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1 Introduction

In the last two decades the use of adaptive mesh refinement in the finite element solution
of partial differential equations is widely recognized as having significant potential for
improving the efficiency of the solution process. The development of the adaptive finite
element method focused mainly on two ingredients, the error estimators for detecting some
elements with large contribution to the H1–error and the mesh subdivision technique for
subdividing these elements. Here, we investigate the question whether a very fine mesh in
small parts of the domain as a result of continued subdivisions can terminate this process
due to numerical instabilities and how to overcome this difficulty.

The main tool that has to be considered for producing or avoiding numerical instabilities
is the calculation of the local Jacobian matrix of the mapping from the master–element
onto the real element, as usually done in finite element calculations. From this reason
our investigations are valid for each kind of 2nd order partial differential equation, so we
consider only a model problem for numerical experiments.

2 The adaptive strategy

In the adaptive finite element method, we have some error estimators, which mark some of
the elements (with large contribution to the overall error) for subdivision. For a overview
of known error estimators see [AO00, Verf96] and the references therein. The marked
elements are subdivided into smaller parts due to some strategies.

For 2D–calculations and triangular meshes two basic strategies for one triangle are
employed:
The so called “red” subdivision of a triangle into 4 sub–triangles of equal shape and size
(see Fig. 1) and the so called “green” subdivision into 2 parts (see Fig. 2).
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For the whole mesh we have at least three strategies:
The strategy “green” due to Bänsch [Bän91] uses green subdivisions only. If we start
with the red subdivision on all marked triangles we can continue with two possible sub–
strategies:

“red–green” We produce a conforming finite element mesh by adding
green subdivisions on triangles with at least one subdivided
edge. (These green elements are removed before deeper
subdividing in the next step.)

“red–hanging nodes” No additional subdivision on elements with one subdivided
edge – we accept a non–conforming mesh with so called
“hanging nodes”. The solver can guarantee that we work
in the conforming subspace i.e. we use continuous f.e. func-
tions (see [Mey99]).

In the quadrilateral case similar ideas have been used. The most simple strategy in the
mesh–handling is again “red–hanging nodes”, i.e. subdivide each marked element into 4
parts and accept maximal two hanging nodes on two non–opposite sides. This is simply
generalized into 3D, whereas the generalization of the “red” triangular case leads to a new
property. The resulting sub–tetrahedrons are of the same volume but not of the same
shape.

An important fact for the following considerations is the definition of the vertices of the
son–elements. In the triangular case the new nodes are calculated first from the formula

xson :=
1

2
(xfather1 + xfather2)

and then used for defining the new sub–edges. If this technique is repeated a couple
of times neighboring nodes coincide in more and more leading digits. More precisely, a
node xson generated at an L–th level subdivision of some coarse element coincides with
its two fathers in about L leading digits (in their binary representation). This means,
the coordinates itself are correct until machine accuracy, but differences of neighboring
nodes lead to cancellations of about L digits. In classical finite element codes with uniform
mesh refinement this played no role, because L was maximally about 8...10 (the amount of
storage and work grows with 4L in 2D!). In an adaptive regime this is not longer true, we
can have L larger then 20 (in small parts of the domain, for instance near singularities).
So, differences of nodal coordinates should not be allowed (except at the beginning).

3 Unstable calculation of the Jacobian

Let K denote one of the finite elements of the given mesh having n nodes x0, . . . , xn−1 ∈
� 2 .

Here, n = 3 or n = 6 in the triangular case and usually n = 4, 8 or 9 for quadrilaterals.
We denote by K̂ the master element which is the unit triangle with vertices
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x̂(0) = (0, 0)T , x̂(1) = e1 := (1, 0)T and x̂(2) = e2 := (0, 1)T

or the unit square [0, 1]2 (then x̂(3) = e := (1, 1)T ), resp. Let x̂ = (x̂1, x̂2)
T ∈ K̂.

For calculating the element stiffness matrix or for post processing after having the
approximate solution and for most of the error estimators, we have to consider gradients
at points x ∈ K. Here, the usual technique considers the mapping x(x̂) : K̂ → K and
calculates gradients from transformations of master–gradients. Let N0(x̂) . . . , Nn−1(x̂) be
the n form functions (defined on x̂ ∈ K̂), then usually on some Gaussian points ĝ ∈ K̂ we
obtain at first the values:

N(ĝ) = (N0(ĝ), . . . , Nn−1(ĝ)) and

∇̂N(ĝ) =
(

∇̂N0(ĝ), . . . , ∇̂Nn−1(ĝ)
)

.

Here, ∇̂ = (∂/∂x̂1, ∂/∂x̂2)
T means formal differentiation with respect to the master coor-

dinates. The values in N(ĝ) had ∇̂N(ĝ) are given in a stable way, usually these are copies
from a fixed list.

From the definition

x(x̂) =
n−1
∑

k=0

Nk(x̂) x(k) (1)

of the mapping K̂ ←→ K with x(0), . . . , x(n−1) the nodes of K, we obtain the Jacobian
matrix

T (ĝ) = ∇̂xT |ĝ =
n−1
∑

k=0

∇̂Nk(ĝ) (x(k))T (2)

from a simple matrix–matrix–multiply of ∇̂N with the nodal coordinates. The values of
T seem to be simple short inner products, but are calculated with a serious cancellation of
leading digits. Let us consider the most simple triangular case with n = 3, then the form
functions are

N0(x̂) = 1− x̂1 − x̂2, N1(x̂) = x̂1, N2(x̂) = x̂2, (3)

so

∇̂N = (−e
... e1

... e2) (4)

and

T = (x(1) − x(0) ... x(2) − x(0))T . (5)

In the case of 6–node triangles the same is true if the edge mid nodes define straight edges
(x(3) = 1

2
(x(0) + x(1)) and so on).

If a quadrilateral is a parallelogram, we have (5) as well, for more general cases see
Section 5.

The instability of succeeding calculations results from the use of the inverse of T for
instance in:

∇Nk(g) = T−1∇̂Nk(ĝ). (6)
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4 Stable calculation of T for triangles

A stable calculation of T (and especially T−1) is possible, if we avoid these differences of
nodal coordinates in (5) for the fine grid elements. This is very easy in the triangular
case, if all triangles have straight edges. Then the strategy “red–hanging nodes” leads to
sub–triangles which are all similar to one of the given coarse mesh triangles. We suppose
that T was calculated in a stable way on these coarse mesh triangles, then all Jacobians
on all finer triangles are multiples of the Jacobian of its father triangle (for suitable node
numbering), which stabilizes this procedure totally.

For doing this we save the four values of T additionally to the data structure for storing
the element. During the “red” subdivision of an element K we calculate the 4 Jacobians
of the son elements from T . Let x(0), x(1), x(2) the vertices of K, then the 4 sons have to be
defined as (see Fig. 1)

K1 : x(0) x(01) x(02)

K2 : x(01) x(1) x(12)

K3 : x(02) x(12) x(2)

K4 : x(12) x(02) x(01)

So, the Jacobians are 1
2
T (for K1, K2, K3) and −1

2
T (for K4), which is totally free of

rounding errors.
From this fact, the strategy “red–hanging nodes” has a slight advantage.
For “green” triangles such a stabilization by heredity of the Jacobians to the son ele-

ments is possible as well. But it requires differences of rows of T :
For the “green” subdivision of the given element K, we have to define the so called

subdivision edge of K. Let this be the first edge of each element. The nodes of K are
x(0), x(1) and x(2) (the first two define the subdivision edge). Then, according to Fig. 2 the
two sons K1 and K2 can be:

K1 : x(0) x(2) x(01)

K2 : x(1) x(2) x(01)

for defining (x(0), x(2)) and (x(1), x(2)) as new subdivision edges (see [Bän91]). From

T T = (x(1) − x(0) ... x(2) − x(0))

follows with this restriction:

T T
1 = (x(2) − x(0) ... x(01) − x(0)) = T T

(

0 1/2
1 0

)

T T
2 = (x(2) − x(1) ... x(01) − x(1)) = T T

(

−1 1/2
1 0

)

,

which are the stable Jacobians of the son elements (here, T2 produces a rounding error of
machine accuracy but not a cancellation of leading digits because the two input vectors
are never near to linearly dependent).
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5 The case of arbitrary quadrilaterals

If the initial coarse mesh contains quadrilaterals which are not parallelograms then the
technique above is impossible due to the fact that T is not constant over K̂ in this case.
Again a stable calculation has to avoid differences of the nodal coordinates of the vertices..

Let K0 with the vertices y(0), y(1), y(2), y(3) be one of the quadrilaterals in the initial
coarse mesh. Then none of the sub–quadrilaterals which occur later has similarity to K0

(except for parallelograms). Hence, another technique as in the triangular case is required.
First note that from continued subdividing K0 all new nodes have the following repre-

sentation:

x =
3
∑

i=0

Ni(b̂) y(i), (7)

where Ni are the bilinear shape functions:

N0(x̂) = (1− x̂1)(1− x̂2)

N1(x̂) = x̂1(1− x̂2)

N2(x̂) = (1− x̂1)x̂2

N3(x̂) = x̂1x̂2

and b̂ ∈ K̂ is a vector with coordinates in � L after L levels of subdivision, where

� 0 = {0, 1}, � 1 = {0, 1
2
, 1},

� L := {k · 2−L : k = 0, · · · , 2L}

(All values in � L have maximally an L–digit binary representation.)
Now let K ⊂ K0 be one of the sub–quadrilaterals within K0 with the vertices x(0), x(1),

x(2) and x(3), so

x(i) =
3
∑

i=0

Nk(b̂
(i))y(k), (8)

where
b̂(0) = b̂, b̂(1) = b̂ + νe1, b̂(2) = b̂ + νe2 and b̂(3) = b̂ + νe (9)

with b̂ ∈ ( � L)2 the representation of the first node x(0) and ν = 2−L, if this cell occurred
in the L–th level of subdivision. (Again the node numeration is restricted to be “similar”
to K0 for all sub–quadrilaterals.)

Now, the Jacobian of K is defined as

T (ĝ) =
3
∑

i=0

∇̂Ni(ĝ)(x(i))T , (10)

which leads to an unstable calculation due to:

∇̂N0 =

(

ĝ2 − 1
ĝ1 − 1

)

=: q(ĝ)− e,

∇̂N1 = e1 − q(ĝ), ∇̂N2 = e2 − q(ĝ), ∇̂N3 = q(ĝ).
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Here, for a vector ĝ = (ĝ1, ĝ2)
T ∈ K̂ define q(ĝ) = (ĝ2, ĝ1)

T .
Then (10) reads as

T (ĝ) = (x(1) − x(0) ... x(2) − x(0))T + q(ĝ)(x(4))T (11)

with
x(4) = x(0) − x(1) − x(2) + x(3). (12)

Note that x(4) = 0 for parallelograms.

A stable calculation of T (ĝ) for the cell K can be obtained from combining (10) with
(8) and (9):

T (ĝ) =
3
∑

i=0

3
∑

k=0

∇̂Ni(ĝ)Nk(b̂
(i)) (y(k))T =:

3
∑

k=0

vk(y
(k))T .

The vectors vk are simply calculated as

v0 = ν(q(b̂)− e) + ν2q(ĝ)

v1 = ν(e1 − q(b̂)) − ν2q(ĝ)

v2 = ν(e2 − q(b̂)) − ν2q(ĝ)

v3 = νq(b̂) + ν2q(ĝ).

This results in a much more stable formula for T (ĝ):

T (ĝ) = νY T + ν q(b̂ + νĝ) (y(4))T , (13)

where

Y = (y(1) − y(0) ... y(2) − y(0))

and
y(4) = y(0) − y(1) − y(2) + y(3).

Again Y and y(4) are stable calculated from the coordinates of the initial mesh (constant
for all K within K0). The special cell K is represented by b̂ the local representation of
x(0). The addition b̂ + νĝ produces a rounding error of machine accuracy only. If K0 was
a parallelogram then y(4) = 0 and we have the same result as in the “red” triangular case.
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6 The 3D case of arbitrary hexahedrons

Here, let the initial course mesh contain a hexahedron K0 with the vertices y(0) , . . . , y(7)

which is subdivided into smaller cells analogously to the 2D case. Again we consider one
typical sub–cell K after L–th level of subdivision having the nodes x(0) , . . . , x(7). The
nodes in K and K0 are enumerated in a special way to specify their position. This is most
easily fixed by giving their images of the map onto the master element K̂ = [0, 1]3 (as seen
in Fig. 4):

Let x(0) ←→ (0, 0, 0)T ∈ K̂, x(7) ←→ e,
x(1) ←→ e1, x(2) ←→ e2, x(3) ←→ e3,

and x(4) ←→ e− e1 = (0, 1, 1), x(5) ←→ e− e2, x(6) ←→ e− e3 .
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Figure 4: nodes of a hexahedron

This map is defined analogously to Section 5 as

x(x̂) =
7
∑

i=0

Ni(x̂) x(i), (14)

where

N0(x̂) = (1− x̂1)(1− x̂2)(1− x̂3)

N1(x̂) = x̂1 (1− x̂2)(1− x̂3)

N2(x̂) = (1− x̂1) x̂2 (1− x̂3)

N3(x̂) = (1− x̂1) (1− x̂2) x̂3

N4(x̂) = (1− x̂1) x̂2 x̂3

N5(x̂) = x̂1 (1− x̂2)x̂3

N6(x̂) = x̂1 x̂2 (1− x̂3)

N7(x̂) = x̂1 x̂2 x̂3
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The same node numbering is used in K0. Furthermore, we need four abbreviations for
vectors which vanish on parallelograms or parallelepipeds:

x̃(1) = x(0) − x(2) − x(3) + x(4) (15)

(belongs to the quadrilateral “x̂1 = 0”)

x̃(2) = x(0) − x(1) − x(3) + x(5) (16)

(to “x̂2 = 0”)

x̃(3) = x(0) − x(1) − x(2) + x(6) (17)

(to “x̂3 = 0”) and let

x(8) = −x(0) + x(1) + x(2) + x(3) − x(4) − x(5) − x(6) + x(7). (18)

We use the same definitions for K0:

ỹ(1) = y(0) − y(2) − y(3) + y(4), (19)

ỹ(2) = y(0) − y(1) − y(3) + y(5), (20)

ỹ(3) = y(0) − y(1) − y(2) + y(6) (21)

and y(8) = −y(0) + y(1) + y(2) + y(3) − y(4) − y(5) − y(6) + y(7). (22)

Furthermore, we will need the following operations on vectors in K̂:

q(x̂) =







x̂2x̂3

x̂1x̂3

x̂1x̂2





 =
3
∏

i=1

x̂i

(

1

x̂j

)3

j=1

(23)

(the 3D analogue to the vector q(x̂) in Section 5) and

B(x̂) =







0 x̂3 x̂2

x̂3 0 x̂1

x̂2 x̂1 0





 . (24)

Now, we can express each vertex in K as a trilinear mapping of vectors b̂(i) ∈ ( � L)3 ⊂ K̂:

x(i) =
∑

Nk(b̂
(i))y(k), (25)

where b̂ = b̂(0) ∈ ( � L)3 represents the special cell K and the other vectors are:

b̂(1) = b̂ + νe1, b̂(2) = b̂ + νe2, b̂(3) = b̂ + νe3,

b̂(4) = b̂ + ν(e− e1), b̂(5) = b̂ + ν(e− e2), b̂(6) = b̂ + ν(e− e3),

b̂(7) = b̂ + νe and again ν = 2−L.
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For the cell K, we have to use the map onto the master element and to compute its Jacobian
(at some Gaussian point ĝ ∈ K̂)

x(ĝ) =
7
∑

i=0

Ni(ĝ)x(i) (26)

T (ĝ) =
7
∑

i=0

∇̂Ni(ĝ) (x(i))T . (27)

This is again the unstable formula for very fine meshes. For stabilizing this we first calculate
a special structure of (27) from considering the gradients of the Ni’s:

∇̂N0(ĝ) = −e + (ĝ2 + ĝ3)e1 + (ĝ1 + ĝ3)e2 + (ĝ1 + ĝ2)e3 + q(ĝ) (28)

∇̂N1(ĝ) = e1 − (ĝ2 + ĝ3)e1 − ĝ1e2 − ĝ1e3 + q(ĝ) (29)

∇̂N4(ĝ) = ĝ2e3 + ĝ3e2 − q(ĝ) (30)

∇̂N7(ĝ) = q(ĝ). (31)

The remaining gradients are obtained by cyclically rotating the indices (from ∇̂N1 get
∇̂N2 and ∇̂N3 from ∇̂N4 the rest). A longer calculation leads to

T (ĝ) = XT + B(ĝ)X̃T + q(ĝ)(x(8))T , (32)

when we abbreviate X̃ = (x̃(1) ... x̃(2) ... x̃(3)) and X = (x(1) − x(0) ... x(2) − x(0) ... x(3) − x(0)).
All the three matrices X, X̃ and x(8) contain nodal differences with possible cancela-

tions of leading digits. For a stable calculation we combine this last result with the node
definitions in (25), which can be done for the three cell depending parts X, X̃ and x(8)

seperately.
For the matrix X we have to consider x(1) − x(0) (resp. x(2) − x(0) and x(3) − x(0)):

x(1) − x(0) =
7
∑

k=0

[

Nk(b̂ + νe1)−Nk(b̂)
]

y(k)

= ν(y(1) − y(0)) + νb̂2ỹ
(3) + νb̂3ỹ

(2) + νb̂2b̂3y
(8),

so

X = νY + νỸ B(b̂) + νy(8)q(b̂)T (33)

with Y = (y(1) − y(0) ... y(2) − y(0) ... y(3) − y(0)) and Ỹ = (ỹ(1) ... ỹ(2) ... ỹ(3)).
For the last part x(8) surprisingly a constant vector ν3y(8) (constant for each cell in K0)

is obtained. From the calculation of

−Nk(b̂) + Nk(b̂ + νe1) + Nk(b̂ + νe2) + Nk(b̂ + νe3)

−Nk(b̂ + ν(e− e1))− . . .

+Nk(b̂ + νe) for each k

9



we get ±ν3. The signs are such that y(8) arises:

x(8) = ν3y(8). (34)

A similar calculation has to be done with the columns of X̃, for instance

x̃(1) =
7
∑

k=0

[

Nk(b̂)−Nk(b̂ + νe2)−Nk(b̂ + νe3) + Nk(b̂ + νe2 + νe3)
]

y(k)

= ν2ỹ(1) + b̂1ν
2y(8),

hence
X̃ = ν2Ỹ + ν2y(8)b̂T . (35)

Inserting (33), (34) and (35) into (32),

T (ĝ) = νY T + νB(b̂ + νĝ) Ỹ T + ν
(

q(b̂) + νB(ĝ)b̂ + ν2q(ĝ)
)

(y(8))T , (36)

we obtain the main result:

T (ĝ) = ν
(

Y T + B(b̂ + νĝ)Ỹ T + q(b̂ + νĝ) (y(8))T
)

, (37)

which is again a total stable possibility to obtain the entries of T (ĝ) up to the last binary
digit. This formula can be implemented from having b̂ as the representation of the cell
K ⊂ K0 and using the nodes of the coarse mesh cell K0 in Y, Ỹ and y(8).

7 Numerical Results

For demonstrating the above results, we choose the following widely used benchmark prob-
lem having a strong singularity.
We solve the problem:











−∆u = 0 in Ω
u = 0 on ΓD
∂u
∂n

= 1 on ΓN ,

where Ω is a square domain with slit: Ω = (0, 2)2 \ {(x, 1)T : x ∈ [1, 2)}. We have
homogeneous Dirichlet type boundary conditions everywhere on ∂Ω except at one side of
the slit, which is ΓN .

The initial coarse mesh consists of 8 triangles. We compare the three strategies of the
mesh refinement given in Section 2:
“B.-green” due to Bänsch, “red–green” and “red–hanging nodes”.

For each of this strategies we tested two different experimental runs:

a) with an element routine as in classical finite element calculations, i.e. the Jacobian
T is calculated due to (2) or (5) and
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b) with the stable calculation due to Section 4 (different for a “red” or “green” subdi-
vision).

The mesh has been refined from an error estimator of residual type. Here, we can
simply choose an edge–based estimator

η2
E = |E|

∫

E

[

∂uh

∂n

]2

ds,

where
[

∂uh

∂n

]

denotes the jump of the normal derivative over E for interior edges. For edges

along ΓN this is the difference between ∂uh

∂n
from element–side and the given Neumann

data.
Both in the element routine and in the error estimation we have to form the Jacobian

T on each element. This is done with the same technique different in a) and b).
In Figure 3 we have plotted the (square of the) estimated error

∑

∀E

η2
E for the three series

of runs on the successive meshes over the number of unknowns. On each adaptive step we
subdivide at least 10% of all edges of the actual mesh.

From this regime, the runs using a) with unstable T ’s brake down after about 20 levels
(with calculating “NaN” – not a number, indicated by the vertical line in Fig. 3), whereas
the strategy b) with stable T ’s continued to more than 30 levels with further decreasing
the error continuously. Here, the limit was the maximal available memory.

0.0001

0.001

0.01

0.1

1

10 100 1000 10000 100000 1e+06

’red-hang.n’.
’red-green’
’B.-green’

Figure 3: Estimated Error
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8 Conclusion

The classical element routines in finite element codes can lead to break downs if they are
used in an adaptive regime. The reason is the possibly unstable calculation of the Jacobian–
matrices due to serious cancelations of leading digits of nodal coordinates. The way out is
different in the cases of triangles and quadrilaterals/hexahedrons. In the triangular case
the Jacobian of son elements can be derived from their father element very easily and
stable. In case of arbitrary quadrilaterals and hexahedrons, the local Jacobian matrix
of a cell K ⊂ K0 is calculated from the nodes of the coarse element K0 and a speziell
representation vector b̂ ∈ ( � L)d ⊂ [0, 1]d according to the formulas (13) and (37).
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01-04 R. A. Römer. Percolation, Renormalization and the Quantum-Hall Transition. Febru-
ary 2001.
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01-22 A. Eilmes, Rudolf A. Römer, M. Schreiber. Localization properties of two interacting
particles in a quasi-periodic potential with a metal-insulator transition. September
2001.

01-23 M. Randrianarivony. Strengthened Cauchy inequality in anisotropic meshes and
application to an a-posteriori error estimator for the Stokes problem. September
2001.

01-24 Th. Apel, H. M. Randrianarivony. Stability of discretizations of the Stokes problem
on anisotropic meshes. September 2001.

01-25 Th. Apel, V. Mehrmann, D. Watkins. Structured eigenvalue methods for the com-
putation of corner singularities in 3D anisotropic elastic structures. October 2001.
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