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Some choices of moments of re�nable function and
applications ∗

T.Zhanlav

Abstract

We propose a recursive formula for moments of scaling function and sum rule. It is
shown that some quadrature formulae has a higher degree of accuracy under proposed mo-
ment condition. On this basis we obtain higher accuracy formula for wavelet expansion
coef�cients which are needed to start the fast wavelet transform and estimate convergence
rate of wavelet approximation and sampling of smooth functions.
We also present a direct algorithm for solving re�nement equation.

AMS subject classi�cation: 42C40, 42C15, 41A25, 65D32, 65D15.

Key words: wavelet approximation, quadrature rule, re�nable function evaluation.

1 Introduction
This paper concerns the construction of compactly supported orthonormal wavelets.It is well
known that the moment condition for kernel is essentially equivalent to good approximation
properties.At present there are a numerous necessary and suf�cient conditions for kernel mo-
ment condition [1,2,3]. In this paper we propose another necessary and suf�cient condition for
kernel moment condition,which is constructive in sense that using this we �nd recursively mo-
ments of the scaling function.These conditions also allow us to construct ef�cient quadrature
formulas for evaluation of coef�cients of the wavelet expansion,which are needed to start the
fast wavelet transform and to estimate convergence rate of wavelet and sampling approximations
for smooth functions.On the basis of the proposed moment conditions we suggested an uni�ed
algorithm for the exact evaluation of the re�nable function and its derivatives.We organize our
paper as follows.In section 2 is considered the construction of compactly supported scaling func-
tion that generates multiresolution analysis of L2(R). Section 3 deal with the construction of
higher accuracy formulas for the wavelet expansion coef�cients and sampling approximation.In
section 4 is presented an uni�ed and exact algorithm for evaluation of re�nable function and its
derivatives.Some numerical results are also presented.
∗This work has been supported in part by the Deutsche Forschungsgemeinschaft.
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2 Choice of moments. Approximation theorem
Let ϕ(x) be a scaling function that generates a multiresolution analysis of L2(R) and K(x, y) be
a periodic projection kernel of the form

K(x, y) =
∑

k

ϕ(x− k)ϕ(y − k). (2.1)

For a measurable function f de�ne an operator associated with the kernel

Kjf(x) =

∞∫

−∞

Kj(x, y)f(y)dy, (2.2)

where Kj(x, y) = 1
h
K(x

h
, y
h
), h = 2−j .

Let us introduce some conditions on kernels used in the sequel [1,2,3]. Let N ≥ 0 be an integer.

Condition H(N). There exists an integrable function F (x) such that |K(x, y)| ≤ F (x −
y),∀x, y ∈ R and ∫

|x|NF (x)dx <∞.
Condition M(N) (moment condition). Condition H(N) is satis�ed and

∫
K(x, y)(y − x)sdy = δ0s,∀s = 0, 1, ..., N, ∀x ∈ R, (2.3)

where δjk is the Kronecker delta.
Condition S(N). There exists a bounded non increasing function φ such that

∫
φ(|u|)du <∞, |ϕ(u)| ≤ φ(|u|)

and ∫
φ(|u|)|u|Ndu <∞.

In sequel we will assumed that condition S(N) is satis�ed.
It is well known that, condition S(N) being satis�ed, the condition H(N)holds as well, and the
following quantities are well de�ned

Mn =

∫
ϕ(x)xndx, (2.4)

µn(x) =

∫
K(x, y)(y − x)ndy,

cn(x) =
∑

k

ϕ(x− k)(x− k)n, n = 0, 1, ..., N.

Moreover [3] the following relations are equivalent
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cn(x) = cn (a.e), n = 0, 1, ..., N,
µn(x) = µn (a.e), n = 0, 1, ..., N.

Each of these relations implies that

cn = Mn, n = 0, 1, ..., N.

We assume that ∑

k

ϕ(x− k)(x− k)n = Mn, n = 0, 1, ..., N. (2.5)

The moment condition for the kernel is essentially equivalent to good approximation properties.
Next theorem gives a necessary and suf�cient condition for the condition M(N).

Theorem 2.1 The kernel (2.1) satis�es moment condition M(N) if and only if (2.5) holds
and

s∑
m=0

(
s
m

)
(−1)mMs−mMm = δ0s, s = 0, 1, ..., N. (2.6)

Proof. First, prove that (2.5) and (2.6) are a necessary condition. Let K(x, y) be a kernel
satisfying moment condition (2.3).
Then by Proposition 8.5 [3] we have

∑

k

ϕ(x− k)(x− k)s = const = Ms, s = 0, 1, ..., N

If we take into account (1.1) and (1.5) the left hand side of (1.3) may be rewritten as
∫
K(x, y)(y − x)sdy =

s∑
m=0

(
s
m

)
(−1)mMs−mMm = δ0s, s = 0, 1, ..., N.

The converse is obvious. �
Obviously the condition (2.6) gives us relationship between moments Mi and using this we can
determine all moments. It should be mentioned that the equality (2.6) turns out to identity for
odd s. This means that moments with odd indices can be chosen as a free parameters, while the
moments with even indices are given by

M0M2e = −
2l∑

m=1

(
2l
m

)
(−1)mM2l−mMm, l = 1, 2, ... (2.7)

We denote by mi the discrete moments of {hk} i.e.,

mi =
∑

k

hkk
i, i = 0, 1, ..., N, (2.8)

where hk is the coef�cients of re�nement equation

ϕ(x) =
√

2
∑

k

hkϕ(2x− k). (2.9)
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To �nd this discrete moments we use well-known equality

M0ml = (2l − 1)
√

(2)Ml −
l−1∑
i=1

(
l
i

)
ml−iMi, l = 1, 2, ..., N,m0 =

√
(2). (2.10)

Using (2.7) and (2.10) we can recursively determine all mi. Since the moments M2l+1, are free
parameters in (2.7) we have possibility to obtain a set of re�nable function.
For example, if we choose the odd moments by formula

M2i+1 =
(

M1

M0

)2i+1
M0, i = 0, 1, ...

Then from (2.7) and (2.10) immediately we obtain

Mi =
(

M1

M0

)i
M0, i = 0, 1, ..., N (2.11)

and
mi =

√
(2)
(

M1

M0

)i
M0, i = 0, 1, ..., N. (2.12)

In generally we seek for mi and Mi in the form

mi =
√

(2)ai
(

M1

M0

)i
M0, i = 0, 1, ..., N, a0 = 1 (2.13)

and
Mi = bi

(
M1

M0

)i
M0, i = 0, 1, ..., N, b0 = 1. (2.14)

as (2.11) and (2.12) respectively.
Substituting (2.13) and (2.14) into (2.10) and (2.7) we get

al = 2lbl −
l∑

j=1

(
l
j

)
al−jbj, l = 1, 2, ..., N (2.15)

and

bl = −
2l∑

m=1

(−1)l
(

2l
m

)
bmb2l−m, l = 1, ... (2.16)

Thus we obtain two recursive relations for determining the coef�cients ai and bi.
Now we consider the construction of wavelet system.As is known, the moment condition M(N)
for kernel (2.1) is equivalent to

∫
xsψ(x)dx = 0, s = 0, 1, ..., N (2.17)

or ∑

k

λkk
s = 0, s = 0, 1, ..., N, (2.18)
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where λk are the coef�cients of equation

ψ(x) =
√

(2)
∑

k

λkϕ(2x− k), λk = (−1)k+1h1−k.

The equality (2.18) gives
∑

k

(2k)sh2k =
∑

k

(2k + 1)sh2k+1, s = 0, 1, ..., N. (2.19)

We collect all necessary equations for determining coef�cients hk:
∑

k

hkhk+2l = δ0l, l ∈ N, (2.20)

1√
(2)

∑

k

hk = 1, (2.21)

∑

k

(2k)ih2k =
∑

k

(2k + 1)ih2k+1 =

√
(2)

2
ai(

M1

M0

)i, i = 0, 1, ..., N. (2.22)

Solving nonlinear system of equations (2.20), (2.21) and (2.22) we obtain coef�cients of re�ne-
ment equation (2.9). It should be mentioned that if we choose M1 = 0 in (2.22) then the system
of equations (2.20)− (2.22) turns out to ones for a coi�et [6].
Now we consider approximation properties of the wavelet expansion. We denote by Pj the or-
thogonal projection operator onto Vj i.e.

Pjf(x) =
∑

k

αjkϕjk(x). (2.23)

where αjk are given by inner product

αjk = (f, ϕjk). (2.24)

Theorem 2.2 Assume that the conditions (2.5) and (2.6) hold and ϕ satis�es the condition
S(N + 1). Then for f ∈ CN+1 is valid:

‖Pjf(x)− f(x)‖ = O(hN+1), h = 2−j. (2.25)

Proof. If we use of (2.24) then Pjf can be rewritten as

Pjf(x) = 2j
∫
f(y)

∑

k

ϕ(2jx− k)ϕ(2j − k)dy =

∫
Kj(

x

h
,
y

h
)f(y)dy. (2.26)

Substituting the Taylor expansion for f(x)

f(y) =
N∑
m=0

f (m)(x)

m!
(y − x)m +

f (N+1)(ξ)

(N + 1)!
(y − x)N+1
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into (2.26) we obtain

Pjf(x) =
N∑
m=0

f (m)(x)
m!

hm(
∫
K(x, y)(y − x)mdy)+

f (N+1)(s)
(N+1)!

hN+1
∫
K(x, y)(y − x)N+1dy =

N∑
m=0

f (m)(x)
m!

hmδ0m +O(hN+1),

in which we have used the condition (2.5), (2.6) and condition S(N + 1). This completes the
proof of the theorem. �

3 Quadrature formula based on the wavelet expansion
We consider a quadrature formula

I =

∞∫

−∞

f(x)ϕ(x)dx ≈ Q[f(x)] =
r∑

k=0

wkf(xk), (3.1)

where the weights wk and abscissae xk are to be determined. Here ϕ(x) is the father wavelet that
generates a multiresolution analysis of L2. That is compactly supported scaling function ϕ(x)
satis�es the equation [1,2]

ϕ(x) =
√

2
∑

k

ckφ(2x− k),
∑
|ck|2 <∞ (3.2)

with �nite number nonzero coef�cients ck and the system of function

ϕjk(x) = 2
j
2ϕ(2jx− k), k ∈ Z (3.33)

forms a orthonormal system in space Vj. If the orthogonal projection operator onto Vj denote by
Pj then it can be written as

PJf(x) =
∑

k

αjkϕjk(x), αjk = (f, ϕjk). (3.4)

Recall that the degree of accuracy of the quadrature formula (3.1) is q if it yields the exact result
for every polynomial of degree less than or equal to q.
As mentioned in [4], the quadrature formula is usually constructed by demanding that

Q[xi] = Mi for O ≤ i ≤ q (3.5)

which leads to an algebraic system with respect to unknowns wk and xk, k = 0, . . . , r. Here Mi

are the moments of the scaling function, i.e.,

Mi =

∞∫

−∞

xiϕ(x)dx. (3.6)
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The scaling function is usually normalized with Mo = 1.
Another way to construct a quadrature formula is to use of expansion (3.4), in which we dwell
more detail. Let f(x) ∈ Cn+1. Then using Taylor expansion of f(x) it is easy to show that

αjk = (f, ϕjk) =
√
h

{
N∑
m=0

f (m)(kh)

m!
hm ·Mm +O(hN+1)

}
, h = 2−j. (3.7)

Here and in sequence we assume
∑

k

ϕ(x− k)(x− k)S = MS, S = 0, 1, . . . , N. (3.8)

We consider next quadrature formula

I ≈ Q[f(x)] =
1√
2

∑

k

ckf
(k +M

2

)
(3.9)

with known weights wk = ck√
2

and abscissae xk = (k+M)
2

. We have

Theorem 3.1 Let f(x) ∈ CN+1 and the condition (3.8) is ful�lled. Then the error of
quadrature formula (3.9) is of order O(hN+ 3

2 ) i.e.,
∞∫

−∞

f(x)ϕ(x)dx− 1√
2

∑

k

ckf
(k +M

2

)
= O(hN+ 3

2 ), h = 0.5. (3.10)

Proof. Taking into account the condition (3.8) we can write Mi in the form.

Mi =
∑

k

k+1∫

k

ϕ(x)xidx =

1∫

0

(∑

k

ϕ(x+ k)(x− k)i
)
dx = M i, i = 0, 1, . . . , N. (3.11)

Thereby, from (3.7) we get

αjk =
√
h

{
N∑
m=0

f (m)(kh)

m!
(hM)m +O(hN+1)

}
=

=
√
h{f(k +M)h+O(hN+1)}, h =

1

2j
. (3.12)

On the other hand, using scaling equation (3.2) and (3.4) in integral I, we have

I =
√

2
∑

k

ck

∞∫

−∞

f(x)ϕ(2x− k)dx =
∑

k

ckα1k. (3.13)
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Substituting α1k from (3.12) into (3.13) we obtain

I =
1√
2

∑

k

ckf
((k +M)

2

)
+O(hN+ 3

2 )

which completes the proof of theorem. �

Theorem 3.2 The degree of accuracy of the quadrature formula (3.9) equal to N under
condition (3.8), i.e., the equality (3.5) holds for i = 0, 1, . . . , N.
Proof. Set f(x) ≡ xi, i = 0, 1, . . . , N in (3.9). Then by de�nition of moments and assumption
(3.8) the left hand side of (3.9) gives (3.11), i.e.,

Mi = M i, i = 0, 1, . . . , N.

The right hand side of (3.9) gives

Q[xi] ≡ 1√
2

∑

k

ck(k+M)ihi =
hi√

2

∑

k

ck[k
i+C1

i k
i−1M+C2

i k
i−2M2+· · ·+Ci−1

i kM i−1+M i].

By virtue of lemma [5] we have
∑

k

ckk
i =
√

2M i, i = 0, 1, . . . , N.

Then
Q[xi] = hiM i(1 + C1

i + C2
i + · · ·+ Ci−1

i + 1) = hiM i2i = M i = Mi,

which completes the proof of theorem 3.2. �
Note that the proposed quadrature formula (3.9) is stable. Indeed from normalization condition
Mo = 1 it follows that ∑

k

wk =
1√
2

∑

k

ck = 1.

Although among these coef�cients ck may be occurred negative ones, the following uniform
bound holds:

1√
2

∑

k

|ck| < C, (3.14)

where C is constant not depending on k, due to (3.2). The inequality (3.14) proves the stability
of formula (3.9).
By virtue of (3.4) we have

α0,0 = (f, ϕ0,0) =

∞∫

−∞

f(x)ϕ(x)dx = I. (3.15)
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Therefore in order to calculate the integral (3.1) or (3.15) with higher accuracy than formula
(3.9) we need to use of well-known Mallat algorithm:

αmo =
∑
e

ceαm+1,e, m = j, j − 1, . . . , 0. (3.16)

At the high level j we can use the approximate formula (3.12), i.e.,

αj+1,e ≈ 2−
j+1

2 f((l +M)h), h = 2−(j+1) (3.17)

with accuracy O(hN+ 3
2 ). By this algorithm the integral (3.15) will be evaluated with higher

accuracy.
It should be mentioned that in [4] were proposed some quadrature formula with r degree of
accuracy. But these algorithms lead to solve nonlinear system of (r + 1) unknowns, which is
ill-conditioned. Unlike this the formula (3.9) is a more simple one with known weights and
abscissae. Moreover we can construct the extension of formula (3.9). Indeed, it is easy to show
that

ϕjo(x) =
∑

k

ckϕj+1,k(x). (3.18)

As above, we can consider

Ij =

∞∫

−∞

f(x)ϕjo(x)dx =
∑

k

ckαj+1,k (3.19)

By virtue of (3.12) we obtain

Ij =

∞∫

−∞

f(xh)ϕ(x)dx ≈ 1√
2

∑

k

ckf
(k +M

2
h
)
, h = 2−j (3.20a)

or ∞∫

−∞

f(x)ϕ(2jx)dx ≈ h√
2

∑

k

ckf
(k +M

2
h
)
. (3.20b)

Quadrature formula (3.20) with j = 0 leads to (3.9). Obviously, the theorem 3.1 and theorem
3.2 remain true also for (3.20) with h = 2−j .
Obviously,the smaller the number of abscissae r ,the more ef�cient the quadrature formula (3.1)
since the number of function evaluations and algebraic operations for one coef�cient is propor-
tional to r. Therefore the idea of a one-point quadrature is attractive because of its simplicity.
However, its degree of accuracy is limited. More precisely the degree of accuracy of the one-
point formula

I =

∞∫

−∞

f(x)ϕ(x)dx ≈ Q
[
f(x)

]
, x1 = M1 (3.21)
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is two, when ϕ is an orthogonal scaling function [4].
It is also known, that for the coi�ets with N vanishing moments

Mp = 0, 1 ≤ p ≤ N (3.22)

the one-point formula (3.21) with x1 = 0 has a degree of accuracy of N . This conclusion is
also true for (3.21) with a scaling function ϕ(x), satisfying the condition (3.8). Indeed, setting
f(x) = xs in (3.21) and using (3.11) we see that the left and right hand sides of (3.21) are equal
to each other for s = 0, 1, ..., N .
Therefore we can use the one-point quadrature formula (3.21) for an evaluation of the wavelet
coef�cients

αj+1,l = (f, ϕj+1,l) = 2−
j+1

2

∫ ∞
−∞

f
(y + l

2

)
ϕ(y)dy ≈ 2−

j+1
2 f
(M + l

2j+1

)
.

That is we arrive at formula (3.17). This means that the approximate formula (3.17) may be
considered as a result of using one-point quadrature formula (3.21) for evaluation αj+1,l.
Let Mi = c, i = 1, ..., N . Then from (3.7) it follows

αjk =
√

(h)[(1− c)f(kh) + cf((k + 1)h)] +O(hN+ 3
2 ). (3.23)

Thus we have a two-point quadrature formula:

αjk =

∞∫

−∞

f(x)ϕjk(x)dx ≈
√

(h)
2∑

k=1

ωkf(xk);h = 2−j, (3.24)

where ω1 = 1− c;ω2 = c, x1 = kh, x2 = (k + 1)h.
Using (3.18), (3.19) and (3.23) we easy to seen that

Ij =

∞∫

−∞

f(xh)ϕ(x)dx ≈ 1√
(2)

∑

k

((1− c)ck + cck−1)f(kh), h = 2−j (3.25)

or
∞∫

−∞

f(x)ϕ(2jx)dx ≈ h√
(2)

∑

k

((1− c)ck + cck−1)f
(k

2
h
)

(3.26)

with error O(2−(j+1)(N+ 3
2

)).
When j = 0 the formula (3.26) leads to

I =

∞∫

−∞

f(x)ϕ(x)dx ≈ 1√
(2)

∑

k

((1− c)ck + cck−1)f
(k

2

)
(3.27)
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with error O(2−(N+ 3
2

)).
Now we consider the trapezoidal rule

I =

∞∫

−∞

f(x)ϕ(x)dx ≈ Q[f(x)] =
∑

k

f(k)ϕ(k) (3.28)

It is easy to show that the degree of accuracy of the rule (3.28) is equal to N , if the scaling
function satis�es condition (2.5).
Then we use this rule for evaluating the coef�cients of the wavelet expansion

αjk = 2
j
2

∞∫

−∞

f(x)ϕ(2jx− k)dy = 2−
j
2

∞∫

−∞

f((y + k)h)ϕ(y)dy ≈ 2−
j
2

∑

l

f((l + k)h)ϕ(l).

Thus we have approximate expression for coef�cients:

α̂jk = 2−
j
2

∑

l

f((l + k)h)ϕ(l), h = 2−j. (3.29)

This means that α̂jk represents a discrete convolution of f and ϕ. Now we are interested in error
estimate of this approximate expression (3.29). Assume that f ∈ CN+1. Then using Taylor
expansion

f((k + l)h) =
∑
m

f (m)(kh)

m!
(lh)m +O(hN+1)

and (2.10) we obtain

α̂jk = 2−
j
2

N∑
m=0

f (m)(kh)

m!
(h)mMm +O(hN+ 3

2 ). (3.30)

Comparing this with (3.7) we conclude that

α̂jk = αjk +O(hN+ 3
2 ), h = 2−j. (3.31)

In the case of Mi = (M1

M0
)iM0 for i = 0, 1, ..., N the formula (3.30) yields

α̂jk =
√

(h)M0f((k +
M1

M0

)h) +O(hN+ 3
2 ). (3.32)

Thus in this case we can use a simple formula (3.32) instead of (3.29). It is easy to seen that the
direct application of formula (3.29) to the evaluation of I gives

I =

∞∫

−∞

f(x)ϕ(x)dx =
∑

k

ckα1k ≈
∑

k

ck
1√
(2)

∑

l

f
(k + l

2

)
ϕ(l). (3.33)
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Of course, the degree of accuracy of this formula (3.33) is N and

I − 1√
(2)

∑

k

ck
∑

l

f
(k + l

2

)
ϕ(l) = O(hN+ 3

2 ) = O(2−(N+ 3
2

)).

As before, if the accuracy of this formula is not satisfactory then we can use the Mallat algorithm:

αjk =
∑

cm−2kαj+1,m, j = j − 1, ..., 0

and using formula (3.29) at higher level j + 1 .
As a result we obtain integral I with higher accuracy O(2−j(N+ 3

2
)) .

Let R(x) be an error of wavelet expansion (2.23) ,i.e.,

R(x) = f(x)−
∑

k

αjkϕjk(x). (3.34)

We consider two method for determining coef�cients of the decomposition.

(i) Interpolation.
Setting x = (l + n)h, h = 2−j in (3.34) we require that

R((l + n)h) = 0, l ∈ Z, (3.35)

which is a system of equations

2
j
2

∑

k

αjkϕ(l + n− k) = f((l + n)h), l ∈ Z. (3.36)

Since ϕ(x) is a scaling function with compacted support then the last system turns out to a �nite
system of linear equations with respect to coef�cients αjk . The system (3.36) can be solved by
elimination method.

(ii) Discrete Galerkin method
We require that ∑

l

R((l + n)h)ϕ(l) = 0. (3.37)

This is a discrete version of Galerkin method.
The last system can be rewritten as

∑

k

αjk(
∑

l

ϕ(l + n− k)ϕ(l)) = 2−
j
2

∑

l

ϕ(l)f((l + n)h). (3.38)

Again we obtain a system of equations w.r.t αjk.
The solution of this system can be found explicitly by formula

αjk = 2−
j
2

∑

l

ϕ(l)f((l + n)h) (3.39)
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if ∑

l

ϕ(l + l′)ϕ(l) = δ0l′ . (3.40)

The last condition can be considered as a discrete version of the orthogonality condition for ϕ(x).
Thus we again arrive at formula (3.29). But in this case we have an exact formula (3.39).
Now we are interested in approximation properties of sampling approximation

Sf(x) =
∑

k

α̂jkϕjk(x), (3.41)

where the coef�cients of this expression are given by (3.29). From (3.41) it clear the sampling
operator S is local when ϕ(x)is compactly supported and it is easy to implement.
As before, we assume that f ∈ CN+1 and the conditions (2.5), (2.6) hold and ϕ(x) satis�es the
condition S(N + 1) .Using Taylor expansion for f(x) and condition (2.5), (2.6) in (3.41) it is
easy to show that

‖Sf(x)− f(x)‖ = O(hN+1), h = 2−j. (3.42)

Obviously the estimate (3.42) is also valid for (3.41) with coef�cients given by (3.17) and (3.23).
From the estimate (3.42) it is clear that the sampling operator (3.41) is a quasi-interpolating one
[4]. That is it produces every polynomials of degree less or equal to N .
Note that estimate of type (3.42) for a coi�et was proven by J.Tian and R.O. Wells,Jr [6,10,11]
and for generalized coi�et by E-B Lin and X Zhou [10,11].
If f(x) is continuous then from (3.29) it follows that

2
j
2αjk → f(kh) as j →∞.

Then it is easy to show that

‖
∑

k

f(kh)ϕ(2jx− k)− f(x)‖ = O(hα) (3.43)

provided that ϕ satis�es condition S(1) and f is Hölder continuous with exponent α.

4 Evaluation of the values of scaling function and its deriva-
tives

As is known the wavelet basis in the multiresolution analysis is de�ned by translation and dila-
tions of the scaling function φ(x) and wavelet function ψ(x). So it is often needed the values
of the function φ(x) at any points. However no explicit expression of the scaling function is
available. There are many algorithms for numerical evaluating of values of the scaling function.
(see, for example, [1], [2]). Another method for computing the values φ(x) at integer points was
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given by A. Garba.
In [5,8] the required values of φ(x) are obtained as a solution of eigensystem. The disadvantage
of this method is that it has a time consuming for the higher dimension case of the eigensystem.
In this section we present an exact method for computing values of scaling function at integer as
well as at dyadic points.

Assume that the scaling function has a support in the interval [0, N − 1], where N is posi-
tive integer, and satis�es the relation

φ(x) =
N−1∑

k=0

ckφ(2x− k), ck =
√

2hk. (4.1)

Equation (4.1) is called the re�nement equation. Since supp(φ) ⊆ [0, N − 1], we only need to
compute the values φ at the integer points i = 1, 2, . . . , N − 2.
This is also true for the derivatives because they are also compactly supported, as can be seen by
deriving the scaling equation (4.1). If we use the denotation Φ(n) = (φ

(n)
1 , φ

(n)
2 , . . . , φ

(n)
N−2)T then

Φ(n) satis�es an eigensystem [5].

HΦ(n) = λΦn, λ = 2−n, (4.2)

where the (N − 2) by (N − 2) matrix H has a form:

H =




c1 c0 0 0 . . . 0 0

c3 c2 c1 c0

... ... c3 c2

cN−1 cN−2
... ... . . . 0 0

0 0 cN−1 cN−2 . . . c1 c0

... ... 0 0 . . .
... ...

0 0 0 0 . . . cN−1 cN−2




(4.3)

The vector Φ(n) is an eigenvector corresponding to the known eigenvalue λ = 2−n. It is un-
derstood that the derivative of order 0 corresponds to the scaling function φ(x). The coef�cients
hk are given by Daubechies in [1].
In order to �nd vector Φ(n) we use, in addition Eq.(4.2), a partition of unity satis�ed by φ, i.e.,

∑

k

φ(x− k) ≡ 1 for ∀x ∈ R. (4.4)

Differentiating both side of (4.4) and setting x = 2i, for i = 1, 2, . . . , N − 2 in the obtained
equation, we have

N−2∑
i=1

φ
(n)
i = δon, n = 0, 1 . . . , (4.5)
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where δon is a Kronecker symbol. The eigensystem (4.2) together with (4.5), as in [5], may
be solved by numerical methods. Since the eigenvalue of this system is known, it is useful
to consider this as an system of linear algebraic equations. Dividing both side of Eq.(4.2) by
2−nφ(n)

1 6= 0 and ignoring one of these equations involving all the unknowns we obtain the
nonhomogeneous linear system of (N − 3) equations with (N − 3) unknowns φ̄(n) =

φ
(n)
i

φ
(n)
1

, i =

2, 3, . . . , N − 2. This system can be solved, for instance, by Gaussian elimination method.
After this, substituting

φ
(n)
i = φ

(n)
1 · φ̄ni , i = 2, . . . , N − 2 (4.6)

in equations (4.5), we have

φ
(n)
1 (1 + φ̄

(n)
2 + φ̄

(n)
3 + · · ·+ φ̄

(n)
N−2) ≡ δon. (4.7)

From this we �nd
φ1 =

1

1 + φ̄2 + φ̄3 + · · ·+ φN−2

, when n = 0 (4.8)

The remainder values of φi are de�ned by formula (4.6) for n = 0.
Thus for n = 0 the values of φ(x) at integer points determined completely.
Substituting xk = kh, h = 2−j in equation (4.1), it is easy to show that

φ(
k

2j
) =

N−1∑
m=0

cmφ(
k

2j−1
−m), j = 0, 1, . . . (4.9)

φ(
k

2j
+

1

2j+1
) =

N−1∑
m=0

cmφ(
k

2j−1
+

1

2j
−m), j = 0, 1, . . . . (4.10)

Thus the values of φ at the dyadic points are founded recursively by relations (4.9), (4.10). For
examples, we have

φ(k +
l

2j+1
) =

N−1∑
m=0

cmφ(2k +
l

2j
−m), l = 1, 2, . . . , 2j+1 − 1, j = 0, 1, 2, . . . (4.11)

For n ≥ 1 from (4.7) it is evident that the eigensystem (4.2) has a nonzero solution if and only if

1 + φ̄
(n)
2 + φ̄

(n)
3 + · · ·+ φ̄

(n)
N−2 = 0. (4.12)

In this case the value φ(n)
1 is remains unknown. To �nd φ(n)

1 we need to use of next lemmas.

Lemma 4.1 Let φ be Cn scaling function satisfying conditions
∑

k

φ(x− k)(x− k)S =

∫
φ(x)xSdx = MS, s = 0, 1, . . . , N. (4.13)
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Then
∑

k

φ(m)(x− k)(x− k)S = (−1)ms(s− 1)(s− 2) . . . (s−m+ 1)MS−m, (4.14)

s = 0, 1, . . . , N, m = 0, 1, 2, . . . , n

Proof. We will prove (4.14) by induction. For m = 0 the equality (4.14) becomes (4.13).
Differentiating (4.13) we get

∑

k

φ′(x− k)(x− k)S = −s
∑

k

φ(x− k)(x− k)S−1, s = 0, 1, . . . , N.

By virtue of (4.13), we have
∑

k

φ′(x− k)(x− k)S = −sMS−1, s = 0, 1, . . . , N.

This proved the relation (4.14) for m = 1. Suppose the relation (4.14) is valid for m =
1, 2, . . . , j. We prove (4.14) for m = j + 1. To this end differentiating relation (4.13) (j + 1)-
times, we get

∑

k

{ j+1∑

l=0

(
j + 1
l

)
φj+1−l(x− k)((x− k)S)(l)

}
= 0.

From this we �nd
∑

k

φ(j+1)(x− k)(x− k)S

= −
∑

k

{ j+1∑

l=1

(
j + 1
l

)
φ(j+1−l)(x− k)s(s− 1) . . . (s− l + 1)(x− k)S−l

}

= −
j+1∑

l=1

(
j + 1
l

)
s(s− 1) . . . (s− l + 1)

{∑

k

φ(j+1−l)(x− k)(x− k)S−l
}
. (4.15)

By induction for l = 1, . . . , j holds next relation
∑

k

φ(j+1−l)(x− k)(x− k)S−l = (−1)j+1−l(s− l)(s− l − 1) . . . (s− j)MS−j−1. (4.16)

Substituting (4.16) into (4.15) we get

∑

k

φ(j+1)(x− k)(x− k)S = (−1)j+1s(s− 1) . . . (s− j)MS−j−1

j+1∑

l=1

(
j + 1
l

)
(−1)l+1.
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Since
n∑
k=0

(
n
k

)
(−1)k = 0 we have

j+1∑

l=1

(
j + 1
l

)
(−1)l+1 = −

j+1∑

l=1

(
j + 1
l

)
(−1)l ± 1 = 1−

j+1∑

l=0

(
j + 1
l

)
(−1)l = 1

This completes the proof of Lemma 4.1. �

Lemma 4.2 Assume the same conditions as in Lemma 4.1.
Then

φ
(n)
1 + 2nφ

(n)
2 + 3nφ

(n)
3 + · · ·+ (N − 2)nφ

(n)
N−2 = (−1)nn!. (4.17)

Proof. Take m = s = n in (4.14). Then we have
∑

k

φ(n)(x− k)(x− k)n = (−1)nn!. (4.18)

Since suppφ(n) ⊆ [0, N − 1] as φ(x) the summation on k in (4.18) is run from k = i−N + 2 to
k̇ = i− 1. Setting x = i in (4.18) we get (4.17). �
From (4.17) we �nd

φ
(n)
1 =

(−1)nn!

1 + 2nφ̄n2 + 3nφ̄n3 + · · ·+ (N − 2)nφ̄nN−2

. (4.19)

For n = 0 the formula (4.19) coincides with (4.8).
Remark 4.1 It is easy to show that the formula (4.19) is also valid for Daubechies scaling func-
tion for n = 0, 1 and for n = 2 since M2 = M2

1 .
Remark 4.2 If suppφ ⊆ [N0, N1] (φ(N0) = φ(N1) = 0) then it is easy to show that formulae
(4.17) and (4.19) lead to

φ
(n)
N0+1(N0 + 1)n + φ

(n)
N0+2(N0 + 2)n + · · ·+ φ

(n)
N1−1(N1 − 1)n = (−1)nn!

and
φ

(n)
N0+1 =

(−1)nn!

(N0 + 1)n + (N0 + 2)nφ̄
(n)
N0+2 + · · ·+ (N1 − 1)nφ̄

(n)
N1−1

,

where φ̄(n)
i =

φ
(n)
i

φ
(n)
N0+1

, i = N0 + 2, ..., N1 − 1, respectively.

The values of φ(n) at dyadic points are determined by relation

φ(n)(k +
l

2j+1
) = 2n

n−1∑
m=0

cmφ
(n)(2K +

l

2j
−m), l = 1, 2, . . . 2j+1 − 1, j = 0, 1, 2, . . . (4.20)

The proposed algorithm for evaluation of the re�nable function is immediately extended to the
multidimensional cases.For brevity we will restrict ourselves only by two dimensional case (d =

17



2) an n = 0.
Let

ϕ(x) = ϕ1(x1)ϕ2(x2) (4.21)

be a tensor product of scaling functions ϕ1, ϕ2 , whose factors ful�ll one-dimensional re�nement
equations with coef�cients hk1 and hk2, k1, k2 ∈ Z.
Then ϕ satis�es the re�nement equation [7,8]

ϕ(x) = | detM | 12
∑

k∈Z2

hkϕ(Mx− k), k = (k1, k2). (4.22)

Let ϕ be normalized ∫

R2

ϕ(x)dx = 1. (4.23)

For simplicity we shall assume that the dilation matrix M = 2I . Then the re�nement equation
becomes as

ϕ(x1, x2) =
∑

k1,k2

hk1,k2ϕ(2x1 − k1, 2x2 − k2). (4.24)

Assume supp(ϕ1, ϕ2) ⊂ [0, N − 1]. Then supp(ϕ) ⊂ [0, N − 1]2 .Setting x1 = l, x2 = j in
(4.24) and denoting φ = (φl,j) then resulting system of equations can be written as

(A− I)φ = 0, (4.25)

where A is a matrix with elements hk1,k2 of system (4.24).
The last system can be written in the extended form

N−2∑
k=1

a1kφkj = φ1j

N−2∑
k=1

a2kφkj = φ2j

.................................................
N−2∑
k=1

aN−2,kφkj = φN−2,j





(4.26)

for j = 1, 2, ..., N − 2. If we denote φkj
φ1j

= φkj, k = 2, ..., N − 2 then (4.26) form a non
homogeneous system w.r.t φkj, k = 2, ..., N − 2 in which is lacked one of equations that contain
all unknowns.
Since each system of (4.26) can be solved independently of one another, all computations are
inherently parallel.
Thus solving the system (4.26) for all j = 1, ..., N − 2 we �nd φkj, k = 2, ..., N − 1, j =
1, ..., N − 2 .It remains to �nd only φ1j, j = 1, ..., N − 2. To this end we use the partition of
unity [9]. ∑

i,j

φij ≡ 1. (4.27)
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Obviously,the equality (4.27) holds ,if (for example)

N−2∑
i=1

φij = ϕ2j, j = 1, ..., N − 2 (4.28)

because of
N−2∑
j=1

ϕ2j ≡ 1.

The system (4.28) can be rewritten as

φ1j(1 + φ2j + ...+ φN−2,j) = ϕ2j, j = 1, .., N − 2.

From this we �nd
φ1j =

ϕ2j

1 + φ2j + ...+ φN−2,j

. (4.29)

Using (4.29) we obtain

φkj = φ1jφkj, k = 2, ..., N − 2, j = 1, ..., N − 2. (4.30)

Thus the solution of the system (4.25) is given by (4.29), (4.30).
In conclusion we present numerical results. We were solved the system of equations (4.2), (4.5)
for Daubechies scaling function and N = 4(2)20 and for n = 0, 1, 2, . . . . The results coincide
completely with those given by Garba in [5].
In [5] was present the same values for the �rst and second derivatives of the Daubechies sealing
function for N = 6. Perhaps, this is a technical mistake. For correctness here we present only
these values for N = 6.
. Table 1.

i Φ(0) Φ(1) Φ(2)

1 1.28633506942606E + 0000 1.6384523408819E+0000 9.04249540651108E-0001
2 -3.8583691046152E-0001 -2.23275819046064E+0000 -1.71274862195548E+0000
3 9.52675460038108E-0002 5.50159358273368E-0001 7.12748621955989E-0001
4 4.2343461639624E-0003 4.41464913049908E-0002 9.57504593479706E-0002
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