

Vi(V
T
i ApVi)

−1V T
i

can be built, whereVi is the matrix representation of the orthogonal projectionM 7→ Mi with
respect to the energetic scalar producta4(·, ·). Note thatV T

i ApVi is the stiffness matrix of:
Findvi ∈Mi such that

a4(vi, wi) = 〈f, wi〉 ∀wi ∈Mi.

Then, the eigenvalue estimatesλmin (C−1Ap) ≥ c−2 andλmax (C−1Ap) ≤ k are valid, cf. [56],
[55].
For our purpose, we have to choosek = 3. The corresponding spaces are defined as follows:

• M1 = Mvert is the space of the vertex functions which are the usual piecewise bilinear
functions of theh-version of the finite element method,

• M2 =Medg is the space of the edge bubble functions,

• M3 =Mint is the space of the interior bubbles which are nonzero on one element only.
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3.2 Domain decomposition

An edge bubble function corresponds to an edgee of the mesh. Its support is formed by those
two elements which have this edgee in common. Corresponding to this splitting of the shape
functions, the matrixAp is split analogously into sub-blocks,

Ap =

 Avert Avert,edg Avert,int
Aedg,vert Aedg Aedg,int
Aint,vert Aint,edg Aint

 . (3.2.1)

The indicesvert, edg andint denote the blocks corresponding to the vertex, edge bubble and
interior bubble functions, respectively. Jensen and Korneev, [49], and Ivanov and Korneev, [47],
[48], developed preconditioners for thep-version of the finite element method in a two-dimen-
sional domain using domain decomposition techniques, [7]. They proposed the preconditioning
matrix

Cp =

 Avert 0 0
0 Aedg Aedg,int
0 Aint,edg Aint

 (3.2.2)

corresponding to the splittingMvert ⊕ (Medg ⊕Mint) which is considered in a first step. This
splitting is nearly stable as the following lemma confirms.

LEMMA 3.1. The condition numberκ
(
Cp

−1Ap
)

grows as(1 + log p).

Proof: The proof can be found in [47], Lemma 2.3.2
Therefore, the vertex unknowns can be determined separately. Efficient solution methods are
direct solvers in the case of thep-version of the fem, if the matrixAvert is small, or multi-grid
methods, [40], in thehp-version. However, the splittingMedg ⊕Mint is not stable. Therefore,
we can proceed as follows. The sub-block corresponding toMedg andMint is factorized as[

Aedg Aedg,int
Aint,edg Aint

]
=

[
I Aedg,intA

−1
int

0 I

] [
Ŝ 0
0 Aint

] [
I 0

A−1
intAint,edg I

]
with the Schur complement

Ŝ := Aedg − Aedg,intA
−1
intAint,edg.

Thus forMint, the subproblem restricted to this space has to be solved, whereas forMedg a
modified problem is considered. The matrixAint corresponds to the interior bubbles having a
support containing one element only. Therefore, the matrixAint is a block diagonal matrix, where
each block corresponds to one element. Hence, in order to compute the interior unknowns, we
have to solve a Dirichlet problem on each quadrilateral. The edge unknowns are computed via

the Schur complement̂S and multiplications with the matrix

[
I

−A−1
intAint,edg

]
and its transpose.

So, in addition to a solver forAvert, three tools are required to define a preconditioner for the
matrix of (3.2.2), namely

• a preconditioner for the interior problem,
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3 Discretization by the p-version of the fem

• a preconditioner for the Schur complementŜ and

• an extension operator from the edges of a quadrilateral into its interior in order to replace
the matrixA−1

intAint,edg.

Ivanov and Korneev, [47], [48], derived some preconditionersCŜ for the Schur complement. The
condition number ofC−1

Ŝ
Ŝ isO(1 + log2 p) in the worst case, wherep is the polynomial degree.

The solution ofCŜx = y can be done by solving triangular systems and fast Fourier transform,
[28]. The problem of the extension operator was investigated by Babuška et. al, [7].
We focus now on a fast solver forAint = blockdiag [ARs ]s, whereARs is that block of the
stiffness matrixAint which corresponds to the elementRs. The following lemma is valid.

LEMMA 3.2. Let ∂Rs ∈ C(t), t ≥ 2, whereC(t) denotes the class of all boundaries which
consist of a finite number oft times continuously differentiable curves and the angles of these
curves at their intersection points on∂Rs are distinct from0 and2π. Then,κ

(
ARs

−1AR2

)
=

O(1), whereAR2 = (−1, 1)2.

Proof: The proof can be found in [49], Lemma 4.2.2
Hence, it is sufficient to investigate the matrixAR2 in order to find a good preconditioner for
Aint. This will be done in the next sections and chapters.

3.3 Properties of the element stiffness matrix

Let d = 2 be the dimension of the domain. By Lemma3.2,

−4u = f in Rd = (−1, 1)d,
u = 0 on ∂Rd

(3.3.1)

is the typical model problem in order to solve the system

Aintx = y

of linear algebraic finite element equations. Problem (3.3.1) will be investigated in the case
d = 3 as well. Problem (3.3.1) is solved by thep−version of the finite element method with one
elementRd only. As finite element space,

Mp =

{
H1

0 (R2) ∩ span{φij(x, y)}pi,j=0 for d = 2,
H1

0 (R3) ∩ span{φijk(x, y, z)}pi,j,k=0 for d = 3

is chosen, whereφij(x, y) = xiyj andφijk(x, y, z) = xiyjzk, respectively. The discrete problem
is: Findup ∈Mp such that∫

Rd
∇up · ∇vp =

∫
Rd
fvp ∀vp ∈Mp. (3.3.2)
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3.3 Properties of the element stiffness matrix

In order to define a basis inMp, we choose tensor products of the integrated Legendre polyno-
mialsL̂i (2.3.2). More precisely, let

L̂ij(x, y) = L̂i(x)L̂j(y) 0 ≤ i, j ≤ p,

L̂ijk(x, y, z) = L̂i(x)L̂j(y)L̂k(z) 0 ≤ i, j, k ≤ p.

SinceL̂i(±1) = 0 for i ≥ 2, cf. relations (2.3.9) and (2.3.10),

Mp = span{L̂ij(x, y)}pi,j=2

for d = 2 and
Mp = span{L̂ijk(x, y, z)}pi,j,k=2

for d = 3. The stiffness matrixAR2 for (3.3.2) (with d = 2) is given byAR2 = [aij,kl]
p
i,j=2;k,l=2,

where

aij,kl =

∫
R2

∇L̂ij(x, y) · ∇L̂kl(x, y) d(x, y). (3.3.3)

Analogously, the matrixAR3 is defined. The matricesARd can be written explicitely as

AR2 = F ⊗D +D ⊗ F and (3.3.4)

AR3 = F ⊗ F ⊗D + F ⊗D ⊗ F +D ⊗ F ⊗ F,

where the matricesF andD are the one-dimensional mass matrix and stiffness matrix in the
basis of the integrated Legendre polynomials{L̂i(x)}pi=2, i.e.

F =

[∫ 1

−1

L̂i(x)L̂k(x) dx

]p
i,k=2

,

D =

[∫ 1

−1

L̂′i(x)L̂
′
k(x) dx

]p
i,k=2

.

Then using relations (2.3.4), (2.3.5) and (2.3.8), a simple calculation shows

F = pentdiag[e,0, y],

D = diag[d] (3.3.5)

with the coefficients

e = [1, 1, . . . , 1]T ,

y =

[
−1

2

√
(2i− 3)(2i+ 5)

(2i− 1)(2i+ 3)

]p−2

i=2

,

d =

[
(2i− 3)(2i+ 1)

2

]p
i=2

,
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3 Discretization by the p-version of the fem

cf. [49]. A reorderingP̃ of the rows and columns of the matricesF andD gives

P̃F P̃ T =

[
F1 0
0 F2

]
, (3.3.6)

whereF1 = tridiag[e, yo] andF2 = tridiag[e, ye]. Analogously, with the same permutatioñP ,
one easily derives

P̃DP̃ T =

[
D1 0
0 D2

]
, (3.3.7)

whereD1 = diag[do] andD2 = diag[de]. The indiceso ande denote the odd and even compo-
nents of the vectorsy andd. The matrixAR2 has some important properties which we summarize
in a proposition.

PROPOSITION 3.3. The following assertions are valid.

1. There exists a permutationP of rows and columns such that

PAR2P
T = blockdiag [Ai]

4
i=1

holds.

2. The matricesAi, i = 1, 2, 3, 4, are sparse.

3. Moreover, each blockAi has a 5-point stencil structure.

4. The condition number ofAi is of orderp2.

5. The blocksAi are spectrally equivalent to each other, i.e.κ
(
Ai
−1

Aj
)

= O(1) for i, j =
1, . . . , 4.

Proof: We note that the four blocksAi correspond to the coefficients of the polynomialsL̂2m,2n,
L̂2m,2n+1, L̂2m+1,2n, andL̂2m+1,2n+1. From (3.3.6) and (3.3.7), we deduce

A2i+j−2 = Fj ⊗Di +Dj ⊗ Fi i, j = 1, 2.

Thus, the first three assertions follow immediately from (3.3.4) and (3.3.5). By κ
(
D1

−1D2

)
=

O(1) which is trivial andκ
(
F1

−1F2

)
= O(1), cf. [49], the last assertion follows. The fourth

assertion is proved in [49]. 2

Similar results are valid forAR3. We introduce the matrices

B4i+2j+k−6 = Fi ⊗ Fj ⊗Dk + Fi ⊗Dj ⊗ Fk +Di ⊗ Fj ⊗ Fk

for i, j, k = 1, 2. Using similar arguments as in Proposition3.3, the next proposition follows.

PROPOSITION 3.4. There exists a permutation̂P of rows and columns such that

P̂AR3P̂
T = blockdiag [Bi]

8
i=1

holds. The blocksBi are spectrally equivalent to each other, i.e.κ
(
Bi
−1Bj

)
= O(1) for all

i, j = 1, . . . , 8.
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3.4 Preconditioner for the element stiffness matrix

In the following, we will focus on finding an efficient preconditioner forA1, andB1. Via Propo-
sitions3.3 and3.4, the preconditioner forARd , d = 2, 3 can be constructed. For reasons of
simplicity, we assume thatp is odd. Furthermore, letn − 1 = p−1

2
be the dimension ofF1, and

D1.

3.4 Preconditioner for the element stiffness matrix

3.4.1 Preconditioner of Jensen and Korneev

In [49], Jensen and Korneev have derived a preconditioner for the matrixAR2, or equivalently,
for A1. Usinge = [1, 1, . . . , 1]T , the matrices

D3 = 4 diag
[
i2
]n−1

i=1
, (3.4.1)

T1 = D−1
3 +

1

2
tridiag [2e,−e] , (3.4.2)

C1 = D3 ⊗ T1 + T1 ⊗D3 (3.4.3)

are introduced. Then, the following lemma holds.

LEMMA 3.5. The following eigenvalue estimates are valid:

λmin
(
D3

−1D1

)
� 1, λmax

(
D3

−1D1

)
� 1, (3.4.4)

λmin
(
T1

−1F1

)
� 1, λmax

(
T1

−1F1

)
� 1, (3.4.5)

λmin
(
C1

−1A1

)
� 1, λmax

(
C1

−1A1

)
� 1. (3.4.6)

Proof: The estimates (3.4.4) are trivial, (3.4.5) are proved in [49], and the assertions (3.4.6)
follow by Lemma2.5from (3.4.4) and (3.4.5).2
In the matrixC1, the same matrix entries are nonzero as inA1, but the structure of the nonzero
elements is simpler. However, a fast solver forC1 is needed as well as forA1.

3.4.2 Modification of the preconditioner in 1D

Now, the preconditioners (3.4.1) and (3.4.2) are modified in several steps. The resulting matrices
can be interpreted as stiffness matrices of discretizations of degenerated elliptic problems which
will be shown in chapter4. In a first step, the matrixT1 is simplified. Let

T2 =
1

2
tridiag [2e,−e] . (3.4.7)

We prove now the following lemma, cf. [10].

LEMMA 3.6. The eigenvalues of the matrixT
− 1

2
2 T1T

− 1
2

2 can be estimated byλmin
(
T2

−1T1

)
≥ 1

and λmax
(
T2

−1T1

)
� (1 + log n), where the parametern − 1 denotes the dimension of the

matricesT1 andT2.
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3 Discretization by the p-version of the fem

Proof: The lower eigenvalue estimate is trivial. In order to prove the upper eigenvalue estimate,
we use (3.4.2) and (3.4.7). Then,

λmax
(
T2

−1T1

)
= λmax

(
T2

−1(T2 +D−1
3 )
)

= 1 + λmax
(
T2

−1D−1
3

)
= 1 + λmax(D

− 1
2

3 T−1
2 D

− 1
2

3 ).

The matrix

H = [hij]
n−1
i,j=1 = D

− 1
2

3 T−1
2 D

− 1
2

3

can be written explicitely, cf. [27]:

H =
1

2n



n− 1 n−2
2

n−3
3

n−4
4

· · · 2
n−2

1
n−1

n−2
2

n−2
2

n−3
3

n−4
4

· · · 2
n−2

1
n−1

n−3
3

n−3
3

n−3
3

n−4
4

· · · 2
n−2

1
n−1

...
...

...
2

n−2
2

n−2
· · · 2

n−2
1

n−1
1

n−1
1

n−1
1

n−1
· · · 1

n−1
1

n−1


.

Therefore, one easily checkshij ≥ hkj > 0 for i > k and j = 1, . . . , n − 1. Thus, by the
harmonic series, the estimate

sup
i

(
n−1∑
j=1

hij

)
=

n−1∑
j=1

h1j =
1

2n

n−1∑
j=1

n− j

j

=
n−1∑
j=1

1

2j
− 1

2n

n−1∑
j=1

1

≤ c(1 + log n)

can be concluded. Using the Perron–Frobenius theorem for nonnegative matrices, [31], we obtain

λmax(H) ≤ c(1 + log n)

which proves the lemma.2
In a second step, the diagonal matrixD3 is modified. We define the matrixD4 by

D4 = 4 diag

[
i2 +

1

6

]n−1

i=1

. (3.4.8)

The next proposition is trivial.

PROPOSITION 3.7. The eigenvalue estimatesλmin
(
D4

−1D3

)
= 6

7
andλmax

(
D4

−1D3

)
< 1

are valid.
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3.4 Preconditioner for the element stiffness matrix

Now, the matrixD3 is changed in another way. Let

D5 = tridiag[b, a], (3.4.9)

where

a =

[
i2 + i+

3

10

]n−2

i=1

,

b =

[
4i2 +

2

5

]n−1

i=1

.

By the following lemma, the condition number of the matrixD−1
5 D3 is bounded by a constant

independent ofn.

LEMMA 3.8. The eigenvalue estimatesλmin
(
D5

−1D3

)
� 1 andλmax

(
D5

−1D3

)
� 1 hold.

Proof: An easy calculation shows

H1 = [h
(1)
ij ]n−1

i,j=1 = D
− 1

2
3 D5D

− 1
2

3 = tridiag[g, f],

where

f =

[
1

4
+

3

40(i2 + i)

]n−2

i=1

,

g =

[
1 +

1

10i2

]n−1

i=1

.

Taking Gerschgorins-disks, [34], we obtain the estimate

min
i

(
h

(1)
ii −

∑
j 6=i

| h(1)
ij |

)
≤ λmin(H1) ≤ λmax(H1) ≤ max

i

(
h

(1)
ii +

∑
j 6=i

| h(1)
ij |

)
.

Using the structure off andg, we can conclude

min
i

(
h

(1)
ii −

∑
j 6=i

| h(1)
ij |

)
≥ 1

2
,

max
i

(
h

(1)
ii +

∑
j 6=i

| h(1)
ij |

)
≤ 63

40
.

Hence, the assertions follow.2

Recall that the inverse of the matrixD3 is required for the definition of the matrixT1 (3.4.3).
Now, we introduce a tridiagonal matrixD6 from which we will show thatκ (D3D6) ≤ c. Let

D6 = tridiag[h, r], (3.4.10)
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3 Discretization by the p-version of the fem

where

h =
1

2
[(j − 1) ln(j − 1)− (j + 1) ln(j + 1) + 2 ln(j) + 2]n−1

j=1 ,

r =
1

4
[−2 + (2j + 1) ln(j + 1)− (2j + 1) ln(j)]n−2

j=1 .

For reasons of simplicity, the undefined value “0 ln 0” is 0 by definition. It will be shown in the
next chapter that the matrixD6 can be interpreted as a weighted mass-matrix.
The following result is valid.

LEMMA 3.9. The condition number ofD3D6 is bounded by a constant independent ofn, i.e.
κ (D3D6) ≤ c.

Proof: The proof is similar to the proof of Lemma3.8. More precisely, we determine the entries
of the symmetric tridiagonal matrix

H2 = [h
(2)
ij ]n−1

i,j=1 = D
1
2
3 D6D

1
2
3

and take Gerschgorin disks. Then, one easily checks

h
(2)
jj = 4j2 + 4j2 ln j + 2j2(j − 1) ln(j − 1)− 2j2(j + 1) ln(j + 1),

h
(2)
j+1,j = h

(2)
j,j+1 = (2j + 1)j(j + 1) ln(j + 1)− (2j + 1)j(j + 1) ln j − 2j(j + 1).

One easily verifies thathij ≥ 0 for all i, j ∈ N. Moreover, we obtain

h
(2)
j,j−1 + h

(2)
jj + h

(2)
j,j+1 = 2

(
j2 ln

j2 − 1

j2
+ j ln

j + 1

j − 1

)
,

−h(2)
j,j−1 + h

(2)
jj − h

(2)
j,j+1 = 2

(
5j2 ln

j2

j2 − 1
+ 8j2 + j ln

j − 1

j + 1
+ 4j2 ln

j − 1

j + 1

)
for j ≥ 2. The functionf : (1,∞) 7→ R,

f(x) = 2

(
x2 ln

x2 − 1

x2
+ x ln

x+ 1

x− 1

)
is monotonic decreasing forx ≥ 2. It attains its maximum on[2,∞) atx = 2, where

max
x∈[2,∞)

f(x) = f(2) = 12 ln 3− 16 ln 2. (3.4.11)

The functiong : (1,∞) 7→ R,

g(x) = 2

(
5x2 ln

x2

x2 − 1
+ 8x2 + x ln

x− 1

x+ 1
+ 4x2 ln

x− 1

x+ 1

)
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3.4 Preconditioner for the element stiffness matrix

is monotonic decreasing forx ≥ 2 and satisfies

inf
x∈[2,∞)

g(x) = lim
x→∞

g(x) =
2

3
, (3.4.12)

which is its infimum on the interval[2,∞). Moreover, by a direct calculation, the relations
h

(2)
11 = 4− 4 ln 2 andh(2)

12 = 6 ln 2− 4 are valid. Thus,

h
(2)
11 + h

(2)
12 = 2 ln 2, (3.4.13)

h
(2)
11 − h

(2)
12 = 8− 10 ln 2. (3.4.14)

By (3.4.11) and (3.4.13), the lower eigenvalue estimate

λmin (D3D6) ≤ 12 ln 3− 16 ln 2

follows. By (3.4.12) and (3.4.14), one obtains the upper eigenvalue estimate

λmax (D3D6) ≤
2

3

which proves the lemma.2
Now, we introduce the matrix

T3 = D6 + T2. (3.4.15)

Then by Lemma3.9, the following conclusion can be drawn.

COROLLARY 3.10. The matrixT1 = D−1
3 + T2 is spectrally equivalent to the matrixT3, i.e.

κ
(
T1

−1T3

)
≤ c.

Proof: Use Lemma3.9 and the fact thatD3, D6 andT2 are symmetric and positive definite
matrices.2

3.4.3 Modification of the preconditioner in 2D and 3D

Via tensor product and by the relations (3.4.1) for D3, (3.4.8) for D4, (3.4.9) for D5, (3.4.7) for
T2, and (3.4.15) for T3, the matrices

C2 = D5 ⊗ T3 + T3 ⊗D5, (3.4.16)

C3 = D3 ⊗ T2 + T2 ⊗D3, (3.4.17)

C4 = D4 ⊗ T2 + T2 ⊗D4, (3.4.18)

C5 = D5 ⊗ T2 + T2 ⊗D5 (3.4.19)

are introduced. Then, the following theorem holds.
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3 Discretization by the p-version of the fem

THEOREM 3.11. For i = 3, 4, 5, the eigenvalue estimates

λmin
(
Ci

−1A1

)
� 1 and λmax

(
Ci

−1A1

)
� (1 + log n)

are valid. Moreover, the condition number of the matrixC−1
2 A1 is bounded by a constant inde-

pendent ofn, i.e.
κ
(
C2

−1A1

)
� 1.

Proof: Note thatD3, D4, D5, T3, andT2 are symmetric and positive definite and apply Lemma
2.5to the matricesC3, C4, C5, andC2. By Lemma3.5, Lemma3.6, Lemma3.8, Corollary3.10,
and Proposition3.7, the assertions follow.2
In the same way, withD3 (3.4.1),D5 (3.4.9), T1 (3.4.2), T2 (3.4.7), andT3 (3.4.15), the matrices

C6 = D3 ⊗ T1 ⊗ T1 + T1 ⊗D3 ⊗ T1 +D3 ⊗ T1 ⊗ T1, (3.4.20)

C7 = D3 ⊗ T2 ⊗ T2 + T2 ⊗D3 ⊗ T2 +D3 ⊗ T2 ⊗ T2, (3.4.21)

C8 = D5 ⊗ T2 ⊗ T2 + T2 ⊗D5 ⊗ T2 +D5 ⊗ T2 ⊗ T2, (3.4.22)

C9 = D5 ⊗ T3 ⊗ T3 + T3 ⊗D5 ⊗ T3 +D5 ⊗ T3 ⊗ T3 (3.4.23)

are defined. By the same arguments as in Theorem3.11, the next theorem can be proved.

THEOREM 3.12. The following eigenvalue estimates are valid:

• λmin
(
Ci

−1B1

)
� 1 for i = 6, 7, 8, 9,

• λmax
(
Ci

−1B1

)
� 1 for i = 6, 9,

• λmax
(
Ci

−1B1

)
� (1 + log n)2 for i = 7, 8.
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4 Interpretation of the preconditioners

In the previous chapter, several preconditioners for the matricesF1 andD1, cf. (3.3.6) and
(3.3.7), are derived. In this chapter, we show that these preconditioners can be interpreted as
matrices resulting from the discretization of several auxiliary problems. We distinguish between
the three cases 1D, 2D and 3D, and approximations by finite elements or finite differences.

4.1 The one-dimensional case

4.1.1 Finite differences

Consider the following problem: Findu such that

− d2u

dx2
+

1

x2
u+ x2u = g for x ∈ (0, 1), (4.1.1)

u(0) = u(1) = 0

holds. Problem (4.1.1) is discretized by finite differences. Letk be the level number, and let
n = 2k. Moreover, let

xkj =
j

n
, j = 0, . . . , n,

be a set of grid points in the interval [0,1]. On the grid{xkj}n−1
j=1 , let ukj be the (approximated)

value ofu in the pointxkj . The terms of (4.1.1) atxkj are approximated by

−d2u

dx2
≈

−ukj−1 + 2ukj − ukj+1

h2
,

x2u ≈ ukj
j2

n2
= h2j2ukj ,

1

x2
u ≈ ukj

n2

j2
=

1

h2j2
ukj ,

whereh = 1
n
. Then, the finite difference approximation of (4.1.1) can be rewritten as

1

h2

(
−ukj−1 + 2ukj − ukj+1

)
+

1

h2

ukj
j2

+ h2j2ukj = g(ukj ), j = 1, . . . , n− 1, (4.1.2)

uk0 = 0,

ukn = 0.
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4 Interpretation of the preconditioners

This problem is equivalent to solving

2

h2

(
T2 + 2D−1

3

)
+
h2

4
D3 =

(
2

h2
T2 +

4

h2
D−1

3 +
h2

4
D3

)
u = g,

whereu = [ukj ]
n−1
j=1 andg = [g(ukj )]

n−1
j=1 with the matricesT2 (3.4.7) andD3 (3.4.1).

4.1.2 Finite elements

Consider now problem (4.1.1) in the weak formulation.
Findu ∈ H1

0 ((0, 1)) ∩ L2
ω=x((0, 1)) ∩ L2

ω=x−1((0, 1)) such that

a1(u, v) = as(u, v) + am(u, v) + am(u, v) = 〈g, v〉 (4.1.3)

holds for allv ∈ H1
0 ((0, 1))∩L2

ω=x((0, 1))∩L2
ω=x−1((0, 1)). The bilinear formsas(·, ·), am(·, ·)

andam(·, ·) are defined as

as(u, v) =

∫ 1

0

u′(x)v′(x) dx,

am(u, v) =

∫ 1

0

x−2u(x)v(x) dx,

am(u, v) =

∫ 1

0

x2u(x)v(x) dx.

This one-dimensional problem (4.1.3) is discretized by linear finite elements on the equidistant
mesh

Tk =
n−1⋃
i=0

τ ki ,

where

τ ki =

(
i

n
,
i+ 1

n

)
.

As in the previous subsection, the parameterk denotes the level number. On this mesh, we
introduce the one-dimensional hat-functions

φ
(1,k)
i (x) =


nx− (i− 1) on τ ki−1

(i+ 1)− nx on τ ki
0 else

, i = 1, . . . , n− 1, (4.1.4)

wheren = 2k. LetV(1)
k = span{φ(1,k)

i }n−1
i=1 be the corresponding finite element space. Then, the

Galerkin projection of (4.1.3) ontoV(1)
k is:

Finduk ∈ V(1)
k such that

a1(u
k, vk) = 〈g, vk〉 ∀vk ∈ V(1)

k . (4.1.5)
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4.2 The two-dimensional case

Then using (3.4.7), we obtain[
as(φ

(1,k)
j , φ

(1,k)
i )

]n−1

i,j=1
= 2n T2 = n tridiag[2e,−e]. (4.1.6)

Moreover, an easy calculation shows[
am(φ

(1,k)
j , φ

(1,k)
i )

]n−1

i,j=1
= 4nD6 (4.1.7)

and [
am(φ

(1,k)
j , φ

(1,k)
i )

]n−1

i,j=1
=

1

6n3
D5. (4.1.8)

By (4.1.6), (4.1.7), and (3.4.15), one checks[
2as(φ

(1,k)
j , φ

(1,k)
i ) + am(φ

(1,k)
j , φ

(1,k)
i )

]n−1

i,j=1
= 4nT3. (4.1.9)

Hence, interpretations of the matricesT2 ∈ Rn−1×n−1 (3.4.7), T3 ∈ Rn−1×n−1 (3.4.15), D5 ∈
Rn−1×n−1 (3.4.9) andD6 ∈ Rn−1×n−1 (3.4.10) have been given.

4.2 The two-dimensional case

4.2.1 Finite differences

We consider the following second order problem: Findu such that

−2 (y2uxx + x2uyy) = g in Ω = (0, 1)2,
u = 0 on ∂Ω.

(4.2.1)

Problem (4.2.1) is solved approximately by finite differences on the grid shown in Figure4.1.
The approximation in( i

n
, j
n
) of u is denoted byui,j. The second order derivatives are approxi-

mated by the usual central difference quotient, i.e.

y2uxx

(
i

n
,
j

n

)
≈ j2(ui−1,j − 2ui,j + ui+1,j),

x2uyy

(
i

n
,
j

n

)
≈ i2(ui,j−1 − 2ui,j + ui,j+1).

We insert the boundary condition and sort the unknowns in the orderu1,1, u1,2, . . ., u1,n−1, u2,1,
. . ., un−1,n−1. Then, one obtains by tensor product arguments and the results of subsection4.1.1
that C3, which is defined in (3.4.17), is the system matrix for the resulting system of linear
algebraic equations. Therefore, the following lemma has been proved.

LEMMA 4.1. The discretization of (4.2.1) on a uniform grid by finite differences yields to a
system of linear algebraic equations of the typeC3u = g.
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4 Interpretation of the preconditioners
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Figure 4.1: Mesh forh-version (left), grid (right).

Considering the matrixC1 (3.4.3), a similar result as in Lemma4.1can be shown, cf. [53]. We
state this result as a remark.

REMARK 4.2. The discretization of the problem

− 2
(
y2uxx + x2uyy

)
+

(
x2

y2
+
y2

x2

)
u = g in Ω = (0, 1)2,

u = 0 on ∂Ω (4.2.2)

as above leads to the linear systemC1u = g withC1 defined in (3.4.3).

Hence, interpretations of the system matricesC1 (3.4.3) andC3 (3.4.17) have been found.

4.2.2 Linear elements on triangles

Consider the following Dirichlet problem: Findu ∈ H1
0,ω(Ω) such that

a(u, v) :=

∫
Ω

(
(ω(y))2uxvx + (ω(x))2uyvy

)
dxdy =

∫
Ω

gv dxdy =: 〈g, v〉 (4.2.3)

for all v ∈ H1
0,ω(Ω) holds. The domainΩ is the unit square(0, 1)2 and

H1
0,ω(Ω) = {u ∈ L2(Ω), ω(x)uy, ω(y)ux ∈ L2(Ω), u |∂Ω= 0}

with ω(ξ) = ξ. We discretize problem (4.2.3) by finite elements. For this purpose, some notation
is introduced. Letk be the level of approximation andn = 2k. Let xkij = ( i

n
, j
n
), wherei, j =
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4.2 The two-dimensional case

0, . . . , n. The domainΩ is divided into congruent, isosceles, right-angled trianglesτ s,kij , where

0 ≤ i, j < n ands = 1, 2, see Figure4.1. The triangleτ 1,k
ij has the three verticesxkij, x

k
i+1,j+1

andxki,j+1, τ
2,k
ij has the three verticesxkij, x

k
i+1,j+1 andxki+1,j, see Figure4.2.

�
�

�
�

�
�

�
�
�

xkij

xki,j+1

xki+1,j

xki+1,j+1

τ 1,k
ij

τ 2,k
ij

Figure 4.2:Introduction of the geometrical notation of a macro-elementEkij.

Furthermore, letEkij = τ 1,k
ij ∪ τ 2,k

ij be the macro-element[
i

n
,
i+ 1

n

]
×
[
j

n
,
j + 1

n

]
.

Piecewise linear finite elements are used on the mesh

Tk = {τ s,kij }
n−1,n−1,2
i=0,j=0,s=1.

The subspace of piecewise linear functionsφkij with

φkij ∈ H1
0 (Ω), φkij |τs,klm ∈ P

1(τ s,klm )

is denoted byVk, whereP1 is the space of polynomials of degree≤ 1. A basis ofVk is the
system of the usual hat-functions{φkij}n−1

i,j=1 uniquely defined by

φkij(x
k
lm) = δilδjm (4.2.4)

andφkij ∈ Vk, whereδil is the Kronecker delta. Now, we can formulate the discretized problem:
Finduk ∈ Vk such that

a(uk, vk) = 〈g, vk〉 ∀vk ∈ Vk (4.2.5)

holds. Problem (4.2.5) is equivalent to solving the system of linear algebraic equations

Kkuk = g
k
, (4.2.6)
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4 Interpretation of the preconditioners

where

Kk =
[
a(φklm, φ

k
ij)
]n−1

i,j,l,m=1
,

uk = [uij]
n−1
i,j=1 ,

g
k

=
[
〈g, φklm〉

]n−1

l,m=1
.

Then,uk =
∑n−1

i,j=1 uijφ
k
ij is the solution of (4.2.5).

�
�

�
�

�
�

�
�

�
�

�
�

(
i
n
, j
n

) (
i+1
n
, j
n

)
τ 1,k
i,j−1

τ 2,k
i,j

Figure 4.3:Sketch for the computation of the matrix entry between two adjacent nodes.

We determine nowa(φkij, φ
k
i+1,j). One obtains by a simple integration, cf. Figure4.3.

a(φkij, φ
k
i+1,j) =

∫
τ1,k
i,j−1

[
−n
n

]T [
y2 0
0 x2

] [
n
0

]
d(x, y)

+

∫
τ2,k
ij

[
−n
0

]T [
y2 0
0 x2

] [
n
−n

]
d(x, y)

= −n2

∫
τ1,k
i,j−1∪τ

2,k
ij

y2 d(x, y)

= −n2

∫ j
n

j−1
n

∫ y+ i−j+1
n

i
n

y2 dxdy − n2

∫ j+1
n

j
n

∫ i+1
n

y+ i−j
n

y2 dxdy

= − 1

n2

(
j2

2
− j

3
+

1

12

)
− 1

n2

(
j2

2
+
j

3
+

1

12

)
= − 1

n2

(
1

6
+ j2

)
, (4.2.7)

wheren > i, j andj > 0, but i ≥ 0. By symmetry of the differential operator in (4.2.3) with
respect to the variablesx andy, it follows

a(φkij, φ
k
i,j+1) = − 1

n2

(
1

6
+ i2

)
, (4.2.8)
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4.2 The two-dimensional case

wherei > 0 andj ≥ 0 and

a(φkij, φ
k
ij) = −(a(φkij, φ

k
i+1,j) + a(φkij, φ

k
i,j+1) + a(φkij, φ

k
i,j−1) + a(φkij, φ

k
i−1,j))

=
1

n2

(
2i2 + 2j2 +

2

3

)
.

Inserting the boundary condition and using (3.4.18), we arrive at

Kk =
1

2n2
C4 (4.2.9)

after a proper permutation of the unknowns. Thus, an interpretation for the matrixC4 (3.4.18)
has been found. Thus, the following lemma has been proved.

LEMMA 4.3. The discretization of (4.2.3) by piecewise linear finite elements on the mesh of
Figure 4.1 is equivalent to the system solve of linear algebraic equations (4.2.6), whereKk =

1
2n2C4.

4.2.3 Bilinear elements on quadrilaterals

As in the previous subsection, consider problem (4.2.3): Findu ∈ H1
0,ω(Ω) such that

a(u, v) =

∫
Ω

(
(ω(y))2uxvx + (ω(x))2uyvy

)
dxdy =

∫
Ω

gv dxdy = 〈g, v〉 (4.2.10)

for all v ∈ H1
0,ω(Ω), where the weight functionω satisfiesω(ξ) = ξ. The domainΩ is the unit

square(0, 1)2. We want to find an approximate solution of (4.2.10) using bilinear finite elements
on quadrilaterals. The following notations are needed. As in subsection4.2.2, let k be the level
of approximation andn = 2k. Let xkij = ( i

n
, j
n
), wherei, j = 0, . . . , n. The domainΩ is divided

into congruent squaresEkij = τ 1,k
ij ∪ τ 2,k

ij , i.e.

Ekij =

[
i

n
,
i+ 1

n

]
×
[
j

n
,
j + 1

n

]
.

On the mesh of squares
Ek =

{
Ekij
}n−1

i,j=0
,

the piecewise bilinear shape functionsφb,kij are introduced as tensor products of the one-dimen-

sional functionsφ(1,k)
i , cf. (4.1.4),

φb,kij (x, y) = φ
(1,k)
i (x)φ

(1,k)
j (y) for i, j = 1, . . . , n− 1.

SetV(b)
k = span{φb,kij }n−1

i,j=1. Now, the discrete problem can be formulated. Finduk ∈ V(b)
k such

that
a(uk, vk) = 〈g, vk〉 ∀vk ∈ V(b)

k (4.2.11)
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4 Interpretation of the preconditioners

holds. Problem (4.2.11) is equivalent to solving

Kb,kub = g
b
, (4.2.12)

where

Kb,k =
[
a(φb,klm , φ

b,k
ij )
]n−1

i,j,l,m=1
,

ub =
[
ubij
]n−1

i,j=1
,

g
b

=
[
〈g, φb,klm〉

]n−1

l,m=1
.

Then,uk =
∑n−1

i,j=1 u
b
ijφ

b,k
ij is the solution of (4.2.11). From (4.1.6), (4.1.8) and (3.4.19), one can

conclude

Kb,k =
2n

6n3
(T2 ⊗D5 +D5 ⊗ T2) ,

=
1

3n2
C5. (4.2.13)

Thus, the following lemma is valid.

LEMMA 4.4. The discretization of problem (4.2.10) by bilinear elements on the mesh
{
Ekij
}n−1

i,j=0

is equivalent to solving the system of linear algebraic equationsC5ub = g
b
.

Moreover, we consider the following discrete problem. Finduk ∈ Vk such that

a2(u
k, vk) := 2a(uk, vk) +

∫
Ω

(
ω2(x)

ω2(y)
+
ω2(y)

ω2(x)

)
ukvk = 〈g, vk〉 (4.2.14)

holds for allvk ∈ Vk, wherea(·, ·) is the bilinear form defined in (4.2.10) andω(ξ) = ξ. With
the same arguments as in the proof of Lemma4.4, the following result can be shown.

LEMMA 4.5. Let C2 be defined in (3.4.16). Then, the discretization of problem (4.2.14) by
bilinear elements on the mesh

{
Ekij
}n−1

i,j=0
is equivalent to solving the system of linear algebraic

equationsC2ub = g
b
.

4.2.4 Improvement for rectangular elements

In (3.3.1), let us assume that the domainR2 = (−1, 1)2 is replaced by a rectangle, i.e.Ra,b
2 =

(−a, a) × (−b, b), wherea, b > 0. The discretization by thep-version of the finite element
method using only one elementRa,b

2 leads to a system of the typeKa,bx = y, where

Ka,b =
a

b
(F ⊗D) +

b

a
(D ⊗ F )

36



4.3 The three-dimensional case

with the matricesF andD defined via relation (3.3.5). The matricesC3 (3.4.17),C4 (3.4.18), and
C5 (3.4.19) can be used as preconditioner forKa,b. However, all eigenvalue estimates will depend
on the geometric parametersa andb. Thus, by a simple scaling, new matrices are developed
such that the estimates for the eigenvalues do not depend on the parametersa andb. Similar as
in Proposition3.3, the relation

Ka,b = P blockdiag [Ai,a,b]
4
i=1 P

T

holds with the same permutation matrixP , and

A2i+j−2,a,b =
a

b
(Fi ⊗Dj) +

b

a
(Di ⊗ Fj) i, j = 1, 2.

Instead of (4.2.1), we consider the boundary value problem

− a

b
y2uxx −

b

a
x2uyy = g in Ω = (0, 1)2, (4.2.15)

u = 0 on ∂Ω.

The discretization of (4.2.15) by finite differences, linear or bilinear elements as described in the
subsections4.2.1–4.2.3yields to systems of linear algebraic equations with matricesC3,a,b,C4,a,b

andC5,a,b, where

Ci,a,b =
a

b
(T2 ⊗Di) +

b

a
(Di ⊗ T2) i = 3, 4, 5.

Now, we are able to formulate the next lemma.

LEMMA 4.6. The condition numberκ
(
Cj,a,b

−1Ai,a,b
)

grows as(1 + log n) for j = 3, 4, 5 and
i = 1, 2, 3, 4, where the constants do not depend on the parametersa andb.

Proof: The assertions follow by Lemma2.5. 2

4.3 The three-dimensional case

Consider the fourth order boundary value problems

z2uxxyy + y2uxxzz + x2uyyzz = g in Ω3 = (0, 1)3,
u = 0 on ∂Ω3

(4.3.1)

and

4
(
z2uxxyy + y2uxxzz + x2uyyzz

)
−2

(
y2

z2
+
z2

y2

)
uxx − 2

(
x2

z2
+
z2

x2

)
uyy − 2

(
x2

y2
+
y2

x2

)
uzz (4.3.2)

+

(
x2

y2z2
+

y2

x2z2
+

z2

x2y2

)
u = g in Ω3 = (0, 1)3,

u = 0 on ∂Ω3.

Note that the differential operators in (4.3.1) and (4.3.2) do not have a term of a pure fourth
derivative, there are mixed terms only. We will discretize these problems by finite differences or
trilinear finite elements on hexahedrons.
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4 Interpretation of the preconditioners

1 1

11

-2 -2

-2

 -2

4

Figure 4.4:Stencil for discretization ofuxxyy.

4.3.1 Finite differences

Problems (4.3.1) and (4.3.2) are discretized by the method of finite differences on the equidistant
grid

{
1
n
(i, j, l)

}n−1

i,j,l=1
, wherek denotes the level number andn = 2k. Letui,j,l be the approxima-

tion of u in the point 1
n
(i, j, l). The mixed fourth order derivatives are discretized by the stencil

of Figure4.4, e.g. foruxxyy

z2uxxyy

(
i

n
,
j

n
,
l

n

)
≈ n2l2(4ui,j,l − 2ui,j−1,l − 2ui,j+1,l − 2ui−1,j,l − 2ui+1,j,l

+ui−1,j−1,l + ui+1,j−1,l + ui−1,j+1,l + ui+1,j+1,l),

the second order derivatives of (4.3.2) by the usual central differential quotient.

LEMMA 4.7. This approximation of (4.3.1) is equivalent to solving the system of linear alge-
braic equationsC7u = g with C7 defined in (3.4.21). Moreover, the finite difference approx-
imation of problem (4.3.2) is equivalent to solvingC6u = g, whereC6 is defined via relation
(3.4.20).

Proof: The left hand sidez2uxxyy + y2uxxzz + x2uyyzz of the partial differential equation of
problem (4.3.1) can be written into the form(

∂2

∂x2

∂2

∂y2
z2 +

∂2

∂x2
y2 ∂

2

∂z2
+ x2 ∂

2

∂y2

∂2

∂z2

)
u. (4.3.3)

The discretization of∂
2

∂x2u by finite differences on an equidistant grid is equivalent to linear
system solve with the matrixT2 (3.4.7). The discretization of the mass termx2u is equivalent to
linear system solve with the matrixD3 (3.4.1), cf. the discretization of problem (4.1.1). Using
tensor product arguments, the structure of (4.3.3), and the fact that the operatorsGk : Ck(Ω3) 7→
Ck(Ω3), Gku = y2u andF : C2(Ω3) 7→ C0(Ω3), Fu = ∂2

∂x2u are commute, (FG2 = G0F), the
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4.3 The three-dimensional case

first assertion follows by the definition of the matrixC7 (3.4.21). In order to prove the second
assertion, we rewrite the differential operator of (4.3.2) into the form

x2

(
−2

∂2

∂y2
+

1

y2

)(
−2

∂2

∂z2
+

1

z2

)
u

+

(
−2

∂2

∂x2
+

1

x2

)
y2

(
−2

∂2

∂z2
+

1

z2

)
u

+

(
−2

∂2

∂x2
+

1

x2

)(
−2

∂2

∂y2
+

1

y2

)
z2u.

Using the definition of the matricesT1 (3.4.2) andC6 (3.4.20), the lemma has been proved.2

4.3.2 Trilinear elements

Consider (4.3.1) in the weak formulation: Findu ∈ H such that

a3(u, v) :=

∫
Ω3

(ω(x))2uyzvyz + (ω(y))2uxzvxz + (ω(z))2uxyvxy =

∫
Ω3

gv

holds for allv ∈ H, where

H =
{
u ∈ L2(Ω3), ω(x)uyz, ω(y)uxz, ω(z)uxy ∈ L2(Ω3), u |∂Ω3= 0

}
with Ω3 = (0, 1)3, and the weight functionω(ξ) = ξ. We discretize (4.3.1) by trilinear elements
and introduce the notation of the subsections4.1.2and4.2.3. The mesh

Tk =
n−1⋃
i,j,l=0

Hi,j,l

is chosen as finite element mesh with the hexahedral elements

Hi,j,l = τ ki × τ kj × τ kl , (4.3.4)

whereτ ki = ( i
n
, i+1
n

). On this mesh, the piecewise trilinear nodal shape functions

φ
(t,k)
i,j,l (x, y, z) = φ

(1,k)
i (x)φ

(1,k)
j (y)φ

(1,k)
l (z) 1 ≤ i, j, l ≤ n− 1 (4.3.5)

are introduced and the conformal finite element approximation space

V
(t)
k = span

{
φ

(t,k)
i,j,l

}n−1

i,j,l=1

is defined. Then, the Galerkin projection of problem (4.3.1) ontoV(t)
k is:

Finduk ∈ V(t)
k such that

a3(u
k, vk) =

∫
Ω3

gvk (4.3.6)
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4 Interpretation of the preconditioners

holds for allvk ∈ V(t)
k . Then, (4.3.6) is equivalent to solving the system of linear algebraic finite

element equationsKt,ku = g, where

Kt,k =
[
a3(φ

(t,k)
I , φ

(t,k)
I′ )

]
I′,I

with the multi-indicesI = (i, j, l) andI ′ = (i′, j′, l′). Using (4.3.5), the left hand side of problem
(4.3.6) can be rewritten into the form

a3(φ
(t,k)
I , φ

(t,k)
I′ ) =

∫
supp φ

(1,k)
i

x2φ
(1,k)
i (x)φ

(1,k)
i′ (x) dx∫

supp φ
(1,k)
j

(φ
(1,k)
j )′(y)(φ

(1,k)
j′ )′(y) dy

∫
supp φ

(1,k)
l

(φ
(1,k)
l )′(z)(φ

(1,k)
l′ )′(z) dz

+

∫
supp φ

(1,k)
i

(φ
(1,k)
i )′(x)(φ

(1,k)
i′ )′(x) dx∫

supp φ
(1,k)
j

y2φ
(1,k)
j (y)φ

(1,k)
j′ (y) dy

∫
supp φ

(1,k)
l

(φ
(1,k)
l )′(z)(φ

(1,k)
l′ )′(z) dz

+

∫
supp φ

(1,k)
i

(φ
(1,k)
i )′(x)(φ

(1,k)
i′ )′(x) dx∫

supp φ
(1,k)
j

(φ
(1,k)
j )′(y)(φ

(1,k)
j′ )′(y) dy

∫
supp φ

(1,k)
l

z2φ
(1,k)
l (z)φ

(1,k)
l′ (z) dz.

Thus, from relations (4.1.6), (4.1.8) and (3.4.22), one concludes

Kt,k =
2

3n
C8.

Hence, the following lemma has been proved.

LEMMA 4.8. The discretization of (4.3.1) by trilinear elements on the mesh (4.3.4) leads to the
system of linear algebraic equationsKt,ku = g, whereKt,k = 2

3n
C8.

We have shown in subsection4.1.2that

T3 =
1

4n

[
2as(φ

(1,k)
i , φ

(1,k)
j ) + am(φ

(1,k)
i , φ

(1,k)
j )

]n−1

j,i=1
,

see relation (4.1.9) and

D5 = 6n3
[
am(φ

(1,k)
i , φ

(1,k)
j )

]n−1

j,i=1
,

see relation (4.1.8). Using tensor product arguments, it follows that the discretization of the
boundary value problem (4.3.2) by trilinear finite elements on the tensor product mesh (4.3.4)
is equivalent to solving the systemC9u = g, see relation (3.4.23) for the definition ofC9, the
arguments in the proof of Lemma4.8and the definition of the bilinear formsas(·, ·), am(·, ·) and
am(·, ·) in (4.1.3). We summarize these observations in the following remark.

REMARK 4.9. The discretization of (4.3.2) by trilinear elements on the mesh (4.3.4) leads to
the system of linear algebraic equationsK̃t,ku = g, whereK̃t,k = 8

3n
C9.
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5 Fast solvers for degenerated
problems

5.1 Introduction, aim, direct methods

In this chapter, we primarily consider problem (4.2.3): Findu ∈ H1
0,ω(Ω) such that

a(u, v) :=

∫
Ω

(ω(y))2uxvx + (ω(x))2uyvy =

∫
Ω

gv =: 〈g, v〉 ∀v ∈ H1
0,ω(Ω). (5.1.1)

The domainΩ = (0, 1)2 is the unit square. The weight functionω is of the typeω(ξ) = ξ.

REMARK 5.1. The differential operator in (5.1.1) is not uniformly elliptic in the Sobolev space
H1

0 (Ω), an estimate of the type

a(u, u) ≥ γ ‖ u ‖2
H1(Ω) ∀u ∈ H1

0 (Ω) (5.1.2)

with a constantγ > 0 is not satisfied.

Proof: The piecewise linear hat functionφk11 ∈ Vk ⊂ H1
0 (Ω) on levelk defined in relation (4.2.4)

satisfies
‖ φk11 ‖H1(Ω)≥| φk11 |H1(Ω)= 2.

By (3.4.18) and (4.2.9), one concludesa(φk11, φ
k
11) = 14

6
1
n2 , wheren = 2k. Thus, we have found

a sequence{φk11}∞k=1 with ‖ φk11 ‖2
H1(Ω)≥ 4, buta(φk11, φ

k
11) → 0 for k →∞. Hence, an estimate

of the type (5.1.2) is not possible.2
The integrand on the left hand side in (5.1.1) is of the type(∇u)TB(x, y)∇v with the diffusion
tensor

B(x, y) =

[
y2 0
0 x2

]
.

Therefore, the matrixB is symmetric and positive definite for all(x, y) ∈ Ω, but not uniformly
positive definite. Moreover, the matrixB is bounded for each(x, y) ∈ Ω. Such problems are
called degenerated problems. In the past, degenerated problems have been considered relatively
rarely. One reason is the unphysical behaviour of the partial differential equation which is quite
unusual in technical applications. One work focusing on this type of partial differential equation
is the book of Kufner and S̈andig [54]. Nowadays, problems of this type become more and
more popular because there are stochastic pde’s which have a similar structure. An example
of a degenerated stochastic partial differential equation is the Black-Scholes partial differential
equation which was mentioned in the introduction of this work, cf. equation (1.1).
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5 Fast solvers for degenerated problems

We consider now the discretization of (5.1.1) by linear elements as described in subsection4.2.2.
As shown in subsection4.2.2, the Galerkin projection of (5.1.1) onto the spaceVk is equivalent
to solving the linear system (4.2.6), namelyKkuk = g

k
with

Kk =
[
a(φklm, φ

k
ij)
]n−1

i,j,l,m=1
=

1

2n2
C4

=
1

2n2
(D4 ⊗ T2 + T2 ⊗D4) .

In this chapter, we will derive fast solution methods for (4.2.6). We are not interested in finding
a good finite element mesh in order to approximateu in (5.1.1), only efficient solution methods
for the resulting systemsC4uk = 2n2g

k
, or equivalently,Kkuk = g

k
are focused. Firstly, we

note that the matrixC4 is a sparse matrix with 5-point stencil structure andO(n2) nonzero matrix
entries, cf. the structure ofC4 in (3.4.18) and the proof of Proposition3.3.
Therefore, it is important to find a method which solves (4.2.6) inO(n2) arithmetical operations.
Using the usual Cholesky decomposition with lexicographic ordering of the unknowns, the arith-
metical cost is proportional ton4, and the memory requirement is of ordern3. Using the method
of nested dissection developed by George, [32], see subsection2.2, the arithmetical cost can be
reduced toO(n3) and the memory requirement toO(n2 log(1+n)), if only the nonzero elements
of the matrix are stored. However, this method is not arithmetically optimal, too. Moreover, the
order of the arithmetical cost and memory requirement cannot be improved by taking another
reordering for the Cholesky decomposition, [33].

5.2 Slowly convergent iterative methods

Using iterative methods, no additional memory requirement in order to save the matrixKk is
necessary. However, the speed of convergence of the sequence of iterates{u(m)}∞m=1 to the exact
solutionu∗ depends on the condition number of the matrixKk. As mentioned in Proposition
3.3, κ(Kk) ≥ O(p2) = O(n2). Therefore, efficient preconditioners are needed. For systems
of finite element equations arising from the discretization of boundary value problems as e.g.
−uxx−uyy = f , efficient solution techniques are developed in the last two decades. Examples for
such solvers are the preconditioned conjugate gradient (pcg) method with BPX preconditioners,
[21], or hierarchical basis preconditioners, [80], and multi-grid methods, [40], [43].
However, the differential operator in (5.1.1) is not spectrally equivalent to the Laplacian. It is
an elliptic, but not uniformly elliptic differential operator, cf. (5.1.2). In a certain way, this
differential operator can be interpreted as an operator with local anisotropies, where the range of
anisotropyε goes to zero, if the discretization parameterh tends to zero.
A typical anisotropic model problem considered in the literature, see [40], is

−∂
2u

∂x2
− ε

∂2u

∂y2
= f, ε small.

One iterative method with a rate of convergence independent of the choice ofε is the multi-grid
algorithm with a line Gauß-Seidel (GS) smoother, cf. [43] pp.502–533. Bramble and Zhang,
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5.3 Multi-grid proof for degenerated problems

[22], considered multi-grid methods in a more general case as for the Laplace equation. They
proved multi-grid convergence for differential operators of the type−(f(x, y)ux)x−(g(x, y)uy)y,
where0 < g(x, y) ≤ gmax and0 < fmin < f(x, y) < fmax, i.e. one of the coefficients can be
arbitrarily small. However, both coefficients can be arbitrarily small in (5.1.1). Thus, we have to
find a modified solution technique.

5.3 Multi-grid proof for degenerated problems

In the typical multi-grid proofs, cf. [40], one splits the multi-grid operator in a product of two
operatorsA andB. One proves a smoothing property, see e.g. [67], [68], for the operatorA,
whereas an approximation property has to be shown forB. Helpful tools for this aim are the
approximation theorems for finite elements as the Aubin-Nitsche-trick. In order to prove such a
result, the boundedness and the ellipticity of the bilinear form are required in the Sobolev space
H1(Ω). However, the ellipticity of the bilinear form (5.1.1) cannot be guaranteed, cf. relation
(5.1.2).
Another technique in order to prove a mesh-size independent convergence rate has been intro-
duced by Braess, [15]. In this method, the approximation spaceVk is split into a direct sum
of the spaceVk−1 and a complementary spaceWk. One obtains a multiplicative solver for the
problem onVk by solving the problems onVk−1 andWk. Schieweck, [70], and Pflaum, [65],
have extended this technique. This method does not require regularity assumptions to the bilinear
form. Moreover, for triangulations of simple geometry as for (4.2.5), the required assumptions
are quite simple to handle.
In this section, we will prove a mesh-size independent convergence rate for a multi-grid algorithm
using the ideas of Schieweck and Pflaum. The following remark is important for our aim.

REMARK 5.2. Note that the bilinear forma(·, ·) is positive definite on the spaceVk.

5.3.1 Multi-grid algorithm

The spaceVk is represented as the direct sum

Vk = Vk−1 ⊕Wk,

where
Wk = span{φkij}(i,j)∈Nk , (5.3.1)

see e.g. [58], [15], [70], [75], [78]. The index subsetNk ⊂ N2 contains the indices of the new
nodes on levelk and is given by

Nk := {(i, j) ∈ N2, 1 ≤ i, j ≤ n− 1, i = 2m− 1 or j = 2m− 1,m ∈ N}. (5.3.2)

Let u0 ∈ Vk be the initial guess. One stepu1 = MULT (k, u0, g) of the multi-grid algorithm
MULT is defined recursively as follows.

ALGORITHM 5.3 ( MULT ). Setl = k.
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5 Fast solvers for degenerated problems

• If l > 1, then do

1. Pre-smoothing onWl: Solve

a(w, v) = 〈g, v〉 − a(u0, v) ∀v ∈Wl

approximately by usingν steps of a simple iterative methodS, the approximate solu-
tion is w̃. Setu1

0 = u0 + w̃.

2. Coarse grid correction onVl−1: Find w ∈ Vl−1 such that

a(w, v) = 〈g, v〉 − a(u1
0, v) = 〈r, v〉 ∀v ∈ Vl−1.

Compute an approximate solutioñw by usingµl−1 steps of the algorithm
MULT (l − 1, 0, r). Setu2

0 = u1
0 + w̃.

3. Post-smoothing onWl: Solve

a(w, v) = 〈g, v〉 − a(u2
0, v) ∀v ∈Wl

approximately by usingν steps of a simple iterative methodS, the approximate solu-
tion is w̃. Setu1 = u2

0 + w̃.

• else

– Solvea(w, v) = 〈g, v〉 − a(u0, v) ∀v ∈ V1 exactly.

• end-if.

REMARK 5.4. In a standard multi-grid algorithm, the spaceWl in 1. and 3. is replaced byVl,
e.g. the smoother operates on the complete approximation spaceVl.

5.3.2 Algebraic convergence theory for multi-grid

Our aim is to prove the convergence of the multi-grid Algorithm5.3MULT in order to solve
(4.2.6) usingµ = µl = 3 and a special line smootherS = S0,k on levelk which will be defined in
(5.3.49). From [65], [70], the following convergence theorem is known for multi-grid algorithms
of the type of the algorithmMULT .

THEOREM 5.5. Let us assume that the following assumptions are fulfilled.

• Leta(·, ·) be a symmetric and positive definite bilinear form onVk. Let

‖ · ‖2
a:= a(·, ·)

be the energy norm.
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5.3 Multi-grid proof for degenerated problems

• LetS be a smoother satisfying

‖ Sνw ‖a≤ cρν ‖ w ‖a ∀w ∈Wk, (5.3.3)

where0 ≤ ρ < 1 independent ofk andc > 0.

• There is a constant0 ≤ γ < 1 independent ofk such that

(a(v, w))2 ≤ γ2a(v, v)a(w,w) ∀w ∈Wk,∀v ∈ Vk−1 (5.3.4)

holds.

• Letuj+1,k = MULT (k, uj,k, g), letu∗ be the exact solution of (4.2.6) and let

σk = sup
uj,k−u∗∈Vk

‖ uj+1,k − u∗ ‖a
‖ uj,k − u∗ ‖a

(5.3.5)

be the convergence rate ofMULT in the energy norm withν smoothing operations.

Then, the recursion formula

σk ≤ σ
µk−1

k−1 + (1− σ
µk−1

k−1 )(cρν + (1− cρν)γ)2 (5.3.6)

is valid.

Proof: This theorem has been proved by Schieweck, Theorem 2.2 of [70] with ρ = ρ1 = ρ3, and
Pflaum, see Theorem 4 of [65]. 2

The following lemma of the standard multi-grid theory is helpful for the analysis of the recursion
formula (5.3.6).

LEMMA 5.6. Letµk = µ ∈ N, µ > 1, and

κ := (cρν + (1− cρν)γ)2 <
µ− 1

µ
. (5.3.7)

Then, the elementsσk of the recursion

σ0 = 0,

σk = σµk−1 + (1− σµk−1)κ

are contained in the interval[0, σ). Furthermore, the equation

σ = κ+ σµ(1− κ)

has a solutionσ ∈ (0, 1). More precisely, the sequence{σk}∞k=0 is monotonic increasing and
bounded from above byσ < 1 for 0 < κ < µ−1

µ
. Especially, we have

σ = lim
k→∞

σk =

{
1 for κ ≥ 1

2
κ

1−κ for κ < 1
2

for µ = 2 and

σ = lim
k→∞

σk =

{
1 for κ ≥ 2

3√
1
4

+ κ
1−κ −

1
2

for κ < 2
3

(5.3.8)

for µ = 3.
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5 Fast solvers for degenerated problems

Proof: The proof can be found in several papers, see e.g. Lemma 3 of [65] or Lemma 3.2 of [70].
2

Using Theorem5.5 and Lemma5.6, we can prove a mesh-size independent convergence rate
σ < 1 for a symmetric bilinear forma in the caseµ = 2, i.e. theW -cycle, ifκ < 1

2
.

If κ < 2
3
, one can prove a mesh-size independent convergence rateσ < 1 for µ = 3. The number

of smoothing steps which are needed in order to reduceκ < µ−1
µ

= 2
3

can be determined from
(5.3.7). This fact is stated as a remark.

REMARK 5.7. If µ = 3, c = 1 in (5.3.3) andγ2 < 2
3
, ν >

ln(
√

2
3
−γ)−ln(1−γ)

ln ρ
smoothing steps

are required.

5.3.3 Basic definitions and helpful lemmata of the linear algebra

We want to prove a mesh-size independent multi-grid convergence rate for the linear system
(4.2.6) via Theorem5.5. Thus, the bounds forρ in (5.3.3) andγ2 in (5.3.4) have to be determined.
In a first part, some lemmata are derived which are helpful for this aim. Let us introduce and
restate some more notation. By (4.2.4), we have

Vk = span{φkij}n−1
i,j=1.

We decompose the spaceVk into the spaceVk−1 and a spaceWk, i.e.

Vk = Vk−1 ⊕Wk,

cf. relations (5.3.1) and (5.3.2). In order to prove a sufficient strengthened Cauchy-inequality

(a(v, w))2 ≤ γ2a(v, v)a(w,w) ∀v ∈ Vk−1, w ∈Wk (5.3.9)

with γ2 < 1, the bilinear forma(·, ·) is split into

a(v, w) =

∫
Ω

y2vxwx + x2vywy

=
n−1∑
i,j=0

∫
Eki,j

y2vxwx + x2vywy

=
n−1∑
i,j=0

aE
k
i,j(v, w). (5.3.10)

DEFINITION 5.8. LetV be a space of functions onΩ. LetΩ0 ⊂ Ω. We denote the restriction
ofV onΩ0 byV |Ω0.

LEMMA 5.9. Let a(·, ·) be a symmetric, positive definite bilinear form. Under the assumption
that

(aE
k
i,j(v, w))2 ≤ γ2

Eki,j
aE

k
i,j(v, v)aE

k
i,j(w,w) i, j = 0, . . . , n− 1 (5.3.11)

46



5.3 Multi-grid proof for degenerated problems

for all v ∈ Vk |Ekij andw ∈Wk |Ekij , one has

(a(v, w))2 ≤ γ2a(v, v)a(w,w) ∀v ∈ Vk, w ∈Wk

with γ2 = maxi,j γ
2
Eki,j

.

Proof: The proof is standard, [15], [58]. 2

Thus, we can deduce from the local constantsγ2
Eki,j

in (5.3.11) to the global oneγ2 in (5.3.9). The

following proposition is required for some boundary elements.

PROPOSITION 5.10. Leta(·, ·) be any bilinear form. Assume that

(a(v, w))2 ≤ γ2a(v, v)a(w,w) ∀v ∈ V, ∀w ∈W

is valid. LetV0 ⊂ V andW0 ⊂W. Then,

(a(v, w))2 ≤ γ2a(v, v)a(w,w) ∀v ∈ V0, ∀w ∈W0

holds.

Proof: The proof is trivial.2
The following lemma, see [39], [75], relates the constantγ2

Eki,j
of the strengthened Cauchy-

inequality (5.3.11) to the largest eigenvalue of a generalized eigenvalue problem. In order to
formulate it, two definitions are needed.

DEFINITION 5.11. Leta(·, ·) : V ×V 7→ R be any bilinear form. We define

ker a = {v ∈ V : a(v, w) = 0 ∀w ∈ V}

as the kernel of the bilinear forma.

DEFINITION 5.12. LetX be a linear (finite dimensional) space,Y a subspace ofX. We define
the differenceX	Y as any linear subspace satisfying

X = Y ⊕ (X	Y).

We note that the choice ofX	Y is not unique.

LEMMA 5.13. Consider the splittingV ⊕W. Let

V = span{φi}ni=1, W = span{ψi}mi=1,

G = [a(φi, φj)]
n
j,i=1 , H = [a(φi, ψj)]

m,n
j,i=1 , J = [a(ψi, ψj)]

m
j,i=1 .

Furthermore, let
V ∩W = {0}
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5 Fast solvers for degenerated problems

and
ker a ⊂ V.

Let us assume that the bilinear forma(·, ·) is symmetric and positive semidefinite. Then, the
minimal constantγ2 with

a(v, w)2 ≤ γ2a(v, v)a(w,w) ∀v ∈ V, w ∈W

is equal to the largest eigenvalueλ of the generalized eigenvalue problem

V THTJ−1HV w = λV TGV w. (5.3.12)

The matrixV ∈ Rn×q, q ≤ n, is chosen arbitrarily such thatimV = Rn	kerG andkerV T = 0.

Proof: We have
a(v, w)2 ≤ γ2a(v, v)a(w,w) ∀v ∈ V, w ∈W, (5.3.13)

whereγ2 is as small as possible. Forv ∈ ker a, this inequality is satisfied. Hence, it is equivalent
to restrict ourselves tov ∈ V 	 ker a, v, w 6= 0. Sincea is positive semidefinite, one can write

a(v, w)2

a(v, v)a(w,w)
≤ γ2

for all v ∈ V 	 ker a, w ∈W andv, w 6= 0. Hence, the inequality (5.3.13) is equivalent to

sup
v ∈ V 	 ker a

w ∈W
v 6= 0, w 6= 0

(a(v, w))2

a(v, v)a(w,w)
= γ2. (5.3.14)

Now, we transform the left hand side of (5.3.14). Using vectors ofRn, we have

γ2 = sup
v ∈ V 	 ker a

w ∈W
v 6= 0, w 6= 0

(a(v, w))2

a(v, v)a(w,w)
= sup

v ∈ Rn 	 kerG
w ∈ Rm

v 6= 0, w 6= 0

(wTHv)2

vTGv wTJw
.

Because of our assumptions, the matrixJ is symmetric and positive definite. Substitutingu =
J

1
2w, one obtains

γ2 = sup
v ∈ Rn 	 kerG

u ∈ Rm

u 6= 0, v 6= 0

(uTJ−
1
2Hv)2

vTGv uTu
.
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5.3 Multi-grid proof for degenerated problems

The right hand side is maximal, ifu = J−
1
2Hv. Inserting this andv = V y, we have

γ2 = sup
v∈Rn	kerG,v 6=0

vTHTJ−1Hv

vTGv

= sup
y∈Rq ,y 6=0

yTV THTJ−1HV y

yTV TGV y
.

This is the largest eigenvalue of the generalized eigenvalue problem

V THTJ−1HV y = λV TGV y,

i.e. λmax
(
(V TGV )

−1
V THTJ−1HV

)
= γ2, whereV TGV is symmetric and positive definite.

2

The proof of the strengthened Cauchy-inequality relies on an estimate for the eigenvalues of a
2× 2 matrix. A useful tool is the next lemma.

LEMMA 5.14. LetM ∈ R2×2 be a matrix with real eigenvalues andα a real number with

r = 2α− trace(M) ≥ 0 (5.3.15)

and
q = detM + α2 − α trace(M) ≥ 0. (5.3.16)

Then, we have
λmax(M) ≤ α.

Proof: The characteristical polynomialpc(x) of a2× 2 matrixM is given by

pc(x) = x2 − trace(M)x+ detM. (5.3.17)

Sety = x− α, then

pc(x) = y2 + (2α− trace(M))y + detM + α2 − α trace(M),

= y2 + ry + q. (5.3.18)

Because of our assumption,M has real eigenvalues. By (5.3.17) and (5.3.18), this polynomial
has 2 real roots. Since (5.3.15) and (5.3.16), both zeros are nonpositive. Hence, the rootsx1,2 of
pc fulfill x1,2 ≤ α. 2

The following lemma, see [4], [79], of the finite element analysis is helpful for the proof of
relation (5.3.3). It analyzes the eigenvalue bounds of an assembled matrix by the eigenvalue
bounds of the element matrices.

LEMMA 5.15. Let{Ki ∈ Rmi×mi}ni=1 be a finite set of symmetric and positive definite matrices.
Let

K =
n∑
i=1

LTi KiLi,
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5 Fast solvers for degenerated problems

whereLi ∈ Rmi×m and K ∈ Rm×m. Furthermore, letCi a symmetric and positive definite
preconditioner for the matrixKi with

λmin
(
Ci
−1Ki

)
= λi > 0, λmax

(
Ci
−1Ki

)
= λi > 0, i = 1, . . . , n. (5.3.19)

Let

C =
n∑
i=1

LTi CiLi.

Then,λmin
(
C−1K

)
≥ λ andλmax

(
C−1K

)
≤ λ is valid with

λ = min
i=1,...,n

λi, λ = max
i=1,...,n

λi.

Proof: For allv ∈ Rm, we can estimate

(Kv, v) =

(
n∑
i=1

LTi KiLiv, v

)

=
n∑
i=1

(KiLiv, Liv)

≤
n∑
i=1

λi (CiLiv, Liv)

≤
n∑
i=1

λ (CiLiv, Liv)

= λ (Cv, v) ,

where it followsλmax
(
C−1K

)
≤ λ. The second assertion can be proved by the same arguments.

2

5.3.4 Discussion of the strengthened Cauchy-inequality on
subelements Ek

ij

Consider the strengthened Cauchy inequality (5.3.4) for the bilinear form

a(u, v) =

∫
Ω

ω2(y)uxvx + ω2(x)uyvy.

For i, j > 0, we prove the strengthened Cauchy-inequality onτ 1,k
ij andτ 2,k

ij . If i = 0, or j = 0,
the result is shown by proving the strengthened Cauchy-inequality on the macro-elementsEkij.
At first, we determine the stiffness matrix on the macro-elementsEkij with respect to the two level
basis built by the basis functions ofVk |Ekij andWk+1 |Ekij . We start with the introduction of the

basis functions onEkij. Note that the triangleτ 2,k
ij is the union of the trianglesτ 2,k+1

2i,2j , τ 1,k+1
2i+1,2j,
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Figure 5.1:Local numbering of the nodes and sub-triangles ofEkij.

τ 2,k+1
2i+1,2j, andτ 2,k+1

2i+1,2j+1, the triangleτ 1,k
ij is the union of the trianglesτ 1,k+1

2i,2j , τ 1,k+1
2i,2j+1, τ

2,k+1
2i,2j+1, and

τ 1,k+1
2i+1,2j+1. The nodesxkij, x

k
i,j+1, x

k
i+1,j, andxki+1,j+1 are the coarse grid nodes, the nodesxk+1

2i+1,2j,
xk+1

2i,2j+1, x
k+1
2i+2,2j+1, x

k+1
2i+1,2j+2, andxk+1

2i+1,2j+1 are new in levelk + 1, compare Figure5.1. Using
this notation, we have

Vk |Ekij= span{φklm}(l,m)∈NVkij
(5.3.20)

and
Wk+1 |Ekij= span{φk+1

lm }
(l,m)∈N

Wk+1
ij

. (5.3.21)

For reasons of simplicity, we write onlyφk+1
lm instead ofφk+1

lm |Ekij for the restriction ofφk+1
lm on

Ekij. The index sets in (5.3.20), (5.3.21) are given by

NVkij = {(l,m) ∈ N2
0, i ≤ l ≤ i+ 1, j ≤ m ≤ j + 1},

N
Wk+1

ij = Nk+1 ∩ {(l,m) ∈ N2
0, 2i ≤ l ≤ 2i+ 2, 2j ≤ m ≤ 2j + 2},

whereNk+1 was defined in (5.3.2). Because ofVk ⊂ H1
0 (Ω), some modifications are necessary

for boundary macro-elementsEkij, i.e. with i = 0, j = 0, i = n− 1, or j = n− 1.
On the macro-elementsEkij, we introduce the matrices

Gij :=
[
aE

k
ij(φklm, φ

k
rs)
]

(r,s),(l,m)∈NVkij
,

HT
ij :=

[
aE

k
ij(φk+1

lm , φkrs)
]

(r,s)∈NVkij ,(l,m)∈N
Wk+1
ij

,

Jij :=
[
aE

k
ij(φk+1

lm , φk+1
rs )

]
(r,s),(l,m)∈N

Wk+1
ij

.
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In the same way, the matrices

Gq,ij :=
[
aτ

q,k
ij (φklm, φ

k
rs)
]

(r,s),(l,m)∈Nq,Vk
ij

,

HT
q,ij :=

[
aτ

q,k
ij (φk+1

lm , φkrs)
]

(r,s)∈Nq,Vk
ij ,(l,m)∈N

q,Wk+1
ij

,

Jq,ij :=
[
aτ

q,k
ij (φk+1

lm , φk+1
rs )

]
(r,s),(l,m)∈N

q,Wk+1
ij

with
N q,Vk
ij := T qij ∩N

Vk
ij

and
N
q,Wk+1

ij := T qij ∩N
Wk+1

ij

are defined on the trianglesτ q,kij , q = 1, 2, whereT 1
ij := {(l,m) ∈ N2

0, l − m ≤ i − j} and
T 2
ij := {(l,m) ∈ N2

0, l − m ≥ i − j}. The ordering of the rows and columns in the matrices
Gq,ij, Hq,ij andJq,ij corresponds to the ordering of the coarse grid nodes and of the new nodes
introduced in the beginning of this subsection, cf. Figure5.1. The entries of the matricesGq,ij,
Hq,ij andJq,ij, andGij, Hij andJij can be determined by a straightforward calculation. We
compute those for the case of a general weight functionω(ξ) in (5.1.1). The following parameters
depending on the integerj are introduced:

dj =
1

4

∫
τ1,k+1
2i,2j ∪τ2,k+1

2i,2j+1

(ω(y))2 d(x, y),

ej =
1

4

∫
τ2,k+1
2i,2j ∪τ2,k+1

2i+1,2j

(ω(y))2 d(x, y),

fj =
1

4

∫
τ1,k+1
2i,2j+1∪τ

1,k+1
2i+1,2j+1

(ω(y))2 d(x, y). (5.3.22)

Note thatdj, ej andfj are independent of the integeri. The valuesdi, ei andfi are defined
by a permutation ofi andj, x andy, andτ 2,k

ij andτ 1,k
ji in (5.3.22). One obtains the following

proposition.

PROPOSITION 5.16. Let0 < i, j < n− 1. Then, we have

Gij =


di + ei + dj + ej −dj − ej −di − ei 0

−dj − ej di + fi + dj + ej 0 −di − fi
−di − ei 0 di + ei + dj + fj −dj − fj

0 −di − fi −dj − fj di + fi + dj + fj

 ,

HT
ij = 2


0 0 −dj −di di + dj
di 0 dj 0 −di − dj
0 dj 0 di −di − dj

−di −dj 0 0 di + dj

 ,

52



5.3 Multi-grid proof for degenerated problems

Jij = 4


di + ej 0 0 0 −di

0 ei + dj 0 0 −dj
0 0 fi + dj 0 −dj
0 0 0 di + fj −di

−di −dj −dj −di 2di + 2dj

 (5.3.23)

on the macro-elementsEkij. In the case of matrices on the triangleτ 2,k
ij , one obtains

G2,ij =

 dj + ej −dj − ej 0
−dj − ej di + fi + dj + ej −di − fi

0 −di − fi di + fi

 ,
(H2,ij)

T = 2

 0 −dj dj
di dj −di − dj

−di 0 di

 ,
J2,ij = 4

 di + ej 0 −di
0 fi + dj −dj

−di −dj di + dj

 . (5.3.24)

By exchanging the indicesi andj in (5.3.24), one obtains the matricesG1,ij = G2,ji, H1,ij =
H2,ji andJ1,ij = J2,ji.
In the following, we assume thatω(ξ) = ξ. Thus, there one easily computes

dj =
48j2 + 48j + 14

192n2
,

ej =
48j2 + 16j + 2

192n2
,

fj =
48j2 + 80j + 34

192n2
. (5.3.25)

In the case of elements laying on the boundary of the domainΩ, the matricesGij,Hij andJij in
(5.3.23) and (5.3.24) are similarly defined. However, all rows and columns inGij, Hij andJij
which correspond to boundary nodes have to be canceled.

COROLLARY 5.17. We havekerG2,ij ⊂ kerH2,ij for τ 2,k
ij andkerGij ⊂ kerHij for Ekij, where

1 ≤ i, j ≤ n− 2.

Proof: In the caseEkij, there one easily derives

kerGij = span{[1, 1, 1, 1]T}

and forτ 2,k
ij ,

kerG2,ij = span{[1, 1, 1]T}.

2

Now, we determine the constantγτ2,k
ij

. For this aim, we prove the next lemma.
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LEMMA 5.18. For 0 < i, j < n− 1, the inequality

(aτ
2,k
ij (v, w))2 ≤ γ2

τ2,k
ij

aτ
2,k
ij (v, v)aτ

2,k
ij (w,w) ∀v ∈ Vk |τ2,k

ij
, w ∈Wk+1 |τ2,k

ij
(5.3.26)

holds withγ2

τ2,k
ij

= 95
176

. The constant is optimal in the casei = j = 1.

Proof: Corollary5.17stateskerG2,ij ⊂ kerH2,ij. By Proposition5.16and

det J2,ij = diejfi + didjfi + ejfidj + diejdj > 0

(equivalent toker J2,ij is trivial), Lemma5.13can be applied. We have

kerG2,ij = span{[1, 1, 1]T}.

Thus, the matrixV can be chosen as

V =

 1 0
0 1
0 0

 .
The matrixV TG2,ijV is symmetric and positive definite, andV T (H2,ij)

T (J2,ij)
−1H2,ijV is sym-

metric. Therefore, the generalized2× 2 eigenvalue problem

V T (H2,ij)
T (J2,ij)

−1H2,ijV x = V TG2,ijV λx

has real eigenvalues and is equivalent to the eigenvalue problem

Mx = (V TG2,ijV )−1V T (H2,ij)
T (J2,ij)

−1H2,ijV x = λx.

This yields (with a computer algebra system) withα = γ2

τ2,k
ij

= 95
176

to

r = 2α− trace(M) ≥ 0 (5.3.27)

and
q = detM + α2 − αtrace(M) ≥ 0. (5.3.28)

Using Lemmata5.13and5.14, we have (5.3.26). 2

REMARK 5.19. We obtain the constantγ2

τ2,k
ij

= 95
176

by a direct computation fori = j = 1.

REMARK 5.20. The valuesr (5.3.27) andq (5.3.28) are broken rational functions with respect
to i andj. We give the exact values in the appendix on page111.

Lemma5.18has some important corollaries.
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5.3 Multi-grid proof for degenerated problems

COROLLARY 5.21. For 0 < i, j < n− 1, the inequality

(aτ
1,k
ij (v, w))2 ≤ γ2

τ1,k
ij

aτ
1,k
ij (v, v)aτ

1,k
ij (w,w) ∀v ∈ Vk |τ1,k

ij
, w ∈Wk+1 |τ1,k

ij
(5.3.29)

is valid withγ2

τ1,k
ij

= 95
176

.

Proof: Since the differential operator in (5.1.1) is symmetric with respect tox andy, relation
(5.3.26) is valid for the triangleτ 1,k

ij , too.2

COROLLARY 5.22. For 0 < i, j < n− 1, the estimate

(aE
k
ij(v, w))2 ≤ γ2

Ekij
aE

k
ij(v, v)aE

k
ij(w,w) ∀v ∈ Vk |Ekij , w ∈Wk |Ekij (5.3.30)

holds withγ2
Ekij

= 95
176

.

Proof: We use the arguments of Lemma5.9. Then, by Lemma5.18 and Corollary5.21, the
assertion follows.2
Hence, we have proved a strengthened Cauchy-inequality on the macro-elementsEkij for 0 <
i, j < n− 1. The remaining cases are the macro-elementsEkij, where one or both of the indicesi
or j are equal to0 or n− 1. Relatively simple is the casei = n− 1 or j = n− 1.

COROLLARY 5.23. Let i, j > 0. The inequality

(aE
k
ij(v, w))2 ≤ γ2

Ekij
aE

k
ij(v, v)aE

k
ij(w,w) ∀v ∈ Vk |Ekij , w ∈Wk+1 |Ekij (5.3.31)

is valid for i = n− 1 or j = n− 1 with γ2
Ekij
≤ 95

176
.

Proof: Consider the casei = n− 1 and0 < j < n− 1. We omit the unknowns corresponding to
φki+1,j, φ

k
i+1,j+1 andφk+1

2i+2,2j+1 in the matricesGij,Hij andJij defined in (5.3.23). More precisely,
we have to cancel the second and last row and column inGij, the second row, the fourth row and
the third column inHT

ij , and the third row and column inJij. Note that the assumptioni < n− 1
is not used in the proof of Lemma5.18. Hence, this estimate and all corollaries of this lemma are
valid for i = n − 1 and0 < j < n − 1, too. By Lemma5.10, one can conclude that a Dirichlet
boundary condition does not increase the constant of the strengthened Cauchy-inequality. The
casesj = n − 1, 0 < i < n − 1, andi = j = n − 1 follow by symmetry of the differential
operator or with same arguments.2

More difficult is the case0 < i < n − 1 andj = 0. It is not possible to splitEkij into τ 1,k
ij and

τ 2,k
ij , if j = 0 and to prove the strengthened Cauchy-inequalitity on the trianglesτ 1,k

i,0 andτ 2,k
i,0 . On

the triangleτ 1,k
i,0 , we have no influence of the Dirichlet boundary condition. We would obtain a

constantγτ1,k
i,0

which is closer to 1. In order to avoid this phenomenon,γEki,0 is estimated directly.

The unknowns corresponding toφki+1,0, φ
k
i,0 andφk+1

2i+1,0, namely the first two rows and columns
of Gij and the first row and column ofJij in (5.3.23), are omitted as the corresponding rows and
columns inHT

ij .
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By Proposition5.16,

Gi,0 =

[
di + ei + 48η −48η

−48η di + fi + 48η

]
,

HT
i,0 = 2

[
14η 0 di −di − 14η

−14η 0 0 di + 14η

]
,

Ji,0 = 4


ei + 14η 0 0 −14η

0 fi + 14η 0 −14η
0 0 di + 34η −di

−14η −14η −di 2di + 28η


are valid (withη = 1

192n2 ). SincekerGi,0 = {0}, the identity matrix is a possible choice forV .
Using a computer algebra program, we can prove the following lemma with the same arguments
as in the proof of Lemma5.18.

LEMMA 5.24. The relation

γ2
Ei,0 <

95

176
(5.3.32)

is valid for0 < i < n− 1 and

γ2
E0,j <

95

176
(5.3.33)

is valid for0 < j < n− 1.

REMARK 5.25. The estimates (5.3.32) and (5.3.33) can be extended toi = n−1 andj = n−1
using the same arguments as in the proof of Corollary5.23.

The last case isi = j = 0. This case is very simple. By (5.3.25), one has

d0 = 14η, e0 = 2η, f0 = 34η

with η = 1
192n2 . Furthermore, we note that

Vk+1 |Ek00= span{φk1,1, φk+1
1,0 , φ

k+1
0,1 , φ

k+1
0,0 } ∩H1

0 (Ω) = span{φk1,1}.

From Proposition5.16, we obtain

G00 = [2(d0 + f0)] ,

HT
00 =

[
0 0 4d0

]
,

J00 = 4

 d0 + f0 0 −d0

0 d0 + f0 −d0

−d0 −d0 4d0


by canceling the first three rows and columns ofGij, the first two rows and columns ofJij, and
the corresponding rows and columns ofHij in (5.3.23). G00 is regular. Thus, the matrixV = [1]
can be chosen. Using Lemma5.13, a short computation shows

γ2
E00 = (V TG00V )−1V THT

00J
−1
00 H00V =

d0

d0 + 2f0

=
7

41
. (5.3.34)

Now, the main result of this subsection can be stated.
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5.3 Multi-grid proof for degenerated problems

THEOREM 5.26. Letω(ξ) = ξ and let the bilinear forma(·, ·) be defined in (5.1.1). Then, the
inequality

(a(v, w))2 ≤ γ2a(v, v)a(w,w) ∀v ∈ Vk, w ∈Wk+1.

is valid withγ2 = 95
176

.

Proof: We apply Lemma5.9 and estimateγ2
Ekij

. The assertion follows by Corollary5.22 for

0 < i, j < n − 1, by Corollary5.23 for 0 < i < n − 1 andj = n − 1, or 0 < j ≤ n − 1
andi = n − 1, by relation (5.3.34) for i = j = 0, and by Lemma5.24and Remark5.25for the
remaining cases.2

5.3.5 Construction of the smoother

In order to apply multi-grid to the linear system (4.2.6), we need an efficient smoother. This
smoother will be contructed by the local behaviour of the differential operator. An idea of Axels-
son and Padiy, [4], for anisotropic problems is extended to bilinear forms as in problem (5.1.1).
This smoother operates on the spaceWk+1 only. We consider the finite element discretization of
(4.2.3) with the bilinear form

a(u, v) :=

∫
Ω

(ω(y))2uxvx + (ω(x))2uyvy dxdy =

∫
Ω

gv dxdy =: 〈g, v〉

(see subsection4.2.2) and a general weight function(ω(ξ))2.

ASSUMPTION 5.27. The weight function(ω(ξ))2 is assumed to be of the form(ω(ξ))2 = ξ2α

with α ≥ 0.

The most interesting case isα = 1.
Consider the triangleτ 2,k

ij . For our discussion, only the sub-matricesJs,ij, where0 ≤ i, j ≤ n−1
ands = 1, 2, are needed which correspond to the nodal basis functions onWk+1. The two cases
i < j andi ≥ j are discussed. We start withi < j. By Proposition5.16,

J2,ij = 4

 di + ej 0 −di
0 fi + dj −dj

−di −dj di + dj

 .
The indexk is omitted. Fori < j, the matrix

C2,ij = 4

 di + ej 0 0
0 fi + dj −dj
0 −dj di + dj

 (5.3.35)

is introduced. In the matrixC2,ij, we set all off diagonal entries ofJ2,ij to 0 which have relatively
small absolute values in comparison to the corresponding main diagonal entries. Sinceω is
monotonic increasing, the relationdi < dj is valid for i < j. Thus, we set the−di entries ofJ2,ij

in C2,ij to 0. We prove now the following lemma.
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LEMMA 5.28. For 0 ≤ i < j < n, the eigenvalue estimates

λmin
(
C2,ij

−1J2,ij

)
≥ 1− 1

3

√
3 and

λmax
(
C2,ij

−1J2,ij

)
≤ 1 +

1

3

√
3

hold.

Proof: Let
β = difi + didj + fidj.

Then, we have

C−1
2,ijJ2,ij =

 1 0 −di
di+ej

−didj
β

1 0
−difi−didj

β
0 1

 .
This matrix has the characteristical polynomial

det(λI − C−1
2,ijJ2,ij) = (λ− 1)

(
(1− λ)2 − di

di + ej

difi + didj
difi + didj + fidj

)
.

The rootsλi, i = 1, 2, 3, of this polynomial are

λ1 = 1,

λ2,3 = 1±√ρ,

where

ρ =
di

di + ej

difi + didj
difi + didj + fidj

. (5.3.36)

Note that for alli andj, the valuesdj, ej andfj are mean values of the positive function(ω(y))2

over the union of two triangles having a volume of1
8n2 . By the monotony of the weight function,

the inequalitydi ≤ fi holds for alli ∈ N, cf. (5.3.22) and Figure5.1. Therefore,

difi + didj
difi + didj + fidj

≤ difi + didj
difi + 2didj

=
fi + dj
fi + 2dj

=
1

1 + 1
fi
dj

+1

.

Moreover, byi ≤ j − 1 and the monotony of the weight function, one hasω(x) ≤ ω(y) for all
x, y ∈ τ 2,k

ij . Thus, by integration over sub-triangles ofτ 2,k
ij with volume 1

8n2 , cf. Figure5.1,

fi =
1

4

∫
τ2,k+1
2i+1,2j∪τ

2,k+1
2i+1,2j+1

(ω(x))2 d(x, y) ≤ 1

4

∫
τ1,k+1
2i+1,2j∪τ

2,k+1
2i+1,2j+1

(ω(y))2 d(x, y) = dj,

di =
1

4

∫
τ2,k+1
2i,2j ∪τ1,k+1

2i+1,2j

(ω(x))2 d(x, y) ≤ 1

4

∫
τ2,k+1
2i,2j ∪τ2,k+1

2i+1,2j

(ω(y))2 d(x, y) = ej.
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5.3 Multi-grid proof for degenerated problems

Therefore, we obtain the estimates

difi + didj
difi + didj + fidj

≤ 2

3
(5.3.37)

and
di

di + ej
≤ 1

2
. (5.3.38)

Inserting the estimates (5.3.37) and (5.3.38) into (5.3.36), one has

1−
√

1

3
≤ λ3 ≤ λ1 ≤ λ2 ≤ 1 +

√
1

3
.

Hence, the assertion follows immediately.2

Now, consider the casei ≥ j. Introducing the matrix

C2,ij = 4

 di + ej 0 −di
0 fi + dj 0

−di 0 di + dj

 , (5.3.39)

we will show thatκ
(
C2,ij

−1J2,ij

)
≤ c independent of the parametersj, i, andn. In order to

prove this result, the following estimate concerning the weight function is necessary.

LEMMA 5.29. Letω(·) satisfy Assumption5.27. Then, one has the inequality

0 ≤
(
ω

(
y +

1

2n

))2

≤ c(ω(y))2 ∀y ≥ 1

n
, (5.3.40)

where the constant c is independent ofn andy.

The inequality (
ξ + 1.5

ξ + 1

)2α

=

(
1 +

1

2ξ + 2

)2α

≤
(

3

2

)2α

= c

holds for allξ ≥ 0 andα ≥ 0 with c =
(

3
2

)2α
. Thus,(

ξ +
3

2

)2α

≤ c (ξ + 1)2α , or(
ξ + 3

2

n

)2α

≤ c

(
ξ + 1

n

)2α

with somen > 0. Using(ω(ξ))2 = ξ2α, we have
(
ω
(
ξ+ 3

2

n

))2

≤ c
(
ω
(
ξ+1
n

))2
, or, substituting

y = ξ+1
n

,

0 ≤
(
ω

(
y +

1

2n

))2

≤ c(ω(y))2 ∀y ≥ 1

n

which is the desired result.2
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LEMMA 5.30. For 0 ≤ j ≤ i < n, one has

λmin
(
C2,ij

−1J2,ij

)
� 1 and

λmax
(
C2,ij

−1J2,ij

)
� 1.

The constants are independent ofi, j andn. For ω(ξ) = ξ, the eigenvalue estimates

λmin
(
C2,ij

−1J2,ij

)
≥ 1− 2

11

√
11 and

λmax
(
C2,ij

−1J2,ij

)
≤ 1 +

2

11

√
11

are valid.

Proof: We start with the casei < n − 1 andj > 0. The proof is similar to the proof of Lemma
5.28. A short calculation yields

det(λI − C−1
2,ijJ2,ij) = (λ− 1)

(
(λ− 1)2 − dj

dj + fi

didj + ejdj
diej + didj + ejdj

)
.

By i ≥ j and the monotony of the weight functionω, we have∫
τ2,k+1
2i+1,2j

(ω(x))2 d(x, y) =

∫
τ2,k+1
2i+1,2j+1

(ω(x))2 d(x, y) (5.3.41)

≥
∫
τ2,k+1
2j+1,2i

(ω(x))2 d(x, y)

=

∫
τ1,k+1
2i,2j+1

(ω(y))2 d(x, y)

≥
∫
τ1,k+1
2i+1,2j

(ω(y))2 d(x, y).

For the same reason,∫
τ2,k+1
2i,2j

(ω(y))2 d(x, y) ≤
∫
τ1,k+1
2i+1,2j

(ω(y))2 d(x, y). (5.3.42)

Using (5.3.41) and (5.3.42),

fi =

∫
τ2,k+1
2i+1,2j∪τ

2,k+1
2i+1,2j+1

(ω(x))2 d(x, y) ≥
∫
τ2,k+1
2i,2j ∪τ1,k+1

2i+1,2j

(ω(y))2 d(x, y) = dj. (5.3.43)

By Lemma5.29, we have

0 ≤
(
ω

(
y +

1

2n

))2

≤ c(ω(y))2 ∀y ≥ 1

n
.
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Integration overτ 2,k+1
2i+1,2j gives∫
τ2,k+1
2i+1,2j

(
ω

(
y +

1

2n

))2

d(x, y) ≤ c

∫
τ2,k+1
2i+1,2j

(ω(y))2 d(x, y)

with j ≥ 1. With a change of variables̃y = y + 1
2n

in the left integral, the integration will be
done now overτ 2,k+1

2i+1,2j+1,∫
τ2,k+1
2i+1,2j+1

(ω(y))2 d(x, y) ≤ c

∫
τ2,k+1
2i+1,2j

(ω(y))2 d(x, y). (5.3.44)

Using (5.3.44), ∫
τ2,k+1
2i,2j

(ω(y))2 d(x, y) =

∫
τ2,k+1
2i+1,2j

(ω(y))2 d(x, y),

and ∫
τ1,k+1
2i+1,2j

(ω(y))2 d(x, y) ≤
∫
τ2,k+1
2i+1,2j+1

(ω(y))2 d(x, y),

we have

dj =
1

4

∫
τ1,k+1
2i+1,2j∪τ

2,k+1
2i+1,2j+1

(ω(y))2 d(x, y) ≤ c

4

∫
τ2,k+1
2i,2j ∪τ2,k+1

2i+1,2j

(ω(y))2 d(x, y) = ej. (5.3.45)

For the caseα = 1, the constantc can be chosen by the more accurate estimatec = 5
3
, cf. the

explicit structure ofdj andej in (5.3.25). Using (5.3.45) anddj ≤ di for j ≤ i, one can estimate

ejdj + djdi ≤ (c+ 1)ejdi.

Equivalently, one obtains

(c+ 2)(ejdj + djdi) ≤ (c+ 1)(ejdi + ejdj + djdi).

Together with (5.3.43), the assertion follows as in the proof of Lemma5.28.
Consider nowi = n− 1. Then, the second row and column ofC2,ij andJ2,ij has to be canceled.
Thus, the matricesC2,n−1,j andJ2,n−1,j are identical and

λ1(C
−1
2,n−1,jJ2,n−1,j) = λ2(C

−1
2,n−1,jJ2,n−1,j) = 1.

The last case isj = 0. We have to omit the first row and column inC2,i,0 andJ2,i,0. A short
calculation shows

det(λI − C−1
2,i,0J2,i,0) = (λ− 1)2 − d0

fi + d0

d0

d0 + di
.

Sinced0 ≤ di andd0 ≤ fi for i ≥ 0, cf. relation (5.3.43), d0
d0+di

≤ 1
2

and d0
d0+fi

≤ 1
2

follows.
Hence, the estimates

1

2
≤ λ2 < λ1 ≤

3

2
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are obtained for the roots of the characteristical polynomial of the matrixC−1
2,i,0J2,i,0. 2

In (5.3.35), (5.3.39), we have defined a local preconditionerC2,ij for the macro-element stiffness
matricesJ2,ij corresponding to the triangleτ 2,k

ij . On the trianglesτ 1,k
ij , we define matricesC1,ij in

the same way asC2,ij for τ 2,k
ij :

C1,ij =



4

 ei + dj 0 −dj
0 di + fj 0
−dj 0 di + dj

 for i ≤ j,

4

 ei + dj 0 0
0 di + fj −di
0 −di di + dj

 for i > j.

(5.3.46)

REMARK 5.31. By the symmetry of the differential operator with respect to the variablesx and
y, we obtain the same results for the trianglesτ 1,k

ij as in Lemmata5.28and5.30.

Now, a global preconditionerCWk+1
for KWk+1

is defined using the local matricesCs,ij, where
0 ≤ i, j ≤ n − 1, s = 1, 2. The matrixKWk+1

is defined as stiffness matrixKk+1 (4.2.6)
restricted to the spaceWk+1, i.e.

KWk+1
=
[
a(φk+1

lm , φk+1
ij )

]
(i,j),(l,m)∈Nk+1

(compare (5.3.2), (5.3.3)). The matrixKWk+1
is the result of assembling the local stiffness

matricesJs,ij, s = 1, 2 andi, j = 0, . . . , n− 1, i.e.

KWk+1
=

2∑
s=1

n−1∑
i,j=0

LTs,ijJs,ijLs,ij. (5.3.47)

The matricesLs,ij ∈ R3×3·4k−1−2k are the usual finite element connectivity matrices. Since

(2k − 1)2 − (2k−1 − 1)2 = 3 · 4k−1 − 2k,

the dimension ofLs,ij is 3× 3 · 4k−1 − 2k.

DEFINITION 5.32. We define the matrixCWk+1
by

CWk+1
=

2∑
s=1

n−1∑
i,j=0

LTs,ijCs,ijLs,ij. (5.3.48)

Because of the properties of the local preconditionersCs,ij, the matrixCWk+1
is a good precon-

ditioner forKWk+1
. This result is stated as the main theorem of this subsection.

THEOREM 5.33. Letω(ξ) satisfy Assumption5.27, letCWk+1
andKWk+1

be defined in (5.3.48)
and (5.3.47), respectively. Then, one obtains

λmin
(
(CWk+1

)−1KWk+1

)
� 1,

λmax
(
(CWk+1

)−1KWk+1

)
� 1.
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In the caseω(ξ) = ξ, the eigenvalue estimates

λmin
(
(CWk+1

)−1KWk+1

)
≥ 1− 2

11

√
11,

λmax
(
(CWk+1

)−1KWk+1

)
≤ 1 +

2

11

√
11

are valid.

Proof: By (5.3.47) and (5.3.48), the assumptions of Lemma5.15are satisfied for the matrices
Js,ij andCs,ij. By Lemma5.28and Lemma5.30, and Remark5.31, the assertions follow.2

REMARK 5.34. This result can be extended to more general weight functionsω. The weight
function should fulfill an estimate of the type (5.3.45) which means that the weight function does
not change rapidly. Another possible assumption is that the weight functionω(ξ) ≥ 0 satisfies
the following properties:

• ω is monotonic increasing,

• ω is Lipschitz-continuous with a Lipschitz constantL,

• ω(ξ) ≥ c
ξ

for ξ ∈ (0, δ), δ > 0 with somec > 0.

Proof: Using the last assumption and the monotony ofω,

ω (y) ≥ c

2n
∀y ≥ 1

n
.

Therefore,L
2n

+ ω(y) ≤
(
1 + L

c

)
ω(y). By the monotony ofw and the Lipschitz continuity, one

derives

ω

(
y +

1

2n

)
≤ L

2n
+ ω(y) ≤

(
1 +

L

c

)
ω(y)

which gives (5.3.45).2
Applying Theorem5.33, a preconditioned Richardson iteration can be built as a preconditioned
simple iteration method. The error transion operatorS0,k+1 of this method is defined by

S0,k+1 = I − ζ(CWk+1
)−1KWk+1

, (5.3.49)

whereS0,k+1 denotes the matrix representation ofS0,k+1 by the usual fem-isomorphism. This
smootherS = S0,k+1 can be used for the AlgorithmMULT .

COROLLARY 5.35. Let
‖ w ‖2

a= a(w,w)

be the energy norm of the bilinear forma. Then, for allw ∈Wk+1

‖ Sν0,k+1w ‖a≤ ρνk ‖ w ‖a
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5 Fast solvers for degenerated problems

holds, where
ζ = 1

is the optimal choice ofζ andρk ≤ ρ < 1. Especially,

ρ =
2

11

√
11 (5.3.50)

holds forω(ξ) = ξ.

Proof: By calculation and the definition of the smoother in (5.3.49), we have

ρ2 = sup
w∈Wk+1,w 6=0

‖ S0,k+1w ‖2
a

‖ w ‖2
a

= sup
w

(KWk+1
S0,k+1w, S0,k+1w)

(KWk+1
w,w)

= sup
u

((KWk+1
)−

1
2ST0,k+1KWk+1

S0,k+1(KWk+1
)−

1
2u, u)

(u, u)

= λmax((KWk+1
)−

1
2ST0,k+1KWk+1

S0,k+1(KWk+1
)−

1
2 )

= λmax

(
(I − ζKWk+1

1
2 (CWk+1

)−1KWk+1

1
2 )2
)

=
(
λmax(I − ζKWk+1

1
2CWk+1

−1KWk+1

1
2 )
)2

= (λmax(S0,k+1))
2.

The assertion follows using Theorem5.33.2

5.3.6 Application of the multi-grid theory to −x2uyy − y2uxx = g

We apply now the theory of subsection5.3.2to problem (4.2.5) with the weight functionω(ξ) =
ξ. By Theorem5.26, assumption (5.3.4) is fulfilled with γ2 ≤ 95

176
. The second assumption,

(5.3.3), of Theorem5.5 is fulfilled for the smootherS0,k defined in (5.3.49), cf. Corollary5.35.
Hence, we can prove a boundσ < 1 for the convergence rate of the multi-grid Algorithm5.3
MULT for µ ≥ 3, if we do sufficiently many smoothing steps. The convergence rateσ < 1
does not depend on the level numberk. Sinceγ2 > 1

2
, no mesh-size independent convergence

rate can be proved forµ ≤ 2. We summarize the results in the following theorem.

THEOREM 5.36. Consider the linear system (4.2.6) with the exact solutionu∗. For j = 1, . . .,
let the new iterateuj,k be defined recursively asuj+1,k = MULT (k, uj,k, g). Let us assume that
µ = µl ≥ 3 for l = 1, . . . , k andν ≥ 3. Then, the rate of convergence

σk = sup
uj,k−u∗∈Vk

‖ uj+1,k − u∗ ‖a
‖ uj,k − u∗ ‖a

on levelk can be bounded by
σk ≤ σ < 1.
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5.4 AMLI method

ν σ
< 2 1

3 0.89385
4 0.80549
8 0.70649
∞ 0.69283

Table 5.1:Estimates for the boundsσ of the convergence ratesσk for µ = 3.

Proof: If κ < 2
3
, the assertion follows by Theorem5.5, cf. relation (5.3.7). Using Lemma5.6,

the number of smoothing stepsν required for a convergence rateσ < 1 can be analyzed. We
have

κ = cρν + (1− cρν)γ2

with c = 1, γ2 = 95
176

andρ = 2
11

√
11 by relation (5.3.50). Using Remark5.7, we have a

mesh-size independent convergence rateσk ≤ σ < 1 for

ν ≈ 2.33,

i.e. ν ≥ 3. 2

Table 5.1 displays the bounds of the theoretical convergence ratesσk for several values ofν
obtained by Lemma5.6for µ = 3.

5.4 AMLI method

In section5.3, a mesh-size independent convergence rate has been proved for the Algorithm
5.3. The two main ingredients in this proof are the estimate for the constant of the strengthened
Cauchy-inequality (5.3.4) and the construction of a smootherS0,k = I − (CWk

)−1KWk
↔ S0,k

which satisfies (5.3.3). Equivalent to relation (5.3.3) is, cf. Corollary5.35, thatκ
(
(CWk

)−1KWk

)
is bounded by some constantc independent of the mesh-sizeh.
Another multi-level method is the preconditioned conjugate gradient method (pcg) with Alge-
braic Multi-Level Iteration preconditioner (AMLI)̃Ck,r,µ derived by Axelsson and Vassilevski,
[5], [6]. Let Kk be the stiffness matrix (4.2.6) for the discretization of problem (4.2.3) on page

32. One can show thatκ
(
C̃−1
k,r,µKk

)
is bounded by some constantc for all k ∈ N under the

following assumptions:

• the relation (5.3.4) is valid with some constantγ2 < 1,

• κ
(
(CWk

)−1KWk

)
< c is valid with a constantc independent of the mesh-sizeh.

In subsection5.4.1, we will give a general definition of the AMLI preconditioner. In subsection
5.4.2, we will introduce a special AMLI preconditioner̃Ck,r,µ for Kk (4.2.6) and will show that

κ
(
C̃−1
k,r,µKk

)
< c for all k ∈ N.
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5.4.1 Convergence theory for AMLI

We define now the Algebraic Multi-Level Iteration preconditioner (AMLI) of Axelsson and Vas-
silevski, [5], [6]. Consider the stiffness matrixKk (4.2.6). We assume that the unknowns are
ordered in such a way that

Kk =

[
K11,k K12,k

K21,k K22,k

]
,

whereK22,k = KWk
corresponds to the nodal basis functions inWk and

K11,k =
[
a(φk2l,2m, φ

k
2i,2j)

]n
2
−1

i,j,l,m=1

corresponds to nodal basis functions of nodes on levelk − 1. Let C̃22,l be a preconditioner for
K22,l satisfying

λmin

(
K22,l

−1C̃22,l

)
≥ 1,

λmax

(
K22,l

−1C̃22,l

)
≤ 1 + b (5.4.1)

with some constantb ≥ 0 for l = 1, . . . , k. We introduce

K̂k =

[
K̂11,k K̂12,k

K̂21,k K22,k

]
(5.4.2)

which is the stiffness matrix with respect to the two level basis, i.e.

{φk−1
ij }

n
2
−1

i,j=1 ∈ Vk−1

and
{φkij}, φkij ∈Wk.

This basis corresponds to the splittingVk = Vk−1⊕Wk. We assume that there exists a constant
γ2 < 1, the constant in the strengthened Cauchy-inequality, with

γ2 = sup
v ∈ Vk−1

w ∈Wk

v 6= 0, w 6= 0

(a(v, w))2

a(v, v) · a(w,w)
, (5.4.3)

or, equivalently,

(a(v, w))2 ≤ γ2a(v, v) · a(w,w) ∀v ∈ Vk−1, w ∈Wk.

From (5.4.2), we have
K̂11,k = Kk−1.
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5.4 AMLI method

Obviously, there
K̂k = JkKkJ

T
k

holds with the finite element interpolation matrix

Jk =

[
I J12,k

0 I

]
.

We define now, see [6], [50], the AMLI preconditioning matrixC̃k,r,µ.

DEFINITION 5.37. LetPµ,r be a polynomial of degreeµ satisfying

Pµ,r(0) = 1 (5.4.4)

and
0 < Pµ,r(t) < 1 for 0 < t ≤ 1

and r ∈ R. Let C̃22,k be a matrix which fulfills (5.4.1). Then, we define the preconditioning
matrix C̃k,r,µ recursively by

C̃k,r,µ =



[
C̃c
k−1,r,µ K12,k + J12,k(K22,k − C̃22,k)

0 C̃22,k

]
×
[

I 0

C̃−1
22,k(K21,k + (K22,k − C̃22,k)J

T
12,k) I

] for k ≥ 2,

Kk for k = 1

(5.4.5)

with
(C̃c

k−1,r,µ)
−1 = (I − Pµ,r(C̃

−1
k−1,r,µKk−1))K

−1
k−1. (5.4.6)

Examples for the choice of the polynomialPµ,r are given in [5], [6]. We consider there

Pµ, 2
1+α

(t) =
Tµ
(

1+α−2t
1−α

)
+ 1

Tµ
(

1+α
1−α

)
+ 1

(5.4.7)

with some0 < α < 1 (r = 2
1+α

), whereTµ(x) denotes theµ-th Chebyshev-polynomial first
kind, i.e.

Tµ(x) = cos(µ arccos(x)).

The following theorem is valid.

THEOREM 5.38. Consider the preconditioner̃Ck,r,µ (5.4.5) with the polynomial defined by
relation (5.4.7). Let us assume that

µ >
1√

1− γ2
. (5.4.8)
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Thus, the two eigenvalue estimatesλmin
(
C̃−1
k,r,µKk

)
≥ c17 andλmax

(
C̃−1
k,r,µKk

)
≤ 1 hold for

all k ∈ N, where

c17 = (1− γ2)

(
b+

(
(1 +

√
α)µ + (1−

√
α)µ

(1 +
√
α)µ − (1−

√
α)µ

)2
)−1

.

The constantγ is the constant of the strengthened Cauchy-inequality (5.4.3), the parameterb the
constant of the eigenvalue estimate (5.4.1). The parameterα is the smallest positive solution of
the polynomial equation

1− γ2 = tb+

(
(1 +

√
t)µ + (1−

√
t)µ

2
∑µ

s=1(1 +
√
t)µ−s(1−

√
t)s−1

)2

. (5.4.9)

Proof: The proof can be found in [6]. 2

We describe now the algorithm in order to solve a linear system with the matrixC̃c
k−1,r,µ (5.4.6).

From (5.4.4), we can deduce

Pµ(t) =

µ∑
j=0

ajt
j,

wherea0 = 1 (Pµ(0) = 1). Hence, we obtain

(C̃c
k−1,r,µ)

−1 = (I − Pµ(C̃
−1
k−1,r,µKk−1))K

−1
k−1

=

(
I −

µ∑
j=0

aj(C̃
−1
k−1,r,µKk−1)

j

)
K−1
k−1

= −
µ∑
j=1

aj(C̃
−1
k−1,r,µKk−1)

jK−1
k−1

= −C̃−1
k−1,r,µ(a1 +Kk−1C̃

−1
k−1,r,µ(a2 + . . .

. . .+Kk−1C̃
−1
k−1,r,µ(aµ−1 + aµKk−1C̃

−1
k−1,r,µ) . . .)).

Thus, a linear system with the matrix̃Cc
k−1,r,µ can be solved byµ linear systems solves with the

matrix C̃k−1,r,µ.

5.4.2 Application to −x2uyy − y2uxx = g.

We apply now this theory to problem (4.2.5). By Theorem5.26, the constant in the strengthened
Cauchy-inequality (5.4.3) can be estimated by

γ2 ≤ 95

176
.

Thus, we have
1√

1− γ2
=

4
√

11

9
< 2.
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5.4 AMLI method

Using (5.4.8), µ = 2 can be chosen. Hence, by

Tµ(x) = T2(x) = 2x2 − 1,

the polynomial

P2, 2
1+α

(t) =

(
1− 2t

1 + α

)2

(5.4.10)

is obtained. Furthermore, we have to ensure relation (5.4.1). Using Theorem5.33, we have the
following two eigenvalue estimates between the matricesCWk

(5.3.48) andKWk

λmin
(
CWk

−1KWk

)
≥ c18,

λmax
(
CWk

−1KWk

)
≤ c19

for all k ∈ N, wherec18 = 1− 2
11

√
11 andc19 = 1 + 2

11

√
11. Equivalent to this fact is

λmin
(
KWk

−1CWk

)
≥ c−1

19 ,

λmax
(
KWk

−1CWk

)
≤ c−1

18 .

We introduce the matrix
C̃22,l = c19CWl

(5.4.11)

for l = 2, . . . , k. Hence, the relation

(K22,lv, v) = (KWl
v, v) ≤ (C̃22,lv, v) ≤

c19
c18

(K22,lv, v)

is valid for allv ∈ Rm, e.g. (5.4.1) is satisfied with

b̃ = −1 +
c19
c18

=
4

7

√
11 +

8

7
<

9153

2992
. (5.4.12)

With b = 9153
2992

andγ2 = 95
176

, the smallest positive solution of (5.4.9) is

α =
1

17
.

Thus, we choose

P2, 17
9
(t) =

(
1− 17

9
t

)2

. (5.4.13)

We summarize these observations in the next theorem.

THEOREM 5.39. LetC̃k,r,µ be the matrix of Definition5.37, whereC̃22,l, l = 2, . . . , k, is defined
in (5.4.11) and the polynomialP2, 17

9
(t) is defined via relation (5.4.13). Then,

λmin

(
C̃−1
k,r,µKk

)
≥ c20,

λmax

(
C̃−1
k,r,µKk

)
≤ 1

hold for all k ∈ N, where

c20 = (1− γ2)
4α2

α2(4b+ 1) + 1 + 2α
=

17

3105
≈ 0.00547.
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5 Fast solvers for degenerated problems

5.5 Other multiplicative multi-level algorithms

In the previous sections, the discretization of the degenerated problem (4.2.1) via finite elements
is considered. Now, we will focus additionally on the finite difference discretizations of (4.2.2)
and (4.2.1), too. We will derive algorithms which are more efficient in numerical experiments
as the algorithms described in sections5.3 and 5.4. However, we cannot prove a mesh-size
independent convergence result.

5.5.1 Multi-grid for finite element discretizations

The theory of Theorems5.39and5.36, i.e. the condition number of the AMLI preconditioner
(5.4.5) and the convergence rate of the multi-grid Algorithm5.3MULT , is confirmed in numer-
ical experiments, cf. section5.8. However, the absolute number of iterations can be reduced.
Furthermore, if the numberµ of cycles per level for the algorithmMULT , or the degreeµ of
the polynomial iteration for the AMLI preconditioner is equal to one, the numerical results are
not satisfactory. The usual multi-grid algorithm, cf. Remark5.4, is very similar to Algorithm
5.3. Important for such an algorithm is the choice of a proper smootherS which operates on the
spaceVl, l = 2, . . . , k. A simple Jacobi or Gauß-Seidel smoother cannot handle the anisotropies
of the differential operator in (5.1.1). It is referred to the preprint [11] for numerical examples.
Therefore, more appropriated smoothers have to be considered.
The first one is the product of the line Gauß-Seidel smoother inx-directionSx,k, see [11], [40],
whose error transion operator is given by

Sx,k = I − 2n2
(
D4 ⊗ T̄2 + T2 ⊗D4

)−1
Kk

and the line Gauß-Seidel smootherSy,k in y-direction, whose error transion operator was given
by

Sy,k = I − 2n2
(
D4 ⊗ T2 + T̄2 ⊗D4

)−1
Kk.

The matrixT̄2 denotes the lower triangular part ofT2 (3.4.7), i.e.

T̄2 =
1

2


2 0 . . . 0

−1 2 0
...

. .. ... ... 0
0 −1 2

 .
Then, let

S3,k = Sx,kSy,k (5.5.1)

which is used as pre-smoother. As post-smoother, we useST3,k.
The second considered smoother is an extension of the smootherS0,k ↔ S0,k (5.3.49) operating
onWk to the spaceVk. More precisely, a matrixL is defined by setting all that off-diagonal
entries of the matrixKk, cf. (4.2.6), to 0 which are relatively small in comparison to the main
diagonal entries of that row and column. Let

Kk =
[
akij
]m
i,j=1

, m = (n− 1)2.
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5.5 Other multiplicative multi-level algorithms

Then, the matrix
Lk =

[
lkij
]m
i,j=1

(5.5.2)

is defined with the entries

lkij =

{
akij if 4 | akij |≥ max{akii, akjj}
0 else

.

We introduce the smootherS1,k by its error transion operator, i.e.

S1,k = I − ωL−1
k Kk. (5.5.3)

This construction is very similar to that ofS0,k (5.3.49), compare the definition of the matrices
Cs,ij, s = 1, 2, in (5.3.35), (5.3.39) and (5.3.46).
The third smoother is the ILU-smoother. Its error transion operator is defined as

S2,k = I − ω(Dk + Uk)
−1Dk(Dk + UT

k )−1Kk, (5.5.4)

whereDk is a diagonal matrix,Uk = [ukrs]
m
r,s=1 is a strongly upper triangular matrix andKk =

[akrs]
m
r,s=1. The matrix(Dk + UT

k )D−1
k (Dk + Uk) is called the incomplete LU-decomposition

(ILU) of the (symmetric) matrixKk, if the following conditions are fulfilled:

• If akrs = 0, thenukrs = 0.

• LetKk = (Dk +UT
k )D−1

k (Dk +Uk)+Bk, whereBk = [bkrs]
m
r,s=1. If akrs 6= 0, thenbkrs = 0.

Using these conditions, the ILU-decomposition can be computed for matrices with 5-point stencil
structure asKk (4.2.6), [42]. One obtains

ukrs =

{
akrs if 1 ≤ r < s ≤ m,
0 if m ≥ r ≥ s ≥ 1

for the entries ofUk. Moreover, the entries of the matrixDk = diag[m], m = [m(i,j)]
(n−1,n−1)
(i,j)=(1,1) can

be computed recursively by the relations

m(1,1) = ak11,

m(i,1) = akss, s = (n− 1)(i− 1) + 1, i ≥ 2,

m(1,j) = akjj, j ≥ 2,

m(i,j) = akss −
(j2 + 1/6)2

m(i−1,j)

− (i2 + 1/6)2

m(i,j−1)

, s = (n− 1)(i− 1) + j, i, j ≥ 2.

5.5.2 Multi-grid preconditioner

If a mesh-size independent convergence rate can be proved in the energy norm, a multi-grid
preconditioner can be built. Then, the condition number of the preconditioned system is bounded
by a constant independent of the level numberk. We write the Algorithm5.3 in order to solve

Kkuk = g
k
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5 Fast solvers for degenerated problems

in terms of matrices. Letu0,k be the initial value. The new iterate

u1,k = Mk,S,µu0,k + (I −Mk,S,µ)K
−1
k g

k
(5.5.5)

will be computed as follows:

• Pre-smoothing: Dou0,1,k = Sνk,preu0,k + (I − Sνk,pre)K
−1
k g

k
with

Sk,pre = I − ωK̃−1
k,preKk. (5.5.6)

• Calculation and restriction of the defect: Set

dk−1 = Qk−1
k (g

k
−Kku0,1,k)

with the finite element restriction matrixQk−1
k .

• Solve the coarse grid systemKk−1wk−1 = dk−1 by a direct solver fork = 2 and by

uj,k−1 = Mk−1,S,µuj−1,k−1 + (I −Mk−1,S,µ)K
−1
k−1dk−1, j = 1, . . . , µ,

for k > 2. Setwk−1 = uµ,k−1 (the initial vector is the vector[0, . . . , 0]T ).

• Interpolation and correction of the defect: Setu0,2,k = u0,1,k + Qk
k−1wk, whereQk

k−1 =

(Qk−1
k )T .

• Post-smoothing: Dou1,k = Sνk,preu0,k + (I − Sνk,pre)K
−1
k g

k
with

Sk,post = I − ωK̃−1
k,postKk. (5.5.7)

Thus, one iteration of the multi-grid algorithm can be interpreted as one iteration of a simple
iterative method, i.e.

u1,k = u0,k − C−1
k,S,µ(Kku0,k − g

k
)

with the preconditionerC−1
k,S,µ = (I − Mk,S,µ)K

−1
k . However, more efficient iterative meth-

ods with preconditioning are introduced in subsection2.1. One example is the preconditioned
conjugate gradient method. The following result can be proved.

THEOREM 5.40. Let us assume that the following assumptions are satisfied:

(i) LetKl, l = 1, . . . , k, be symmetric and positive definite matrices.

(ii) For l = 2, . . . , k, the matricesSl,pre (5.5.6) andSl,post (5.5.7) are adjoint in theKl scalar
product:

(Sl,preu, v)Kl = (u, Sl,postv)Kl ∀u, v.
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(iii) For l = 2, . . . , k, the restriction and interpolation operatorsQl−1
l andQl−1

l are adjoint in
the Euclidian scalar product(

Ql−1
l u, v

)
=
(
u,Ql

l−1v
)

∀u, v.

(iv) The mg-operator in (5.5.5) satisfies the estimate

sup
u0,k 6=0

(
u1,k, u1,k

)
Kk(

u0,k, u0,k

)
Kk

≤ σ2

for all k ∈ N with 0 < σ < 1.

Furthermore, we define the preconditioner

C̄−1
k,S,µ,j = (I −M j

k,S,µ)K
−1
k , j ∈ N. (5.5.8)

This preconditioner is symmetric and positive definite. Moreover, there

λmin
(
C̄−1
k,S,µ,jKk

)
= 1− σj,

λmax
(
C̄−1
k,S,µ,jKk

)
=

{
1 j even
1 + σj j odd

hold.

Proof: The proof is a special case of Theorem 2.1. in [51] with Ck = Kk, see also [38], Theorems
6.5. and 6.6.2
We note that the finite element restriction and interpolation operatorsQl−1

l andQl
l−1 fulfill as-

sumption (iii). By Remark5.2, the matricesKl are symmetric and positive definite. Thus,
assumption (i) holds. For the smoothersSk,post/pre = I − ωK̃−1

k,post/preKk, see (5.5.6), (5.5.7), of
the Richardson type with

K̃k,post = K̃T
k,pre, (5.5.9)

one obtains

(Sl,preu, v)Kl =
(
(I − ωK̃−1

l,preKl)u, v
)
Kl

=
(
(Kl − ωKlK̃

−1
l,preKl)u, v

)
=

(
Klu, (I − ωK̃−T

l,preKl)v
)

= (u, Sl,postv)Kl

which means that assumption (ii) is satisfied. By the symmetry of the matrixCWl
(5.3.48),

the smootherS0,l (5.3.49) fulfills relation (5.5.9) and so assumption (ii). By same arguments,
assumption (ii) is valid for the smoothersS1,l (5.5.3) andS2,l (5.5.4). However, the smoother
S3,l (5.5.1) does not fulfill relation (5.5.9). In this case, setSl,pre = S3,l andSl,post = ST3,l.
Then,Sl,pre is the product of forwards line Gauß-Seidel smoother inx- andy-direction, whereas
Sl,post is the product backwards line Gauß-Seidel smoother iny- andx-direction. Moreover by
Theorem5.36, assumption (iv) of Theorem5.40is valid for the smootherS0,l ↔ S0,l with ν ≥ 3
andµ = 3. Therefore, the following theorem has been proved.
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THEOREM 5.41. The symmetric and positive definite matrixC̄k,S0,k,3,j, see (5.5.8), satisfies

κ
(
C̄−1
k,S0,k,3,j

Kk

)
≤ c with a constantc independent of the level numberk for all j ∈ N.

In the following, we consider the casej = 1 in (5.5.8), i.e. one iteration multi-grid per precondi-
tioning step, only. Then, the last index in̄Ck,S,µ,j is omitted, e.g.C̄k,S,µ := C̄k,S,µ,1.

5.5.3 Multi-grid for finite difference discretizations

In this subsection, the finite difference discretizations of problems (4.2.1) and (4.2.2) are investi-
gated. As result of this discretization, the systems

C3uk = g
k

and (5.5.10)

C1uk = g
k

(5.5.11)

have to be solved, cf. (3.4.17) for the definition ofC3 and (3.4.3) for the definition ofC1. Similar
asKkuk = 1

2n2C4uk = g
k
, the systems (5.5.10) and (5.5.11) will be solved by a standard multi-

grid algorithm.
Via the matricesKk (4.2.6), orC4, cf. relations (4.2.9) and (3.4.18), preconditioners forAR2 =
blockdiag [Ai]

4
i=1 (3.3.4) can be built, where the condition numbers of the preconditioned sys-

tems grow as(1 + log p). The reason of this logarithmic term is the condition number estimate
κ
(
C4

−1A1

)
� (1 + log p), cf. Theorem3.11. Sinceκ

(
C1

−1A1

)
= O(1), cf. Lemma3.5, a

spectrally equivalent preconditioner forAR2 (3.3.4) can be developed via the matrix

C1 = D3 ⊗ T1 + T1 ⊗D3.

Therefore, it is important to derive a fast solver forC1, the discretization of problem (4.2.2) by
finite differences. LetS2,k be the ILU-smoother forC1 and letS3,k be the product of the line
Gauß-Seidel smoother inx-direction and the line Gauß-Seidel smoother iny-direction forC1.
For reasons of a simple notation, we denote these smoothers forC1 with S2,k andS3,k as well as
the smoothersS2,k (5.5.4) andS3,k (5.5.1) for C4 ↔ Kk. The first index ofS indicates only the
construction method for the smoother, i.e.2 for the ILU smoother and3 for the product of the
line Gauß-Seidel smoothers. The system (5.5.11) is solved by a standard multi-grid algorithm
for finite difference discretizations with bilinear interpolation. The used smoothers areS2,k (as
pre- and post-smoother), orS3,k as pre-smoother andST3,k as post-smoother. The corresponding

multi-grid operator is denoted by̆Ck,S,µ, whereS denotes the kind of smoother, the integerµ the
number of cycles per level andk denotes the level number. Moreover, we define

C̆k,S,µ = (I − M̆k,S,µ)C
−1
1 (5.5.12)

as the corresponding multi-grid preconditioner forC1 with one iteration multi-grid.
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5.6 BPX preconditioner

5.6.1 Definition of the preconditioners

Recall the finite element discretization of problem (4.2.3) in subsection4.2.2:
Findu ∈ Vk such that∫

Ω

(
ω2(y)uxvx + ω2(x)uyvy

)
d(x, y) =

∫
Ω

fv d(x, y) (5.6.1)

holds for allv ∈ Vk with a weight functionω(ξ) satisfying Assumption5.27.
For the efficient solution of systems of linear equations arising from discretizations of uniformly
elliptic problems by finite elements, Bramble, Pasciak, and Xu have developed a preconditioner,
[21], which was called the BPX preconditioner. For this preconditioner, the spectral equivalence
to the original stiffness matrix can be shown. Later, this preconditioner has been improved
by the multiple diagonal scaling version, [81]. As mentioned in section5.2, cf. [10], a BPX
preconditioner with multiple diagonal scaling does not show good numerical results in order
to solveKku = g

k
, the system of linear algebraic equations resulting from the finite element

discretization of (5.6.1). One reason is that this preconditioner cannot handle the anisotropies
resulting from the degenerated elliptic operator. However, with a modification, the so called
multiple tridiagonal scaling BPX (MTS-BPX), this behaviour of the BPX preconditioner can be
improved, [12]. In subsection5.5.1, several smoothers of Richardson-type are considered.
One smoother is, cf. (5.5.3),

S1,k = I − ωL−1
k Kk.

In this smoother, the matrixLk is a preconditioner forKk which can handle anisotropies. The
idea is to apply the matrixLk as ”scaling” on each level instead of a diagonal scaling. We expect a
stabilization of the BPX preconditioner. The following MTS-BPX preconditioner is now defined.
Let Qk

l , l = 1, . . . , k be the basis transformation matrix from the basis{φlij}
nl−1
i,j ∈ Vl to the

basis{φkij}
nk−1
i,j=1 ∈ Vk, wherenl = 2l. LetQl

k be the transposed operator. Furthermore, letLk be
the matrix (5.5.2). Then, we define the preconditioner

Ĉ−1
k =

k∑
l=1

Qk
l L

−1
l Ql

k. (5.6.2)

This preconditioner is called the MTS-BPX preconditioner forKk.
Choosing the ILU-decomposition of the matrixKk, another additive multi-level preconditioner
can be defined. Let, cf. (5.5.4),

L−1
k = (Dk + Uk)

−1Dk(Dk + UT
k )−1

be the inverse ILU-decomposition of the matrixKk. Then, we define the ILU-BPX precondi-
tioner

Ĉ−1
k =

k∑
l=1

Qk
l L−1

l Ql
k. (5.6.3)
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5 Fast solvers for degenerated problems

As for the preconditioner̂Ck (5.6.2), we expect a better handling of the anisotropies.
For the correct analytical definition of the MTS-BPX preconditionerĈk, we recall the notation of
subsection4.2.2and introduce some new notation. LetVk = span

{
φkij
}nk−1

i,j=1
, wherek denotes

the level number andnk = 2k. Moreover, letk′ ≤ k. The domainΩ is decomposed into
overlapping stripeŝΩk

j , i.e.

Ω =

nk−1⋃
j=1

Ω̂k
j ,

whereΩ̂k
j = Ω̂k

j,x ∪ Ω̂k
j,y with

Ω̂k
j,x =

{
(x, y) ∈ R2, 0 ≤ y ≤ x,

j − 1

nk
≤ x ≤ j + 1

nk

}
,

Ω̂k
j,y =

{
(x, y) ∈ R2, 0 ≤ x ≤ y,

j − 1

nk
≤ y ≤ j + 1

nk

}
,

see Figure5.2. According to this decomposition, let

�
�

�
�

�
�

�
�

�
�

�
� Ω̂3

5,x

Ω̂3
5,y

Ω̂3
2,x

Ω̂3
2,y

4
8

6
8

4
8

6
8

1
8

3
8

1
8

3
8

Figure 5.2:StripesΩ̂k
j for k = 3 andj = 2, 5.

Vk
j = span

{
φkij
}j−1

i=1
⊕ span

{
φkji
}j
i=1

(5.6.4)

be the corresponding finite element subspaces to the sub-domainsΩ̂k
j . Note that all shape func-

tionsφk ∈ Vk
j vanish on the boundary of̂Ωk

j . The additive Schwarz splitting of the finite element
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spaceVk, i.e.

Vk =
k∑

k′=1

nk′−1∑
j=1

Vk′

j

is considered. Following Zhang, [81], letKk : Vk 7→ Vk andKi,k : Vk
i 7→ Vk

i be the operators

〈Kku, v〉 = a(u, v) ∀u, v ∈ Vk,

〈Ki,ku, v〉 = a(u, v) ∀u, v ∈ Vk
i .

Moreover, letPi,k′ : Vk 7→ Vk′
i be the energetic projection andQi,k′ : Vk 7→ Vk′

i be the
L2-projection, i.e.

a(Pi,k′u, v) = a(u, v) ∀v ∈ Vk′

i ,

〈Qi,k′u, v〉 = 〈u, v〉 ∀v ∈ Vk′

i ,

whereu ∈ Vk. Then, the preconditioner̂Ck and thek-th level additive Schwarz operatorPk are
defined by

Ĉ
−1

k =
k∑

k′=1

nk′−1∑
i=1

K−1
i,k′Qi,k′ , (5.6.5)

Pk = Ĉ
−1

k Kk =
k∑

k′=1

nk′−1∑
i=1

Pi,k′ . (5.6.6)

Note that the matricesKk (4.2.6) and Ĉk (5.6.2) denote the matrix representations ofKk and
Ĉk by the usual fem-isomorphism. For technical reasons, we investigate the additive Schwarz
splitting

Vk =
k∑

k′=1

Uk′

1 ⊕Uk′

2 , (5.6.7)

where

Uk′

1 = Vk′

1 ⊕Vk′

3 ⊕ · · · ⊕Vk′

nk′−1 and (5.6.8)

Uk′

2 = Vk′

2 ⊕Vk′

4 ⊕ · · · ⊕Vk′

nk′−2

as well (cf. (5.6.4)). Let K̃s,k: U
k
s 7→ Uk

s , P̃s,k′: Vk 7→ Uk′
s and Q̃s,k′: Vk 7→ Uk′

s be the
operators

〈K̃s,ku, v〉 = a(u, v) ∀u, v ∈ Uk
s ,

a
(
P̃s,k′u, v

)
= a(u, v) ∀u ∈ Vk, v ∈ Uk′

s ,

〈Q̃s,k′u, v〉 = 〈u, v〉 ∀u ∈ Vk, v ∈ Uk′

s ,

wheres = 1, 2. Thus, the preconditioner̂Ck (5.6.5) and thek-th level additive Schwarz oper-
ator P̂k can be obtained as multi-level additive Schwarz preconditioner and projection operator
corresponding to (5.6.7).
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LEMMA 5.42. The relations

Ĉ
−1

k =
k∑

k′=1

2∑
s=1

K̃
−1

s,k′Q̃s,k′ and (5.6.9)

Pk =
k∑

k′=1

2∑
s=1

P̃s,k′ (5.6.10)

are valid.

Proof: Note thata(u, v) = 0 and〈u, v〉 = 0 for all u ∈ Vk′
i andv ∈ Vk′

j with |i − j| ≥ 2.
Thus, the sums in (5.6.8) are orthogonal sums with respect toa(·, ·) and〈·, ·〉. Hence, theL2

and the energetic projection fromVk ontoUs,k′ is the sum of the projections ontoVk′
2i−2+s,

i = 1, . . . ,
nk′
2

+ 1− s, i.e.

Q̃s,k′u =

nk′
2

+1−s∑
i=1

Q2i−2+su, (5.6.11)

P̃s,k′u =

nk′
2

+1−s∑
i=1

P2i−2+su

hold for allu ∈ Vk′ ⊂ Vk. Therefore, relation (5.6.10) has been proved. Moreover, let

u =

nk′
2

+1−s∑
i=1

u2i−2+s, uj ∈ Vk′

j , u ∈ Uk′

s , s = 1, 2.

Sincea(ui, uj) = 0 for all uj ∈ Vk′
j andui ∈ Vk′

i with |i− j| ≥ 2,

K̃s,k′u =

nk′
2

+1−s∑
i=1

K̃2i−2+s,k′u2i−2+s or
(
K̃s,k′

)−1

u =

nk′
2

+1−s∑
i=1

(
K̃2i−2+s,k′

)−1

u2i−2+s

follows. Together with (5.6.11) and (5.6.8), the assertion (5.6.9) has been proved.2

5.6.2 Proof of the upper eigenvalue estimate

We prove now the estimateλmax(Pk) ≤ c k with a constantc independent of the mesh-sizeh.
Two proofs are given.
The first proof is similar to the proof of Zhang for the upper eigenvalue bound of the MDS-BPX
preconditioned system matrix given in [81]. Zhang has proved that the condition number of the
preconditioned system is bounded by a constant independent of the level number, if the bilinear
form a(·, ·) is uniformly elliptic and bounded. Using the techniques of Zhang, we can only prove

the resultλmax
(
Ĉ−1
k Kk

)
= λmax(Pk) ≤ c k for the MTS-BPX preconditioner. The second
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proof uses the multi-level additive Schwarz splittingVk =
∑k

k′=1U
k′
1 ⊕ Uk′

2 (5.6.7). Using
this space splitting, the resultλmax(Pk) ≤ c k can be established by a short proof. This proof
requires the positive definiteness of the bilinear forma(·, ·) only. The Zhang-like proof is given
in order to show thatλmax(Pk) ≤ c cannot be concluded by a more rigorous estimate. Numerical
experiments indicate that the upper eigenvalue ofPk grows as the level numberk.
Now, we start with the first proof. For this aim, the following lemma is useful. (Recall Figure
5.1for the definition of the trianglesτ 1,k

ij andτ 2,k
ij .)

LEMMA 5.43. For weight functions satisfying Assumption5.27, the estimate∫
τ1,k
rs

ω2(y) d(x, y) �
∫
τ2,k
rs

ω2(y) d(x, y) (5.6.12)

is valid for all r, s ∈ N0.

Proof: By the monotony of the weight function, one easily checks∫
τ2,k
rs

ω2(y) d(x, y) ≤
∫
τ1,k
rs

ω2(y) d(x, y). (5.6.13)

By Lemma5.29on page59, we have

0 ≤
(
ω

(
y +

1

4nk

))2

≤ c(ω(y))2 ∀y ≥ 1

2nk
.

Integration with respect to the variabley gives∫ 4j+3
4nk

4j+2
4nk

(
ω

(
y +

1

4nk

))2

dy ≤ c

∫ 4j+3
4nk

4j+2
4nk

ω2(y) dy ∀j ∈ N0, or,

∫ 4j+4
4nk

4j+3
4nk

ω2(y) dy ≤ c

∫ 4j+3
4nk

4j+2
4nk

ω2(y) dy ∀j ∈ N0.

By integration with respect to the variablex from 4i
4nk

to 4i+1
4nk

, one concludes(4nk = 2k+2)∫
Ek+2
4i,4j+3

ω2(y) d(x, y) ≤ c

∫
Ek+2
4i,4j+2

ω2(y) d(x, y) ∀i, j ∈ N0

= c

∫
Ek+2
4i+3,4j+2

ω2(y) d(x, y) ∀i, j ∈ N0. (5.6.14)

For the last estimate, it is used that the integrand does not depend on the variablex. Note that
Ek+2

4i+3,4j+2 ⊂ τ 2,k
ij , cf. Figure5.3. Thus, the inequality∫

Ek+2
4i+3,4j+2

ω2(y) d(x, y) ≤
∫
τ2,k
ij

ω2(y) d(x, y) (5.6.15)
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Figure 5.3:Notation forEkij = τ 1,k
ij ∪ τ 2,k

ij , nk = 2k.

holds for alli, j ∈ N0. Moreover, byEk+2
4i,4j+2 ⊂ τ 1,k

ij and the monotony of the weight function,
one easily deduces

8

∫
Ek+2
4i,4j+3

ω2(y) d(x, y) ≥
∫
τ1,k
ij

ω2(y) d(x, y). (5.6.16)

Combining the estimates (5.6.14), (5.6.15), and (5.6.16), one checks∫
τ1,k
ij

ω2(y) d(x, y) ≤ 8c

∫
τ2,k
ij

ω2(y) d(x, y). (5.6.17)

By (5.6.13) and (5.6.17), the assertion follows immediately.2

Equivalent to the estimate (5.6.12) is that∫
τu,krs

ω2(x) d(x, y) ≥ c

∫
Ekrs
ω2(x) d(x, y)

is valid foru = 1, 2, andr, s ∈ N0 with a constantc independent ofr, s, andk. The main tool
in order to estimate the upper eigenvalue of the BPX preconditioner is Lemma5.46which is a
strengthened Cauchy-inequality of the type(

a(uk
′

i , u
k
j )
)2

≤ c2|k
′−k|a(uk

′

i , u
k′

i )a(ukj , u
k
j ) (5.6.18)

for all ukj ∈ Vk
j anduk

′
i ∈ Vk′

i . Our aim is to prove (5.6.18). We split this proof into several

lemmata. The first lemma says that the mean value of the weight functionω(x) overτu,k
′

rs ∩ Ω̂k
j,x

can be bounded by the mean value overτu,k
′

rs .
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LEMMA 5.44. For u = 1, 2, r, s ∈ N0, k′ ≤ k, j ∈ N, the inequalities

nk′

nk

∫
τu,k

′
rs

ω2(y) d(x, y) ≥ c

∫
τu,k

′
rs ∩Ω̂kj,x

ω2(y) d(x, y) (5.6.19)

and
nk′

nk

∫
τu,k

′
rs

ω2(x) d(x, y) ≥ c

∫
τu,k

′
rs ∩Ω̂kj,x

ω2(x) d(x, y) (5.6.20)

are valid.

Proof: Forτu,k
′

rs ∩ Ω̂k
j,x = ∅, the assertion is trivial (c = 0). We assume thatτu,k

′
rs ∩ Ω̂k

j,x 6= ∅.
Then, there

c
r

nk′
≤ j

nk
≤ c

r + 1

nk′
(5.6.21)

holds. Now, with (5.6.12) and Assumption5.27, we estimate∫
τu,k

′
rs

ω2(x) d(x, y)
(5.6.12)

≥ c

∫
Ek′rs
ω2(x) d(x, y)

= c

∫ r+1
nk′

r
nk′

∫ s+1
nk′

s
nk′

ω2(x) dy dx

ω(ξ)=ξα

= c
1

nk′

∫ r+1
nk′

r
nk′

x2α dx

≥ c

nk′

(r + 1)2α

nk′2α+1
=

1

nk′2

(
r + 1

nk′

)2α

. (5.6.22)

Moreover, one concludes∫
τu,k

′
rs ∩Ω̂kj,x

ω2(x) d(x, y) ≤
∫
Ek′rs∩Ω̂kj,x

ω2(x) d(x, y)

≤
∫ s+1

nk′

s
nk′

∫ j+1
nk

j−1
nk

ω2(x) dx dy

=
1

nk′

∫ j+1
nk

j−1
nk

x2α dx

≤ c

nk′

j2α

n2α+1
k

≤ c

nknk′

(
j

nk

)2α

. (5.6.23)

Using (5.6.21) and (5.6.23), there∫
τu,k

′
rs ∩Ω̂kj,x

ω2(x) d(x, y) ≤ c

nknk′

(
r + 1

nk′

)2α

(5.6.24)
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holds. Combining (5.6.24) and (5.6.22), the inequality (5.6.20) follows immediately. The esti-
mate (5.6.19) can be proved with similar arguments.2

Let aΩ̂kj
be the restriction of the bilinear forma to Ω̂k

j , i.e.

aΩ̂kj
(u, v) =

∫
Ω̂kj

(
ω2(y)uxvx + ω2(x)uyvy

)
d(x, y).

Using Lemma5.44, the following result can be shown.

LEMMA 5.45. Letuk
′
i ∈ Vk′

i . Then fork′ ≤ k, the estimate

2k
′−ka(uk

′

i , u
k′

i ) ≥ c aΩ̂kj
(uk

′

i , u
k′

i )

is valid.

Proof: For each triangleτu,k
′

rs ⊂ Ω̂k′
i,x, (∇uk

′
i )T is constant onτu,k

′
rs . Therefore, using the estimates

(5.6.19) and (5.6.20) of Lemma5.44,∫
τu,k

′
rs

(
ω2(y)(uk

′

i )x(u
k′

i )x + ω2(x)(uk
′

i )y(u
k′

i )y

)
=

∫
τu,k

′
rs

ω2(y)(uk
′

i )2
x +

∫
τu,k

′
rs

ω2(x)(uk
′

i )2
y

≥ cnk
nk′

∫
τu,k

′
rs ∩Ω̂kj,x

(uk
′

i )2
xω

2(y) + (uk
′

i )2
yω

2(x).

By symmetry of the differential operator (4.2.3), the same result is valid for each triangleτu,k
′

rs ⊂
Ω̂k′
i,y. Summation over all trianglesτu,k

′
rs ⊂ Ω̂k′

i gives∫
Ω̂k

′
i

(
(uk

′

i )2
xω

2(y) + (uk
′

i )2
yω

2(x)
)

d(x, y) ≥ c
nk
nk′

∫
Ω̂kj

(
(uk

′

i )2
xω

2(y) + (uk
′

i )2
yω

2(x)
)

d(x, y),

or equivalently,

a(uk
′

i , u
k′

i ) ≥ c
nk
nk′

aΩ̂kj
(uk

′

i , u
k′

i ) = c2k−k
′
aΩ̂kj

(uk
′

i , u
k′

i )

which proves the lemma.2
The next lemma gives a relation for the cosine of the angle between the spacesVk′

i andVk
j with

respect toa(·, ·) which in general is defined as

γU,V = sup
u ∈ U
v ∈ V
u, v 6= 0

a(u, v)√
a(u, u)a(v, v)

. (5.6.25)

LEMMA 5.46. Letk′ ≤ k andi ∈ {1, . . . , nk′ − 1}, j ∈ {1, . . . , nk − 1}. Then,

γ2
Vk

′
i ,V

k
j
≤ max

{
c2−

k−k′
2 , 1

}
.
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Proof: The proof is similar to the proof of Lemma 3.2. in [81]. Let uk
′
i ∈ Vk′

i andukj ∈ Vk
j .

Then, by the usual Cauchy-inequality onaΩ̂kj
(·, ·) and Lemma5.45,(

a(uk
′

i , u
k
j )
)2

=
(
aΩ̂kj

(uk
′

i , u
k
j )
)2

≤ aΩ̂kj
(uk

′

i , u
k′

i ) a(ukj , u
k
j )

≤ c2k
′−ka(uk

′

i , u
k′

i ) a(ukj , u
k
j )

which shows the assertion.2

Following Zhang, [81], let

Θ =
[
θk

′,k′′

ij

]
(i,k′),(j,k′′)

,

where
θk

′,k′′

ij = γ2
Vk

′
i ,V

k′′
j
, 1 ≤ k′, k′′ ≤ k.

Our aim is to prove an estimate of the type

‖ Θ ‖2≤ ck.

For this purpose, the following propositions and lemmata are helpful.

PROPOSITION 5.47. Letk′, k be fixed withk′ ≤ k. If θk
′,k
ij 6= 0, then

(i− 1)2k−k
′ ≤ j ≤ (i+ 1)2k−k

′
.

Proof: By definition,φ ∈ Vk
j satisfiessupp φ ⊂ Ω̂k

j . If int(Ω̂k
j ) ∩ int(Ω̂k′

i ) = ∅, thenθk
′,k
ij = 0.

By definition of the stripeŝΩk
j , the assertion follows.2

Now, we consider one block of the matrixΘ, i.e.

Θk′,k′′ =
[
θk

′,k′′

ij

]nk′ ,nk′′
i=1,j=1

.

Then, the following proposition is valid.

PROPOSITION 5.48. The Frobenius norm ofΘk′,k′′ can be estimated by a constant, indepen-
dent of the mesh-sizeh, i.e.

‖ Θk′,k′′ ‖F≤ c for 1 ≤ k′, k′′ ≤ k.

Proof: Without loss of generality, letk′ ≤ k′′. By Proposition5.47, each row ofΘk′,k′′ has
maximal2k

′′−k′+1+1 nonzero matrix entries, and each column maximal 2 nonzero matrix entries.
Therefore, the total number of nonzero matrix entries is less than or equal to2k

′′−k′+2 + 2. By

Lemma5.46, θk
′,k′′

ij ≤ c2
k′−k′′

2 holds. Summing up over all(θk
′,k′′

ij )2 gives

‖ Θk′,k′′ ‖F=
∑
i,j

(θk
′,k′′

ij )2 ≤ c2k
′−k′′(2k

′′−k′+2 + 2) ≤ 6c
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5 Fast solvers for degenerated problems

which proves the lemma.2

The following lemma, [81], gives a relation between the Frobenius norm of the block matrixΘ
and the Frobenius norm of̃Θ, where the entries of the matrix̃Θ are the Frobenius norms of the
blocks ofθ.

LEMMA 5.49. Let Θ be a n × n block matrix, i.e. Θ = [Θij]
n
i,j=1. Moreover, letΘ̃ =

[‖ Θij ‖F ]ni,j=1. Then,

‖ Θ̃ ‖F=‖ Θ ‖F .

Proof: Let
Θ =

[
θi,jli,lj

]
(li,i);(lj ,j)

.

Then,
‖ Θ ‖2

F=
∑
i,j

∑
li,lj

(θi,jli,lj)
2.

Moreover,‖ Θij ‖2
F=

∑
li,lj

(θi,jli,lj)
2 and

‖ Θ̃ ‖2
F=

∑
i,j

‖ Θij ‖2
F=

∑
i,j

∑
li,lj

(θi,jli,lj)
2.

The assertion has been demonstrated.2

LEMMA 5.50. The estimate‖ Θ ‖F≤ ck is valid, wherec is independent of the level numberk.

Proof: As in Lemma5.49, we introduce the block-matrix

Θk′,k′′ =
[
θk

′,k′′

ij

]
i,j
, 1 ≤ k′, k′′ ≤ k,

and the matrix
Θ̃ = [‖ Θk′,k′′ ‖F ]kk′,k′′=1 .

By Proposition5.48, ‖ Θk′,k′′ ‖F≤ c. Computing the Frobenius norm ofΘ̃, one has

‖ Θ̃ ‖2
F≤ ck2.

By Lemma5.49, one easily checks

‖ Θ ‖F=‖ Θ̃ ‖F≤ ck

which is the desired result.2
The main result of this section is the upper eigenvalue estimate of the MTS-BPX preconditioner.

THEOREM 5.51. For u ∈ Vk, let

9u92 = min
u=

∑
l,i u

l
i

k∑
l=1

∑
i

a(uli, u
l
i).

Then, one obtains
a(u, u) ≤ ck 9 u 92 .
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Proof: We give two proofs. The first proof follows by Lemma 3.1 and Lemma 3.5 of Zhang,
[81], the fact‖ A ‖2≤‖ A ‖F and Lemma5.50.
In the second proof, we investigate the splittingVk =

∑k
k′=1U

k′
1 ⊕Uk′

2 (5.6.7). Now, letΘ be a
k × k block matrix consisting of2× 2 matrices, i.e.

Θ =
[
θk

′,k′′
]k
k′,k′′=1

with θk
′,k′′ =

[
γ
Uk

′
i ,U

k′′
j

]2
i,j=1

.

By the usual Cauchy-inequality, the cosinesγ
Uk

′
i ,U

k′′
j

, cf. (5.6.25), of the angles betweenUk′
i and

Uk′′
j are bounded from above by 1. Thus,‖ θk′,k′′ ‖F≤ 2 follows. This is the analogous result

of Proposition5.48for the space splitting (5.6.7). Using Lemma5.49and the proof of Lemma
5.50, the assertion follows.2

REMARK 5.52. The eigenvalue estimateλmax
(
Ĉ−1
k Kk

)
≤ ck of the MTS-BPX preconditioner

Ĉk for Kk, defined via relation (5.6.2), follows immediately.

REMARK 5.53. The constant in Theorem5.51depends linearly on the level number. The reason
is the splitting into the spacesVl

i, not the differential operator. For the Laplacian, i.e.ω(x) = 1,
only this result can be proved using this space splitting.

For this MTS-BPX preconditioner, Table5.2 gives the lower and upper constants in the norm
equivalence

c 9 u92 ≤ a(u, u) ≤ c 9 u 92 ∀u ∈ Vl.

The constants are computed by a vector iteration and inverse vector iteration for the correspond-
ing matrices in the case of the weight functionsω(ξ) = 1 andω(ξ) = ξ. One can see that the
constantc seems to be proportional to the level number for the weight functionsω(ξ) = 1 and
ω(ξ) = ξ which indicates that the estimate of Theorem5.51 is sharp. The lower constantc
seems to be bounded from below by a constant of about0.488. However, we cannot prove the
boundedness ofc from below.

5.7 Implementational details

5.7.1 Fast solver for CWk
and Lk

Using the Algorithm5.3MULT , linear systems of the type

CWl
u = g, l = 2, . . . , k, (5.7.1)

have to be solved in order to apply the smootherS0,l (5.3.49), whereCWl
is defined via relation

(5.3.48). Moreover, in order to apply the AMLI preconditioning system (5.4.5)

u = C̃−1
k,µ,rg,
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5 Fast solvers for degenerated problems

Level c c
ω(ξ) = 1 ω(ξ) = ξ ω(ξ) = 1 ω(ξ) = ξ

2 0.607 0.748 1.86 1.78
3 0.522 0.647 2.73 2.59
4 0.495 0.583 3.44 3.39
5 0.489 0.543 4.00 4.03
6 0.488 0.524 4.45 4.52
7 0.488 0.512 4.81 4.91
8 0.488 0.504 5.11 5.23
9 0.488 0.498 5.35 5.60
10 0.488 0.495 5.55 6.11

Table 5.2:Lower and upper eigenvalue bounds of the MTS-BPX preconditioner.

systems of linear algebraic equations with the matricesC̃22,l =
(
1 + 2

11

√
11
)
CWl

, l = 2, . . . , k,
cf. (5.4.11), have to be solved. Therefore, it is important to find an efficient solution technique
for the system (5.7.1). In this subsection, it will be shown thatCWk

is a block diagonal matrix
consisting of tridiagonal blocks. Then, using Cholesky/Crout-decomposition, the system (5.7.1)
can be solved inO(mk) arithmetical operations, wheremk is the number of unknowns on levelk,
cf. subsection2.2. Furthermore, we will show that the smootherS0,k (5.3.49) is a line smoother
operating on lines̀ 2m−1 which will be defined below. According to (5.3.35), (5.3.39), and
(5.3.46), the matrixCWk

has the structure

CWk
= DWk

+R,

whereDWk
is the diagonal part of the matrixKWk

defined in (5.3.47). The matrixR will be
defined below. Letb : Wk ×Wk → R be the following non-symmetric bilinear form uniquely
determined by the values of the basis functions{φkij}(i,j)∈Nk ∈Wk

b(φkij, φ
k
lm) =

 a(φkij, φ
k
lm) if

i = l = 2r − 1, j = 2, . . . , i, m = j − 1
j = m = 2r − 1, i = 2, . . . , j, l = i− 1

0 otherwise

for r = 1, . . . , n
2
. By this definition,a(φkij, φ

k
lm) is equal to the element(i, j), (l,m) of the matrix

Kk, if i = l = 2r − 1, j = 2, . . . , i, m = j − 1, or j = m = 2r − 1, i = 2, . . . , j, l = i− 1. The
matrixR is defined as the symmetric part of the bilinear formb. More precisely, let

R =
[
b(φkij, φ

k
lm) + b(φklm, φ

k
ij)
]
(i,j),(l,m)∈Nk

.

After a proper permutationP , we have

CWk
= P Tblockdiag [CWk,r]

n
2
r=0 P
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with

CWk,r =

{ [
a(φkij, φ

k
lm)
]
(i,j),(l,m)∈Ñ2r−1

for r > 0[
a(φkij, φ

k
lm)
]
(i,j),(l,m)∈∪n/2−1

r=1 (Ñ2r∩Nk+1)
for r = 0

.

The index setÑr is defined as

Ñr =
{
(i, j), (l,m) ∈ {1, . . . , r}4 : i = l = r or j = m = r

}
(5.7.2)

andNk has been defined in (5.3.2). Thus, the matricesCWk,r, r ≥ 1, are tridiagonal matrices and
the matrixCWk,0 is a diagonal matrix. The shape functions of one blockCWk,r correspond to
one edge of the left picture of Figure5.4which is marked by a bold line. Therefore, the system
(5.7.1) can be solved using Cholesky decomposition inO(n2) flops. Hence, the operationS0,kw
is arithmetically optimal. Additionally, a smootherS1,k = I − ζL−1

k Kk (5.5.3) has been built in

Figure 5.4: Nonzero entries of the matricesR (left) andR̃ (right).

subsection5.5.1which uses the ideas ofS0,k (5.3.49). This smoother operates on the spaceVk.
The matrixLk can be interpreted as follows: Let

Lk = diag(s) + R̃,

wheres =
[
a(φkij, φ

k
ij)
](n−1,n−1)

(i,j)=(1,1)
and

R̃ =
[
b̃(φkij, φ

k
lm) + b̃(φklm, φ

k
ij)
](n−1,n−1)

(i,j),(l,m)=(1,1)

with the bilinear form̃b : Vk ×Vk → R,

b̃(φkij, φ
k
lm) =

 a(φkij, φ
k
lm) if

i = l = r, j = 2, . . . , i, m = j − 1
or j = m = r, i = 2, . . . , j, l = i− 1

0 otherwise
(5.7.3)
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5 Fast solvers for degenerated problems

for r = 1, . . . , n − 1. As well asS0,k (5.3.49), S1,k is a line smoother. However, it operates
on each bold line in the right picture of Figure5.4. So, we expect better convergence rates of a
standard multi-grid algorithm (cf. Remark5.4) in contrast to the smootherS0,k. The matrixLk
is a block diagonal matrix consisting of tridiagonal blocks. After a proper permutationP ,

Lk = P Tblockdiag [Lk,r]
n−1
r=1 P,

where
Lk,r =

[
a(φkij, φ

k
lm)
]
(i,j),(l,m)∈Ñr

with the index set̃Nr (5.7.2). The matricesLk,r are tridiagonal. The shape functions of one block
Lk,r correspond to nodes marked by one bold line in the right picture of Figure5.4. Analogously
to S0,k, the operation

S1,kw = r

can be done arithmetically optimal inO(n2) flops using Cholesky- or Crout-decompostion. The
same result is valid for the operation

w = Ĉ−1
k r,

cf. relation (5.6.2).

5.7.2 Complexity of the algorithm

In this subsection, the arithmetical costs for the operations

u1,k = MULT (k, u0,k, g), cf. ALGORITHM 5.3 (5.7.4)

using one of the smoothersS0,l (5.3.49), S1,l (5.5.3), S2,l (5.5.4), or S3,l (5.5.1) on level l =
2, . . . , k are considered. Moreover, it will be shown that the total cost for applying the AMLI
preconditioner (5.4.5) and the MTS-BPX preconditioner (5.6.2), i.e.

w = C̃−1
k,r,µr, (AMLI) (5.7.5)

w = Ĉ−1
k r (MTS-BPX) (5.7.6)

is arithmetically optimal.

THEOREM 5.54. Letmk be the number of unknowns on levelk. Then, the arithmetical cost
for each of the operations (5.7.4), (5.7.5), (5.7.6) is O(mk), if the following assumptions are
satisfied:

• µ ≤ 3 for (5.7.4) and (5.7.5),

• ν fixed for (5.7.4).

Proof: At first, we consider the iteration (5.7.4). The number of arithmetical operations for
(5.7.4) is denoted byWl. By the definition of the parameterml,

ml =
(
2l − 1

)2
holds. The algorithmMULT reads as follows:

88



5.8 Numerical examples

1. pre-smoothing withν pre-smoothing steps,

2. calculation and restriction of the defect,

3. solving the coarse grid system recursively forµ̃ = 1, . . . , µ,

4. interpolation and addition of the coarse grid correction,

5. post-smoothing withν post-smoothing steps.

The cost of the stepi on levell is denoted byWi,l. Then, the cost for step 1 and the cost for step
5 can be estimated by

W1,l = W5,l ≤ c1νml,

if one of the smoothersSi,k, i = 0, . . . , 3 is used, cf. subsection5.7.1for S0,k andS1,k, see [40]
for S3,k and see [42] for S2,k. SinceKk (4.2.6) is a sparse matrix, one easily checks

W2,l ≤ c2ml and W4,l ≤ c4ml.

Moreover, by the definition of step 3,W3,l = µWl−1, l ≥ 2. Then, by

Wl =
5∑
ζ=1

Wζ,l,

the recursive estimate
Wl ≤ ml(2νc1 + c2 + c4) + µWl−1 (5.7.7)

is valid. Forl = 2, . . . , k, the geometric series gives

Wk ≤
k∑
l=2

ml(2νc1 + c2 + c4)µ
k−l + W1µ

k−1

= (2νc1 + c2 + c4)mk

k∑
l=2

µk−l
(

2l − 1

2k − 1

)2

+m0µ
k−1

≤ νcmk,

if µ < 4. Therefore, the assertion has been established for the action (5.7.4). The remaining
cases follow by the same arguments.2

5.8 Numerical examples

In this section, numerical experiments in order to solve (4.2.6), i.e.

Kkuk = g
k
, (5.8.1)
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5 Fast solvers for degenerated problems

are given. In subsection5.8.1, the multi-grid algorithm in the version of the Algorithm5.3
MULT or Remark5.4 is used as solution technique. In the following subsections, a precondi-
tioned conjugate gradient method is the solver for (5.8.1). The preconditioners are the multi-grid
preconditioner (5.5.8), cf. subsection5.8.2, the AMLI preconditioner (5.4.5), cf. subsection
5.8.3, and the BPX preconditioners (5.6.2), (5.6.3), cf. subsection5.8.4.

5.8.1 Convergence rates of multi-grid

In all experiments of this subsection, the multi-grid Algorithm5.3MULT is used in order to
solve (5.8.1). Written in vector form, the algorithm

uj+1,k = uj,k − (I −Mk,S,µ)K
−1
k (Kkuj,k − g

k
)

is used, whereMk,S,µ denotes the multi-grid operator with smootherS and the number of cycles
µ. The following cases of initial valuesu0,k and right hand sidesg in (5.1.1) are considered:

(A) g = 0 andu0,k = 1,

(B) g = 1 andu0,k = 0.

Using vectors ofRm, the conditiong = 1 meansg
k

= c [1, . . . , 1]T (all trianglesτu,kij of the

triangulation have the same volume), andu0,k = 1 meansu0,k = [1, . . . , 1]T . Two kinds of con-
vergence rates are measured, the convergence rateωk in the Euclidian norm and the convergence
rateσk, cf. (5.3.5), in the energy norm. More precisely, let

ω2
k = sup

uj,k 6=0

(uj+1,k − u∗, uj+1,k − u∗)

(uj,k − u∗, uj,k − u∗)
,

σ2
k = sup

uj,k 6=0

(Kk(uj+1,k − u∗), uj+1,k − u∗)

(Kk(uj,k − u∗), uj,k − u∗)
,

where(·, ·) is the Euclidian scalar product, andu∗ denotes the exact solution of (5.8.1). In case
(A), ωk is measured, in case (B), the convergence rateσk in the energy norm is considered.
Moreover, in all experiments, the algorithm is stopped, if the relative error in the Euclidian norm
or in the energy-norm is less thanε = 10−7. The upper tabular in Table5.3displays the numbers
of iterations and the convergence ratesσk of the multi-grid algorithm for (B) using the smoother
S0,k (5.3.49) for µ = µk = 1, . . . , 4. The lower tabular in Table5.3 shows the same results for
ωk in the case (A). TheV -cycle (µ = 1) has clearly growing numbers of iterations. Forµ ≥ 3,
we have mesh-independent convergence rates. It is not clear, if the rates of convergenceσk are
bounded from above byσ < 1 for theW -cycle (µ = 2). The convergence ratesσk do not depend
on the choice of the right hand side and the initial value. More precisely, the maximal variance
in the values ofσk is 0.005 in all test examples considered forσk. Moreover, the number of
smoothing stepsν ≥ 1 has no significant influence for the multi-grid convergence.
The convergence ratesωk do not differ substantially from the convergence rates in the energy
normσk. For the smootherS0,k, the rates are a slightly larger forµ ≥ 2 and lower forµ = 1.
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Level µ = 1 µ = 2 µ = 3 µ = 4
It σk It σk It σk It σk

2 18 0.4070 18 0.4070 18 0.4070 18 0.4070
3 32 0.6017 24 0.4997 22 0.4778 22 0.4722
4 50 0.7239 25 0.5221 22 0.4698 21 0.4583
5 72 0.7974 27 0.5449 22 0.4770 21 0.4582
6 97 0.8463 30 0.5755 24 0.5035 22 0.4719
7 128 0.8814 34 0.6201 25 0.5156 22 0.4788
8 176 0.9123 37 0.6432 26 0.5282 23 0.4838
9 247 0.9373 41 0.6724 26 0.5339 23 0.4847

10 346 0.9545 44 0.6901 26 0.5380 23 0.4841

Level µ = 1 µ = 2 µ = 3 µ = 4
It ωk It ωk It ωk It ωk

2 18 0.4013 18 0.4013 18 0.4013 18 0.4013
3 30 0.5779 21 0.4621 20 0.4409 20 0.4359
4 45 0.6946 22 0.4709 20 0.4463 20 0.4462
5 60 0.7611 27 0.5399 22 0.4775 22 0.4711
6 74 0.8040 30 0.5806 25 0.5156 23 0.4914
7 93 0.8409 35 0.6253 26 0.5370 24 0.5078
8 127 0.8800 39 0.6583 28 0.5550 25 0.5200
9 171 0.9098 43 0.6852 29 0.5690 26 0.5294

10 235 0.9336 48 0.7105 30 0.5803 26 0.5371

Table 5.3:Mg-convergence ratesωk (below) andσk (above) using smootherS0,k (ν = 1).

For theV -cycle, the results are not satisfactory. The reason for the bad convergence of the
V -cycle is the smootherS0,k which operates on the nodes corresponding to the spaceWk only.

In subsection5.5.1, cf. relations (5.5.3), (5.5.4), (5.5.1), smoothersSi,k, i = 1, 2, 3 are defined
which work on the spaceVk. The multi-grid Algorithm5.3 in the version of Remark5.4shows
mesh-size independent convergence ratesσk < σ < 1 for theV -cycle using these smoothers,
cf. Table5.4 for case (B). For the smoothersS1,k andS2,k, the parameterω = 0.8 is chosen in
relations (5.5.3) and (5.5.4). This relaxation parameter shows the best mg-convergence ratesσk.
For theW -cycle, the convergence rates using these smoothers do not change significantelly from
that of theV -cycle. We refer to the preprints [13], [11] for more numerical examples.

Now, we compare all these smoothers. On the left picture of Figure5.5, the multi-grid conver-
gence ratesσk for all smoothers are compared. The time measured in seconds which is needed
in order to reduce the relative error in the energy norm up to a factor ofε = 10−7, is displayed
on the right picture. For a better visibility, the time is scaled with the number of unknowns.

It can be concluded from the results that the ILU-smootherS2,k (5.5.4) and the line Gauß-Seidel
smootherS3,k (5.5.1) are the best smoothers. Moreover, the mg-algorithm using these smoothers
are the fastest ones. The smoother for which Theorem5.36holds, the smootherS0,k with µ = 3,

91



5 Fast solvers for degenerated problems

Level S1,k S2,k S3,k

It σk It σk It σk
2 9 0.1611 6 0.0614 3 0.0014
3 11 0.2290 8 0.1007 5 0.0234
4 13 0.2723 8 0.1224 6 0.0512
5 15 0.3250 9 0.1348 6 0.0639
6 16 0.3517 9 0.1399 7 0.0705
7 16 0.3619 9 0.1421 7 0.0780
8 17 0.3680 9 0.1434 7 0.0853
9 17 0.3720 9 0.1447 7 0.0912

10 17 0.3750 9 0.1470 7 0.0960

Table 5.4:Convergence ratesσk of multi-grid algorithmMULT using smoothersSi,k, i = 1, 2, 3
with ν = 1.

presents high convergence rates and is relatively expensive.
Now, consider the convergence ratesωk. We will see that these rates can depend on the special
choice of the initial value. The convergence rate is given by the spectral radius of the mg-operator
Mk,µ,S. Usually, the vectoru0,k has a non-vanishing component in the eigenbasis ofMk,S,µ to that
eigenvector which corresponds to the dominant eigenvalue. However, it can be possible that we
have chosen anu0,k with zero component to that eigenvector. For this reason, several examples
are considered. In all examples, we setg = 0, whereas the initial valueu0,k is chosen as follows:

(a) u0,k = e, σk is considered instead ofωk,

(b) u0,k = vk ⊗ wk, wherevk andwk are chosen randomly,

(c) u0,k = e,

(d) u0,k = vk ⊗ wk, wherevk = e andwk is chosen randomly,

(e) u0,k = vk ⊗ wk, wherevk =
[
sin 3i

n−1

]n−1

i=1
andwk =

[
cos i

n−1

]n−1

i=1
,

(f) u0,k = vk + wk, wherevk =
[
sin 3i

n−1

]n−1

i=1
⊗ e andwk = e⊗

[
cos i

n−1

]n−1

i=1
,

with
e = [1, . . . , 1]T .

The following smoothers for the multi-grid algorithm are considered:

(i) smootherS3,k (5.5.1) with µ = 1,

(ii) ILU-smootherS2,k (5.5.4) with µ = 1 andω = 0.8,

(iii) smootherS1,k (5.5.3) with µ = 1 andω = 0.8,
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Figure 5.5:Comparison of all smoothers, mg-convergence (left),t
4k

(right), wheret . . . time in
seconds,k . . . level number.

(iv) smootherS0,k (5.3.49) with µ = 3.

The convergence ratesωk are displayed in Figure5.6.
One can see that the convergence ratesωk depend on the choice of the initial value. In case (iii)
only, the convergence rateωk is lower thanσk. The examples (c), (e) and (f) show nearly the
same convergence rates in all cases. For (ii) and (iv), thel2-mg-convergence rateωk is slightly
higher than the energetic multi-grid convergence rateσk.

5.8.2 Multi-grid preconditioner

In the following three subsections, the preconditioned conjugate gradient method is used as
solver for (5.8.1). In this subsection, cf. subsection5.5.2, the preconditioner (5.5.8), i.e.

C̄−1
k,S,µ = (I −Mk,µ,S)K

−1
k ,

is used. In all experiments,g
k

= [1, . . . , 1]T is chosen as right hand side of (5.8.1). The algorithm
is stopped, if the relative error in the preconditioned energy norm is reduced up to a factor of
10−9. Table5.5 displays the number of iterations of the pcg-method using the smoothersS0,k

(5.3.49), S1,k (5.5.3) with ω = 0.8, S2,k (5.5.4) with ω = 0.8, S3,k (5.5.1) and the Gauß-Seidel
(GS) smoother.
For S0,k with µ = 1, there is a logarithmic growth of the number of iterations. The multi-grid
preconditioner with the Gauß-Seidel smoother (GS) shows clearly growing number of iterations.
In all other cases, the results indicate the boundedness of the numbers of iterations by some small
constant.
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5 Fast solvers for degenerated problems

0 2 4 6 8 10
0

0.05

0.1

level number

co
nv

er
ge

nc
e 

ra
te

s

a
b
c
d
e
f

0 2 4 6 8 10
0

0.02

0.04

0.06

0.08

0.1

0.12

0.14

level number

co
nv

er
ge

nc
e 

ra
te

s

a
b
c
d
e
f

S3,k S2,k

2 3 4 5 6 7 8 9 10

0.15

0.2

0.25

0.3

0.35

level number

co
nv

er
ge

nc
e 

ra
te

s

a
b
c
d
e
f

2 3 4 5 6 7 8 9 10

0.35

0.4

0.45

0.5

0.55

level number

co
nv

er
ge

nc
e 

ra
te

s

a
b
c
d
e
f

S1,k S0,k

Figure 5.6:Comparison ofωk for several examples.

5.8.3 AMLI preconditioner

Consider (5.8.1) and solve this linear system with the preconditioned conjugate gradient method.
The algorithm is stopped, if the relative error measured in the preconditioned energy norm is
lower thanε = 10−9. The right hand sideg

k
= [1, . . . , 1]T is chosen. Now, the AMLI precondi-

tionerC̃k,r,µ (5.4.5) is used as preconditioner forKk with the polynomialsPµ,r(t)

Pµ,1(t) = (1− t)µ for µ = 1, 2, 3,
P2,r(t) = (1− rt)2 for r = 52

35
, 17

9

(5.8.2)

and the matrixC̃22,l defined in relation (5.4.11). Note that Theorem5.39 holds forPµ,r(t) =
P2, 17

9
(t). Table5.6 displays the number of iterations for the AMLI preconditioners with the

polynomials (5.8.2). Recall that for the definition of the polynomialPµ,r(t) of the AMLI precon-
ditioner (5.4.5), the eigenvalue boundsλmin

(
CWk

−1KWk

)
andλmax

(
CWk

−1KWk

)
are required,

see (5.4.9). However, the eigenvalue boundsλmin
(
CWk

−1KWk

)
andλmax

(
CWk

−1KWk

)
in The-

orem5.33are estimates and the exact values are not known. Probably, the exact values can be
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5.8 Numerical examples

Level S0,k S1,k S2,k S3,k GS
µ = 1 µ = 2 µ = 3 µ = 1 µ = 1 µ = 1 µ = 1

2 7 8 7 7 6 5 8
3 12 12 11 9 7 6 11
4 15 13 13 10 7 6 13
5 16 14 13 10 7 6 18
6 18 14 13 11 7 6 25
7 21 15 13 11 7 7 33
8 23 16 14 11 7 7 44
9 25 16 14 11 7 7 59

Table 5.5:Number of iterations of the pcg-method using a multi-grid preconditionerMµ,S
k with

S = Si,k, i = 0, . . . , 3.

Level P1,1(t) P2,1(t) P2, 52
35

(t) P2, 17
9
(t) P3,1(t) mixed

2 8 8 8 8 8 8
3 17 16 16 16 16 18
4 23 17 17 18 17 21
5 28 18 17 19 18 23
6 33 19 17 21 18 24
7 39 20 18 21 18 25
8 46 21 18 21 18 26
9 52 22 17 22 18 26

Table 5.6:Number of iterations of the pcg-method with AMLI preconditioners.

better. The polynomialP2, 52
35

(t) is that polynomial(1 − rt)2 with the smallest number of itera-

tions on level 9 forr = 36
35
, 38

35
, . . . , 66

35
. Furthermore, we used the AMLI preconditioner on levelk

using the polynomial1− t on the levelsl = 1, 3, . . . and the polynomial(1− 17
9
t)2 on the levels

l = 2, 4, . . ., wherel ≤ k. This case is denoted by mixed in the last column of Table5.6.
The number of iterations are bounded by a constant forP2, 52

35
(t), P2, 17

9
(t), P3,1(t) and for the case

of P1,1(t) on each odd andP2, 17
9
(t) on each even level. However, they grow proportional to the

number of levels forP1,1(t) andP2,1(t).

5.8.4 BPX preconditioner

Finally, numerical results are given in order to solve (5.8.1) with the pcg-method and the MTS-
BPX preconditionerĈk (5.6.2) and the ILU-BPX preconditioner̂Ck (5.6.3). As before,g

k
=

[1, . . . , 1]T is chosen. Table5.7 displays the number of iterations for several relative accuracies
ε in the preconditioned energy norm. The results are compared with the results of the BPX pre-
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5 Fast solvers for degenerated problems

Level MDS-BPX MTS-BPX ILU-BPX
ε = 10−5 ε = 10−5 ε = 10−9 ε = 10−16 ε = 10−9

2 9 8 9 9 8
3 16 11 18 27 14
4 24 14 23 37 19
5 33 15 26 44 21
6 44 16 28 49 23
7 58 17 30 52 24
8 76 17 31 56 25
9 97 18 32 58 26

Table 5.7:Number of iterations of the PCG-method in order to solveKpup = f
p

with the pre-

conditionersĈk andĈk.

conditioner with multiple diagonal scaling (MDS), see [10]. The multiple tridiagonal scaling
procedure and the ILU-decomposition stabilizes the BPX preconditioner. The number of iter-
ations grow moderately. In comparison to the multi-grid preconditioners of subsection5.8.2,
the numbers of iterations are larger. However, the solution of a preconditioned system with a
BPX-like preconditioner is cheaper than the solution with a multi-grid preconditioner.
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6 Multi-level preconditioner for p-fem

In this chapter, we return to thep-version of the fem. The linear system of algebraic finite element
equations

AR2up = f
p

(6.1)

with the matrixAR2 (3.3.4) is considered.

6.1 Final estimates of the condition numbers

We are interested in a good preconditioner for the matrixAR2 (3.3.4), the element stiffness matrix
for the interior unknowns onR2 = (−1, 1)2 with respect to the basis of the integrated Legendre
polynomials{L̂ij}pi,j=2. Two preconditioners will be introduced. LetP be the permutation of
Proposition3.3, C̃k,r,µ the AMLI preconditioner (5.4.5) with the polynomialPµ,r(t) andC̄k,S,µ
be the multi-grid preconditioner (5.5.8) with smootherS. Via these matrices, the multi-level
preconditioners

M̃k,r,µ = P Tblockdiag
[
2n2C̃k,r,µ

]4
i=1

P, (6.1.1)

M̄k,S,µ = P Tblockdiag
[
2n2C̄k,S,µ

]4
i=1

P (6.1.2)

are defined, wherek denotes the level number,n = 2k andp = 2n− 1 is the polynomial degree.

THEOREM 6.1. The eigenvalue estimates

λmin

(
M̃
−1

k,r,µAR2

)
� 1, λmax

(
M̃
−1

k,r,µAR2

)
� 1 + log p, (6.1.3)

λmin

(
M̄
−1
k,S,µAR2

)
� 1, λmax

(
M̄
−1
k,S,µAR2

)
� 1 + log p (6.1.4)

are valid for the polynomialPµ,r(t) =
(
1− 17

9
t
)2

and the matrixC̃22,k (5.4.11) in (6.1.3), and
for µ = 3 and the smootherS = S0,k (5.3.49) in (6.1.4).

Proof: By Theorem5.41, we have
C̄k,S,µ � Kk

for µ = 3 andS = S0,k defined in (5.3.49). By Theorem5.39, we have

C̃k,r,µ � Kk
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6 Multi-level preconditioner for p-fem

with the parametersµ = 2 andr = 17
9

in (5.4.13), whereKk is the matrix (4.2.6). Furthermore
by Lemma4.3,Kk = 1

2n2C4 follows, cf. (3.4.18). Hence, one can deduce

λmin

(
(2n2C̄k,S,µ)

−1
C4

)
� 1,

λmax

(
(2n2C̄k,S,µ)

−1
C4

)
� 1,

λmin

(
(2n2C̃k,r,µ)

−1
C4

)
� 1,

λmax

(
(2n2C̃k,r,µ)

−1
C4

)
� 1.

Using Theorem3.11with λmin
(
C4

−1A1

)
� 1 andλmax

(
C4

−1A1

)
� 1 + log n, and Proposition

3.3with Ai � A1 for i = 2, 3, 4, one can conclude that

λmin

(
(2n2C̄k,S,µ)

−1
Ai

)
� 1,

λmax

(
(2n2C̄k,S,µ)

−1
Ai

)
� 1 + log p,

λmin

(
(2n2C̃k,r,µ)

−1
Ai

)
� 1,

λmax

(
(2n2C̃k,r,µ)

−1
Ai

)
� 1 + log p,

wheren = p+1
2

. By the first assertion of Proposition3.3, i.e.

AR2 = P Tblockdiag [Ai]
4
i=1 P

holds with some permutationP , the assertions follow immediately.2

Thus, we have found two nearly asymptotically optimal methods in order to solve the system of
linear algebraic equations (6.1).

6.2 Numerical results

In this subsection, numerical results in order to solve

AR2up = f
p

(6.2.1)

using the preconditioned conjugate gradient method are given. In all experiments, the right hand
side

f
p

=
[

1 1 . . . 1
]T

is chosen. The algorithm is stopped, if the relative error in the preconditioned energy norm is
reduced up to the factorε = 10−9. All calculations are done on a Pentium-III, 800 MHz.
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6.2 Numerical results

p M̄k,S1,k,1 M̄k,S0,k,1 M̄k,S0,k,2 M̄k,S0,k,3

It time It time It time It time
[sec] [sec] [sec] [sec]

7 15 0.004 16 0.004 16 0.004 16 0.004
15 17 0.015 20 0.015 20 0.023 20 0.031
31 20 0.059 26 0.074 23 0.094 23 0.141
63 21 0.250 31 0.352 24 0.371 24 0.578

127 22 1.21 36 1.87 26 1.78 25 2.53
255 23 6.08 42 10.5 28 8.37 26 11.5
511 24 31.5 50 61.0 29 41.6 27 55.1

1023 24 133. 59 303. 30 186. 28 249.

Table 6.1:Numbers of iterations of the pcg-method forAR2 using several multi-grid precondi-
tionersM̄k,S,µ.

6.2.1 Multi-grid preconditioner

Table6.1displays the numbers of iterations and the time to reduce the error using the precondi-
tionerM̄k,S,µ with S = S0,k defined in (5.3.49) for µ = 1, 2, 3, andS = S1,k defined in (5.5.3)
for µ = 1. In the two cases̄Mk,S1,k,1 andM̄k,S0,k,3, the numbers of iterations grow slightly. For
M̄k,S0,k,1, there is a stronger increase of the numbers of iterations. The preconditionerM̄k,S0,k,3,
for which Theorem6.1 holds, is relatively slow in reducing the error in comparison to all other
preconditioners. For example,̄Mk,S0,k,1 is faster forp ≤ 255, although the numbers of iterations
grow relatively fast.
However, the numbers of iterations are not bounded by a constant independent ofp in all exper-
iments. Next as preconditioner forA1, we consider the multi-grid preconditionerC̆k,S,µ (5.5.12)
arising from the discretization of (4.2.2), cf. Remark4.2, i.e.

−2
(
y2uxx + x2uyy

)
+

(
x2

y2
+
y2

x2

)
u = g in Ω = (0, 1)2,

u = 0 on ∂Ω.

The corresponding system of linear algebraic equations of the finite difference discretization of
this problem, cf. subsection5.5.3, can be solved by a multi-grid algorithm using a smootherS.
Let

M̆k,S,µ = P Tblockdiag
[
C̆k,S,µ

]4
i=1

P (6.2.2)

be the corresponding multi-grid preconditioner, whereP denotes the permutation of Proposition
3.3. Table6.2 displays the numbers of iterations for the mg-preconditionersM̄k,S,µ andM̆k,S,µ

with µ = 1 and the smoothersS = S2,k defined in (5.5.4) andS = S3,k defined in (5.5.1) for
Kk (4.2.6) andC1 (3.4.3), respectively. One can see that, in contrast to the mg-convergence rates
considered in section5.8, the choice of the smoothersS = S1,k, cf. Table6.1, S = S2,k, or
S = S3,k for the preconditioner̄Mk,S,1 does not influence the results so significantelly. However,
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6 Multi-level preconditioner for p-fem

p M̄k,S2,k,1 M̆k,S2,k,1 M̄k,S3,k,1 M̆k,S3,k,1

It time It time It time It time
[sec] [sec] [sec] [sec]

7 15 0.004 16 0.004 15 0.008 16 0.008
15 17 0.019 16 0.019 17 0.023 16 0.027
31 19 0.062 16 0.062 20 0.105 16 0.105
63 21 0.269 16 0.254 21 0.461 16 0.453

127 22 1.30 16 1.16 21 1.99 16 1.94
255 23 7.03 16 5.77 22 9.19 16 8.43
511 23 34.8 16 26.6 23 41.3 16 35.9

1023 23 147. 16 111. 23 168. 16 146.

Table 6.2:Numbers of iterations of the pcg-method forAR2 using several multi-grid precondi-
tionersM̄k,S,1 andM̆k,S,1 andS = S2,k, S = S3,k.

from the preconditioners̄Mk,S,1 with the three smoothersS1,k, S2,k, andS3,k, the preconditioner
with S = S1,k is cheaper than the other ones and the fastest. The best multi-grid preconditioner
are the preconditioners̆Mk,S,µ which indicate constant numbers of iterations.

6.2.2 AMLI preconditioner

p M̃k,1,1 M̃k,2,1 M̃k,1, 17
9

M̃k,1, 12
7

It time It time It time It time
[sec] [sec] [sec] [sec]

7 16 0.008 16 0.004 18 0.008 17 0.008
15 22 0.016 22 0.031 23 0.023 22 0.023
31 28 0.101 25 0.125 26 0.133 26 0.125
63 34 0.531 28 0.602 29 0.617 28 0.593

127 43 3.27 31 3.09 31 3.04 29 3.86
255 51 20.6 33 16.2 33 16.0 30 14.6
511 61 130. 35 87.8 34 84.3 31 77.0

1023 73 671. 37 411. 34 375. 31 342.

Table 6.3:Numbers of iterations of the pcg-method forAR2 using several AMLI preconditioners
M̃k,r,µ.

In this subsection, the system (6.1) is solved by the pcg-method with the AMLI preconditioner
M̃k,r,µ (6.1.1). Table6.3 displays the numbers of iterations and time to reduce the error in the
preconditioned energy norm up to a factor10−9 using the polynomial iteration

Pµ,r(t) = (1− rt)µ.
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6.2 Numerical results

A slight increase of the numbers of iterations can be seen in the two casesP (t) = (1− 12
7
t)2 and

P (t) = (1 − 17
9
t)2. ForP (t) = (1 − t), similar to theV -cycle of multi-grid, there is a stronger

growth of the numbers of iterations. The method using the preconditionerM̃k, 12
7
,2, in which the

polynomialP (t) = (1− 12
7
t)2 is used, is the fastest AMLI preconditioner.

However, the comparison of the results for the AMLI preconditioners of Table6.3with the multi-
grid preconditioners of Table6.2and Table6.1shows substantially lower numbers of iterations
for most multi-grid preconditioners than for each of the AMLI preconditioners. Moreover, less
time is needed in order to reduce the error.
If we compare the preconditioners̄Mk,S0,k,3 andM̃k, 17

9
,2 of Theorem6.1, the numbers of iterations

are lower forM̄k,S0,k,3. However, solving (6.1) using the preconditioner̄Mk,S0,k,3 requires about
two third of the time in order to reduce the error up to a factor of10−9 of the time needed using
the preconditioner̃Mk, 17

9
,2.

6.2.3 BPX preconditioner

In this subsection, the MTS-BPX preconditionerĈk (5.6.2) or the ILU-BPX preconditioner̂Ck
(5.6.3) is considered on each blockA1. Via the permutation matrixP of relation (6.1.1), the
preconditioner

M̂k = P Tblockdiag
[
2n2Ĉk

]4
i=1

P (6.2.3)

is introduced. If we replacêCk by Ĉk in (6.2.3), the preconditioner̂Mk,ILU is defined. Table6.4
displays the numbers of iterations and the time to reduce the error up to a factor ofε = 10−9

in order to solve (6.1) usingM̂k, or M̂k,ILU as preconditioner. The numbers of iterations grow

p MTS-BPX ILU-BPX
It time It

[sec]
7 17 0.004 17

15 24 0.008 24
31 28 0.039 28
63 32 0.195 32

127 37 1.18 36
255 42 6.41 40
511 46 31.6 44

1023 50 141. 47

Table 6.4:Numbers of iterations of the pcg-method with preconditionerM̂k andM̂k,ILU .

as1 + log p. In comparison to the multi-grid preconditioners̆Mk,S,µ (6.2.2) andM̄k,S,µ (6.1.2),
the preconditionerŝMk andM̂k,ILU show relatively large numbers of iterations. However, the
time in order to reduce the error is about the same. In the next subsection, a more pro-founding
comparison is given.
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6 Multi-level preconditioner for p-fem

6.2.4 Comparison of all preconditioners

In this subsection, the time is measured which is required to reduce the error up to a factor of
ε = 10−9 in order to solve the linear system (6.1). The results are displayed in Figure6.1. For
reasons of a better visibility, all results are scaled withp2, wherep is the polynomial degree. For
the time, a logarithmic scaling is used. The following preconditioners are considered:

10
1

10
2

10
3

10
−4

polynomial degree p

tim
e 

[s
ec

]/p
2

MG with S
1,k

 and µ=1
MG with S

0,k
 and µ=1

MG with S
0,k

 and µ=3
MG with S

2,k
 and µ=1

MG with S
2,k

 and mass term

AMLI with r=66/35 and µ=2
MTS−BPX
Diagonal prec.

Figure 6.1:Comparison of several preconditioners.

• the multi-grid preconditioner̄Mk,S1,k,1, denoted by MG withS1,k andµ = 1,

• the multi-grid preconditioner̄Mk,S0,k,1, denoted by MG withS0,k andµ = 1,

• the multi-grid preconditioner̄Mk,S0,k,3, denoted by MG withS0,k andµ = 3,

• the multi-grid preconditioner̄Mk,S2,k,1, denoted by MG withS2,k andµ = 1,

• the multi-grid preconditioner̆Mk,S2,k,1, denoted by MG withS2,k and mass term,

• the AMLI preconditionerM̃k, 17
9
,2, denoted by AMLI withr = 17

9
andµ = 2,

• the MTS-BPX preconditioner̂Mk, denoted by MTS-BPX,

• the diagonal preconditionerdiag[v], wherev is the main diagonal ofAR2 .

For polynomial degreesp < 100, the multiple-tridiagonal scaling BPX preconditionerM̂k (6.2.3)
is the fastest method in order to solve (6.1). For polynomial degreesp > 100, the preconditioner
M̆k,S2,k,1 beats the MTS-BPX preconditioner. However, these two preconditioners and the pre-
conditionersM̄k,S1,k,1 andM̄k,S2,k,1 lie in a relatively small time range, e.g. forp = 1023 between
111 and147 seconds, cf. Tables6.1, 6.2 and6.4. The two preconditioners, for which Theorem
6.1 holds, the multi-grid preconditioner̄Mk,S0,k,3 and the AMLI preconditioner̃Mk, 17

9
,2 need

about twice as many time as the other ones.
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7 Future work-wavelets

In chapter4, we have considered finite element and finite difference discretizations for several
problems in one, two and three space dimensions. Most of the discretizations in 2D and 3D are
tensor-product discretizations of corresponding problems in one dimension.
In this chapter, we will derive wavelet preconditioners for the solution of the corresponding
systems of linear algebraic equations. We will give only some ideas, the condition number
estimates will be proved in the future. Moreover, we will propose preconditioners for the element
stiffness matrices of thep-version of the fem,AR2 andAR3 (3.3.4).

7.1 1D case, motivation

We consider problem (4.1.3): Findu ∈ H1
0 ((0, 1)) ∩ L2

ω((0, 1)) ∩ L2
ω−1((0, 1)) such that

a1(u, v) =

∫ 1

0

(u′(x)v′(x) + ω2(x)u(x)v(x) + ω−2u(x)v(x)) dx = 〈g, v〉 (7.1.1)

holds for allv ∈ H1
0 ((0, 1)) ∩ L2

ω((0, 1)) ∩ L2
ω−1((0, 1)). The weight functionω2(x) is speci-

fied later. As described in subsection4.1.2, we discretize problem (7.1.1) by piecewise linear
elements on the meshTk =

⋃n−1
i=0

(
i
n
, i+1
n

)
, wheren = 2k andk denotes the level number. Let

{φ(1,k)
i }n−1

i=1 be the basis of the usual hat functions (4.1.4). We introduce the matrices

Mφ
ω =

[
〈φ(1,k)

j , φ
(1,k)
i 〉ω

]n−1

i,j=1
,

T φω=1 =
[
〈(φ(1,k)

j )′, (φ
(1,k)
i )′〉ω=1

]n−1

i,j=1
,

where〈·, ·〉ω denotes theL2
ω((0, 1)) scalar product, i.e.

〈u, v〉ω =

∫ 1

0

ω2(x)u(x)v(x) dx.

In subsection4.1.2, see (4.1.6), (4.1.8) and (4.1.7), we have shown thatT φω=1 = 2nT2, Mφ
ω=x =

1
6n3D5, andMφ

ω=1/x = 4nD6. The matricesT2, D5 andD6 are defined via relations (3.4.7),
(3.4.9) and (3.4.10). Moreover, the matricesD5 andD6 corresponding to the mass parts〈·, ·〉ω
and 〈·, ·〉ω−1 of the bilinear forma1(·, ·) (7.1.1) are spectrally equivalent to the diagonal ma-
trix D3 (3.4.1) and its inverseD−1

3 , cf. Lemma3.8 and Lemma3.9. However, for the matrix
T2 ∈ Rn−1×n−1 corresponding to the stiffness part in the bilinear forma1(·, ·), it is not known
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7 Future work-wavelets

a diagonal matrixD ∈ Rn−1×n−1 such that the condition number ofD−1T2 is bounded by a
constant independent of the dimensionn − 1. Let {φ(1,l)

i }(i,l)∈Îk be the hierarchical basis, see

[80], on levelk. The index set̂Ik is given by

Îk =
{
(i, l) ∈ N2, 1 ≤ l ≤ k, i = 2m− 1, 1 ≤ m ≤ 2l−1,m ∈ N

}
.

Let
T φ,hω=1 =

[
〈(φ(1,l′)

j )′, (φ
(1,l)
i )′〉ω=1

]
(i,l),(j,l′)∈Îk

be the matrix corresponding to the stiffness part of the bilinear form (7.1.1) with respect to the
hierarchical basis{φ(1,l)

i }(i,l)∈Îk . Then, by a simple calculation, the matrixT φ,hω=1 is a diagonal
matrix. More precisely, one obtains

〈(φ(1,l′)
j )′, (φ

(1,l)
i )′〉ω=1 = 2lδll′δij.

Thus, we have found a basis in which the stiffness part of the bilinear forma1(·, ·) is spectrally
equivalent to a diagonal matrix. However, a diagonal matrixD is not known such that the mass
matrix

Mφ,h
ω =

[
〈φ(1,l′)

j , φ
(1,l)
i 〉ω

]
(i,l),(j,l′)∈Îk

with respect to the hierarchical basis satisfies the condition number estimateκ
(
D−1Mφ,h

ω

)
< c

independent of the dimension of the matrices.
Consider (7.1.1) with the weight functionω(x) = 1. In the wavelet theory, see e.g. [29], [71],
it is known that it can be constructed a basis{ψlj}l≤k with span{ψlj}l≤k = span{φ(1,k)

i }n−1
i=1 such

that the matrices

Mψ
ω=1 =

[
〈ψl′j′ , ψlj〉ω=1

]
(j,l),(j′,l′)

and

Tψω=1 =
[
〈(ψl′j′)′, (ψlj)′〉ω=1

]
(j,l),(j′,l′)

are spectrally equivalent to diagonal matrices. More precisely, letDMψ
ω=1

be the identity matrix

I andDTψω=1
= diag [u], whereu =

[
22l
]
(j,l)

. Then, see [29], [71], there

κ
(
(DMψ

ω=1
)−1Mψ

ω=1

)
= O(1), (7.1.2)

κ
(
(DTψω=1

)−1Tψω=1

)
= O(1) (7.1.3)

holds. These facts can be used to derive a preconditioner forT φω=1 andMφ
ω=1. LetQ be the basis

transformation from the nodal basis{φ(1,k)
i }2k−1

i=1 to the wavelet basis{ψlj}l≤k. Then,

Tψω=1 = QTT φω=1Q.

By κ
(
(DTψω=1

)−1Tψω=1

)
= O(1), the condition number estimates

κ
(
(DTψω=1

)−1QTT φω=1Q
)

= O(1) ⇐⇒ κ
(
Q(DTψω=1

)−1QTT φω=1

)
= O(1)
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7.2 2D and 3D case

are valid. Similarly,κ
(
Q(DMψ

ω=1
)−1QTMφ

ω=1

)
= O(1) is valid. Thus, we have found precon-

ditioners forT φω=1, andMφ
ω=1.

In the case of the singular weight functionsω(x) = x andω(x) = 1
x
, a result of the type

κ
(
Q(DMψ

ω
)−1QTMφ

ω

)
= O(1) is not known for a wavelet basis{ψlj}l≤k. This result will be

shown in the future work. Because of the importance, we add the results here. We will formulate
the corresponding theorem only.

THEOREM 7.1. It exists a wavelet basis{ψlj}l≤k ⊂ Vk such that the following assertions hold:

• The matrixTψω=1 is spectrally equivalent to the matrixDTψω=1
= diag[v],

wherev =
[
22l
]T
(j,l)

, i.e. κ
(
(DTψω=1

)−1Tψω=1

)
= O(1).

• The matrixMψ
ω is spectrally equivalent to the matrixDMψ

ω
= diag[t],

wheret =
[
ω2(2−lj)

]T
(j,l)

, i.e. κ
(
(DMψ

ω
)−1Mψ

ω

)
= O(1).

Proof: The proof will be given in a forthcoming paper together with Reinhold Schneider and
Christoph Schwab.2

7.2 2D and 3D case

Using a wavelets basis{ψlj}l≤k, preconditioners can be derived for the systems of linear algebraic
equations arising from the discretizations of (4.2.10), (4.2.14), (4.3.1), and (4.3.2). We explain
the idea in the case of problem (4.2.14) with the bilinear form

a2(u, v) =

∫
Ω

2ω2(x)uyvy + 2ω2(y)uxvx +

(
ω2(x)

ω2(y)
+
ω2(y)

ω2(x)

)
uv.

For the problems (4.2.10), (4.3.1), and (4.3.2), it can be done by the same arguments. The
discretization of (4.2.14) by piecewise bilinear finite elements on the meshEkij yields to a system
of linear algebraic equations of the type

C2u = ((T2 +D6)⊗D5 +D5 ⊗ (T2 +D6))u, (7.2.1)

= c
(
(2T φω=1 +Mφ

ω=x−1)⊗Mφ
ω=x +Mφ

ω=x ⊗ (2T φω=1 +Mφ
ω=x−1)

)
u = g,

cf. Lemma4.5. For each of the involved matrices,T φω=1, M
φ
ω=x−1 andMφ

ω=x, we propose a
preconditioner of the typeQ−T D̂Q−1, whereD̂ is a properly chosen diagonal matrix. More
precisely, we choose

• for T φω=1: Q
−TDTψω=1

Q−1,

• for Mφ
ω=x: Q

−TDMψ
ω=x

Q−1,
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• for Mφ
ω=x−1: Q−TDMψ

ω=x−1
Q−1.

Therefore, cf. the properties of the Kronecker product in Lemma2.5, the matrix

Cψ
2 =

(
Q−T ⊗Q−T ) ((2DTψω=1

+DMψ

ω=x−1
)⊗DMψ

ω=x
+ (7.2.2)

DMψ
ω=x

⊗ (2DTψω=1
+DMψ

ω=x−1
)
) (
Q−1 ⊗Q−1

)
is the preconditioner forC2, see (3.4.16). Since

Dψ
2 = (DTψω=1

+DMψ

ω=x−1
)⊗DMψ

ω=x
+DMψ

ω=x
⊗ (DTψω=1

+DMψ

ω=x−1
)

is a diagonal matrix, the inverse ofCψ
2 can easily be computed, i.e.

(Cψ
2 )−1 = (Q⊗Q) (Dψ

2 )−1
(
QT ⊗QT

)
. (7.2.3)

The matrixQ denotes the one dimensional fast wavelet transformation, the cost forQr1 isO(n).
Thus, the total cost for the multiplication(Cψ

2 )−1r is arithmetically optimal, i.e.O(n2). In the
same way, we define the wavelet preconditionersCψ

5 , Cψ
8 , andCψ

9 given by their inverses,

(Cψ
5 )−1 = (Q⊗Q) (Dψ

5 )−1
(
QT ⊗QT

)
, (7.2.4)

(Cψ
8 )−1 = (Q⊗Q⊗Q) (Dψ

8 )−1
(
QT ⊗QT ⊗QT

)
, (7.2.5)

(Cψ
9 )−1 = (Q⊗Q⊗Q) (Dψ

9 )−1
(
QT ⊗QT ⊗QT

)
(7.2.6)

for C5 (3.4.19), C8 (3.4.22) andC9 (3.4.23). The matricesDψ
5 , Dψ

8 andDψ
9 are the diagonal

matrices

Dψ
5 = DTψω=1

⊗DMψ
ω=x

+DMψ
ω=x

⊗DTψω=1
,

Dψ
8 = DTψω=1

⊗DTψω=1
⊗DMψ

ω=x
+DTψω=1

⊗DMψ
ω=x

⊗DTψω=1

+DMψ
ω=x

⊗DTψω=1
⊗DTψω=1

,

Dψ
9 = (2DTψω=1

+DMψ

ω=x−1
)⊗ (2DTψω=1

+DMψ

ω=x−1
)⊗DMψ

ω=x

+(2DTψω=1
+DMψ

ω=x−1
)⊗DMψ

ω=x
⊗ (2DTψω=1

+DMψ

ω=x−1
)

+DMψ
ω=x

⊗ (2DTψω=1
+DMψ

ω=x−1
)⊗ (2DTψω=1

+DMψ

ω=x−1
).

REMARK 7.2. Using Theorem7.1, thereκ
(
(Cψ

i )
−1
Ci

)
= O(1) holds fori = 2, 5, 8, 9.

7.3 Example of a wavelet basis

In this section, a wavelet basis is given which satisfies Theorem7.1 in the case of the weight
functionω(x) = 1. We refer to the papers [25] and [26] for the construction of such a multi-
resolution basis. The so called mother wavelet is a linear combination of the nodal hat functions
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7.3 Example of a wavelet basis

φ
(1,k)
j , j = 1 . . . , 5, see (4.1.4), i.e.

ψ3
1(x) = −1

8
φ

(1,3)
1 (x)− 1

4
φ

(1,3)
2 (x) +

3

4
φ

(1,3)
3 (x)− 1

4
φ

(1,3)
4 (x)− 1

8
φ

(1,3)
5 (x) (7.3.1)

=


−x if x ∈ [0, 1

4
]

8x− 9
4

if x ∈ [1
4
, 3

8
]

−8x+ 15
4

if x ∈ [3
8
, 1

2
]

x− 3
4

if x ∈ [1
2
, 3

4
]

0 else

.

In the wavelet literature [71], this wavelet is denoted asψ22 because it has two vanishing moments
on the primal and dual side. The family of wavelets

{
ψlj
}

are constructed via translations and
compressions. More precisely, let

ψlj = 2
l
2ψ3

1

(
1

8
(2lx− 2(j − 1))

)
1 ≤ j ≤ 2l−2, 3 ≤ l ≤ k, j, l ∈ N. (7.3.2)

Figure7.1displays one wavelet of the family
{
ψlj
}

. On the boundary atx = 0, we define, [25],

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
−0.5

0

0.5

1

Figure 7.1:Waveletψlj.

ψ3
0(x) =

7

8
φ

(1,3)
1 (x)− 1

4
φ

(1,3)
2 (x)− 1

8
φ

(1,3)
3 (x) (7.3.3)

=


7x if x ∈ [0, 1

8
]

−9x+ 2 if x ∈ [1
8
, 1

4
]

x− 1
2

if x ∈ [1
4
, 1

2
]

0 else

andψl0(x) = 2
l
2ψ3

0(2
l−3x). On the boundary atx = 1, let

ψl2l−2+1(x) = ψl0(1− x) for l ≥ 3.
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Moreover, let by definition

ψ2
j (x) = φ

(1,2)
j+1 (x) for j = 0, 1, 2.

Now, the system of wavelet functions
{
ψkj
}k,2l−2+1

l=2,j=0
is a basis inVk.

7.4 Application to the p-version and numerical
experiments

Similarly as the multi-grid preconditioners in chapter6, we can use the wavelet preconditioners
Cψ

2 , Cψ
5 , Cψ

8 , Cψ
9 , (7.2.3)-(7.2.6) as preconditioner for thep-version element stiffness matrices

AR2 andAR3 (3.3.4). ForAR2 , we define the preconditioners

Wi = P Tblockdiag
[
Cψ
i

]4
j=1

P for i = 2, 5 (7.4.1)

with the permutation matrixP of Proposition3.3. ForAR3 , let

Wi = P̂ Tblockdiag
[
Cψ
i

]8
j=1

P̂ for i = 8, 9 (7.4.2)

be the preconditioners. The matrix̂P denotes the permutation matrix̂P of Proposition3.4.

THEOREM 7.3. The following condition number estimates are valid:

• κ
(
W5

−1AR2

)
≤ c(1 + log p),

• κ
(
W2

−1AR2

)
≤ c,

• κ
(
W8

−1AR3

)
≤ c(1 + log p)2,

• κ
(
W9

−1AR3

)
≤ c.

The parameterc denotes a constant which is independent of the polynomial degreep.

Proof: The result follows from Propositions3.3, 3.4, Theorems3.11and3.12, Theorem7.1and
Remark7.2.2
Now, we give some numerical examples. All calculations are done on a Pentium III, 800 Mhz.
The systems of linear algebraic equations

AR2u = f, (7.4.3)

AR3u = f (7.4.4)

are solved using the preconditioned conjugate gradient method. In all numerical experiments, it
is chosen a relative accuracy ofε = 10−9 in the preconditioned energy norm. The preconditioners
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7.4 Application to the p-version and numerical experiments

W5 andW2 (7.4.1) are chosen as preconditioner forAR2. ForAR3 , we apply the preconditioners

W8 andW9 (7.4.2). The corresponding wavelets are the wavelets
{
ψlj
}k,22l−2+1

l=2,j=0
defined via rela-

tions (7.3.1) and (7.3.3). Table7.1displays the numbers of iterations of the pcg-method and the
time reducing the error up to a factor ofε = 10−9 in order to solve (7.4.3) with the precondition-
ersW5 andW2. The numbers of iterations of the pcg-method in order to solve (7.4.4) with the

p W5 W2

It time It
[sec]

3 3 0.001 3
7 22 0.002 23

15 30 0.010 31
31 36 0.044 36
63 40 0.192 41

127 46 1.066 45
255 50 5.34 49
511 55 24.01 54

1023 58 120.6 57

Table 7.1:Numbers of iterations of the pcg-method for (7.4.3) using the preconditionersW5 and
W2.

preconditionersW8 andW9 are displayed on Table7.2. The numbers of iterations do not differ

p W8 W9

3 3 3
7 41 43

15 50 52
31 56 57
63 64 63

127 74 70

Table 7.2:Numbers of iterations of the pcg-method for (7.4.4) using the preconditionersW8 and
W9.

significantelly betweenW5 andW2, and,W8 andW9. In all cases, the numbers of iterations
grow slightly. In comparison to the most multi-grid preconditionersM̄k,S,µ (6.1.2) andM̆k,S,µ

(6.2.2), and the AMLI preconditioners̃Mk,r,µ (6.1.1), of chapter6, the total numbers of iterations
of the pcg-method are relatively high for the wavelet preconditionersW5 andW2. However, the
cost in order to applyW−1

i r, i = 2, 5 is cheaper than the cost for the multi-grid preconditioning
operation(M̄k,S,µ)

−1r, or (M̆k,S,µ)
−1r. So, the time in order to reduce the error up to a factor of
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7 Future work-wavelets

10−9 is as good as for the fastest multi-level preconditioners like the MTS-BPX preconditioner
M̂k (6.2.3).

110



Remarks to the estimate of the
strengthened Cauchy-inequality

Here, we give the exact values for the parametersp (5.3.27) andq (5.3.28). We set

r = i− 1,

s = j − 1.

Then, we obtain the following results forp andq.

p :=
1

704
(5857266360 s+ 4407665790 r + 1508755050 + 146252736 s6

+ 1111426560 s5 + 27808704 r6 + 302620032 r5 + 9324984713 s2

+ 5434977449 r2 + 3923127840 s4 + 7936810608 s3

+ 3647255568 r3 + 1415409600 r4 + 9269249088 s4 r

+ 8601027360 s4 r2 + 20130620928 s3 r + 20920075392 s3 r2

+ 17559686400 s2 r3 + 6376566048 s2 r4 + 12919365888 s r3

+ 4918733952 s r4 + 124830720 s2 r6 + 1326974976 s2 r5

+ 3982219776 s4 r3 + 3786647040 s3 r4 + 11609339904 s3 r3

+ 277115904 s6 r2 + 328872960 s6 r + 2493112320 s5 r

+ 999364608 s4 r4 + 2094465024 s5 r2 + 151621632 s4 r5

+ 735657984 s3 r5 + 69672960 s3 r6 + 108158976 s5 r4

+ 779452416 s5 r3 + 14432256 s4 r6 + 14432256 s6 r4

+ 103514112 s6 r3 + 1047619584 s r5 + 97625088 s r6

+ 28493849120 s2 r2 + 25194885712 s2 r + 19809599216 s r2

+ 16586949280 s r)/((20 r + 17 + 6 r2)(82016 s+ 76846 r

+ 65589 s2 + 58245 r2 + 47232 s2 r2 + 93456 s2 r + 93168 s r2

+ 139936 s r + 4896 s4 + 26112 s3 + 21120 r3 + 3168 r4

+ 5760 s4 r + 1728 s4 r2 + 30720 s3 r + 9216 s3 r2 + 11520 s2 r3

+ 1728 s2 r4 + 30720 s r3 + 4608 s r4 + 39930)(6 s2 + 16 s+ 11))
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q :=
1

123904
(3175524000 s+ 10752404850 r + 925888320 s6

+ 3527193600 s5 + 153679680 r6 + 2180787840 r5

+ 6123829635 s2 + 25829259555 r2 + 5339341800 s4

+ 5845588560 s3 + 24034055760 r3 + 10651944600 r4

+ 18162835680 s4 r + 24937019664 s4 r2 + 42653867520 s3 r

+ 81996584832 s3 r2 + 120359893824 s2 r3 + 52045531152 s2 r4

+ 90435290880 s r3 + 39407913600 s r4 + 742404096 s2 r6

+ 10535067648 s2 r5 + 17602460928 s4 r3 + 29858095872 s3 r4

+ 70165140480 s3 r3 + 1735243776 s6 r2 + 2071802880 s6 r

+ 7892582400 s5 r + 6669527040 s4 r4 + 6610452480 s5 r2

+ 1260582912 s4 r5 + 5998067712 s3 r5 + 422682624 s3 r6

+ 338411520 s5 r4 + 2450718720 s5 r3 + 88833024 s4 r6

+ 88833024 s6 r4 + 643313664 s6 r3 + 8005662720 s r5

+ 564157440 s r6 + 136254292064 s2 r2 + 65646211760 s2 r

+ 100770474640 s r2 + 46577704800 s r)/((20 r + 17 + 6 r2)(

82016 s+ 76846 r + 65589 s2 + 58245 r2 + 47232 s2 r2

+ 93456 s2 r + 93168 s r2 + 139936 s r + 4896 s4 + 26112 s3

+ 21120 r3 + 3168 r4 + 5760 s4 r + 1728 s4 r2 + 30720 s3 r

+ 9216 s3 r2 + 11520 s2 r3 + 1728 s2 r4 + 30720 s r3 + 4608 s r4

+ 39930)(6 s2 + 16 s+ 11))

Obviously,p > 0 andq ≥ 0 hold for i, j ≥ 1. Moreover, we can conclude

q = 0 ⇐⇒ i = 1 and j = 1.

Hence, the estimate of Lemma5.18is sharp.
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Theses

Multi-level methods for degenerated problems with applications top-versions of the fem
Dipl.-Math. Sven Beuchler

Chemnitz University of Technology, Faculty of Mathematics

1. Computer simulations of many problems in natural and engineering sciences are based on
the mathematical description of these problems by means of partial differential equations
and appropriate boundary conditions. In most cases, these boundary value problems (bvp)
cannot be solved analytically. A powerful tool to compute an approximate solution is the
finite element method (fem). Mesh refinements or an increasing polynomial degree of the
ansatz functions lead to an increasing accuracy of the approximate solution, if it is known that
the exact solution of the bvp is sufficiently smooth. The first possibility is calledh-version
and the second onep-version of the fem. The combination of both giveshp-versions. As a
result of the discretization one gets, in general, a large-scale system of algebraic equations

Au = f . (1)

Usually, the matrixA is sparse. For symmetric, elliptic bvp’s, the matrixA is symmetric and
positive definite, but often ill-conditioned. Therefore, one needs appropriate preconditioners
in order to get efficient solvers for the system of equations (1). In the theses, the construction
of preconditioners for systems of finite element equations resulting from thep-version of the
fem are discussed.

2. Most preconditioners for systems like (1) that arise from the discretization of bvp’s by the
p-version of the fem are based on domain decomposition (DD) techniques. For this purpose,
we suppose that the considered domain is divided intoq non-overlapping sub-domains. For
two dimensional problems, the basis functions of the fem ansatz space are chosen in such a
way that they can be divided into three groups:

(vert) the vertex functions,

(edg) the edge bubble functions,

(int) the interior bubble functions.

Analogously, the matrixA gets a block-structure:

A =

 Avert Avert,edg Avert,int
Aedg,vert Aedg Aedg,int
Aint,vert Aint,edg Aint

 .
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In a first step, one defines the preconditioner

C−1
p =

 I 0 0
0 I 0
0 −A−1

intAint,edg I

 A−1
vert 0 0
0 S−1 0
0 0 A−1

int

 I 0 0
0 I −Aedg,intA−1

int

0 0 I

 ,
whereS = Aedg − Aedg,intA

−1
intAint,edg is the Schur complement. The condition number

of C−1
p A grows as1 + log p, wherep denotes the polynomial degree. The application of

the preconditionerCp requires the solution of systems of equations with the matrixAvert,
the Schur complement matrixS, and the sub-domain stiffness matrixAint. In general, this
is too expensive. Therefore,Avert, S andAint in the preconditionerC−1

p are replaced by
appropriate preconditioners. The matrix−A−1

intAint,edg is replaced by an extension operator
acting from the sub-domain boundaries into the interior of the sub-domains. Korneev and
co-authors derived several preconditioners for the Schur complementS. The problem of the
extension operator was discussed by Babuška et al. ForAvert, direct solvers or multi-grid
methods can be applied.

3. The considered domain is the union of quadrilaterals. Each quadrilateral forms one sub-
domain of the domain decomposition. Then, the matrixAint is a block-diagonal matrix
consisting of blocksAint,i which correspond to a particular sub-domain. A spectrally equiv-
alent preconditioner for the matrixAint is Cint = blockdiag [AR2 ]

q
i=1. The matrixAR2

is the element stiffness matrix related to the Dirichlet problem on the reference element
R2 = (−1, 1)2. In the case of Poisson’s equation, scaled integrated Legendre polynomials
L̂ij(x, y) = L̂i(x)L̂j(y), 2 ≤ i, j ≤ p are usually used for the basis of the interior functions.
Then, the matrixAR2 has about5p2 nonzero elements and the condition number grows as
p2. ForAR2 , we propose preconditioners of the typeCR2 = P blockdiag [Kk]

4
i=1 P

T , where
the matrixKk can be interpreted as a discretization matrix of a degenerated elliptic bvp us-
ing linear/bilinear finite elements or finite differences on uniform meshes or grids. Such
degenerated problems are

− ω2(x)uyy − ω2(y)uxx = g or (2)

−ω2(x)uyy − ω2(y)uxx + 2

(
ω2(y)

ω2(x)
+
ω2(x)

ω2(y)

)
u = g (3)

in Ω = (0, 1)2, u = 0 on∂Ω, whereω(ξ) = ξ. The matrixP is a suitably chosen permutation
matrix. The condition numberκ

(
CR2

−1AR2

)
grows as1+log p for (2), whereas the estimate

κ
(
CR2

−1AR2

)
≤ c is valid for (3).

4. Problem (2) with ω(ξ) = ξ is discretized by theh-version of the fem. A sequence of finite
element discretizations with piecewise linear shape functions on uniform meshesTl consist-
ing of congruent, isosceles, right-angled triangles is investigated. The sequence of meshes
{Tl}kl=1 is generated by a uniform refinement of the meshT1. The corresponding finite el-
ement spaces are denoted byVl and can be split into the direct sumVl = Vl−1

⊕
Wl,

l ≥ 2. A sequence of systems
{
Klul = g

l

}k
l=1

arises as result of this discretization. A



multi-grid (k-grid) algorithm which can be interpreted as alternate, approximate projection
onto the subspacesVl−1 andWl is investigated. Therefore, systems with the matrixKl−1

and a matrixKWl
have to be solved approximately. The matrixKWl

is the stiffness matrix
with respect to the new nodes on levell. The convergence rateσk of the considered multi-
grid algorithm can be estimated purely algebraic. Firstly, it depends on the constant in the
strengthened Cauchy-inequality and secondly on the convergence rateρl, l = 2, . . . , k of
the iterative solution procedure ofKWl

w = r. For problem (2), an estimate of the constant
of the strengthened Cauchy-inequality is derived. For the iterative solution of the system
KWl

w = r, a special line smootherS0,l is built. Its error transion operator is given by
I − C−1

Wl
KWl

. Moreover, this construction is generalized to weight functionsω(ξ) = ξα in
(2), whereα ≥ 0. The convergence rate ofS0,l in order to solveKWl

w = r is bounded by
a constantρ < 1. If the systemKl−1ul−1 = g

l−1
, l = 2, . . . , k, is solved by at leastµ ≥ 3

iterations of the multi-grid algorithm forKl−1, the convergence rateσk for the multi-grid
algorithm satisfies the estimateσk ≤ σ < 1. The arithmetical cost for one iteration of the
multi-grid algorithm is proportional to the number of unknowns on the finest meshTk.

5. The ideas, which are used to define the matrixCWl
, can be transfered to the definition of a

matrixRl. Consequently, the matrixRl corresponds to the space of all nodes on levell. If the
unknowns are permuted, this matrix occurs as tridiagonal matrix. The smootherS1,l, whose
error transion operator is given byS1,l = I−ωR−1

l Kl, can be interpreted as anω-Jacobi-like
smoother along the union of a horizontal and vertical line. The smootherS1,l operates on the
whole approximation space. Numerical experiments indicate a multi-grid convergence rate
σk ≤ σ < 1 for a standard multi-grid algorithm withV -cycle (µ = 1) and smootherS1,l,
l = 2, . . . , k.

6. The multi-grid algorithms discussed in the theses4 and5 are used to define implicitly pre-
conditionersCk,S,µ. Here,S denotes the used smoother. The parameterµ is the number of
iterations in order to solve the coarse grid problems. The matrixCk,S,µ is symmetric positive

definite and the condition number ofC
−1

k,S,µKk is bounded by a constant independent of the
mesh-sizeh for µ ≥ 3 andS = S0,k. The application of the preconditionersCk,S,µ embedded
in a preconditioned conjugate gradient method accelerates the convergence in comparison to
the multi-grid algorithm applied to solveKkuk = f

k
.

7. For the analysis of Algebraic Multi-level Iteration (AMLI) preconditionersC̃k,µ, it is assumed
that the nodes are numbered hierarchically, i.e. first the nodes in the coarse meshTl−1 and
then the new ones inTl, i.e.K11 = Kl−1 andK22 = KWl

. The AMLI preconditionerC̃µ,k is
recursively defined by

C̃l,µ =

[
C̃c
l−1,µ K12 + J12(K22 − C̃22)

0 C̃22

] [
I 0

C̃−1
22 (K21 + (K22 − C̃22)J

T
12) I

]
,

with
(C̃c

l−1,µ)
−1 = (I − Pµ(C̃

−1
l−1,µKl−1))K

−1
l−1



for l = 2, . . . , k andC̃1,µ = K1 for l = 1. The interpolation matrixJ12 is defined in analogy
to the interpolation matrix in the multi-grid algorithm. The matrix̃C22 is a preconditioner
for KWl

= K22. For C̃22, the matrix
(
λmax

(
CWl

−1KWl

))
CWl

is chosen. Taking a poly-
nomial iteration with a Chebyshev polynomialPµ of degreeµ ≥ 2, the condition number of
(C̃µ,k)

−1Kk is bounded by a constant independent of the mesh-sizeh.

8. In numerical experiments, the BPX preconditionerČk with multiple diagonal scaling for the
matrixKk shows a behaviour ofκ

(
Č−1
k Kk

)
� k2, wherek denotes the level number. This

behaviour can be improved by choosing a so called multiple tridiagonal scaling (MTS)-BPX
preconditionerĈk. In the case of the MTS-BPX preconditioner, a tridiagonal matrixRl (see
thesis5) resulting from the smootherS1,l is used as scaling on each levell = 2, . . . , k. Then,

the upper eigenvalue estimateλmax
(
Ĉ−1
k Kk

)
≤ c(1 + k) holds for weight functions of the

typeω(ξ) = ξα with α ≥ 0. Numerical experiments indicate thatλmin
(
Ĉ−1
k Kk

)
≥ c and

that the upper eigenvalue estimate is sharp.

9. The linear systemAR2u = f (see thesis3) can be solved inO(
√

1 + log p) arithmetical
operations by a preconditioned conjugate gradient method with the preconditionerMk =
P blockdiag [Mk]

4
i=1 P

T . The matrixMk is a preconditioner forKk andP is a permutation
matrix. The condition number ofM−1

k AR2 is O(1 + log p) for the AMLI preconditioner
Mk = C̃µ,k (with µ ≥ 2) and the multi-grid preconditionerMk = Ck,µ,S0,k

(with µ ≥ 3).
This estimate of the condition number is confirmed by numerical examples.

10. Wavelet preconditioners can be applied for systems arising from the fem-discretization of the
one dimensional bvp−u′′+ω2(x)u+ω−2(x)u = g in (0, 1) andu(0) = u(1) = 0 with piece-
wise linear elements on a uniform mesh. PreconditionersCψ

k for the corresponding tensor
product problems in two and three dimensions are developed by tensor product arguments.
These preconditionersCψ

k are used to derive preconditionersWd,j, j = 1, 2 for thep-version
element stiffness matricesARd of the reference elementRd = (−1, 1)d in two and three
dimensions withd = 2 or d = 3, respectively. These preconditioners satisfy the condition
number estimatesκ

(
Wd,1

−1ARd
)
≤ O(1 + log p)d−1, andκ

(
Wd,2

−1ARd
)

= O(1).
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