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Abstract

In the adaptive finite element method, the solution of a p.d.e. is approximated from finer
and finer meshes, which are controlled by error estimators. So, starting from a given coarse
mesh, some elements are subdivided a couple of times. We investigate the question of avoid-
ing instabilities which limit this process from the fact that nodal coordinates of one element
coincide in more and more leading digits. In a previous paper the stable calculation of the
Jacobian matrices of the element mapping was given for straight line triangles, quadrilaterals
and hexahedrons. Here, we generalize this ideas to linear and quadratic triangles on curved
boundaries.
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1 Introduction

In the last two decades the use of adaptive mesh refinement in the finite element solution of
partial differential equations is widely recognized as having significant potential for improving
the efficiency of the solution process. The development of the adaptive finite element method
focused mainly on two ingredients, the error estimators for detecting some elements with large
contribution to theH1–error and the mesh subdivision technique for subdividing these elements.
Here, we investigate the question whether a very fine mesh in small parts of the domain as a
result of continued subdivisions can terminate this process due to numerical instabilities and
how to overcome this difficulty.

The main tool that has to be considered for producing or avoiding numerical instabilities is
the calculation of the local Jacobian matrix of the mapping from the master–element onto the
real element, as usually done in finite element calculations. From this reason our investigations
are valid for each kind of 2nd order partial differential equation. So, we consider only a model
problem for numerical experiments.

2 The adaptive strategy

In the adaptive finite element method, we have several error estimators, which mark some of
the elements (with large contribution to the overall error) for subdivision. For a overview of
known error estimators see [AO00, Verf96] and the references therein. The marked elements are
subdivided into smaller parts due to some strategies.

For 2D–calculations and triangular meshes two basic strategies for one triangle are employed:
The so called “red” subdivision of a triangle into 4 sub–triangles of equal shape and size (see
Fig. 1) and the so called “green” subdivision into 2 parts (see Fig. 2).
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An important fact for the following considerations is the definition of the vertices of the son–
elements. In the triangular case with straight lines the new nodes are calculated first from the
formula

xson :=
1

2
(xfather1 + xfather2)

and then used for defining the new sub–edges. If this technique is repeated a couple of times
neighboring nodes coincide in more and more leading digits. More precisely, a nodexson gener-
ated at anL–th level subdivision of some coarse element coincides with its two fathers in about
L leading digits (in their binary representation). This means, the coordinates itself are correct
until machine accuracy, but differences of neighboring nodes lead to cancellations of aboutL
digits. In classical finite element codes with uniform mesh refinement this fact has played no
role, becauseL has been about 8...10 maximally (the amount of storage and work grows with
4L in 2D!). In an adaptive regime this is not longer true, we can haveL larger then 20 (in small
parts of the domain, for instance near singularities). So, differences of nodal coordinates should
not be allowed (except at the beginning).

3 Unstable calculation of the Jacobian

Let K denote one of the finite elements of the given mesh. Then nodes of K are

x(0), . . . , x(n−1) ∈ R2.

Here,n = 3 or n = 6 in the triangular case and usuallyn = 4, 8 or 9 for quadrilaterals. We
denote byK̂ the master element which is the unit triangle with vertices

x̂(0) = (0, 0)T , x̂(1) = e1 := (1, 0)T andx̂(2) = e2 := (0, 1)T

or the unit square[0, 1]2 (thenx̂(3) = e := (1, 1)T ), resp. Let̂x = (x̂1, x̂2)
T ∈ K̂.

For calculating the element stiffness matrix, for post processing after having the approximate
solution and for most of the error estimators, we have to consider gradients at pointsx ∈ K.
Here, the usual technique considers the mappingx(x̂) : K̂ → K and calculates gradients from
transformations of master–gradients. LetN0(x̂) . . . , Nn−1(x̂) be then form functions (defined
on x̂ ∈ K̂). Then, usually on some Gaussian pointsĝ ∈ K̂ we obtain at first the values:

N(ĝ) = (N0(ĝ), . . . , Nn−1(ĝ)) and

∇̂N(ĝ) =
(
∇̂N0(ĝ), . . . , ∇̂Nn−1(ĝ)

)
.

Here,∇̂ = (∂/∂x̂1, ∂/∂x̂2)
T means formal differentiation with respect to the master coordinates.

The values inN(ĝ) had∇̂N(ĝ) are given in a stable way, usually these are copies from a fixed
list.

From the definition

x(x̂) =
n−1∑
k=0

Nk(x̂) x(k) (1)
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of the mappingK̂ ←→ K we obtain the Jacobian matrix

T (ĝ) = ∇̂xT |ĝ =
n−1∑
k=0

∇̂Nk(ĝ) (x(k))T (2)

from a simple matrix–matrix–multiply of̂∇N with the nodal coordinates. The values ofT seem
to be simple short inner products, but are calculated with a serious cancellation of leading digits.
Let us consider the most simple triangular case withn = 3, then the form functions are

N0(x̂) = 1− x̂1 − x̂2, N1(x̂) = x̂1, N2(x̂) = x̂2 . (3)

So,

∇̂N = (−e
... e1

... e2) =

(
−1 1 0
−1 0 1

)
(4)

and
T = (x(1) − x(0) ... x(2) − x(0))T . (5)

In the case of 6–node triangles the same is true if the edge mid nodes define straight edges
(x(3) = 1

2
(x(0) + x(1)) and so on).

The instability of succeeding calculations results from the use of the inverse ofT for instance
in:

∇Nk(g) = T−1∇̂Nk(ĝ). (6)

In [Mey01, Mey03], the stable calculation of these Jacobians was given for linear triangles
(”red” or ”green” subdivision) and for quadrilaterals or hexahedrons (in 2D and 3D, resp.). This
work was restricted to straight boundaries and will be generalized to curved triangles here.

4 Stable calculation ofT for “red” subdivisions of linear
triangles on a curved boundary

A stable calculation ofT (and especiallyT−1) is possible, if we avoid these differences of nodal
coordinates in (5) for the fine grid elements. This is very easy in the triangular case, if all triangles
have straight edges. Then the “red” strategy leads to sub–triangles which are all similar to one
of the given coarse mesh triangles. We suppose thatT was calculated in a stable way on these
coarse mesh triangles, then all Jacobians on all finer triangles are multiples of the Jacobian of its
father triangle (for suitable node numbering), which stabilizes this procedure totally.

For this purpose we save the four values ofT additionally to the data structure for storing the
element. During the “red” subdivision of an elementK we calculate the 4 Jacobians of the son
elements fromT . Let x(0), x(1), x(2) the vertices ofK, then the 4 sons have to be defined as (see
Fig. 1)

K1 : x(0) x(01) x(02)

K2 : x(01) x(1) x(12)

K3 : x(02) x(12) x(2)

K4 : x(12) x(02) x(01)
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Following [Mey01, Mey03] the Jacobians are1
2
T (for K1, K2, K3) and−1

2
T (for K4), which

is totally free of rounding errors.

Now, let us consider a curved boundary, which is approximated on each triangle as a straight
line. Then (see Fig. 3), the Jacobians of the son elements are no simple multiples ofT .

Let x(01) = (x(0) + x(1))/2 andx(02) = (x(0) + x(2))/2, but letx(12) the node on the curved
boundary, sox(12) 6= x̃(12) := (x(1) + x(2))/2 . If we suppose that a vectord has been calculated
in a stable manner, such thatx(12) is defined asx(12) = x̃(12) + d, then the Jacobians of the son

elements are stable given fromT T = (x(1) − x(0) ... x(2) − x(0)) andd :

T T
1 = (x(01) − x(0) ... x(02) − x(0)) = 1

2
T T ,

T T
2 = (x(1) − x(01) ... x(12) − x(01)) =

= (x(1) − x(01)... x̃(12) − x(01) + d) = 1
2
T T + (0

... d) ,

T T
3 = (x(12) − x(02) ... x(2) − x(02)) = 1

2
T T + (d

... 0) and

T T
4 = (x(02) − x(12) ... x(01) − x(12)) = −1

2
T T − (d

... d)

u
x(0) u

x(1)

ux(2)

u
x(01)

ux(02)
u x(12)

u
x̃(12)

K1

K4

K3

K2

Figure 3:“red” subdivision of a triangle on a curved boundary

The formulas for defining the JacobiansTi of the son elementsKi are stable (rounding error
on last digits only) if we are able to compute the vectord in a stable manner. This is shown in
Chapter 7 for circular boundaries.
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5 Stable calculation ofT for quadratic triangles on a curved
boundary

Obviously, the boundary approximation is much better in using 6-node quadratic triangles. That
is, we use the nodesx(0), x(1), x(2) (vertices) andx(01) = x(3), x(02) = x(4) andx(12) = x(5)

(edge nodes) for defining the shape of the quadratic elementK and have the mapping (1) with
the quadratic form functionsNi(x̂) (i = 0, ..., 5). ThenT (x̂) is a function ofx̂ ∈ K̂, but it
depends onT andd only. So, under the assumptions above we have a stable formula forT (x̂) as
well:

Lemma 1:With q(x̂) = (x̂2, x̂1)
T , d = x(12) − x̃(12) and T T = (x(1) − x(0) ... x(2) − x(0))

we have
T (x̂) = T + 4 q(x̂) dT (7)

Proof: If all three edge nodes are exact side mid-nodes (i.e.x(12) = x̃(12)) then from direct
calculation in (2) we haveT (x̂) = T ( constant w.r.t.̂x ). Usingx(5) = x(12) = x̃(12) + d in (2)
we obtain

T (x̂) = T + ∇̂N5(x̂) dT

which is the desired result (N5(x̂) = 4x̂1x̂2).

The subdivision of this elementK into the 4 son elements as in Fig.3 leads to a stable calcu-
lation of the Jacobians ofKi from combining the results of the previous section with the above
lemma:

The son elementsK1 andK4 have no curved edge anymore, hence

T1 = 1
2
T and T4 = −1

2
T − (d

... d)T

as in the linear case. The definition of the other two elements requires first the definition of the
new nodes on the curved boundary, by giving the vectorsd2 andd3 in a stable manner:
Here, inK2 the 6th node is defined by1

2
(x(1) +x(12))+d2 and inK3 as1

2
(x(2) +x(12))+d3. This

leads to

T2(x̂) =
1

2
T + (0

... d)T + 4 q(x̂) dT
2

and

T3(x̂) =
1

2
T + (d

... 0)T + 4 q(x̂) dT
3 .

6 The case of “green” subdivisions

For “green” subdivisions the same calculations as in the previous chapters lead to stable formulas
for the JacobiansT1 andT2 for the son triangles. In case (a) (see Fig. 4) the curved boundary is
not the subdivision edge, then the rules of [Mey01, Mey03] remain valid:
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T T
1 = (x(2) − x(0) ... x(01) − x(0)) = T T

(
0 1/2
1 0

)
T T

2 = (x(2) − x(1) ... x(01) − x(1)) = T T

(
−1 −1/2
1 0

)
,

if the son elements are defined as

K1 : x(0) x(2) x(01)

K2 : x(1) x(2) x(01) .

u
x(0) u

x(1)

ux(2)

u
x(01)

ux(02)
u x(12)

u
x̃(12)

K1

K2

Figure 4:“green” subdivision of a triangle on a curved boundary, case (a)

In case (b) (see Fig. 5) the curved edge (again the first edge(x(0), x(1)) ) is subdivided creating
the two curved son triangles

K1 : x(0) x(2) x(01)

K2 : x(1) x(2) x(01) .

Then these formulas require the correction

T T
1 = (x(2) − x(0) ... x(01) − x(0)) =

= (x(2) − x(0) ... x̃(01) − x(0) + d) = T T

(
0 1/2
1 0

)
+

(
0

... d

)
T T

2 = (x(2) − x(1) ... x(01) − x(1)) = T T

(
−1 −1/2
1 0

)
+

(
0

... d

)
.
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u
x(2) u

x(0)

ux(1)

u
x(02)

ux(12)
u x(01)

u
x̃(01)

K2

K1

Figure 5:“green” subdivision of a triangle on a curved boundary, case (b)

In case of quadratic 6-node triangles these formulas are improved as in Chapter 5.

7 The stable calculation of the difference vectord for circular
arcs

From the previous chapters, we found the necessity to have a formula for the stable calculation
of the vectord = x(12) − x̃(12) for a given curved boundaryΓ (according to Fig.3 or Fig.4),

x̃(12) =
1

2
(x(1) + x(2)) , x(12) ∈ Γ.

Here, we consider the most important special case ofΓ being a circular arc. For defining
Γ we assume that the midpointm and the radiusρ are fixed (fromx(1) ∈ Γ or x(2) ∈ Γ the
radius could be obtained from‖x(1) −m‖ as well, butm has to be given as extra information on
Γ). Let the nodex(12) ∈ Γ be defined as mid-node betweenx(1) andx(2) w.r.t. the arc length.
Additionally, as shown in the previous chapters, we suppose that

T T = (x(1) − x(0) ... x(2) − x(0)) (8)

has been given in a stable manner. Then the vectorx(2) − x(1) is defined from the difference of
the columns ofT T without cancellation of leading digits, because both columns can be small,
but never near to collinear.
Now, d will be calculated by stable formulas fromξ = ‖x(2) − x(1)‖ and (x̃(12) −m) :
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Lemma 2:The desired vectord and the nodex(12) = x̃(12) + d are calculated by the stable
formulas:

d =
x̃(12) −m

‖x̃(12) −m‖
· δ (9)

with

δ =
(ξ/2)2

ρ +
√

ρ2 − (ξ/2)2
(10)

Proof:The midpoint of the circlem is “far away” from the pointsx(1), x(2) andx̃(12). Hence, the
direction ofd, the vector̃x(12)−m , is obtained without dangerous cancellation of leading digits.
The lengthδ = ‖d‖ follows from Pythagoras in the triangle(m, x(1), x̃(12)):

(ρ− δ)2 + (ξ/2)2 = ρ2

which yields the stable formula (10) forδ.

8 Numerical Results

For demonstrating the above results, we consider the following model diffusion problem


−∆u = 0 in Ω

u = 0 on ΓD,1 (left boundary)
u = 1 on ΓD,2 (right boundary)
∂u
∂n

= 0 on ΓN (the rest)

within a domain with two circular curves meeting in a re-entrant corner (see in Fig.6 the mesh
after some mesh refinement steps).

From the re–entrant corner with270◦ interior angle, we have a serious singularity at this
point, hence the mesh refinement has to be done near this point.This requires subdivisions of
curved triangles in each of the adaptive refinement steps. We have used the same error estimator
as in [Mey01, Mey03]. Each subdivision of a straight line triangle defines the Jacobians of its
sons directly as in [Mey01, Mey03]. Then the error decrease is limited up to about 15 000 un-
knowns as seen in Fig. 8 from increasing instabilities on the Jacobians of the curved triangles.
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Example: Mesh with Arcs
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Figure 6: Mesh after some refinement
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Figure 7: Isolines of|∇u|

We have plotted the value of the error estimator over the degrees of freedom for three differ-
ent mesh refinement strategies. These are (see [Mey01, Mey03]) the Bänsch strategy (“Bg”), a
strategy with red and green subdivisions mixed (“rg”) and using only red subdivisions together
with hanging nodes (“hn”,as in the mesh in Fig. 6). We used 6–node quadratic triangles on the
tests. The instabilities occurred in each of the strategies with different effects, such as zero de-
terminant of a Jacobian and stop (vertical line in Fig. 8) or absurd error growth and coarsening
as seen in Fig. 8.
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Figure 8: Error decrease without stable Jacobians on the curved boundary

Using additionally the formulas of the previous chapters on the curved triangles the expected
behavior of the error development is reestablished as seen in Fig. 9.
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Figure 9: Error decrease with stable Jacobians on the curved boundary
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9 Conclusion

The classical element routines in finite element codes can lead to break downs if they are used in
an adaptive regime. The reason is the possibly unstable calculation of the Jacobian matrices due
to serious cancellations of leading digits of nodal coordinates. We avoid a restricted accuracy of
the method, by calculating stable Jacobian matrices on the coarse mesh. These are inherited to
finer elements during the subdivision. This is easily done on straight line triangles but requires
more information and work on curved boundaries. Here, we presented a way out for circular
arcs.

References

[AO00] M. Ainsworth, J. T. Oden, A Posteriori Error Estimation in Finite Element Analysis.
Wiley, New York 2000.

[Bän91] E. B̈ansch, Local mesh refinement in 2 and 3 dimensions.
IMPACT of Computing in Science and Engineering 3, 181–191, 1991.

[Mey01] A. Meyer, The adaptive finite element method - can we solve arbitrarily accurate ?
Preprint SFB393/01-30 TUChemnitz.

[Mey02] A. Meyer, Projection Techniques embedded in the PCGM for Handling Hanging
Nodes and Boundary Restrictions.
in: Engineering Computational Technology, B.H.V.Topping and Z.Bittnar,(Eds.)
Saxe-Coburg Publ., Stirling, Scotland, 147-165,2002.

[Mey03] A. Meyer, Stable evaluation of Jacobian matrices on highly refined finite element
meshes.
Computing, to appear 2003.

[KV00] G. Kunert and R. Verf̈urth, Edge residuals dominate a posteriori error estimates for
linear finite element methods on anisotropic triangular and tetrahedral meshes.
Numer. Math., 86(2):283–303, 2000.

[Verf96] R. Verfürth, A review of a posteriori error estimation and adaptive mesh–refinement
techniques.
Wiley and Teubner, Chichester and Stuttgart 1996.

11



Other titles in the SFB393 series:

02-01 M. Pester. Bibliotheken zur Entwicklung paralleler Algorithmen - Basisroutinen für Kom-
munikation und Grafik. Januar 2002.

02-02 M. Pester. Visualization Tools for 2D and 3D Finite Element Programs - User’s Manual.
January 2002.

02-03 H. Harbrecht, M. Konik, R. Schneider. Fully Discrete Wavelet Galerkin Schemes. January
2002.

02-04 G. Kunert. A posteriori error estimation for convection dominated problems on anisotropic
meshes. March 2002.

02-05 H. Harbrecht, R. Schneider. Wavelet Galerkin Schemes for 3D-BEM. February 2002.

02-06 W. Dahmen, H. Harbrecht, R. Schneider. Compression Techniques for Boundary Integral
Equations - Optimal Complexity Estimates. April 2002.

02-07 S. Grosman. Robust local problem error estimation for a singularly perturbed reaction-
diffusion problem on anisotropic finite element meshes. May 2002.

02-08 M. Springmann, M. Kuna. Identifikation schädigungsmechanischer Materialparameter mit
Hilfe nichtlinearer Optimierungsverfahren am Beispiel des Rousselier Modells. Mai 2002.

02-09 S. Beuchler, R. Schneider, C. Schwab. Multiresolution weighted norm equivalences and
applications. July 2002.

02-10 Ph. Cain, R. A. R̈omer, M. E. Raikh. Renormalization group approach to energy level
statistics at the integer quantum Hall transition. July 2002.

02-11 A. Eilmes, R. A. R̈omer, M. Schreiber. Localization properties of two interacting particles
in a quasiperiodic potential with a metal-insulator transition. July 2002.

02-12 M. L. Ndawana, R. A. R̈omer, M. Schreiber. Scaling of the Level Compressibility at the
Anderson Metal-Insulator Transition. September 2002.

02-13 Ph. Cain, R. A. R̈omer, M. E. Raikh. Real-space renormalization group approach to the
quantum Hall transition. September 2002.

02-14 A. Jellal, E. H. Saidi, H. B. Geyer, R. A. Römer. A Matrix Model forνk1k2 = k1+k2
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