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1 Introduction

In this paper we investigate an eigenvalue problem, which has important applications
in optical telecommunications and in integrated optics. To present obtained results we
first introduce the mathematical statement of this problem. We shall use the physical
model and the variational formulation, which are described in detail in the paper [1].
The investigated eigenvalue problem has the following mathematical formulation: find
λ = λ(p) ∈ Λ, u ∈ V \ {0}, such that

c(R2;u, v) = λ d(R2;u, v) ∀v ∈ V, (1)

where V = (H1(R2))3 is the Sobolev space equipped with the norm

‖v‖V =

(∫
R2

{|grad v|2 + |v|2} dx
)1/2

,

R
2 is the coordinate plane Ox1x2, x = (x1, x2)> ∈ R2, Λ is an interval of the real axis, the

sesquilinear forms c and d are defined by the formulae:

c(G;u, v) =

∫
G

{
pRotβ u · Rotβ v + p2 Divβ uDivβ v

}
dx,

d(G;u, v) =

∫
G

u · v dx.

Here β is a given positive number, u = (u1, u2, u3)>, v = (v1, v2, v3)>,

Rotβ u = (∂2u3 + iβu2,−iβu1 − ∂1u3, ∂1u2 − ∂2u1)>,

Divβ u = ∂1u1 + ∂2u2 − iβu3,

∂i = ∂/∂xi, i = 1, 2, grad v = (grad v1, grad v2, grad v3)>, grad vi = (∂1vi, ∂2vi)
>, i = 1, 2, 3,

u · v = u1v1 + u2v2 + u3v3, |v|2 = |v1|2 + |v2|2 + |v3|2. Define the function p(x) = p(Ω, x) by
the formula:

p(Ω, x) =

{
p1, x ∈ Ω,
p2, x ∈ R2 \ Ω,

(2)

where Ω is a given bounded plane domain with a Lipschitz-continuous boundary, Ω may
be disconnected, p1 is a positive function from L∞(Ω), p2 is a given positive number. Set

p11 = ess. inf
x∈Ω

p1(x), p12 = ess. sup
x∈Ω

p1(x), p13(G) = ess. sup
x∈G

p1(x).

Assuming that p11 < p2, p1 ≤ p2 for almost all x ∈ Ω, we put

Λ = (σ1, σ2), σ1 = β2p11, σ2 = β2p2.

The guided wave problem (1) has been derived from Maxwell’s equations by eliminating
the electric field [1]. In this case, u = H is the magnetic field, Ω is the core region, the
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exterior domain R2 \ Ω is the cladding, β is the propagation constant, λ = k2, k is the
wavenumber, p = 1/n2, n is the index profile, p1 = 1/n2, x ∈ Ω, p2 = 1/n2

∞, n∞ is the
refractive index of the cladding, p11 = 1/n2

+, n+ = ess. supx∈Ω n(x).
Denote by DR = {x : x ∈ R2, |x| < R} the open disk with center O and radius R.

Assume that q1 and q2 are positive numbers such that q1 < q2, q(x) = q(DR, x) is the
function of the form (2). The guided modes for this case are well known. We can also
compute the eigenvalues λi(q), i = 1, 2, . . . ,m, as roots of transcendental equations [17],
[18], [22]. In the general case, to compute eigenvalues of problem (1) we need to apply
numerical methods.

There exists a vast amount of literature on computational methods for solving waveg-
uide problems. Surveys of obtained experimental and theoretical results are contained in
[9], [10], [21], [34]. But the existence of guided modes in waveguides of arbitrary cross-
section has been proved only recently in [1], [32].

Bamberger and Bonnet [1] have investigated eigenvalue problem (1) using the operator
formulation Cβu = λu with an unbounded self-adjoint operator Cβ. Urbach [32] has
analyzed the domain integral formulation with a symmetric bounded noncompact integral
operator in the case of guided electromagnetic waves in anisotropic inhomogeneous guides.
Authors of the papers [1], [32], have proved the existence of at least two linearly independent
guided modes. Bamberger and Bonnet [1] give also a complete description of the dispersion
curves. These questions are studied in Dautov and Karchevskĭı [5] by applying the spectral
theory of bounded operators.

In the present paper problem (1) is written in the form: find λ ∈ Λ, u ∈ V \ {0}, such
that

c(R2;u, v)− λ d(R2 \D;u, v) + α0d(D;u, v) = (λ+ α0) d(D;u, v) ∀v ∈ V, (3)

where D is a given bounded plane domain with a Lipschitz-continuous boundary, Ω ⊆ D,

α0 =

{
(σ2 − σ1)2/εσ1, ξ ≤ 0,
0, ξ > 0,

(4)

ξ = 2p11− p2, ε ∈ (0, 1). In Section 2, we prove the positive definiteness of the sesquilinear
form in the left hand side of equation (3). Then problem (3) is formulated as the eigenvalue
problem: find λ ∈ Λ, u ∈ V \ {0}, such that u = (λ + α0)A(λ)u, with the compact self-
adjoint positive definite operator pencil A(µ) : V → V , µ ∈ Λ. In Section 3, applying the
minimax principle for the compact operators in the Hilbert space we obtain a necessary
and sufficient condition for the existence of a preassigned number of linearly independent
guided modes. As a consequence of this result we derive results for comparing eigenvalues
λ(p) for various functions p. For example, the following result is proved. Suppose that
DR ⊆ Ω, q1 = p13(DR) and q2 = p2, q(x) = q(DR, x) is the function of the form (2). If
there exist λi(q), i = 1, 2, . . . ,m, then there exist at least m, m ≥ 2, eigenvalues λi(p),
i = 1, 2, . . . ,m, of problem (1) and λi(p) ≤ λi(q), i = 1, 2, . . . ,m. In Section 4 we obtain
simple sufficient conditions, which can be easily applied in practice. In particular, we prove
the following result. Suppose that SB ⊆ Ω, where SB is a square with the side length B,
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µ1
1 ≤ µ1

2 ≤ . . . ≤ µ1
k ≤ . . . are numbers of the form π

√
i2 + j2, i, j = 1, 2, . . ., enumerated

in ascending order,

λ0
2i−1 =

(
µ1
i

B

)2

, λ0
2i =

(
µ1
i

B

)2

, i = 1, 2, . . .

Define m = max{i : p2λ
0
i < σ2 − σ0, i ≥ 1}, where σ0 = β2p0, p0 = p13(SB). Then

problem (1) has at least m, m ≥ 2, real eigenvalues of finite multiplicity λi = λi(p),
i = 1, 2, . . . ,m, which are repeated according to their multiplicity: σ1 < λ1 ≤ λ2 ≤
. . . ≤ λm < σ2. Similar results have been established in [30] for the scalar equation of
the weak-guidance approximation. In this paper the analysis analogous to [26] is applied.
In Section 5 we propose the equivalent formulation in a bounded domain for problem (1)
and suggest an efficient method for solving the problem. Let us indicate that the proposed
approach uses an eigenvalue problem in a bounded domain, which is equivalent to the initial
eigenvalue problem (1). In contrast to our approach, previous papers (see review [10]) have
applied approaches when the initial eigenvalue problem (1) is reduced approximately to an
eigenvalue problem in a bounded domain. More precisely, we define a variational eigenvalue
problem in a bounded domain, which leads to the differential eigenvalue problem with the
exact boundary condition, and not with approximate one as in previous investigations of
problem (1).

2 Eigenvalue problem with compact operator pencil

By R and C denote the real axis and the complex plane, respectively. Let D be a given
bounded plane domain with a Lipschitz-continuous boundary, Ω ⊆ D. Assume that H =
(L2(D))3 is the Lebesgue space equipped with the norm

‖v‖H =

(∫
D

|v|2 dx
)1/2

.

Let us define the mappings a : Λ× V × V → C, b : H ×H → C, by the formulae:

a(µ, u, v) = c(R2;u, v)− µ d(R2 \D;u, v),

b(u, v) = d(D;u, v).

Then problem (3) can be written in the form: find λ ∈ Λ, u ∈ V \ {0}, such that

a(λ, u, v) + α0 b(u, v) = (λ+ α0) b(u, v) ∀v ∈ V. (5)

Introduce the following auxiliary linear eigenvalue problem: find γ(µ) ∈ R, u ∈ V \ {0},
such that

a(µ, u, v) + α0 b(u, v) = (γ(µ) + α0) b(u, v) ∀v ∈ V (6)

for fixed parameter µ ∈ Λ.
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It can be directly verified that

a(µ, u, v) =

∫
R2

{p rot u rot v + p2 div u div v + p2 gradu3 · grad v3} dx+

+

∫
Ω

(p− p2) (gradu3 + iβu)(grad v3 + iβv) dx+ (7)

+ σ2

∫
D

u · v dx+ (σ2 − µ)

∫
R2\D

u · v dx,

where u = (u1, u2)>, v = (v1, v2)>, div u = ∂1u1 + ∂2u2, rot u = ∂1u2 − ∂2u1, gradϕ =
(∂1ϕ, ∂2ϕ)>.

Lemma 1 For v ∈ V , µ ∈ Λ, the following inequality holds:

a(µ, v, v) ≥ α1(µ)‖v‖2
V − α0‖v‖2

H ,

where α0 is defined by (4),

α1(µ) =

{
min{(1− ε)p11, σ1, σ2 − µ}, ξ ≤ 0,
min{p11, ξ, β

2ξ, σ2, σ2 − µ}, ξ > 0,

ξ = 2p11 − p2, ε ∈ (0, 1).

Proof By (7) we have

a(µ, v, v) =

∫
R2

{
p |rot v|2 + p2 |div v|2 + p2 |grad v3|2

}
dx+

+c0(v, v) + σ2

∫
D

|v|2 dx+ (σ2 − µ)

∫
R2\D
|v|2 dx,

(8)

where

c0(v, v) =

∫
Ω

(p− p2) |grad v3 + iβv|2 dx.

For this term we obtain the following estimates:

c0(v, v) ≥ −2(p2 − p11)

∫
Ω

{
|grad v3|2 + β2|v|2

}
dx,

c0(v, v) ≥ −(p2 − p11)

∫
Ω

{
|grad v3|2 + β2|v|2 + 2β|grad v3| · |v|

}
dx ≥

≥ −(p2 − p11)

∫
Ω

{
|grad v3|2 + β2|v|2

}
dx−

−εp11

∫
Ω

|grad v3|2 dx−
(p2 − p11)2β2

εp11

∫
Ω

|v|2 dx.
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Substituting the previous estimates in (8), we derive the desired properties:

a(µ, v, v) ≥ p11

∫
R2

|grad v|2 dx+ p2

∫
R2\Ω
|grad v3|2 dx+

+ξ

∫
Ω

|grad v3|2 dx+ ξβ2

∫
Ω

|v|2 dx+

+σ2

∫
D

|v3|2 dx+ σ2

∫
D\Ω
|v|2 dx+ (σ2 − µ)

∫
R2\D
|v|2 dx ≥ (9)

≥ min{p11, ξ, β
2ξ, σ2, σ2 − µ}

∫
R2

{
|grad v|2 + |v|2

}
dx =

= α1(µ)‖v‖2
V , ξ > 0,

a(µ, v, v) ≥ p11

∫
R2

|grad v|2 dx+ p2

∫
R2\Ω
|grad v3|2 dx+

+(1− ε)p11

∫
Ω

|grad v3|2 dx+ (σ1 − α0)

∫
Ω

|v|2 dx+

+σ2

∫
D

|v3|2 dx+ σ2

∫
D\Ω
|v|2 dx+ (σ2 − µ)

∫
R2\D
|v|2 dx ≥ (10)

≥ min{(1− ε)p11, σ1, σ2 − µ}
∫
R2

{
|grad v|2 + |v|2

}
dx− α0

∫
D

|v|2 dx =

= α1(µ)‖v‖2
V − α0‖v‖2

H , ξ ≤ 0.

2

According to Lemma 1 we obtain the positive definiteness of the sesquilinear form in
the left hand side of equation (6), i.e.,

a(µ, v, v) + α0 b(v, v) ≥ α1(µ)‖v‖2
V ∀v ∈ V

for fixed µ ∈ Λ. Moreover, it is easy to get the boundedness property:

a(µ, v, v) + α0 b(v, v) ≤ α2‖v‖2
V ∀v ∈ V

for fixed µ ∈ Λ, α2 = max{p2, σ2 + α0}. Therefore, one can define the self-adjoint positive
definite operator A(µ) : V → V by the following equality:

a(µ,A(µ)u, v) + α0b(A(µ)u, v) = b(u, v) ∀u, v ∈ V

for fixed parameter µ ∈ Λ. Because H1(Ω) is compactly embedded in L2(Ω), the operator
A(µ) : V → V is compact self-adjoint positive definite operator in the Hilbert space V .

Now we rewrite problems (5) and (6) in the following operator forms:
find λ ∈ Λ, u ∈ V \ {0}, such that

u = (λ+ α0)A(λ)u, (11)



6 3 Existence of eigenvalues

find γ(µ) ∈ R, u ∈ V \ {0}, such that

u = (γ(µ) + α0)A(µ)u (12)

for fixed parameter µ ∈ Λ.
Using spectral theory of self-adjoint compact operators in the Hilbert space [2], we

obtain that problem (12) has a denumerable set of real eigenvalues of finite multiplicity
γk(µ), k = 1, 2, . . ., which are repeated according to their multiplicity, such that

−α0 < γ1(µ) ≤ γ2(µ) ≤ . . . ≤ γk(µ) ≤ . . . , lim
k→∞

γk(µ) =∞.

The following minimax principle holds:

γk(µ) = min
Wk⊂V

max
v∈Wk\{0}

a(µ, v, v)

b(v, v)
, k = 1, 2, . . . , (13)

where µ ∈ Λ, Wk is k-dimensional subspace of the space V , k = 1, 2, . . .
Now we can define eigenvalues of problem (11) or (5) as roots of the equations:

µ− γk(µ) = 0, k = 1, 2, . . . (14)

Thus, the question on the existence of eigenvalues of problem (5) or (1) is the existence
question of roots of equations (14).

3 Existence of eigenvalues

First we shall study properties of the functions γk(µ), k = 1, 2, . . .

Lemma 2 The functions γk(µ), µ ∈ Λ, k = 1, 2, . . ., are continuous nonincreasing func-
tions.

Proof The assertion of this lemma follows from minimax principle (13). 2

We set

γi(σ1) = lim
µ→σ1, µ∈Λ

γi(µ), γi(σ2) = lim
µ→σ2, µ∈Λ

γi(µ), i = 1, 2, . . .

Lemma 3 The following inequalities hold: γk(σ1) > σ1, k = 1, 2, . . .

Proof The desired inequalities follow from minimax principle (13) and the relations:

a(σ1, v, v) =

= c(R2; v, v)− σ1 d(R2 \D; v, v) ≥

≥ p11

∫
R2

{
|Rotβ v|2 + β2|Divβ v|2

}
dx− σ1

∫
R2\D
|v|2 dx =

= p11

∫
R2

{
|grad v|2 + β2|v|2

}
dx− σ1

∫
R2\D
|v|2 dx =

= p11

∫
R2

|grad v|2 dx+ σ1b(v, v) >

> σ1b(v, v)
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for all v ∈ V \ {0}. 2

Lemma 4 The following inequalities are valid: γ1(σ2) ≤ γ2(σ2) < σ2.

Proof For D ⊆ Dr, 0 < r < R, we introduce the function

ϕR(x) =


1, x ∈ Dr,
log |x| − logR

log r − logR
, x ∈ DR \Dr,

0, x ∈ R2 \DR,

and define the subspace

W2(ϕR) = {w : w = (δ1ϕR, δ2ϕR, 0)>, (δ1, δ2)> ∈ C2}.

According to minimax principle (13), we obtain the relations

γ2(µ) = min
W2⊂V

max
v∈W2\{0}

a(µ, v, v)

b(v, v)
≤

≤ max
v∈W2(ϕR)\{0}

a(µ, v, v)

b(v, v)
≤

≤ σ2 + κR(µ)

with

κR(µ) =
1

|D|

(
2πp2

(
log

R

r

)−1

− β2

∫
Ω

(p2 − p) dx+ (σ2 − µ)πR2

)
,

where µ ∈ Λ, |D| denotes the area of the domain D. Consequently, by taking R large
enough and σ2 − µ small enough, we obtain κR(µ) < 0 and, therefore, γ1(σ2) ≤ γ2(σ2) ≤
γ2(µ) ≤ σ2 + κR(µ) < σ2. 2

Lemma 5 The following relations hold: γk(σ2)→∞ as k →∞.

Proof The numbers γk(σ2), k = 1, 2, . . ., are eigenvalues of the following problem: find
η ∈ R, u ∈ W \ {0}, such that

a(σ2, u, v) + α0 b(u, v) = (η + α0) b(u, v) ∀v ∈ W,

where W denotes the Sobolev space equipped with the norm

‖v‖W =

(∫
R2

|grad v|2 dx+

∫
D

|v|2 dx
)1/2

.

Since ηk →∞ as k →∞, we obtain the assertion of the lemma. 2

Now we formulate the main result of the paper.
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Theorem 6 Let m = max{i : γi(σ2) < σ2, i ≥ 1}. Then
(a) Problem (1) has exactly m, 2 ≤ m < ∞, real eigenvalues of finite multiplicity

λi = λi(p), i = 1, 2, . . . ,m, which are repeated according to their multiplicity:

σ1 < λ1 ≤ λ2 ≤ . . . ≤ λm < σ2,

i.e., if for 1 ≤ i ≤ m we have

λi−1 < λi = λi+1 = . . . = λi+k < λi+k+1,

with λ0 = σ1, λm+1 = σ2, then dimU(λi) = k + 1, where U(λi) is the eigensubspace
corresponding to the eigenvalue λi.

(b) Each eigenvalue λi, 1 ≤ i ≤ m, is a unique root of the equation µ − γi(µ) = 0,
1 ≤ i ≤ m. The following relations hold:

λk = min
Wk⊂V

max
v∈Wk\{0}

a(λk, v, v)

b(v, v)
, k = 1, 2, . . . ,m,

where Wk is k-dimensional subspace of the space V , k = 1, 2, . . . ,m.
(c) The corresponding eigenelements u(i), i = 1, 2, . . . ,m, form a orthogonal system in

(L2(R2))3 such that ∫
R2

u(i) · u(j) dx = δij, i, j = 1, 2, . . . ,m.

Proof By Lemmata 2 and 3 each equation of the set

µ− γk(µ) = 0, µ ∈ Λ, k = 1, 2, . . . ,m,

has a unique solution. Denote these solutions by λi, i = 1, 2, . . . ,m, i.e., λi − γi(λi) = 0,
i = 1, 2, . . . ,m. Applying Lemmata 4 and 5 we get 2 ≤ m < ∞. To check that the
numbers λi, i = 1, 2, . . . ,m, are put in a nondecreasing order, let us assume the opposite,
i.e., λi > λi+1. Then, according to Lemma 2, we obtain a contradiction, namely

λi = γi(λi) ≤ γi(λi+1) ≤ γi+1(λi+1) = λi+1,

As was noted in Section 2 the numbers λi, i = 1, 2, . . . ,m, are eigenvalues of problem (1).
Let us prove if λi−1 < λi = λi+1 = . . . = λi+k < λi+k+1, then dimU(λi) = k + 1. Since

λj = γj(λj), j = i, i+ 1, . . . , i+ k, we have

γi−1(λi−1) < γi(λi) = . . . = γi+k(λi+k) < γi+k+1(λi+k+1).

Now by Lemma 2 we get

γi−1(λi) < γi(λi) = . . . = γi+k(λi) < γi+k+1(λi).

Hence γi(λi) is the eigenvalue of problem (6) for µ = λi and dim Ũ(γi(λi)) = k + 1,
where Ũ(γi(λi)) is the eigensubspace corresponding to the eigenvalue γi(λi). Therefore, we
conclude that dimU(λi) = dim Ũ(γi(λi)) = k + 1.
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It is well known that the eigenelements u(i) and u(j) of problem (1) corresponding to
the eigenvalues λi and λj for λi 6= λj are orthogonal in (L2(R2))3. For each eigensubspace
U(λi), dimU(λi) = k + 1, λi−1 < λi = λi+1 = . . . = λi+k < λi+k+1, one can define
orthogonal in (L2(R2))3 system of eigenelements u(j), j = i, i + 1, . . . , i + k. Thus we
have constructed the orthogonal in (L2(R2))3 system of eigenelements u(i), i = 1, 2, . . . ,m,
corresponding to the eigenvalues λi, i = 1, 2, . . . ,m. 2

Theorem 6 states the necessary and sufficient conditions for the existence of a pre-
assigned number of eigenvalues of problem (1). These conditions contain the values
η0
i = γi(σ2), i = 1, 2, . . ., which can be calculated by numerical methods (Remark 21).

Using minimax principle (13) we can construct more simple sufficient conditions formu-
lated in the following corollaries.

Corollary 7 Suppose that Ω2 ⊆ Ω1, p(1)(x) = p(1)(Ω1, x) and p(2)(x) = p(2)(Ω2, x) are the
functions of the form (2), p(2) ≥ p(1), there exist λi(p

(2)), i = 1, 2, . . . ,m. Then there exist
at least m eigenvalues λi(p

(1)), i = 1, 2, . . . ,m, and the following inequalities hold:

λi(p
(1)) ≤ λi(p

(2)), i = 1, 2, . . . ,m. (15)

Proof Assume that Ω1 ⊆ D and consider problems (5) and (6). Denote by γi(p
(j), µ),

i = 1, 2, . . ., the eigenvalues of problem (6) corresponding to the function p(j), j = 1, 2. If
λi(p

(2)), i = 1, 2, . . . ,m, exist, then the numbers λi(p
(2)), i = 1, 2, . . . ,m, are the roots of the

equations µ − γi(p(2), µ) = 0, i = 1, 2, . . . ,m. Therefore, γi(p
(2), σ2) < σ2, i = 1, 2, . . . ,m.

By minimax principle (13) we obtain

γi(p
(1), σ2) ≤ γi(p

(2), σ2) < σ2 i = 1, 2, . . . ,m.

Hence the equations µ − γi(p
(1), µ) = 0, i = 1, 2, . . . ,m, have the roots λi(p

(1)), i =
1, 2, . . . ,m. 2

Corollary 8 Suppose that DR ⊆ Ω, q1 = p13(DR), q2 = p2, q(x) = q(DR, x) is the function
of the form (2), there exist λi(q), i = 1, 2, . . . ,m. Then there exist at least m eigenvalues
λi(p), i = 1, 2, . . . ,m, and the following inequalities hold:

λi(p) ≤ λi(q), i = 1, 2, . . . ,m. (16)

Proof The assertion of the corollary is a consequence of Corollary 7. 2

Note that Corollary 8 is very important for practice because we may calculate eigen-
values λi(q), i = 1, 2, . . . ,m, by the analytical method [17], [18], [22].

Corollary 9 Suppose that Ω0 is a given bounded plane domain with a Lipschitz-continuous
boundary Γ0, Ω0 ⊆ Ω, p(0)(x) = p(0)(Ω0, x) is the function of the form (2), p(0) ≥ p,
ηi = ηi(p

(0)), i = 1, 2, . . ., are the eigenvalues of the following problem: find η = η(p(0)) ∈ Λ,
u ∈ V0 \ {0}, such that

c(Ω0;u, v) = η d(Ω0;u, v) ∀v ∈ V0,
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where V0 = (H1
0 (Ω0))3 ≡ {v : v ∈ (H1(Ω0))3, v|Γ0 = 0}, the sesquilinear forms c and d

are defined in Section 1 by using the function p(0). If ηm < σ2, then there exist at least m
real eigenvalues of finite multiplicity λi(p), i = 1, 2, . . . ,m, which are repeated according to
their multiplicity, and the following inequalities hold:

λi(p) ≤ ηi, i = 1, 2, . . . ,m.

Proof By minimax principle (13) we get

γi(p, σ2) ≤ ηi < σ2 i = 1, 2, . . . ,m,

where γi(p, µ) is defined in the proof of Corollary 7. Hence the equations µ− γi(p, µ) = 0,
i = 1, 2, . . . ,m, have the roots λi(p), i = 1, 2, . . . ,m. 2

Corollary 10 Let m = max{i : γi(δ) < σ2, i ≥ 1}, δ ∈ (σ1, σ2). Then problem (1) has
at least m, 2 ≤ m < ∞, real eigenvalues of finite multiplicity λi = λi(p), i = 1, 2, . . . ,m,
which are repeated according to their multiplicity:

σ1 < λ1 ≤ λ2 ≤ . . . ≤ λm < δ.

Proof By the definition of the number m and Lemma 2, we get the relations γi(σ2) ≤
γi(δ) < σ2, i = 1, 2, . . . ,m, which with Theorem 6 imply the desired result. 2

4 Simple sufficient conditions

Let Ω0 be a given bounded plane domain with a Lipschitz-continuous boundary Γ0, Ω0 ⊆ Ω.
Assume that V0 = (H1

0 (Ω0))2 ≡ {v : v ∈ (H1(Ω0))2,v|Γ0 = 0} and H0 = (L2(Ω0))2 are
the Sobolev and Lebesgue spaces equipped with the norms

‖v‖V0 =

(∫
Ω0

|grad v|2 dx
)1/2

, ‖v‖H0 =

(∫
Ω0

|v|2 dx
)1/2

.

Let us define the mappings a0 : V0 ×V0 → C, b0 : H0 ×H0 → C, by the formulae:

a0(u,v) =

∫
Ω0

grad u · grad v dx,

b0(u,v) =

∫
Ω0

u · v dx.

Here we denote v = (v1, v2)>, grad v = (grad v1, grad v2)>, u · v = u1v1 + u2v2, |v|2 =
|v1|2 + |v2|2.

Let us introduce the following linear eigenvalue problem: find λ0 ∈ R, u ∈ V0 \ {0},
such that

a0(u,v) = λ0b0(u,v) ∀v ∈ V0. (17)



4 Simple sufficient conditions 11

Problem (17) has a denumerable set of real positive eigenvalues of finite multiplicity λ0
k,

k = 1, 2, . . ., [2], which are repeated according to their multiplicity, such that

0 < λ0
1 ≤ λ0

2 ≤ . . . ≤ λ0
k ≤ . . . , lim

k→∞
λ0
k =∞.

The following relations hold:

λ0
k = min

Wk⊂V0

max
v∈Wk\{0}

a0(v,v)

b0(v,v)
, k = 1, 2, . . . ,

where Wk is k-dimensional subspace of the space V0, k = 1, 2, . . .

Theorem 11 Let m = max{i : p2λ
0
i < σ2 − σ0, i ≥ 1}, where σ0 = β2p0, p0 = p13(Ω0).

Then problem (1) has at least m, 2 ≤ m < ∞, real eigenvalues of finite multiplicity
λi = λi(p), i = 1, 2, . . . ,m, which are repeated according to their multiplicity:

σ1 < λ1 ≤ λ2 ≤ . . . ≤ λm < σ2.

Moreover, assertions (b) and (c) of Theorem 6 are valid.

Proof Taking into account minimax principle (13) and representation (7), we obtain

γk(µ) = min
Wk⊂V

max
v∈Wk\{0}

a(µ, v, v)

b(v, v)
≤

≤ min
Wk⊂V0

max
v∈Wk\{0}

a(µ, v, v)

b(v, v)
≤

≤ σ0 + p2 min
Wk⊂V0

max
v∈Wk\{0}

a0(v,v)

b0(v,v)
=

= σ0 + p2λ
0
k,

where
V0 = {v : v = (v1, v2, 0)>, v ∈ V, v(x) = 0, x ∈ R2 \ Ω0}.

Hence the relations γk(σ2) ≤ σ0 + p2λ
0
i < σ2 imply the condition p2λ

0
i < σ2 − σ0. Thus by

Theorem 6 we get desired assertions. 2

For z = (z1, z2)> ∈ R2 we set

DR(z) = {x : x ∈ R2, |x− z| < R},
SB(z) = {x : x = (x1, x2)> ∈ R2, zi < xi < zi +B, i = 1, 2}.

The formulae for eigenvalues of the Laplace operator in a disk or square [33] are well
known. Using these formulae in Theorem 11 we can derive simple sufficient conditions for
the existence of eigenvalues of problem (1). Below we indicate examples of simple formulae
for eigenvalues of problem (17).
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Remark 12 Let Ω0 = DR(z), Ω0 ⊆ Ω, R is a fixed positive number, z ∈ R2, µ0
k, k =

1, 2, . . ., µ0
1 ≤ µ0

2 ≤ . . . ≤ µ0
k ≤ . . ., are the positive roots tni, n = 0, 1, . . ., i = 1, 2, . . .,

enumerated in ascending order, of the equations Jn(t) = 0, t ∈ (0,∞), n = 0, 1, . . ., where
Jn(t) is the Bessel functions of first kind of order n, n = 0, 1, . . . Then

λ0
2i−1 =

(
µ0
i

R

)2

, λ0
2i =

(
µ0
i

R

)2

, i = 1, 2, . . .

Remark 13 Let Ω0 = SB(z), Ω0 ⊆ Ω, B is a fixed positive number, z ∈ R2, µ1
k, k =

1, 2, . . ., µ1
1 ≤ µ1

2 ≤ . . . ≤ µ1
k ≤ . . ., are numbers of the form π

√
i2 + j2, i, j = 1, 2, . . .,

enumerated in ascending order. Then

λ0
2i−1 =

(
µ1
i

B

)2

, λ0
2i =

(
µ1
i

B

)2

, i = 1, 2, . . .

Remark 14 Let

Ω0 =

(
n0⋃
i=1

DRi(a
(i))

)⋃(
n1⋃
j=1

SBj(b
(j))

)
,

where

DRi(a
(i)) ∩DRj(a

(j)) = ∅, i 6= j, i, j = 1, 2, . . . , n0,

SBi(b
(i)) ∩ SBj(b(j)) = ∅, i 6= j, i, j = 1, 2, . . . , n1,

DRi(a
(i)) ∩ SBj(b(j)) = ∅, i = 1, 2, . . . , n0, j = 1, 2, . . . , n1,

Ω0 ⊆ Ω, Ri, i = 1, 2, . . . , n0, Bj, j = 1, 2, . . . , n1, are fixed positive numbers, a(i) ∈ R2,
i = 1, 2, . . . , n0, b(j) ∈ R2, j = 1, 2, . . . , n1. Here for a domain G with the boundary Γ we
define G = G ∪ Γ. Denote

η0,j
2i−1 =

(
µ0
i

Rj

)2

, η0,j
2i =

(
µ0
i

Rj

)2

, i = 1, 2, . . . , j = 1, 2, . . . , n0,

η1,j
2i−1 =

(
µ1
i

Bj

)2

, η1,j
2i =

(
µ1
i

Bj

)2

, i = 1, 2, . . . , j = 1, 2, . . . , n1,

where µ0
k, µ

1
k, k = 1, 2, . . ., are defined in Remarks 12 and 13. Enumerating the numbers

ηk,jki , i = 1, 2, . . . , jk = 1, 2, . . . , nk, k = 0, 1,

in ascending order, we obtain the sequence λ0
i , i = 1, 2, . . .
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5 Eigenvalue problem in a bounded domain

Assume that Ω ⊆ DR and put VR = (H1(DR))3, HR = (L2(DR))3. Let us denote by Γ
the boundary of DR and by ∂ν the outward normal derivative on Γ, i.e., ∂νϕ = gradϕ · ν,
where ν = (ν1, ν2)> is the unit outward normal to Γ.

Applying the following representation for the sesquilinear form c:

c(R2;u, v) = c1(DR;u, v) + c2(R2 \DR;u, v),

c1(G;u, v) =

∫
G

(p− p2) Rotβ u · Rotβ v dx+ c2(G;u, v),

c2(G;u, v) = p2

∫
G

{
gradu · grad v + β2 u · v

}
dx,

we write problem (3) for D = DR in the equivalent form: find λ ∈ Λ, u ∈ V \ {0}, such
that

c1(DR;u, v) + c2(R2 \DR;u, v)− λ d(R2 \DR;u, v) + α0 d(DR;u, v) =

= (λ+ α0) d(DR;u, v) ∀v ∈ V.
(18)

To transform equation (18) in the unbounded domain R2 to an equation in the bounded
domain DR, let us note that the eigenelement u of problem (1) satisfies the following
equation [1]:

−∆u+ σ2u = 0, x ∈ R2 \DR, (19)

where σ = σ(λ) =
√

(σ2 − λ)/p2, λ ∈ Λ. This equation is the consequence of equation
(18).

The solution of equation (19) is defined by the well known formulae [19]:

u(r cosϕ, r sinϕ) =
∞∑

n=−∞

Kn(σr)

Kn(σR)
an(u) einϕ,

an(u) =
1

2π

π∫
−π

u(Rcosϕ,Rsinϕ)e−inϕ dϕ, n = 0,±1,±2, . . . ,

where Kn(t) is the modified Bessel function of order n, n = 0,±1,±2, . . . Hence one can
obtain the explicit formula for the normal derivative ∂νu on Γ of the eigenelement u:

∂νu|Γ =
∂

∂r
u(r cosϕ, r sinϕ)

∣∣∣∣
Γ

= − 1

R

∞∑
n=−∞

Hn(σR) an(u) einϕ,

where

Hn(t) = |n|+ t
K|n|−1(t)

K|n|(t)
, n = 0,±1,±2, . . .
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Then for the term from (18) containing the integral over R2 \DR, we get the following
representation:

c2(R2 \DR;u, v)− λ d(R2 \DR;u, v) =

= p2

∫
R2\DR

{
gradu · grad v + β2 u · v

}
dx− λ

∫
R2\DR

u · v dx =

= p2

∫
R2\DR

{
gradu · grad v + σ2 u · v

}
dx =

= p2

∫
R2\DR

(−∆u+ σ2 u) · v dx− p2

∫
Γ

∂νu · v dγ =

= −p2

∫
Γ

∂νu · v dγ =

= 2πp2

∞∑
n=−∞

Hn(σR) an(u) · an(v).

Define the mapping s : Λ× VR × VR → C, by the formula:

s(µ, u, v) = 2πp2

∞∑
n=−∞

Hn(σ(µ)R) an(u) · an(v),

where σ(µ) =
√

(σ2 − µ)/p2, µ ∈ Λ.
Now one can write the following equivalent formulation of problem (1) in the bounded

domain DR: find λ ∈ Λ, u ∈ VR \ {0}, such that

c1(DR;u, v) + s(λ, u, v) + α0 d(DR;u, v) = (λ+ α0) d(DR;u, v) ∀v ∈ VR. (20)

Note that similar approaches of obtaining problems in a bounded domain have been
applied in the papers [8], [7], [3], [16], [4], for the cases of scalar equations, and in the paper
[5] for the case of the vector equation. In the present paper, for problem (1) we propose
variational formulation (20), which leads to the differential eigenvalue problem with the
more simple boundary condition than in [5].

Introduce the mappings aR : Λ× VR × VR → C, bR : HR ×HR → C, by the formulae:

aR(µ, u, v) = c1(DR;u, v) + s(µ, u, v),

bR(u, v) = d(DR;u, v).

Lemma 15 For v ∈ VR, µ ∈ Λ, the following inequality is valid:

aR(µ, v, v) ≥ α̃1‖v‖2
VR
− α0‖v‖2

HR
,

where α0 is defined by (4),

α̃1 =

{
min{(1− ε)p11, σ1}, ξ ≤ 0,
min{p11, ξ, β

2ξ, σ2}, ξ > 0,

ξ = 2p11 − p2, ε ∈ (0, 1).
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Proof For fixed number µ ∈ Λ and for fixed function v ∈ VR, using ∂nv|Γ we can construct
the function v ∈ V , if we define v(x), x ∈ R2 \ DR, as the solution of problem (19) for
µ = λ. Then applying (9) and (10) we get

aR(µ, v, v) = c1(DR; v, v) + s(µ, v, v) =

= c1(DR; v, v) + c2(R2 \DR; v, v)− µ d(R2 \DR; v, v) =

= c(R2; v, v)− µ d(R2 \DR; v, v) =

= a(µ, v, v) ≥

≥ p11

∫
R2

|grad v|2 dx+ p2

∫
R2\Ω
|grad v3|2 dx+

+ξ

∫
Ω

|grad v3|2 dx+ ξβ2

∫
Ω

|v|2 dx+

+σ2

∫
DR

|v3|2 dx+ σ2

∫
DR\Ω

|v|2 dx+ (σ2 − µ)

∫
R2\DR

|v|2 dx ≥

≥ min{p11, ξ, β
2ξ, σ2}

∫
DR

{
|grad v|2 + |v|2

}
dx =

= α̃1‖v‖2
V , ξ > 0,

aR(µ, v, v) = a(µ, v, v) ≥

≥ p11

∫
R2

|grad v|2 dx+ p2

∫
R2\Ω
|grad v3|2 dx+

+(1− ε)p11

∫
Ω

|grad v3|2 dx+ (σ1 − α0)

∫
Ω

|v|2 dx+

+σ2

∫
DR

|v3|2 dx+ σ2

∫
DR\Ω

|v|2 dx+ (σ2 − µ)

∫
R2\DR

|v|2 dx ≥

≥ min{(1− ε)p11, σ1}
∫
DR

{
|grad v|2 + |v|2

}
dx− α0

∫
DR

|v|2 dx =

= α̃1‖v‖2
VR
− α0‖v‖2

HR
, ξ ≤ 0.

2

It is well known [14], [15], that for v ∈ VR we have v|Γ ∈ WR ≡ (H1/2(Γ))3 and there
exists δ > 0 such that

‖v‖WR
≤ δ‖v‖VR ∀v ∈ VR,

where

‖v‖2
WR

=
∞∑

n=−∞

(|n|+ 1) |an(v)|2.

Lemma 16 For v ∈ VR, µ ∈ Λ, the following inequality holds:

aR(µ, v, v) ≤ α̃2(µ)‖v‖2
VR
,
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where

α̃2(µ) = p2max{1, β2}+ 2πp2δ
2max{1, H0(σ(µ)R)},

σ(µ) =
√

(σ2 − µ)/p2,

H0(t) = t
K1(t)

K0(t)
.

Proof Using definitions of sesquilinear forms we get the desired relations:

aR(µ, v, v) = c1(DR; v, v) + s(µ, v, v) =

=

∫
DR

(p− p2) |Rotβ v|2 dx+ p2

∫
DR

{
|grad v|2 + β2 |v|2

}
dx+

+ 2πp2

∞∑
n=−∞

Hn(σ(µ)R) |an(v)|2 ≤

≤ p2max{1, β2}‖v‖2
VR

+ 2πp2max{1, H0(σ(µ)R)}‖v‖2
WR
≤

≤
(
p2max{1, β2}+ 2πp2δ

2max{1, H0(σ(µ)R)}
)
‖v‖2

VR
=

= α̃2(µ)‖v‖2
VR
.

2

Now problem (20) can be written in the form: find λ ∈ Λ, u ∈ VR \ {0}, such that

aR(λ, u, v) + α0 bR(u, v) = (λ+ α0) bR(u, v) ∀v ∈ VR. (21)

According to Lemmata 15 and 16 we obtain the positive definiteness and boundedness of
the sesquilinear form in the left hand side of equation (21), i.e.,

α̃1‖v‖2
VR
≤ aR(µ, v, v) + α0 bR(v, v) ≤ (α̃2(µ) + α0)‖v‖2

VR
∀v ∈ VR (22)

for fixed µ ∈ Λ.
Define the sesquilinear forms a0

R : VR × VR → C, s1 : VR × VR → C, by the formulae:

a0
R(u, v) = c1(DR;u, v) + s1(u, v),

s1(u, v) = 2πp2

∞∑
n=−∞

|n| an(u) · an(v).

Lemma 17 The following relation holds: s(µ, u, v) → s1(u, v) as µ → σ2, µ ∈ Λ, u, v ∈
VR.

Proof For µ ∈ Λ we have

s(µ, u, v) = s1(u, v) + s2(µ, u, v),
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where

|s2(µ, u, v)| = 2πp2

∣∣∣∣∣
∞∑

n=−∞

σ(µ)R
K|n|−1(σ(µ)R)

K|n|(σ(µ)R)
an(u) · an(v)

∣∣∣∣∣ ≤
≤ 2πp2 H0(σ(µ)R) ‖u‖WR

‖v‖WR
.

Since H0(σ(µ)R)→ 0 as µ→ σ2, s2(µ, u, v)→ 0 as µ→ σ2. 2

Introduce the linear eigenvalue problem: find η0 ∈ R, u ∈ VR \ {0}, such that

a0
R(u, v) + α0 bR(u, v) = (η0 + α0) bR(u, v) ∀v ∈ VR. (23)

It can be easily show that

α0
1‖v‖2

VR
≤ a0

R(v, v) + α0 bR(v, v) ≤ α0
2‖v‖2

VR
∀v ∈ VR, (24)

where α0
1 = α̃1, α0

2 = p2max{1, β2} + 2πp2δ
2. Therefore, problem (23) has a denumerable

set of real eigenvalues of finite multiplicity η0
k, k = 1, 2, . . ., [2], which are repeated according

to their multiplicity, such that

−α0 < η0
1 ≤ η0

2 ≤ . . . ≤ η0
k ≤ . . . , lim

k→∞
η0
k =∞.

Lemma 18 The following relations hold: γk(µ)→ η0
k as µ→ σ2, µ ∈ Λ, k = 1, 2, . . .

Proof The assertion of the lemma follows from minimax principles for eigenvalues γk(µ)
and η0

k, k = 1, 2, . . . 2

The following theorem states the necessary and sufficient condition for the existence of
eigensolutions of problem (1) in terms of eigenvalues of the linear eigenvalue problem (23)
in the bounded domain DR.

Theorem 19 Let m = max{i : η0
i < σ2, i ≥ 1}. Then the results of Theorem 6 are valid.

Proof By Lemma 18 we obtain that γk(σ2) = η0
k, k = 1, 2, . . . Therefore, the assertion of

the theorem follows from Theorem 6. 2

Remark 20 To solve problem (21) one can use the finite element method in a bounded
domain. The abstract convergence results of the finite element method for problem (21)
are presented in the papers [23], [24], [25], [26]. The matrix nonlinear eigenvalue problem
of the finite element method [26] has the form: find λ ∈ Λ, y ∈ RN \ {0}, such that

A(λ)y = (λ+ α0)By (25)

with large sparse symmetric positive definite matrices A(λ) and B of order N . Since the
functions fn(µ) = Hn(R

√
(σ2 − µ)/p2), µ ∈ Λ, n = 0,±1,±2, . . ., are decreasing functions,
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the matrix function A(µ), µ ∈ Λ, has the monotonicity property (A(µ)y, y) ≥ (A(η)y, y)
for µ < η, µ, η ∈ Λ, y ∈ RN . By (22) we get the inequalities:

α̃1(Cy, y) ≤ (A(µ)y, y) ≤ (α̃2(µ) + α0)(Cy, y) ∀y ∈ RN , (26)

where µ ∈ Λ, the matrix C is the finite element matrix for the differential operator L
defined by Lu = −∆u+u in the bounded domain DR, u = (u1, u2, u3)>, ∆u = ∂2

1u+∂2
2u. It

follows from (26) that the matrices A(µ) and C are spectrally equivalent [6]. Therefore, the
matrix C can be chosen as the preconditioner for A(µ). Efficient preconditioned iterative
methods for solving large monotone nonlinear eigenvalue problems of the form (25) have
been suggested in the papers [27], [28], [29], [30], [31].

Remark 21 The finite element method for linear eigenvalue problem (23) leads to the
matrix linear eigenvalue problem: find η ∈ R, y ∈ RN \ {0}, such that

A0y = (η + α0)By

with large sparse symmetric positive definite matrices A0 and B of order N . This problem
can be solved by efficient preconditioned eigensolvers suggested and investigated in the
recent papers [20], [11], [12], [13]. Relations (24) imply the following properties:

α0
1(Cy, y) ≤ (A0y, y) ≤ α0

2(Cy, y) ∀y ∈ RN ,

where the matrix C is defined in Remark 20. Hence the matrix C can be chosen as the
preconditioner.

6 Conclusion

This paper presents a theoretical investigation of an eigenvalue problem describing the
guided modes of an optical fiber. We consider the questions on the existence of eigenvalues
and eigenfunctions and study their properties. We propose the statement of the problem in
a bounded domain with the exact boundary condition and show that this problem belongs
to the class of monotone positive definite nonlinear eigenvalue problems. This allows to
apply the finite element method for solving the problem and to use the theoretical results
on the convergence and error estimates obtained by the author in the previous papers.
The finite element method leads to a monotone nonlinear matrix eigenvalue problem with
large sparse matrices. We show that for solving this matrix eigenvalue problem one can
apply efficient preconditioned iterative methods, which have been suggested in the previous
papers of the author.
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