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1 Introduction

In this paper, we consider the following problem: Find u ∈ H 1
0,ω(Ω) such that

a(u, v) :=

∫

Ω

(ω(y))2uxvx + (ω(x))2uyvy =

∫

Ω

gv =: 〈g, v〉 ∀v ∈ H1
0,ω(Ω), (1)

where
H1

0,ω(Ω) = {u ∈ L2(Ω), ω(x)uy, ω(y)ux ∈ L2(Ω), u |∂Ω= 0}.
The domain Ω = (0, 1)2 is the unit square.

ASSUMPTION 1.1. The weight function ω(ξ) is assumed to be of the form ω(ξ) = ξα with
α ≥ 0.

REMARK 1.2. If α 6= 0, the differential operator in (1) is not uniformly elliptic in the Sobolev
space H1

0 (Ω), an estimate of the type

a(u, u) ≥ γ ‖ u ‖2
H1(Ω) ∀u ∈ H1

0 (Ω) (2)

with a constant γ > 0 is not satisfied.

The integrand on the left hand side in (1) is of the type (∇u)TD(x, y)∇v with the diffusion
tensor

D(x, y) =

[

ω2(y) 0
0 ω2(x)

]

. (3)

Therefore, the matrix D is symmetric and positive definite for all (x, y) ∈ Ω, but not uniformly
positive definite for α > 0. Moreover, the matrix D is bounded for each (x, y) ∈ Ω. Such prob-
lems are called degenerated problems. In the past, degenerated problems have been considered
relatively rarely. One reason is the unphysical behaviour of the partial differential equation which
is quite unusual in technical applications. One work focusing on this type of partial differential
equation is the book of Kufner and Sändig [14]. Nowadays, problems of this type become more
and more popular because there are stochastic pde’s which have a similar structure. An example
of a degenerated stochastic partial differential equation is the Black-Scholes partial differential
equation, [17]. Moreover, the solver related to the problem of the subdomains embedded in a
domain decomposition preconditioner for the p-version of the finite element method can be inter-
preted as h-version fem-discretization matrix of (1) in the case of the weight function ω(ξ) = ξ.
We refer to [5], [4] for more details.
We discretize problem (1) by finite elements. For this purpose, some notation is introduced. Let
k be the level of approximation and n = 2k. Let xk

ij = ( i
n
, j

n
), where i, j = 0, . . . , n. The

domain Ω is divided into congruent, isosceles, right-angled triangles τ
s,k
ij , where 0 ≤ i, j < n

and s = 1, 2, see Figure 1. The triangle τ
1,k
ij has the three vertices xk

ij, x
k
i+1,j+1 and xk

i,j+1, τ
2,k
ij

has the three vertices xk
ij, x

k
i+1,j+1 and xk

i+1,j , see Figure 1. Furthermore, let Ek
ij = τ

1,k
ij ∪ τ

2,k
ij be

the macro-element
[

i

n
,
i + 1

n

]

×
[

j

n
,
j + 1

n

]

.
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Figure 1: Mesh for the finite element method (left), Notation within a macro-element E k
ij (right).

Piecewise linear finite elements are used on the mesh

Tk = {τ s,k
ij }n−1,n−1,2

i=0,j=0,s=1.

The subspace of piecewise linear functions φk
ij with

φk
ij ∈ H1

0 (Ω), φk
ij |τs,k

lm
∈ � 1(τ s,k

lm )

is denoted by � k, where
� 1 is the space of polynomials of degree ≤ 1. A basis of � k is the

system of the usual hat-functions {φk
ij}n−1

i,j=1 uniquely defined by

φk
ij(x

k
lm) = δilδjm (4)

and φk
ij ∈ � k, where δil is the Kronecker delta. Now, we can formulate the discretized problem.

Find uk ∈ � k such that
a(uk, vk) = 〈g, vk〉 ∀vk ∈ � k (5)

holds. Problem (5) is equivalent to solving the system of linear algebraic equations

Kα,kuk = g
k
, (6)

where

Kα,k =
[

a(φk
ij, φ

k
lm)

]n−1

i,j,l,m=1
,

uk = [uij]
n−1
i,j=1 ,

g
k

=
[

〈g, φk
lm〉

]n−1

l,m=1
.

The index α denotes the parameter of the weight function ω(ξ) = ξα. Then, uk =
∑n−1

i,j=1 uijφ
k
ij

is the solution of (5). In this paper, we will derive fast solution methods for (6). Because of
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the right-angled triangles τ
r,k
ij , and the diagonal matrix D(x, y) (3), the matrix Kα,k is a sparse

matrix with 5-point stencil structure and O(n2) nonzero matrix entries.
Therefore, it is important to find a method which solves (6) in O(n2) arithmetical operations.
Using the usual Cholesky decomposition with lexicographic ordering of the unknowns, the arith-
metical cost is proportional to n4, and the memory requirement is of order n3. Using the method
of nested dissection developed by George, [10], the arithmetical cost can be reduced to O(n3)
and the memory requirement to O(n2 log(1 + n)), if only the nonzero elements of the matrix
are stored. However, this method is not arithmetically optimal, too. Moreover, the order of the
arithmetical cost and memory requirement cannot be improved by taking another reordering for
the Cholesky decomposition, [11].
Using iterative methods, no additional memory requirement in order to save the matrix Kα,k is
necessary.
However, efficient preconditioners are needed. For systems of finite element equations arising
from the discretization of boundary value problems as e.g. −uxx − uyy = f , efficient solution
techniques are developed in the last two decades. Examples for such solvers are the precon-
ditioned conjugate gradient (pcg) method with BPX preconditioners, [8], or hierarchical basis
preconditioners, [21], and multi-grid methods, [12], [13].
However, the differential operator in (1) is not spectrally equivalent to the Laplacian. It is an
elliptic, but not uniformly elliptic differential operator, cf. (2). In a certain way, this differential
operator can be interpreted as an operator with local anisotropies, where the range of anisotropy
ε goes to zero, if the discretization parameter h tends to zero.
A typical anisotropic model problem considered in the literature, see [12], is

−∂2u

∂x2
− ε

∂2u

∂y2
= f, ε small.

One iterative method with a rate of convergence independent of the choice of ε is the multi-grid
algorithm with a line Gauß-Seidel (GS) smoother, cf. [13]. Bramble and Zhang, [9], considered
multi-grid methods in a more general case as for the Laplace equation. They proved multi-
grid convergence for differential operators of the type −(f(x, y)ux)x − (g(x, y)uy)y, where 0 <

g(x, y) ≤ gmax and 0 < fmin < f(x, y) < fmax, i.e. one of the coefficients can be arbitrarily
small. However, both coefficients can be arbitrarily small in (1). Thus, we have to find a modified
solution technique.
In [5], the special case of the singular weight function ω(ξ) = ξ in (1) is considered. Using
the techniques of Braess, [7], Schieweck, [18], and Pflaum, [16], a meshsize independent multi-
grid convergence rate ρ < 1 has been shown. Moreover numerical experiments, see [6], for
discretizations of differential operators as (1) indicate a mesh-size independent convergence rate
ρ < 1 for multi-grid algorithms with semi-coarsening and line-smoother. In [3], a BPX-like
preconditioner which we call MTS-BPX preconditioner Ĉ1,k for K1,k is proposed (i.e. α = 1).
Numerical experiments indicate a small increasing condition number of Ĉ−1

1,kK1,k.
The aim of this paper is to extend the MTS-BPX preconditioner of [3] and the multi-grid algo-
rithm of [5] to the more general problem of Kα,kw = r, where α ≥ 0. This paper is organized
as follows. In section 2, the multi-grid algorithm is considered. We state the main assumptions
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required for the algebraic convergence theory, the constant in the strengthened Cauchy inequality
and the smoothing property. Then, the definition of the smoother in [5] for K1,k is generalized
to a smoother for Kα,k. Moreover, a proof of the smoothing property is given. In section 3,
the MTS-BPX preconditioner Ĉα,k for Kα,k is defined. Finally, the upper eigenvalue estimate of
Ĉ−1

α,kKα,k is proved and some numerical experiments are given.

2 Multi-grid for degenerated problems

In the typical multi-grid proofs, cf. [12], one splits the multi-grid operator in a product of two
operators A and B. One proves a smoothing property for the operator A, whereas an approxima-
tion property has to be shown for B. Helpful tools for this aim are the approximation theorems
for finite elements as the Aubin-Nitsche-trick. In order to prove such a result, the boundedness
and the ellipticity of the bilinear form are required in the Sobolev space H 1(Ω). However, the
ellipticity of the bilinear form (1) cannot be guaranteed, cf. relation (2).
Another technique in order to prove a mesh-size independent convergence rate has been intro-
duced by Braess, [7]. In this method, the approximation space � k is split into a direct sum of the
space � k−1 and a complementary space � k. One obtains a multiplicative solver for the problem
on � k by solving the problems on � k−1 and � k. Schieweck, [18], and Pflaum, [16], have ex-
tended this technique. This method does not require regularity assumptions to the bilinear form.
Moreover, for triangulations of simple geometry as for (5), the required assumptions are quite
simple to handle.

REMARK 2.1. Note that the bilinear form a(·, ·) is positive definite on the space � k.

2.1 Multi-grid algorithm

In this subsection, the multi-grid algorithm in order to solve (6) is introduced. The space � k is
represented as the direct sum

� k = � k−1 ⊕ � k,

where
� k = span{φk

ij}(i,j)∈Nk
, (7)

see e.g. [15], [7], [18], [19], [20]. The index subset Nk ⊂ � 2 contains the indices of the new
nodes on level k and is given by

Nk := {(i, j) ∈ � 2, 1 ≤ i, j ≤ n − 1, i = 2m − 1 or j = 2m − 1, m ∈ � }. (8)

Let u0 ∈ � k be the initial guess. One step u1 = MULT (k, u0, g) of the multi-grid algorithm
MULT is defined recursively as follows.

ALGORITHM 2.2 (MULT ). Set l = k.

• If l > 1, then do

5



1. Pre-smoothing on � l: Solve

a(w, v) = 〈g, v〉 − a(u0, v) ∀v ∈ � l

approximately by using ν steps of a simple iterative method S, the approximate solu-
tion is w̃. Set u1

0 = u0 + w̃.

2. Coarse grid correction on � l−1: Find w ∈ � l−1 such that

a(w, v) = 〈g, v〉 − a(u1
0, v) = 〈r, v〉 ∀v ∈ � l−1.

Compute an approximate solution w̃ by using µl−1 steps of the algorithm
MULT (l − 1, 0, r). Set u2

0 = u1
0 + w̃.

3. Post-smoothing on � l: Solve

a(w, v) = 〈g, v〉 − a(u2
0, v) ∀v ∈ � l

approximately by using ν steps of a simple iterative method S, the approximate solu-
tion is w̃. Set u1 = u2

0 + w̃.

• else

– Solve a(w, v) = 〈g, v〉 − a(u0, v) ∀v ∈ � 1 exactly.

• end-if.

2.2 Algebraic convergence theory for multi-grid

Our aim is to prove the convergence of the multi-grid Algorithm 2.2 MULT in order to solve
(6) using µ = µl = 3 and a special line smoother S = � 0,k on level k which will be defined in
(30). From [16], [18], the following convergence theorem is known for multi-grid algorithms of
the type of the algorithm MULT .

THEOREM 2.3. Let us assume that the following assumptions are fulfilled.

• Let a(·, ·) be a symmetric and positive definite bilinear form on � k. Let

‖ · ‖2
a:= a(·, ·)

be the energy norm.

• Let S be a smoother satisfying

‖ Sνw ‖a≤ cρν ‖ w ‖a ∀w ∈ � k, (9)

where 0 ≤ ρ < 1 independent of k and c > 0.

6



• There is a constant 0 ≤ γ < 1 independent of k such that

(a(v, w))2 ≤ γ2a(v, v)a(w, w) ∀w ∈ � k, ∀v ∈ � k−1 (10)

holds.

• Let uj+1,k = MULT (k, uj,k, g), let u∗ be the exact solution of (6) and let

σk = sup
uj,k−u∗∈ ���

‖ uj+1,k − u∗ ‖a

‖ uj,k − u∗ ‖a

(11)

be the convergence rate of MULT in the energy norm with ν smoothing operations.

Then, the recursion formula

σk ≤ σ
µk−1

k−1 + (1 − σ
µk−1

k−1 )(cρν + (1 − cρν)γ)2 (12)

is valid.

Proof: This theorem has been proved by Schieweck, Theorem 2.2 of [18] with ρ = ρ1 = ρ3, and
Pflaum, see Theorem 4 of [16]. 2

This theorem is the key in order to prove a mesh-size independent convergence rate σk < σ < 1.
If γ2 < µ−1

µ
, the estimate σk < σ < 1 follows for ν ≥ ν0, cf. [18], [5]. By Remark 2.1, the first

assumption of Theorem 2.3 is satisfied for the bilinear form a(·, ·) (1). The constant γ2 in the
strengthened Cauchy inequality (10) can be determined by the techniques described in [5].
In [5], Theorem 2.2, we have proved

(a(v, w))2 ≤ 95

176
a(v, v)a(w, w) ∀v ∈ � k, ∀w ∈ � k+1

for the bilinear form a(·, ·) (1) with the weight function ω(ξ) = ξ, i.e. α = 1. In subsection
2.4, we want to prove (9) for more general weight functions as in [5]. Therefore, the stiffness
matrices restricted to the elements τ

1,k
ij and τ

2,k
ij are needed. This is done in subsection 2.3.

2.3 Calculation of the macroelement stiffness matrices

In this subsection, we determine the stiffness matrix on the macro-elements E k
ij with respect to

the basis built by the basis functions of � k+1 |Ek
ij

. We start with the introduction of the basis

functions on Ek
ij. Note that the triangle τ

2,k
ij is the union of the triangles τ

2,k+1
2i,2j , τ

1,k+1
2i+1,2j , τ

2,k+1
2i+1,2j ,

and τ
2,k+1
2i+1,2j+1, the triangle τ

1,k
ij is the union of the triangles τ

1,k+1
2i,2j , τ 1,k+1

2i,2j+1, τ 2,k+1
2i,2j+1, and τ

1,k+1
2i+1,2j+1.

The nodes xk
ij , xk

i,j+1, xk
i+1,j , and xk

i+1,j+1 are the coarse grid nodes, the nodes xk+1
2i+1,2j , xk+1

2i,2j+1,
xk+1

2i+2,2j+1, xk+1
2i+1,2j+2, and xk+1

2i+1,2j+1 are new in level k+1, compare Figure 2. Using this notation,
we have

� k+1 |Ek
ij
= span{φk+1

lm }
(l,m)∈N

�
k+1

ij

. (13)
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i+1,j+1
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xk+1
2i+2,2j+1

xk
i,j xk+1

2i+1,2j xk
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τ
1,k+1
2i,2j+1

τ
2,k+1
2i,2j+1

τ
1,k+1
2i+1,2j+1

τ
2,k+1
2i+1,2j+1

τ
1,k+1
2i,2j

τ
2,k+1
2i,2j

τ
1,k+1
2i+1,2j

τ
2,k+1
2i+1,2j

Figure 2: Local numbering of the nodes and sub-triangles of E k
ij .

For reasons of simplicity, we write only φk+1
lm instead of φk+1

lm |Ek
ij

for the restriction of φk+1
lm on

Ek
ij. The index set in (13) is given by

N
�

k+1

ij = Nk+1 ∩ {(l, m) ∈ � 2
0, 2i ≤ l ≤ 2i + 2, 2j ≤ m ≤ 2j + 2},

where Nk+1 was defined in (8). Since � k ⊂ H1
0 (Ω), some modifications are necessary for

boundary macro-elements Ek
ij , i.e. with i = 0, j = 0, i = n − 1, or j = n − 1.

On the elements τ
2,k
ij , we introduce the matrices

Jq,ij :=
[

aτ
q,k
ij (φk+1

lm , φk+1
rs )

]

(r,s),(l,m)∈N
q,
�

k+1

ij

with N
q,

�
k+1

ij := T
q
ij ∩N

�
k+1

ij , where T 1
ij := {(l, m) ∈ � 2

0, l−m ≤ i− j} and T 2
ij := {(l, m) ∈

� 2
0, l − m ≥ i − j}. Namely, we obtain

N
2,

�
k+1

ij = {(2i + 1, 2j), (2i + 2, 2j + 1), (2i + 1, 2j + 1)} and

N
1,

�
k+1

ij = {(2i, 2j + 1), (2i + 1, 2j + 2), (2i + 1, 2j + 1)} .

The entries of the matrices Jq,ij can be determined by a straightforward calculation. We compute
those for the case of a general weight function ω(ξ). The following parameters depending on the
integer j are introduced:

dj =
1

4

∫

τ
1,k+1

2i,2j ∪τ
2,k+1

2i,2j+1

(ω(y))2 d(x, y),

ej =
1

4

∫

τ
2,k+1

2i,2j ∪τ
2,k+1

2i+1,2j

(ω(y))2 d(x, y),

fj =
1

4

∫

τ
1,k+1

2i,2j+1
∪τ

1,k+1

2i+1,2j+1

(ω(y))2 d(x, y). (14)
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Note that dj, ej and fj are independent of the integer i. The values di, ei and fi are defined by a
permutation of i and j, x and y, and τ

2,k
ij and τ

1,k
ji in (14). One obtains the following proposition.

PROPOSITION 2.4. Let 0 < i, j < n − 1. Then, one has

J2,ij = 4





di + ej 0 −di

0 fi + dj −dj

−di −dj di + dj



 . (15)

By exchanging the indices i and j in (15), one derives the matrices J1,ij = J2,ji.

2.4 Construction of the smoother

In order to apply multi-grid to the linear system (6), we need an efficient smoother. This smoother
will be contructed by the local behaviour of the differential operator. An idea of Axelsson
and Padiy, [1], for anisotropic problems is extended to bilinear forms as in problem (1). This
smoother operates on the space � k+1 only.
Consider the triangle τ

2,k
ij . For our discussion, only the sub-matrices Js,ij, where 0 ≤ i, j ≤ n−1

and s = 1, 2, are needed which correspond to the nodal basis functions on � k+1. The two cases
i < j and i ≥ j are discussed. We start with i < j. By Proposition 2.4,

J2,ij = 4





di + ej 0 −di

0 fi + dj −dj

−di −dj di + dj



 .

The index k is omitted. For i < j, the matrix

M2,ij = 4





di + ej 0 0
0 fi + dj −dj

0 −dj di + dj



 (16)

is introduced. In the matrix M2,ij , we set all off diagonal entries of J2,ij to 0 which have relatively
small absolute values in comparison to the corresponding main diagonal entries. Since ω is
monotonic increasing, the relation di < dj is valid for i < j. Thus, we set the −di entries of J2,ij

in M2,ij to 0. We prove now the following lemma.

LEMMA 2.5. For 0 ≤ i < j < n, the eigenvalue estimates

λmin

(

M2,ij
−1J2,ij

)

≥ 1 − 1

3

√
3 and

λmax

(

M2,ij
−1J2,ij

)

≤ 1 +
1

3

√
3

hold.
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Proof: Let
β = difi + didj + fidj.

Then, we have

M−1
2,ijJ2,ij =







1 0 −di

di+ej
−didj

β
1 0

−difi−didj

β
0 1






.

This matrix has the characteristical polynomial

det(λI − M−1
2,ijJ2,ij) = (λ − 1)

(

(1 − λ)2 − di

di + ej

difi + didj

difi + didj + fidj

)

.

The roots λi, i = 1, 2, 3, of this polynomial are

λ1 = 1,

λ2,3 = 1 ±√
ρ,

where

ρ =
di

di + ej

difi + didj

difi + didj + fidj

. (17)

Note that for all i and j, the values dj, ej and fj are mean values of the positive function (ω(y))2

over the union of two triangles having a volume of 1
8n2 . By the monotony of the weight function,

the inequality di ≤ fi holds for all i ∈ � , cf. (14) and Figure 2. Therefore,

difi + didj

difi + didj + fidj

≤ difi + didj

difi + 2didj

=
fi + dj

fi + 2dj

=
1

1 + 1
fi
dj

+1

.

Moreover, by i ≤ j − 1 and the monotony of the weight function, one has ω(x) ≤ ω(y) for all
x, y ∈ τ

2,k
ij . Thus, by integration over sub-triangles of τ

2,k
ij with volume 1

8n2 , cf. Figure 2,

fi =
1

4

∫

τ
2,k+1

2i+1,2j∪τ
2,k+1

2i+1,2j+1

(ω(x))2 d(x, y) ≤ 1

4

∫

τ
1,k+1

2i+1,2j∪τ
2,k+1

2i+1,2j+1

(ω(y))2 d(x, y) = dj,

di =
1

4

∫

τ
2,k+1

2i,2j ∪τ
1,k+1

2i+1,2j

(ω(x))2 d(x, y) ≤ 1

4

∫

τ
2,k+1

2i,2j ∪τ
2,k+1

2i+1,2j

(ω(y))2 d(x, y) = ej.

Therefore, we obtain the estimates

difi + didj

difi + didj + fidj

≤ 2

3
(18)

and
di

di + ej

≤ 1

2
. (19)
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Inserting the estimates (18) and (19) into (17), one has

1 −
√

1

3
≤ λ3 ≤ λ1 ≤ λ2 ≤ 1 +

√

1

3
.

Hence, the assertion follows immediately. 2

Now, consider the case i ≥ j. Introducing the matrix

M2,ij = 4





di + ej 0 −di

0 fi + dj 0
−di 0 di + dj



 , (20)

we will show that κ
(

M2,ij
−1J2,ij

)

≤ c independent of the parameters j, i, and n. In order to
prove this result, the following estimate concerning the weight function is necessary.

LEMMA 2.6. Let ω(·) satisfy Assumption 1.1. Then, one has the inequality

0 ≤
(

ω

(

y +
1

2n

))2

≤ c(ω(y))2 ∀y ≥ 1

n
, (21)

where the constant c is independent of n and y.

The inequality
(

ξ + 1.5

ξ + 1

)2α

=

(

1 +
1

2ξ + 2

)2α

≤
(

3

2

)2α

= c

holds for all ξ ≥ 0 and α ≥ 0 with c =
(

3
2

)2α
. Thus,

(

ξ +
3

2

)2α

≤ c (ξ + 1)2α
, or

(

ξ + 3
2

n

)2α

≤ c

(

ξ + 1

n

)2α

with some n > 0. Using (ω(ξ))2 = ξ2α, we have
(

ω
(

ξ+ 3

2

n

))2

≤ c
(

ω
(

ξ+1
n

))2
, or, substituting

y = ξ+1
n

,

0 ≤
(

ω

(

y +
1

2n

))2

≤ c(ω(y))2 ∀y ≥ 1

n

which is the desired result. 2

LEMMA 2.7. For 0 ≤ j ≤ i < n, one has

λmin

(

M2,ij
−1J2,ij

)

� 1 and

λmax

(

M2,ij
−1J2,ij

)

� 1.

11



The constants are independent of i, j and n. For ω(ξ) = ξ, the eigenvalue estimates

λmin

(

M2,ij
−1J2,ij

)

≥ 1 − 2

11

√
11 and

λmax

(

M2,ij
−1J2,ij

)

≤ 1 +
2

11

√
11

are valid.

Proof: We start with the case i < n − 1 and j > 0. The proof is similar to the proof of Lemma
2.5. A short calculation yields

det(λI − M−1
2,ijJ2,ij) = (λ − 1)

(

(λ − 1)2 − dj

dj + fi

didj + ejdj

diej + didj + ejdj

)

.

By i ≥ j and the monotony of the weight function ω, we have
∫

τ
2,k+1

2i+1,2j

(ω(x))2 d(x, y) =

∫

τ
2,k+1

2i+1,2j+1

(ω(x))2 d(x, y) (22)

≥
∫

τ
2,k+1

2j+1,2i

(ω(x))2 d(x, y)

=

∫

τ
1,k+1

2i,2j+1

(ω(y))2 d(x, y)

≥
∫

τ
1,k+1

2i+1,2j

(ω(y))2 d(x, y).

For the same reason,
∫

τ
2,k+1

2i,2j

(ω(y))2 d(x, y) ≤
∫

τ
1,k+1

2i+1,2j

(ω(y))2 d(x, y). (23)

Using (22) and (23),

fi =

∫

τ
2,k+1

2i+1,2j∪τ
2,k+1

2i+1,2j+1

(ω(x))2 d(x, y) ≥
∫

τ
2,k+1

2i,2j ∪τ
1,k+1

2i+1,2j

(ω(y))2 d(x, y) = dj. (24)

By Lemma 2.6, we have

0 ≤
(

ω

(

y +
1

2n

))2

≤ c(ω(y))2 ∀y ≥ 1

n
.

Integration over τ
2,k+1
2i+1,2j gives

∫

τ
2,k+1

2i+1,2j

(

ω

(

y +
1

2n

))2

d(x, y) ≤ c

∫

τ
2,k+1

2i+1,2j

(ω(y))2 d(x, y)

12



with j ≥ 1. With a change of variables ỹ = y + 1
2n

in the left integral, the integration will be
done now over τ

2,k+1
2i+1,2j+1,

∫

τ
2,k+1

2i+1,2j+1

(ω(y))2 d(x, y) ≤ c

∫

τ
2,k+1

2i+1,2j

(ω(y))2 d(x, y). (25)

Using (25),
∫

τ
2,k+1

2i,2j

(ω(y))2 d(x, y) =

∫

τ
2,k+1

2i+1,2j

(ω(y))2 d(x, y),

and
∫

τ
1,k+1

2i+1,2j

(ω(y))2 d(x, y) ≤
∫

τ
2,k+1

2i+1,2j+1

(ω(y))2 d(x, y),

we have

dj =
1

4

∫

τ
1,k+1

2i+1,2j∪τ
2,k+1

2i+1,2j+1

(ω(y))2 d(x, y) ≤ c

4

∫

τ
2,k+1

2i,2j ∪τ
2,k+1

2i+1,2j

(ω(y))2 d(x, y) = ej. (26)

Using (26) and dj ≤ di for j ≤ i, one can estimate

ejdj + djdi ≤ (c + 1)ejdi.

Equivalently, one obtains

(c + 2)(ejdj + djdi) ≤ (c + 1)(ejdi + ejdj + djdi).

Together with (24), the assertion follows as in the proof of Lemma 2.5.
Consider now i = n− 1. Then, the second row and column of M2,ij and J2,ij has to be canceled.
Thus, the matrices M2,n−1,j and J2,n−1,j are identical and

λ1(M
−1
2,n−1,jJ2,n−1,j) = λ2(M

−1
2,n−1,jJ2,n−1,j) = 1.

The last case is j = 0. We have to omit the first row and column in M2,i,0 and J2,i,0. A short
calculation shows

det(λI − M−1
2,i,0J2,i,0) = (λ − 1)2 − d0

fi + d0

d0

d0 + di

.

Since d0 ≤ di and d0 ≤ fi for i ≥ 0, cf. relation (24), d0

d0+di
≤ 1

2
and d0

d0+fi
≤ 1

2
follows. Hence,

the estimates
1

2
≤ λ2 < λ1 ≤

3

2

are obtained for the roots of the characteristical polynomial of the matrix M−1
2,i,0J2,i,0. 2

13



In (16), (20), we have defined a local preconditioner M2,ij for the macro-element stiffness matri-
ces J2,ij corresponding to the triangle τ

2,k
ij . On the triangles τ

1,k
ij , we define matrices M1,ij in the

same way as M2,ij for τ
2,k
ij :

M1,ij =







































4





ei + dj 0 −dj

0 di + fj 0
−dj 0 di + dj



 for i ≤ j,

4





ei + dj 0 0
0 di + fj −di

0 −di di + dj



 for i > j.

(27)

REMARK 2.8. By the symmetry of the differential operator with respect to the variables x and
y, we obtain the same results for the triangles τ

1,k
ij as in Lemmata 2.5 and 2.7.

Following [5], a global preconditioner M �
k+1

for K �
k+1

is defined using the local matrices
Ms,ij, where 0 ≤ i, j ≤ n − 1, s = 1, 2. The matrix K �

k+1
is defined as stiffness matrix Kk+1

(6) restricted to the space � k+1, i.e.

K �
k+1

=
[

a(φk+1
lm , φk+1

ij )
]

(i,j),(l,m)∈Nk+1

(compare (8), (9)). The matrix K �
k+1

is the result of assembling the local stiffness matrices
Js,ij, s = 1, 2 and i, j = 0, . . . , n − 1, i.e.

K �
k+1

=

2
∑

s=1

n−1
∑

i,j=0

LT
s,ijJs,ijLs,ij. (28)

The matrices Ls,ij ∈
� 3×3·4k−1−2k

are the usual finite element connectivity matrices. Since

(2k − 1)2 − (2k−1 − 1)2 = 3 · 4k−1 − 2k,

the dimension of Ls,ij is 3 × 3(4k−1 − 2k).

DEFINITION 2.9. We define the matrix M �
k+1

by

M �
k+1

=
2

∑

s=1

n−1
∑

i,j=0

LT
s,ijMs,ijLs,ij. (29)

Because of the properties of the local preconditioners Ms,ij, the matrix M �
k+1

is a good precon-
ditioner for K �

k+1
. This result is stated as main theorem of this subsection.

THEOREM 2.10. Let ω(ξ) satisfy Assumption 1.1, let M �
k+1

and K �
k+1

be defined in (29)
and (28), respectively. Then, one obtains

λmin

(

(M �
k+1

)−1
K �

k+1

)

� 1,

λmax

(

(M �
k+1

)−1
K �

k+1

)

� 1.
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Proof: Take Lemma 2.5 of [5]. By Lemma 2.5 and Lemma 2.7, and Remark 2.8, the assertions
follow. 2

REMARK 2.11. This result can be extended to more general weight functions ω. The weight
function should fulfill an estimate of the type (26) which means that the weight function does not
change rapidly. Another possible assumption is that the weight function ω(ξ) ≥ 0 satisfies the
following properties:

• ω is monotonic increasing,

• ω is Lipschitz-continuous with a Lipschitz constant L,

• ω(ξ) ≥ c
ξ

for ξ ∈ (0, δ), δ > 0 with some c > 0.

Proof: Using the last assumption and the monotony of ω,

ω (y) ≥ c

2n
∀y ≥ 1

n
.

Therefore, L
2n

+ ω(y) ≤
(

1 + L
c

)

ω(y). By the monotony of w and the Lipschitz continuity, one
derives

ω

(

y +
1

2n

)

≤ L

2n
+ ω(y) ≤

(

1 +
L

c

)

ω(y)

which gives (26).2
Applying Theorem 2.10, a preconditioned Richardson iteration can be built as a preconditioned
simple iteration method. The error transion operator � α,k+1 of this method is defined by

Sα,k+1 = I − ζ(M �
k+1

)−1K �
k+1

, (30)

where Sα,k+1 denotes the matrix representation of � α,k+1 by the usual fem-isomorphism. This
smoother S = � α,k+1 can be used for the Algorithm MULT .

COROLLARY 2.12. Let

‖ w ‖2
a= a(w, w)

be the energy norm of the bilinear form a. Then, for all w ∈ � k+1

‖ � ν
α,k+1w ‖a≤ ρν ‖ w ‖a

holds, where ζ = 1 and ρ < ρ0 < 1.

Proof: The proof is similar to the proof of Corollary 2.3 in [5]. 2
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2.5 Interpretation of the smoother

In order to apply the smoother Sα,l (30), a linear system of the type

M �
l
u = g, l = 1, . . . , k (31)

has to be solved. Therefore, it is important to find an efficient solution technique for the system
(31). In this subsection, it will be shown that M �

k
is a block diagonal matrix consisting of

tridiagonal blocks. Then, using Cholesky/Crout-decomposition, the system (31) can be solved in
O(mk) arithmetical operations, where mk is the number of unknowns on level k. Furthermore,
we show that the smoother Sα,k (30) is a line smoother operating on lines `2m−1 which will be
defined below. According to (16), (20), and (27), the matrix M �

k
has the structure

M �
k

= diag(K �
k
) + R,

where diag(K �
k
) is the diagonal part of the matrix K �

k
, defined in (28). The matrix R will be

defined below. Let b : � k × � k → �
be the following non-symmetric bilinear form uniquely

determined by the values of the basis functions {φk
ij}(i,j)∈Nk

∈ � k

b(φk
ij, φ

k
lm) =







a(φk
ij, φ

k
lm) if

i = l = 2r − 1, j = 2, . . . , i, m = j − 1
j = m = 2r − 1, i = 2, . . . , j, l = i − 1

0 otherwise

for r = 1, . . . , n
2
. Note that by this definition, a(φk

ij, φ
k
lm) is equal to the element (i, j), (l, m) of

the matrix Kα,k, if i = l = 2r − 1, j = 2, . . . , i, m = j − 1, or j = m = 2r − 1, i = 2, . . . , j,
l = i − 1. The matrix R is defined as the symmetric part of the bilinear form b. More precisely,
let

R =
[

b(φk
ij, φ

k
lm) + b(φk

lm, φk
ij)

]

(i,j),(l,m)∈Nk
.

After a proper permutation P , we have

M �
k

= P T blockdiag [M �
k ,r]

n
2

r=0 P

with

M �
k,r =

{
[

a(φk
ij, φ

k
lm)

]

(i,j),(l,m)∈Ñ2r−1

for r > 0
[

a(φk
ij, φ

k
lm)

]

(i,j),(l,m)∈∪
n/2−1

r=1
(Ñ2r∩Nk+1)

for r = 0
.

The index set Ñr is defined as

Ñr =
{

(i, j), (l, m) ∈ {1, . . . , r}4 : i = l = r or j = m = r
}

(32)

and Nk has been defined in (8). Thus, the matrices M �
k ,r, r ≥ 1, are tridiagonal matrices and

the matrix M �
k ,0 is a diagonal matrix. The shape functions of one block M �

k ,r correspond to
one edge of the left picture of Figure 3 which has been marked by a bold line. Therefore, the
system (31) can be solved using Cholesky decomposition in O(n2) flops. Hence, the operation
Sα,kw is arithmetically optimal. Additionally, we build a smoother S̃α,k = I −ωL−1

α,kKα,k which
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Figure 3: Nonzero entries of the matrices R (left) and R̃ (right).

uses the ideas of (30). This smoother operates on the space � k. Let

Lα,k = diag(Kα,k) + R̃, (33)

where

R̃ =
[

b̃(φk
ij, φ

k
lm) + b̃(φk

lm, φk
ij)

](n−1,n−1)

(i,j),(l,m)=(1,1)
,

with the bilinear form b̃ : � k × � k → �

b̃(φk
ij, φ

k
lm) =







a(φk
ij, φ

k
lm) if

i = l = r, j = 2, . . . , i, m = j − 1
or j = m = r, i = 2, . . . , j, l = i − 1

0 otherwise
(34)

for r = 1, . . . , n − 1. As well as Sα,k (30), S̃α,k is a line smoother. However, it operates on
each bold line in the right picture of Figure 3. The matrix Lα,k is a block diagonal matrix of
tridiagonal blocks. After a proper permutation P ,

Lα,k = P T blockdiag [Lk,r]
n−1
r=1 P

where
Lk,r =

[

a(φk
ij, φ

k
lm)

]

(i,j),(l,m)∈Ñr

with the index set Ñr (32). The matrices Lk,r are tridiagonal matrices, where the shape functions
correspond to nodes marked by one bold line in the right picture of Figure 3. Analogously to
Sα,k, the operation

S̃α,kw = r

can be done arithmetically optimal in O(n2) flops using Cholesky- or Crout-decompostion.
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3 BPX preconditioner

3.1 Definition of the preconditioner

Recall the finite element discretization of problem (1):
Find u ∈ � k such that

∫

Ω

(

ω2(y)uxvx + ω2(x)uyvy

)

d(x, y) =

∫

Ω

fv d(x, y) (35)

holds for all v ∈ � k with a weight function ω(ξ) satisfying Assumption 1.1.
For the efficient solution of systems of linear equations arising from discretizations of uniformly
elliptic problems by finite elements, Bramble, Pasciak, and Xu have developed a preconditioner,
[8], which has been called the BPX preconditioner. For this preconditioner, the spectral equiva-
lence to the original stiffness matrix can be shown. Later, this preconditioner has been improved
by the multiple diagonal scaling version, [22]. As mentioned in [2], a BPX preconditioner with
multiple diagonal scaling does not show good numerical results in order to solve Kα,ku = g

k
, the

system of linear algebraic equations resulting from the finite element discretization of (35). One
reason is that this preconditioner cannot handle the anisotropies resulting from the degenerated
elliptic operator. However, with a modification, the so called multiple tridiagonal scaling BPX
(MTS-BPX), this behaviour of the BPX preconditioner can be improved, [3].
In subsection 2.5, the smoother

S̃α,k = I − ωL−1
α,kKα,k

has been considered as smoother for Kα,k. In this smoother, the matrix Lα,k is a preconditioner
for Kα,k which can handle anisotropies. The idea is now to apply the matrix Lα,k as ”scaling”
on each level instead of a diagonal scaling. We expect a stabilization of the BPX preconditioner.
The following MTS-BPX preconditioner is now defined. Let Qk

l , l = 0, . . . , k be the basis
transformation matrix from the basis {φl

ij}nl−1
i,j ∈ � l to the basis {φk

ij}nk−1
i,j=1 ∈ � k, where nj = 2j.

Let Ql
k be the transposed operator. Furthermore, let Lα,k be the matrix in (33). Then, we define

the preconditioner

Ĉ−1
α,k =

k
∑

l=1

Qk
l L

−1
α,lQ

l
k. (36)

This preconditioner is called the MTS-BPX preconditioner for Kα,k. In the case of α = 1, this
definition corresponds to the definition of the MTS-BPX preconditioner given in [3].
For the correct analytical definition of the MTS-BPX preconditioner Ĉα,k for Kα,k with α ≥ 0,
we recall the notation of this paper and introduce some new notation. Let � k = span

{

φk
ij

}nk−1

i,j=1
,

where k denotes the level number and nk = 2k. Moreover, let k′ ≤ k. The domain Ω is
decomposed into overlapping stripes Ω̂k

j , i.e.

Ω =

nk−1
⋃

j=1

Ω̂k
j ,

18



where Ω̂k
j = Ω̂k

j,x ∪ Ω̂k
j,y with

Ω̂k
j,x =

{

(x, y) ∈ � 2, 0 ≤ y ≤ x,
j − 1

nk

≤ x ≤ j + 1

nk

}

,

Ω̂k
j,y =

{

(x, y) ∈ � 2, 0 ≤ x ≤ y,
j − 1

nk

≤ y ≤ j + 1

nk

}

,

see Figure 4. According to this decomposition, let

�
�

�
��

�
�

�
�� Ω̂3

5,x

Ω̂3
5,y

Ω̂3
2,x

Ω̂3
2,y

4
8

6
8

4
8

6
8

1
8

3
8

1
8

3
8

Figure 4: Stripes Ω̂k
j for k = 3 and j = 2, 5.

� k
j = span

{

φk
ij

}j−1

i=1
⊕ span

{

φk
ji

}j

i=1
(37)

be the corresponding finite element subspaces to the sub-domains Ω̂k
j . Note that all shape func-

tions φk ∈ � k
j vanish on the boundary of Ω̂k

j . The additive Schwarz splitting of the finite element
space � k, i.e.

� k =
k

∑

k′=1

nk′−1
∑

j=1

� k′

j

is considered. Following Zhang, [22], let � α,k : � k 7→ � k and � α,i,k : � k
i 7→ � k

i be the
operators

〈 � α,ku, v〉 = a(u, v) ∀u, v ∈ � k,

〈 � α,i,ku, v〉 = a(u, v) ∀u, v ∈ � k
i .

Moreover, let � i,k′ : � k 7→ � k′

i be the energetic projection and � i,k′ : � k 7→ � k′

i be the
L2-projection, i.e.

a( � i,k′u, v) = a(u, v) ∀v ∈ � k′

i ,

〈 � i,k′u, v〉 = 〈u, v〉 ∀v ∈ � k′

i ,
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where u ∈ � k. Then, the preconditioner ˆ�
α,k and the k-th level additive Schwarz operator � k

are defined by

ˆ� −1

α,k =

k
∑

k′=1

nk′−1
∑

i=1

� −1
α,i,k′ � i,k′, (38)

� k = ˆ� −1

α,k � α,k =
k

∑

k′=1

nk′−1
∑

i=1

� i,k′. (39)

Note that the matrices Kα,k (6) and Ĉα,k (36) denote the matrix representations of � α,k and
ˆ�

α,k by the usual fem-isomorphism. For technical reasons, we investigate the additive Schwarz
splitting

� k =

k
∑

k′=1

� k′

1 ⊕ � k′

2 , (40)

where

� k′

1 = � k′

1 ⊕ � k′

3 ⊕ · · · ⊕ � k′

nk′−1 and (41)
� k′

2 = � k′

2 ⊕ � k′

4 ⊕ · · · ⊕ � k′

nk′−2

as well (cf. (37)). Let ˜� α,s,k:
�

k
s 7→ �

k
s , ˜� s,k′: � k 7→ �

k′

s and ˜� s,k′: � k 7→ �
k′

s be the operators

〈˜� α,s,ku, v〉 = a(u, v) ∀u, v ∈ � k
s ,

a
(

˜� s,k′u, v
)

= a(u, v) ∀u ∈ � k, v ∈ � k′

s ,

〈˜� s,k′u, v〉 = 〈u, v〉 ∀u ∈ � k, v ∈ � k′

s ,

where s = 1, 2. Thus, the preconditioner ˆ�
α,k (38) and the k-th level additive Schwarz opera-

tor ˆ� k can be obtained as multi-level additive Schwarz preconditioner and projection operator
corresponding to (40).

LEMMA 3.1. The relations

ˆ� −1

α,k =

k
∑

k′=1

2
∑

s=1

˜� −1

α,s,k′
˜� s,k′ and (42)

� k =

k
∑

k′=1

2
∑

s=1

˜� s,k′ (43)

are valid.

Proof: Note that a(u, v) = 0 and 〈u, v〉 = 0 for all u ∈ � k′

i and v ∈ � k′

j with |i − j| ≥ 2.
Thus, the sums in (41) are orthogonal sums with respect to a(·, ·) and 〈·, ·〉. Hence, the L2
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and the energetic projection from � k onto
�

s,k′ is the sum of the projections onto � k
2i−2+s,

i = 1, . . . ,
n′

k

2
+ 1 − s, i.e.

˜� s,k′u =

n′

k
2

+1−s
∑

i=1

� 2i−2+su, (44)

˜� s,k′u =

n′

k
2

+1−s
∑

i=1

� 2i−2+su

hold for all u ∈ � k′ ⊂ � k. Therefore, relation (43) has been proved. Moreover, let

u =

n′

k
2

+1−s
∑

i=1

u2i−2+s, uj ∈ � k′

j , u ∈ � k′

s , s = 1, 2.

Since a(ui, uj) = 0 for all uj ∈ � k′

j and ui ∈ � k′

i with |i − j| ≥ 2,

˜� α,s,k′u =

n′

k
2

+1−s
∑

i=1

˜� α,2i−2+s,k′u2i−2+s or
(

˜� α,s,k′

)−1

u =

n′

k
2

+1−s
∑

i=1

(

˜� α,2i−2+s,k′

)−1

u2i−2+s

follows. Together with (44) and (41), the assertion (42) has been proved. 2

3.2 Proof of the upper eigenvalue estimate

We prove now the estimate λmax( � k) ≤ c k with a constant c independent of the mesh-size h.
Two proofs are given.
The first proof is similar to the proof of Zhang for the upper eigenvalue bound of the MDS-
BPX preconditioned system matrix given in [22]. Zhang has proved that the condition number
of the preconditioned system is bounded by a constant independent of the level number, if the
bilinear form a(·, ·) is uniformly elliptic and bounded. Using the techniques of Zhang, we can

only prove the result λmax

(

Ĉ−1
k Kk

)

= λmax( � k) ≤ c k for the MTS-BPX preconditioner.

The second proof uses the multi-level additive Schwarz splitting � k =
∑k

k′=1

�
k′

1 ⊕ �
k′

2 (40).
Using this space splitting, the result λmax( � k) ≤ c k can be established by a short proof. This
proof requires the positive definiteness of the bilinear form a(·, ·) only. The Zhang-like proof
is given in order to show that λmax( � k) ≤ c cannot be concluded by a more rigorous estimate.
Numerical experiments indicate that the maximal eigenvalue of � k grows proportionally to the
level number..
Now, we start with the first proof. For this aim, the following lemma is useful. (Recall Figure 2
for the definition of the triangles τ

1,k
ij and τ

2,k
ij .)
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LEMMA 3.2. For weight functions satisfying Assumption 1.1, the estimate
∫

τ
1,k
rs

ω2(y) d(x, y) �
∫

τ
2,k
rs

ω2(y) d(x, y) (45)

is valid for all r, s ∈ � 0.

Proof: By the monotony of the weight function, one easily checks
∫

τ
2,k
rs

ω2(y) d(x, y) ≤
∫

τ
1,k
rs

ω2(y) d(x, y). (46)

By Lemma 2.6, we have

0 ≤
(

ω

(

y +
1

4nk

))2

≤ c(ω(y))2 ∀y ≥ 1

2nk

.

Integration with respect to the variable y gives

∫
4j+3

4nk

4j+2

4nk

(

ω

(

y +
1

4nk

))2

dy ≤ c

∫
4j+3

4nk

4j+2

4nk

ω2(y) dy ∀j ∈ � 0, or,

∫
4j+4

4nk

4j+3

4nk

ω2(y) dy ≤ c

∫
4j+3

4nk

4j+2

4nk

ω2(y) dy ∀j ∈ � 0.

By integration with respect to the variable x from 4i
4nk

to 4i+1
4nk

, one concludes (4nk = 2k+2)

∫

Ek+2

4i,4j+3

ω2(y) d(x, y) ≤ c

∫

Ek+2

4i,4j+2

ω2(y) d(x, y) ∀i, j ∈ � 0

= c

∫

Ek+2

4i+3,4j+2

ω2(y) d(x, y) ∀i, j ∈ � 0. (47)

For the last estimate, it is used that the integrand does not depend on the variable x. Note that
Ek+2

4i+3,4j+2 ⊂ τ
2,k
ij , cf. Figure 5. Thus, the inequality

∫

Ek+2

4i+3,4j+2

ω2(y) d(x, y) ≤
∫

τ
2,k
ij

ω2(y) d(x, y) (48)

holds for all i, j ∈ � 0. Moreover, by Ek+2
4i,4j+2 ⊂ τ

1,k
ij and the monotony of the weight function,

one easily deduces

8

∫

Ek+2

4i,4j+3

ω2(y) d(x, y) ≥
∫

τ
1,k
ij

ω2(y) d(x, y). (49)

Combining the estimates (47), (48), and (49), one checks
∫

τ
1,k
ij

ω2(y) d(x, y) ≤ 8c

∫

τ
2,k
ij

ω2(y) d(x, y). (50)
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Figure 5: Notation for Ek
ij = τ

1,k
ij ∪ τ

2,k
ij , nk = 2k.

By (46) and (50), the assertion follows immediately. 2

Equivalent to the estimate (45) is that
∫

τ
u,k
rs

ω2(x) d(x, y) ≥ c

∫

Ek
rs

ω2(x) d(x, y)

is valid for u = 1, 2, and r, s ∈ � 0 with a constant c independent of r, s, and k. The main tool
in order to estimate the upper eigenvalue of the BPX preconditioner is Lemma 3.5 which is a
strengthened Cauchy-inequality of the type

(

a(uk′

i , uk
j )

)2

≤ c2|k
′−k|a(uk′

i , uk′

i )a(uk
j , u

k
j ) (51)

for all uk
j ∈ � k

j and uk′

i ∈ � k′

i . Our aim is to prove (51). We split this proof into several lemmata.

The first lemma says that the mean value of the weight function ω(x) over τ u,k′

rs ∩ Ω̂k
j,x can be

bounded by the mean value over τ u,k′

rs .

LEMMA 3.3. For u = 1, 2, r, s ∈ � 0, k′ ≤ k, j ∈ � , the inequalities

nk′

nk

∫

τ
u,k′
rs

ω2(y) d(x, y) ≥ c

∫

τ
u,k′
rs ∩Ω̂k

j,x

ω2(y) d(x, y) (52)

and
nk′

nk

∫

τ
u,k′
rs

ω2(x) d(x, y) ≥ c

∫

τ
u,k′
rs ∩Ω̂k

j,x

ω2(x) d(x, y) (53)

are valid.
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Proof: For τ
u,k′

rs ∩ Ω̂k
j,x = ∅, the assertion is trivial (c = 0). We assume that τ

u,k′

rs ∩ Ω̂k
j,x 6= ∅.

Then, we have

c
r

nk′

≤ j

nk

≤ c
r + 1

nk′

. (54)

Now, with (45) and Assumption 1.1, we estimate

∫

τ
u,k′
rs

ω2(x) d(x, y)
(45)
≥ c

∫

Ek′
rs

ω2(x) d(x, y)

= c

∫ r+1

n
k′

r
n

k′

∫ s+1

n
k′

s
n

k′

ω2(x) dy dx

ω(ξ)=ξα

= c
1

nk′

∫ r+1

n
k′

r
nk′

x2α dx

≥ c

nk′

(r + 1)2α

nk′
2α+1

=
1

nk′
2

(

r + 1

nk′

)2α

. (55)

Moreover, one concludes
∫

τ
u,k′
rs ∩Ω̂k

j,x

ω2(x) d(x, y) ≤
∫

Ek′
rs∩Ω̂k

j,x

ω2(x) d(x, y)

≤
∫ s+1

n
k′

s
n

k′

∫
j+1

nk

j−1

nk

ω2(x) dx dy

=
1

nk′

∫
j+1

nk

j−1

nk

x2α dx

≤ c

nk′

j2α

n2α+1
k

≤ c

nknk′

(

j

nk

)2α

. (56)

Using (54) and (56), we have

∫

τ
u,k′
rs ∩Ω̂k

j,x

ω2(x) d(x, y) ≤ c

nknk′

(

r + 1

nk′

)2α

. (57)

Combining (57) and (55), the inequality (53) follows immediately. The estimate (52) can be
proved with similar arguments. 2

Let aΩ̂k
j

be the restriction of the bilinear form a to Ω̂k
j , i.e.

aΩ̂k
j
(u, v) =

∫

Ω̂k
j

(

ω2(y)uxvx + ω2(x)uyvy

)

d(x, y).

Using Lemma 3.3, the following result can be shown.
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LEMMA 3.4. Let uk′

i ∈ � k′

i . Then for k′ ≤ k, the estimate

2k′−ka(uk′

i , uk′

i ) ≥ c aΩ̂k
j
(uk′

i , uk′

i )

is valid.

Proof: For each triangle τu,k′

rs ⊂ Ω̂k′

i,x, (∇uk′

i )T is constant on τu,k′

rs . Therefore, using the estimates
(52) and (53) of Lemma 3.3,
∫

τ
u,k′
rs

(

ω2(y)(uk′

i )x(u
k′

i )x + ω2(x)(uk′

i )y(u
k′

i )y

)

=

∫

τ
u,k′
rs

ω2(y)(uk′

i )2
x +

∫

τ
u,k′
rs

ω2(x)(uk′

i )2
y

≥ cnk

nk′

∫

τ
u,k′
rs ∩Ω̂k

j,x

(uk′

i )2
xω

2(y) + (uk′

i )2
yω

2(x).

By symmetry of the differential operator (1), the same result is valid for each triangle τ u,k′

rs ⊂ Ω̂k′

i,y.

Summation over all triangles τ u,k′

rs ⊂ Ω̂k′

i gives
∫

Ω̂k′
i

(

(uk′

i )2
xω

2(y) + (uk′

i )2
yω

2(x)
)

d(x, y) ≥ c
nk

nk′

∫

Ω̂k
j

(

(uk′

i )2
xω

2(y) + (uk′

i )2
yω

2(x)
)

d(x, y),

or equivalently,

a(uk′

i , uk′

i ) ≥ c
nk

nk′

aΩ̂k
j
(uk′

i , uk′

i ) = c2k−k′

aΩ̂k
j
(uk′

i , uk′

i )

which proves the lemma. 2

The next lemma gives a relation for the cosine of the angle between the spaces � k′

i and � k
j with

respect to a(·, ·) which in general is defined as

γ � , � = sup
u ∈ �

v ∈ �
u, v 6= 0

a(u, v)
√

a(u, u)a(v, v)
. (58)

LEMMA 3.5. Let k′ ≤ k and i ∈ {1, . . . , nk′ − 1}, j ∈ {1, . . . , nk − 1}. Then,

γ2
� k′

i , � k
j
≤ max

{

c2−
k−k′

2 , 1
}

.

Proof: The proof is similar to the proof of Lemma 3.2. in [22]. Let uk′

i ∈ � k′

i and uk
j ∈ � k

j .
Then, by the usual Cauchy-inequality on aΩ̂k

j
(·, ·) and Lemma 3.4,

(

a(uk′

i , uk
j )

)2

=
(

aΩ̂k
j
(uk′

i , uk
j )

)2

≤ aΩ̂k
j
(uk′

i , uk′

i ) a(uk
j , u

k
j )

≤ c2k′−ka(uk′

i , uk′

i ) a(uk
j , u

k
j )
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which shows the assertion.2
Following Zhang, [22], let

Θ =
[

θ
k′,k′′

ij

]

(i,k′),(j,k′′)
,

where
θ

k′,k′′

ij = γ2
� k′

i , � k′′
j

, 1 ≤ k′, k′′ ≤ k.

Our aim is to prove an estimate of the type

‖ Θ ‖2≤ ck.

For this purpose, the following propositions and lemmata are helpful.

PROPOSITION 3.6. Let k′, k be fixed with k′ ≤ k. If θ
k′,k
ij 6= 0, then

(i − 1)2k−k′ ≤ j ≤ (i + 1)2k−k′

.

Proof: By definition, φ ∈ � k
j satisfies supp φ ⊂ Ω̂k

j . If int(Ω̂k
j ) ∩ int(Ω̂k′

i ) = ∅, then θ
k′,k
ij = 0.

By definition of the stripes Ω̂k
j , the assertion follows. 2

Now, we consider one block of the matrix Θ, i.e.

Θk′,k′′

=
[

θ
k′,k′′

ij

]nk′ ,nk′′

i=1,j=1
.

Then, the following proposition is valid.

PROPOSITION 3.7. The Frobenius norm of Θk′,k′′

can be estimated by a constant, independent
of the mesh-size h, i.e.

‖ Θk′,k′′ ‖F≤ c for 1 ≤ k′, k′′ ≤ k.

Proof: Without loss of generality, let k′ ≤ k′′. By Proposition 3.6, each row of Θk′,k′′

has
maximal 2k′′−k′+1+1 nonzero matrix entries, and each column maximal 2 nonzero matrix entries.
Therefore, the total number of nonzero matrix entries is less than or equal to 2k′′−k′+2 + 2. By

Lemma 3.5, θ
k′,k′′

ij ≤ c2
k′−k′′

2 holds. Summing up over all (θk′,k′′

ij )2 gives

‖ Θk′,k′′ ‖2
F=

∑

i,j

(θk′,k′′

ij )2 ≤ c2k′−k′′

(2k′′−k′+2 + 2) ≤ 6c

which proves the lemma.2
The following lemma, [22], gives a relation between the Frobenius norm of the block matrix Θ
and the Frobenius norm of Θ̃, where the entries of the matrix Θ̃ are the Frobenius norms of the
blocks of Θ.

LEMMA 3.8. The estimate ‖ Θ ‖F≤ ck is valid, where c is independent of the level number k.
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Proof: We introduce the n × n block-matrix

Θk′,k′′ =
[

θ
k′,k′′

ij

]

i,j
, 1 ≤ k′, k′′ ≤ k,

and the matrix
Θ̃ = [‖ Θk′,k′′ ‖F ]k

k′,k′′=1 .

By Proposition 3.7, ‖ Θk′,k′′ ‖F≤ c. Computing the Frobenius norm of Θ̃, one has

‖ Θ̃ ‖2
F≤ ck2.

By ‖ Θ ‖F =‖ Θ̃ ‖F , one easily checks

‖ Θ ‖F =≤ ck

which is the desired result. 2

The main result of this section is the upper eigenvalue estimate of the MTS-BPX preconditioner.

THEOREM 3.9. For u ∈ � k, let

�
u

�
2 = min

u= � l,i ul
i

k
∑

l=1

∑

i

a(ul
i, u

l
i).

Then, one obtains
a(u, u) ≤ ck

�
u

� 2 .

Proof: We give two proofs. The first proof follows by Lemma 3.1 and Lemma 3.5 of Zhang,
[22], the fact ‖ A ‖2≤‖ A ‖F and Lemma 3.8.
In the second proof, we investigate the splitting � k =

∑k
k′=1

�
k′

1 ⊕ �
k′

2 (40). Now, let Θ be a
k × k block matrix consisting of 2 × 2 matrices, i.e.

Θ =
[

θk′,k′′

]k

k′,k′′=1
with θk′,k′′

=
[

γ � k′
i , � k′′

j

]2

i,j=1
.

By the usual Cauchy-inequality, the cosines γ � k′
i , � k′′

j
, cf. (58), of the angles between

�
k′

i and
�

k′′

j are bounded from above by 1. Thus, ‖ θk′,k′′ ‖F≤ 2 follows. This is the analogous result of
Proposition 3.7 for the space splitting (40). Using the proof of Lemma 3.8, the assertion follows.
2

REMARK 3.10. The eigenvalue estimate λmax

(

Ĉ−1
α,kKα,k

)

≤ ck of the MTS-BPX precondi-

tioner Ĉα,k for Kα,k, defined via relation (36), follows immediately.

REMARK 3.11. The constant in Theorem 3.9 depends linearly on the level number. The reason
is the splitting into the spaces � l

i, not the differential operator. For the Laplacian, i.e. ω(x) = 1,
only this result can be proved using this space splitting.
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3.3 Numerical results

For the MTS-BPX preconditioner Ĉα,k (36), Table 1 gives the lower and upper constants in the
norm equivalence

c
�

u
�

2 ≤ a(u, u) ≤ c
�

u
�

2 ∀u ∈ � l

computed by a vector iteration and inverse vector iteration for the corresponding matrices and the
weight functions ω(ξ) = ξα, (α = 0, 1

2
, 1, 2, 10). One can see that the constant c is proportional

to the level number for all weight functions which indicates that the estimate of Theorem 3.9
is sharp. The lower constant c seems to be bounded from below by a constant of about 0.488
uniformly with respect to α. However, we cannot prove the boundedness of c from below.

Level c

ω(ξ) = 1 ω(ξ) =
√

ξ ω(ξ) = ξ ω(ξ) = ξ2 ω(ξ) = ξ10

2 1.86 1.80 1.77 1.82 2.00
3 2.73 2.65 2.59 2.51 2.93
4 3.44 3.41 3.39 3.34 3.75
5 4.00 4.01 4.03 4.06 4.59
6 4.45 4.47 4.52 4.70 5.50
7 4.81 4.85 4.91 5.34 6.44
8 5.11 5.14 5.23 6.03 7.40
9 5.35 5.39 5.59 6.70 8.37

10 5.55 5.59 6.11 7.42 9.35
Level c

ω(ξ) = 1 ω(ξ) =
√

ξ ω(ξ) = ξ ω(ξ) = ξ2 ω(ξ) = ξ10

2 0.607 0.687 0.747 0.822 0.977
3 0.522 0.607 0.647 0.690 0.844
4 0.495 0.554 0.583 0.619 0.716
5 0.489 0.527 0.543 0.569 0.664
6 0.488 0.513 0.524 0.538 0.611
7 0.488 0.504 0.512 0.522 0.569
8 0.488 0.498 0.504 0.511 0.541
9 0.488 0.495 0.498 0.503 0.524

10 0.488 0.493 0.495 0.498 0.513

Table 1: Lower (below) and upper (above) eigenvalue bounds of the MTS-BPX preconditioned
system matrix.
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[14] A. Kufner and A.M. Sändig. Some applications of weighted Sobolev spaces. B.G.Teubner
Verlagsgesellschaft. Leipzig, 1987.

[15] J.F. Maitre and F. Musy. The contraction number of a class of two-level methods, and
exact evaluation for some finite element subspaces and model problems. In W. Hackbusch
and U. Trottenberg, editors, Multigrid methods, Proceedings of the Conference held at
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