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Introduction - a shape problem in planar elasticity

We consider a cylindric circular bar which is homogeneous and isotropic with a

planar, simply connected cross section 
 2 R

2

. We follow Banichuk and Karihaloo

[2] but normalize the shear modulus G = 1 and the elastic modulus E = 1. We

want to solve the problem of maximizing the bending sti�ness of the bar subject to

given inequality constraints on the torsional rigidity and the volume. In addition,

we study related problems. We minimize the volume, where bounds for the torsional

and bending sti�ness are given. Further, we maximize the torsional rigidity subject

to volume and bending constraints, respectively.

After the formulation of the three classes of problems we introduce a simple approach

for performing the shape calculus. The idea is based on the assumption that the cross

sections 
 under consideration are uniformly starshaped with respect to an open ball

U

�

(x) � 
. Without loss of generality we set x = 0 in the sequel. For a �rst order

calculus we assume regular domains 
 2 C

2

. Clearly, 
 can be identi�ed with a

boundary describing function for � = @
, i.e., in polar coordinates we have

� :=

n

(�) = r(�)

�

cos�

sin�

�

: � 2 [0; 2�]

o

;

where r 2 C

2

per

[0; 2�] is a positive function with

C

2

per

[0; 2�] = fr 2 C

2

[0; 2�] : r

(i)

(0) = r

(i)

(2�); i = 0; 1; 2g:(0.1)

As a standard variation for perturbed domains 


"

and boundaries �

"

, respectively,

we introduce a function dr 2 C

2

per

[0; 2�]

r

"

(�) = r(�) + "dr(�);

where 

"

(�) = r

"

(�)e

r

(�) is always a Jordan curve. Herein, e

r

(�) =

�

cos�

sin�

�

denotes

the unit vector in the outer radial direction. Note that the normal direction is given

by

n(�) =

1

p

r

2

(�) + r

0

2

(�)

"

r(�) cos�+ r

0

(�) sin�

r(�) sin�� r

0

(�) cos�

#

:

The main advantage of this simple approach is a complete embedding of the shape

problem into a Banach space setting. That is, at least for a �rst order calculus, both,

the shapes and its increments, can be viewed as elements of C

2

per

[0; 2�]. For the sake

of brevity, we do not list completely the approaches for the description of domain

or boundary variations which are available also for more general shapes. Moreover,

we do not discuss the applications and the further methods for the numerical solu-

tion. To that aim, we only refer to the monographs Pironneau [25], Haslinger and

Neitaanmaeki [24] and Sokolowski and Zolesio [29] and the references therein.
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In order to solve the given in�nite dimensional optimization problems approximately,

we transform them to �nite dimensional auxiliary problems. Then, we apply stan-

dard methods for the optimization of these �nite dimensional problems. Because

the basics of such optimization algorithms are well known, we mainly focus on the

related theoretical and implementational aspects. Consequently, we give only a few

references and not a complete overview about the existing literature.

The torsional rigidity with respect to a given domain is de�ned by a partial di�er-

ential equation for the stress function. We emphasize that this stress function has to

be computed on di�erent domains a lot of times during the optimization algorithm.

In particular, this has to be done not only once in each iteration but also in the

line search. Hence, it is clear that we spent e�ort in order to make its computation

cheap. As we show in this paper, the knowledge of its normal derivative su�ces to

evaluate the data appearing from the torsional rigidity. Invoking a Newton potential,

the normal derivative can be represented by a Dirichlet-to-Neumann map based on

boundary integral operators, namely the single layer operator and the double layer

operator. The application of boundary elements for the discretization requires only

a partition of the boundary. Therefore, we do not need a triangulation of the domain

like for �nite elements.

In general, boundary element methods su�er from a major disadvantage. The cor-

responding system matrices are densely populated. Therefore, the complexity for

solving such equations grows at least quadratic with the number of equations. This

fact restricts the maximal size of the linear equations seriously. Modern methods

for the fast solution of BEM reduce the complexity to a suboptimal rate or even

an optimal rate, that is a linear rate. Prominent examples for such methods are the

fast multipole method by Greengard and Rokhlin [18] and the panel clustering by

Hackbusch and Novack [20]. Observed �rst by Beylkin, Coifman and Rokhlin [4], the

wavelet Galerkin scheme o�ers another tool for the fast solution of integral equa-

tions. In fact, a Galerkin discretization based on wavelet bases results in numerically

sparse matrices, i.e., many matrix entries are negligible and can be treated as zero.

Discarding these nonrelevant matrix entries is called matrix compression. In accor-

dance with Dahmen et al. [7, 10, 9, 28], this can be performed without compromising

the accuracy of the underlying Galerkin scheme. As shown by Dahmen, Harbrecht

and Schneider in [7, 23, 28], the wavelet Gelerkin scheme has an optimal over-all

complexity.

The paper is organized as follows. Section 1 is dedicated to the modeling, shape

calculus and the necassary conditions of the optimization problems. In section 2

we transform the in�nite dimensional optimization problems to �nite dimensional
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ones. In order to optimize them, we apply descent methods of �rst order. The fast

solution of the state equation is considered in section 3. In section 4 we present

various numerical experiments. They con�rm the theory as well as the power of our

algorithms.

1. Modeling, stationary solutions and shape calculus

1.1. The optimization problems. First, we introduce the mathematical formula-

tion of the quantities. Moreover, we give the related expressions in polar coordinates,

if this is possible explicitly.

The bending rigidity with respect to a �xed barycentre in the origin, see remark 1.1

below, is given by

B(
) =

Z




y

2

dx =

1

4

Z

2�

0

sin

2

�r

4

(�)d�(1.1)

where x = [x; y]

T

. The torsional rigidity is calculated by

T (
) = 2

Z




u(x)dx =

Z

2�

0

Z

r(�)

0

u(�; �) �d�d�;(1.2)

where the stress function u = u(
) satis�es

�u = �2 in 
;

u = 0 on �:

(1.3)

For the volume of the domain and its barycentre we �nd

V (
) =

Z




dx =

1

2

Z

2�

0

r

2

(�)d�;

x

b

(
) =

�

x

b

(
)

y

b

(
)

�

=

1

V (
)

Z




xdx =

1

3V (
)

Z

2�

0

�

cos �

sin�

�

r

3

(�)d�:

Remark 1.1. The constraint y

b

= 0 is urgently needed for making correct the def-

inition of the bending functional via (1.1), whereas x

b

= 0 is introduced only for

�xing the problem with respect to a shift in x-direction. Moreover, the use of the

modi�ed barycentre coordinates

b
x

b

(
) =

�

bx

b

(
)

by

b

(
)

�

= V (
)x

b

(
) =

1

3

Z

2�

0

�

cos�

sin�

�

r

3

(�)d�(1.4)

simpli�es the constraints.
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Now we are able to de�ne the three classes of optimization problems under consid-

eration

J(
) = �B(
)! min subject to

V (
) � V

0

; T (
) � T

0

;
b
x

b

(
) = 0;

)

(P1)

J(
) = V (
)! min subject to

B(
) � B

0

; T (
) � T

0

;
b
x

b

(
) = 0;

)

(P2)

and

J(
) = �T (
)! min subject to

V (
) � V

0

; B(
) � B

0

;
b
x

b

(
) = 0:

)

(P3)

In the sequel, we will mainly discuss the methods and transformations for (P1). At

least from a technical point of view, the adaptions for the other problems are more

or less along the lines. However, the solutions to these problems depend di�erently

on the choice of the bounds for the inequality constraints, we refer to [2] for details.

Furthermore, we observed a slightly di�erent behaviour in the algorithms, which we

will investigate later.

1.2. Shape calculus and necessary condition. We briey recall well known

facts about the �rst order shape calculus, useful for both, the discussion of necessary

conditions and the numerical algorithms. For a well focussed introduction we refer to

[29]. But in the case of our examples, also methods from a calculus of variation-like

approach are applicable, cf. [1, 26]. For the adaption to polar coordinates one might

use [14, 15]. As a consequence, we obtain the following formulas for related shape

gradients, which denotes in fact a Fr�echet-derivative,

rV (r)[dr] =

Z

�

hdre

r

;nid� =

Z

2�

0

dr(�)r(�)d�;

rB(r)[dr] =

Z

�

hdre

r

;niy

2

d� =

Z

2�

0

dr(�) sin

2

�r

3

(�)d�;(1.5)

r
b
x

b

(r)[dr] =

Z

�

hdre

r

;nixd� =

Z

2�

0

dr(�)

�

cos�

sin�

�

r

2

(�)d�:

For domain respective volume functionals, note that we always derive a boundary

integral with the trace of the integrand times the normal component of the boundary

variation as the shape gradient.
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For the di�erentiation of the torsional rigidity we introduce the adjoint state p =

p(
)

��p = 2 in 
;

p = 0 on �;

and the local shape derivative du = du[dr] of the state in direction dr

��du[dr] = 0 in 
;

du[dr] = �hdre

r

;ni

@u

@n

on �:

(1.6)

Therefore, the shape gradient of the torsional rigidity reads as follows

rT (
)[dr] =

Z




2du[dr]dx(1.7)

=

Z

�

hdre

r

;ni

�

@u

@n

�

2

d�

=

Z

2�

0

dr(�)r(�)

�

@u

@n

(�)

�

2

d�:

Remark 1.2. As an alternative approach one might use domain perturbation meth-

ods like the speed method or the perturbation of identity. The latter one is also called

method of mappings. Due to the nature of this, domain integral representations of

shape gradients occur directly. However, after standard transformations one derives

equivalent boundary integrals which turn out completely analogous to the expressions

presented above. In fact, provided that the domain itself is su�ciently smooth, the

functionals arising from our problems have second and higher order shape deriva-

tives [13, 15, 29].

Now we are in a position to study the necessary condition for problem (P1). To that

aim, we introduce the Lagrangian as usual

L(
;�) = B(
) + �

T

�

T (
)� T

0

�

+ �

V

�

V (
)� V

0

�

+ h�

b
x

b

;
b
x

b

i

=

Z




�y

2

+ �

T

u(x) + �

V

+ h�

b
x

b

;xi dx;

where � = [�

T

; �

V

;�

T

b
x

b

]

T

. This yields the related shape gradient

rL(
;�)[dr] =

Z

�

hdre

r

;ni

n

� y

2

+ �

V

+ �

T

�

@u

@n

�

2

+ h�

b
x

b

;xi

o

d�:

Hence, we obtain a free problem with respect to the boundary variation dr, and by

standard results we have the well known
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Theorem 1.3 (Necessary �rst order optimality condition). Let 


?

be a regular op-

timal solution for problem (P1). Then, there exist �

?

V

� 0 and �

?

T

� 0 such that

rL(


?

;�

?

)[dr] = 0 for all dr. In other words, we have

n

� y

2

+ �

?

V

+ �

?

T

�

@u

@n

�

2

+ h�

?

b
x

b

;xi

o

�

�

�

�

?

� 0:(1.8)

Additionally, 


?

satis�es in combination with �

?

the complementary slackness con-

ditions

�

?

T

�

T (
)� T

0

�

= �

?

V

�

V (
)� V

0

�

= �

?

b
x

b

;x

bx

b

(
) = �

?

b
x

b

;y

by

b

(
) = 0:

Remark 1.4. We do not have any type of convexity for the shape problem. Hence,

to ensure a Kuhn-Tucker type condition, the regularity of 


?

is really an additional

assumption which cannot be guaranteed in advance. Nevertheless, we will have reg-

ular stationary domains, see the next subsection.

1.3. Stationary shapes. In the present subsection, we discuss the analytical solu-

tion of the necessary condition. For the sake of brevity, we restrict ourselves to the

minimization problem (P1). Let us remark, that the discussion of the other problems

is rather similar, cf. [2].

Theorem 1.5 (Banichuk/Karihaloo [2]). Let T

0

and V

0

be given such that both con-

straints on the torsional rigidity and the volume are active. Then, the ellipse 


?

de�ned via x

2

+ ay

2

= b, a � 1, ful�lls the necessary conditions for

b =

V

0

p

a

�

;

p

a =

V

2

0

�

p

V

4

0

� 4�

2

T

2

0

2�T

0

:

The Lagrange multipliers are given by

�

?

V

=

V

0

�

p

a(1� a)

; �

?

T

= �

(1 + a)

2

4a(1� a)

; �

?

b
x

b

= 0 ;

and the optimal value computes as

B(


?

) =

�b

2

4a

3=2

:

Proof. We briey recall a fews steps from the proof in [2]. Let us consider an ellipse

de�ned as above. From the ansatz for the stress function u

?

= N(b � x

2

� ay

2

)

follows that �u

?

= �2(1 + a)N , that is 1=N = 1 + a. We arrive at

@u

?

@n

= �2N

p

x

2

+ a

2

y

2

= �2

p

b� a(1� a)y

2

1 + a

;

and

T (


?

) =

Nb

2

�

p

a

=

b

2

�

(1 + a)

p

a

:
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The formula for the volume is V (


?

) = b�=

p

a. Applying (1.8), the comparison

of the coe�cients together with the activity of the constraints yields a nonlinear

system of equations for the appearing constants. This can be solved explicitly by

the solution given above.

Remark 1.6. 1. In dependence from the ratio T

0

=V

0

the optimization problem

behaves di�erent. For T

0

>

V

2

0

2�

no admissible domain exists with respect to

the constraints. For the limit case T

0

=

V

2

0

2�

the once admissible domain is a

circle with an appropriate radius. In the case T

0

<

V

2

0

2�

we obtain an ellipse with

semiaxes h

x

=

p

b and h

y

=

p

b=a.

2. Assuming V

0

= �, we �nd the following asymptotic behaviour. Since b =

p

a,

for 2T

0

� � � "

2

and T

0

= " we conclude that

p

a � 1 �

2"

�

and

p

a �

"

�

,

respectively, if "! 0. This implies �

?

V

!1 and �

?

T

! �1.

3. As mentioned above, the discussion for the problems (P2) and (P3) is very sim-

ilar. However, by varying the values for the bounds we �nd admissible domains

for all given values of the bounds. Nevertheless, for some ratios B

0

=T

0

and

V

0

=B

0

, respectively, the bending constraint is oversatis�ed and the stationary

solution provides the circle as optimum, see [3, 13].

Remark 1.7. In the context of general classes of C

2

-domains, the calculus is com-

pletely valid in the neighbourhood of the stationary solutions. This results from the

fact that every regular starshaped domain has an open C

2

-neighbourhood which con-

tains only starshaped domains. We �nd even that the strict convexity of the ellipse

h

x

h

2

y

= �

min

� � � �

max

=

h

y

h

2

x

;

implies a C

2

-neighbourhood containing only strictly convex domains.

Remark 1.8. According to e

r

= x=kxk, we �nd

he

r

;ni =

x

2

+ ay

2

p

(x

2

+ y

2

)(x

2

+ a

2

y

2

)

=

b

p

(x

2

+ y

2

)(x

2

+ a

2

y

2

)

:

and, for x = x(�) 2 �

?

,

x(�) =

4

p

a

p

cos

2

�+ a sin

2

�

e

r

(�):

Hence, even at 


?

, the local shape derivative du

?

[dr] satis�es the Dirichlet boundary

condition

du

?

[dr]

�

x(�)

�

=

2

p

adr(�)

(1 + a)

p

x(�)

2

+ y(�)

2

;
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cf. (1.6). This condition is not of the type constant times the boundary variation dr.

Hence, in contrast to the examples in [3], there exists no explicit representation of

the local shape derivative du

?

[dr] by power or Fourier series.

2. Approximation for the shapes and optimization algorithms

2.1. Finite dimensional representation of boundaries. There are some dif-

�culties in treating the shape problems analogously to usual control problems in

in�nite dimensional spaces.

� The discussion of descent methods of �rst order causes trouble even if the class

of shapes under consideration can be identi�ed with elements of a Banach space

X like in our approach. In fact, this needs a reinterpretation of gradients as

elements of X

?

in the space X. However, a shape di�erential calculus often

works in a canonical way in spaces having a \complicated dual", for example

C

2

per

([0; 2�]) in our case, cf. (0.1). An embedding in a Hilbert space is di�cult,

too. Moreover, the gradient of a wide class of objectives is given with respect

to a L

2

-duality. This requires the application of an additional duality mapping.

� The state u = u(
) lives in a domain-dependent functional space. This causes

the boundary value problem not treatable straightforward as an equality con-

straint which is well de�ned via a mapping between Banach spaces. Usually

u is inserted into the objective and the shape di�erentiation is performed

by the chain rule via the material or local shape derivative concept for the

state [14, 25, 29].

Due to these di�culties, we proceed our paper as follows. First, we discuss a �nite

dimensional approximation only for the shapes. Necessarily, it has to be compatible

with a related approximation for the shape gradients. Second, we consider all shape

functionals as exactly computable. This includes the computation of the torsional

rigidity via the stress function. Proceeding that way, we derive a �nite dimensional

constraint optimization problem without having any trouble for performing gradient

or Quasi-Newton steps.

The approximation of the stress function is considered independently from the shape

approximation. As an immediate consequence, the related discretization is decoupled

from the �nite dimensional subspace of the shapes. It is worth noting that the

restriction to a �nite dimensional optimization problem induces the investigation of

convergence. But this will not considered in the present paper.
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Based on the polar coordinate approach, we can express the smooth function r 2

C

2

per

([0; 2�]) by

r(�) = a

0

+

1

X

n=1

a

n

cosn� + a

�n

sinn�:

Hence, it is obvious to take the truncated Fourier series

r

N

(�) = a

0

+

N

X

n=1

a

n

cos n�+ a

�n

sinn�:

as approximation of r.

The advantages of this approach is an exponential convergence if the shape is ana-

lytical, i.e.,

j(r � r

N

)(�)j . q

N

(2.9)

for an appropriate q < 1. In fact, the ellipses arising from our optimization problems

are analytical as well. Additoinally, the approximation r

N

is analytical which makes

the application of the wavelet Galerkin scheme for the boundary element method

much more e�cient [23].

The �nite dimensional approximation of the shape gradient is given via the coef-

�cients of the �nite Fourier series to the trace function of the related boundary

integral representation. That is, for any given domain functional J(
) =

R




j(x)dx,

the shape gradient

rJ(
)[dr] =

Z

2�

0

dr(�) � (r(�)j(�)) d�

is approximated by

r

N

J(
) :=

Z

2�

0

"

sinN�

sin(N�1)�

.

.

.

cosN�

#

� (r(�)j(�)) d�:

Remark 2.1. According to remark 1.2, our approach ensures that the higher order

smoothness of the original problems is passed on the �nite dimensional subproblems.

Obviously, this is not essential for the realization of �rst order optimization methods.

However, it is indispensible for the investigation of the convergence of the algorithms

in the �nite dimensional setting.

2.2. Relaxation of the constraints. The crucial idea for the numerical algorithms

is the transformation of the problems (P1), (P2) and (P3) to unconstrained optimiza-

tion problems. In particular, we treat the applicability of well developed standard
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techniques which involve only gradient informations. For the sake of brevity, we re-

strict ourselves to problem (P1). The corresponding formulations of the problems

(P2) and (P3) is given completely analogous.

The simplest formulation makes use of a quadratic penalty functional

P

�

(
) = �B(
)(2.10)

+

�

2

h

�

minf0; T (
)� T

0

g

�

2

+

�

maxf0; V (
)� V

0

g

�

2

+ k
b
x

b

(
)k

2

i

:

The main advantage is a simultaneous handling of equality and active/nonactive

inequality constraints. However, ensuring smoothness and convergence requires for-

mally �!1 during the iteration process. Usually, the problems become ill condi-

tioned for large �.

At least in the case of active constraints, the Augmented Lagrangian for equailty

constraints o�ers a more stable formulation

L

e

c

(
;�) = �B(
) + �

T

�

T (
)� T

0

�

+ �

V

�

V (
)� V

0

�

+ h�

b
x

b

;
b
x

b

(
)i(2.11)

+

c

2

h

�

T (
)� T

0

�

2

+

�

V (
)� V

0

�

2

+ kx̂

S

(
)k

2

i

:

Here we have the following update for the Lagrange multiplier

�

k+1

= �

k

+ c

�

T

0

�T (


k

)

V

0

�V (


k

)

b
x

b

(


k

)

�

�! �

?

;

where c is �xed but appropriately chosen.

Remark 2.2. The literature o�ers a lot of adaptions of the Augmented Lagrangian

or modi�ed Lagrangian techniques for the inequality constraints as well as for a

moderate change of the penalty-like parameter c. Nevertheless, like the quadratic

penalty functional, the Augmented Lagrangian L

i

c

for inequality constraints is only

C

1;1

even for a smooth original problem. This might cause problems in view of higher

order methods or a re�ned treatment of convergence.

For further details on the theory of penalty methods and the Augmented Lagrangian

we refer to [16, 19, 27] and the references therein. We mention that we do not

treat the pure Lagrange method since it is known too slow and not robust enough,

cf. [16, 19].

2.3. Descent methods of �rst order. For the minimization of the auxiliary prob-

lems (2.10) and (2.11) we apply the gradient method, also known as steepest descent.

Whereas this method is simple to implement, the convergence is known rather poor.

In contrary, under suitable conditions, the class of Quasi-Newton methods ensures
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Penalty algorithm

� starting point: Choose initial guess r

0

, choose �

0

, "

(1)

0

, "

(2)

0

, q 2 (0; 1).

� outer iteration: For iteration index i = 1; 2; : : : update

�

i

= �

i�1

+ c; c > 0;

and solve minP

�

i

(r) with initial guess r

0

i

:= r

i�1

.

� inner iteration: For iteration index j = 1; 2; : : : update

r

j

i

= r

j�1

i

+ �h

j�1

i

;

with descent direction h

j�1

i

and � from line search.

� line search: Set � := 1.

While P

�

i

(r

j�1

i

+ �h

j�1

i

) � P

�

i

(r

j�1

i

) + q�rP

�

i

(r

j�1

i

)[h

j�1

i

] do

� :=

1

2

rP

�

i

(r

j�1

i

)[h

j�1

i

]

rP

�

i

(r

j�1

i

)[h

j�1

i

] + P

�

i

(r

j�1

i

+ �h

j�1

i

)� P

�

i

(r

j�1

i

)

:

� stopping criterion: Either

0 <

P

�

i

(r

j�1

i

)� P

�

i

(r

j

i

)

jP

�

i

(r

j�1

i

)j

< "

(1)

i

; "

(1)

i

= q"

(1)

i�1

;

or/and

krP

�

i

(r

j

i

)k � "

(2)

i

; "

(2)

i

= q"

(2)

i�1

:

Figure 2.1. A principal optimization algorithm.

superlinear convergence via a local approximation of the Hessian in the descent di-

rection. Hence, additionally we consider one representative using a special version

of inverse BFGS-rule.

For instance, for the penalty functional these methods are given as follows.

� Gradient method: The descent direction is the anti-gradient

d

k+1

= �r

N

P

�

(


k

):

� Quasi-Newton method: The descent direction is given by

d

k+1

= �H

k

r

N

P

�

(


k

);

where H

k

is updated by the inverse BFGS-rule without damping.

We skip the discussion of the structure and properties of the various kinds of Quasi-

Newton update rules found in the literature. For further update rules and their

theory of convergence we refer to [11, 12, 17, 19].
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For the sake of completeness, we present an algorithmical scheme in �gure 2.1. We

formulate it with respect to the penalty functional. In particular, a second order

approximation is proposed for performing the line search update if a descent fails.

Clearly, it is also applicable for the Quasi-Newton method.

3. Solving the Partial Differential Equation

3.1. Boundary integral formulation. In order to evaluate the data arising from

the torsional rigidity T (
) (1.2) and its shape gradient rT (
)[dr] (1.7), we require

R




u dx and the normal derivative

@u

@n

with respect to the solution u of the boundary

value problem (1.3). Without loss of generality we assume the domain 
 arbitrarily

but �xed and su�ciently smooth in this section.

We simplify the evaluation of

R




u dx by making use of the second Green formula

Z




u�q dx =

Z




�uq dx+

Z

�

u

@q

@n

d� �

Z

�

@u

@n

q d�:

Setting q(x) :=

1

4

(x

2

+ y

2

) and observing �u = �2, u

�

�

�

= 0 as well as �q = 1, we

derive the equation

Z




udx =

Z




u�qdx = �2

Z




qdx�

Z

�

@u

@n

qd�:(3.12)

According to

Z




qdx =

Z

2�

0

Z

r(�)

0

q(�; �)�d�d� =

1

16

Z

2�

0

r(�)

4

d�;

the �rst integral on the right hand side of (3.12) can be calculated cheaply by a

boundary integral. Hence, it su�ces to compute the normal derivative of the stress

function.

The Newton potential v(x) := �

1

2

(x

2

+ y

2

) satis�es the equation �v = �2. Hence,

making the ansatz

u := v + w;(3.13)

a harmonical function w is sought which satis�es the boundary value problem

�w = 0 in 
;

w = �v on �:

(3.14)
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The latter problem can be solved by a boundary integral equation. We introduce

the single layer operator V and the double layer operator K de�ned by

(Vu)(x) := �

1

2�

Z

�

log kx� yku(y)d�

y

;

(Ku)(x) :=

1

2�

Z

�

hn

y

;x� yi

kx� yk

2

u(y)d�

y

:

Then, the normal derivative ! :=

@w

@n

is given by the Dirichlet-to-Neumann map

V! =

�

1

2

+K

�

w on �:(3.15)

We denote the function space of all squared integrable functions on � with respect

to the canonical inner product

(u; v)

L

2

(�)

=

Z

�

uv d�

by L

2

(�) and the associated Sobolev spaces by H

s

(�), s 2 R. Then, in this context,

V : H

�1=2

(�)! H

1=2

(�) de�nes an operator of the order �1 while

1

2

+K : H

1=2

(�)!

H

1=2

(�) de�nes an operator of the order 0.

Remark 3.1. The above proceeding is feasible for a general class of problems. On

the one hand, di�erent inhomogenities in (1.3) can be treated if appropriate Newton

potentials are known. On the other hand, the homogeneous Dirichlet data are not

essential for our approach.

3.2. The Galerkin scheme. We employ a Galerkin scheme in order to discretize

(3.15). Exploiting polar coordinates, we introduce a parametrical representation of

the boundary in accordance with

 : [0; 1]! �; s 7! (s) := r(2�s)

�

cos(2�s)

sin(2�s)

�

:

We subdivide the boundary � into 2

l

panels �

l;k

:= 

�

2

�l

[k; k + 1)

�

, k 2 4

l

:=

f0; 1; : : : ; 2

l

� 1g. With respect to this partition, the piecewise constants �

(1)

l

:=

f�

(1)

l;k

: k 2 4

l

g and linears �

(2)

l

:= f�

(2)

l;k

: k 2 4

l

g are given by

�

(1)

l;k

= 2

l=2

�

�

l;k

and

�

(2)

l;k

(x) = 2

3l=2

8

>

>

<

>

>

:

s� 2

�l

(k � 1); x = (s) 2 �

l;k�1

;

2

�l

(k + 1)� s; x = (s) 2 �

l;k

;

0; elsewhere;

respectively. Note that we use a L

2

-normalization, i.e., k�

(d)

l;k

k

L

2

(�)

� 1 for d = 1; 2.
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Making the ansatz !

l

= �

(1)

l

!

�

l

we have to solve the Galerkin system

V

�

l

!

�

l

=

�

(

1

2

+K)w;�

(1)

l

�

L

2

(�)

(3.16)

with the system matrix

V

�

l

:= (V�

(1)

l

;�

(1)

l

)

L

2

(�)

:

For the application of the wavelet matrix compression, we approximate the given

Dirichlet data in (3.14) by piecewise linears. Its best approximation w

l

with respect

to L

2

(�) is given by

w

l

:= �

(2)

l

�

G

�

l

�

�1

w

�

l

where

G

�

l

:= (�

(2)

l

;�

(2)

l

)

L

2

(�)

; w

�

l

:= (w;�

(2)

l

)

L

2

(�)

:

Inserting this approximation into the Galerkin system (3.16) yields

V

�

l

!

�

l

=

�

1

2

B

�

l

+K

�

l

��

G

�

l

�

�1

w

�

l

(3.17)

with

B

�

l

:= (�

(2)

l

;�

(1)

l

)

L

2

(�)

; K

�

l

:= (K�

(2)

l

;�

(1)

l

)

L

2

(�)

:

We mention that the approximation by piecewise linears is required in order to get

the optimal order of convergence of the Galerkin scheme.

3.3. Wavelet approximation for BEM. The system matrices V

�

l

and K

�

l

are

densely populated. In combination with the ill-posedness of V

�

l

, this implies at least

a quadratic complexity for the computation of the Neumann data !

�

l

. Instead of

using the single-scale bases for the discretization, we apply biorthogonal wavelet

bases and compress the arising system matrices.

More precisely, de�ning V

(d)

l

:= span�

(d)

l

, the two sequences of nested spaces

V

(d)

l

0

� V

(d)

l

0

+1

� : : : ; clos

L

2

(�)

�

[

l�l

0

V

(d)

l

�

= L

2

(�);

\

l�l

0

V

(d)

l

= V

(d)

l

0

;

generate a multiscale analysis, cf. [5]. We introduce suitable wavelet bases 	

(d)

l

:=

f 

(d)

l;k

: k 2 4

l

g which span complementary spaces W

(d)

l

:= span	

(d)

l

with

V

(d)

l

�W

(d)

l

= V

(d)

l+1

:

For the matrix compression, these wavelet bases are required to have vanishing

moments in terms of

Z

�

�



�1

(x)

�

�

 

(d)

l;k

(x)d� = 0; 0 � � <

e

d:
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1

1.2
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Figure 3.2. Piecewise constant and linear functions respective wavelets

According to [21, 22], it su�ces to consider piecewise constant wavelets with

e

d = 3

vanishing moments and piecewise linear wavelets with

e

d = 2 vanishing moments.

Such wavelets have been constructed in [5]. They can be described by their re�ne-

ment relation

 

(d)

l;k

=

X

j

a

j

�

(d)

l+1;2k+j

with the mask coe�cients

(a

�2

; a

�1

; : : : ; a

3

) = (�1=8;�1=8; 1;�1; 1=8; 1=8); d = 1;

(a

�1

; a

0

; : : : ; a

3

) = (�1=8;�1=4; 3=4;�1=4;�1=8); d = 2;

cf. �gure 3.2. It is well known [5] that the collections

	

(d)

L

:=

L

[

l=l

0

�1

	

(d)

l

;

with 	

(d)

l

0

�1

:= �

(d)

l

0

form uniformly stable bases in L

2

(�). In fact, this Riesz property

implies the existence of a corresponding dual multiresolution analysis. We refer to

[5, 23, 28] for details.

Now, replacing �

(d)

L

by 	

(d)

L

in (3.17), we obtain the wavelet Galerkin system

V

 

L

!

 

L

=

�

1

2

B

 

L

+K

 

L

��

G

 

L

�

�1

w

 

L

(3.18)
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with

V

 

L

:= (V	

(1)

L

;	

(1)

L

)

L

2

(�)

; K

 

L

:= (K	

(2)

L

;	

(1)

L

)

L

2

(�)

;

B

 

L

:= (	

(2)

L

;	

(1)

L

)

L

2

(�)

; G

 

L

:= (	

(2)

L

;	

(2)

L

)

L

2

(�)

;

u

 

L

:= (w;	

(2)

L

)

L

2

(�)

; !

L

:= 	

(1)

L

!

 

L

:

Herein, the system matrices V

 

L

and K

 

L

are quasi-sparse. Both matrices can be

compressed without loss of accuracy to O(2

L

) nonvanishing matrix entries, see [7,

21, 23, 28] for details. Actually, in accordance with [7, 23], the over-all complexity

of compressing and assembling the system matrices is O(2

L

). Moreover, based on

the well known norm equivalences of wavelet bases, diag(V

 

L

) provides an simple

preconditioner of the system matrix corresponding to the single layer operator [6,

8, 10, 28].

Observing that the single-scale matrixG

�

L

and the wavelet matrixG

 

L

are related by

a wavelet transform G

 

L

= T

L

G

�

L

T

?

L

, we deduce (G

 

L

)

�1

= T

�?

L

(G

�

L

)

�1

T

�1

L

. Herein,

the solution of the system G

�

L

x = y requires only O(2

J

) operations due to the

bandedness of the piecewise linear mass matrix G

�

L

. Hence, the computation of the

Neumann data !

 

L

has optimal complexity since the application of T

�?

L

and T

�1

L

to

a given vector scales also linearly (fast wavelet transform).

3.4. Error estimates. In this subsection we discuss the approximation errors of

our approach. With respect to the normal derivative, we obtain the error estimate

k! � !

L

k

H

s

(�)

. 2

L(t�s)

k!k

H

t

(�)

(3.19)

for all �2 � s � t � 1, cf. [28].

Lemma 3.2. The torsional rigidity T and its directional derivative rT [dr] are ap-

proximated cubic and quadratic with respect to the step width h

L

:= 2

�L

, respectively.

That is

�

�

T � T

L

�

�

. h

3

L

;

�

�

(rT �rT

L

)[dr]

�

�

. h

2

L

:(3.20)

Proof. First, we consider the discretization error for the torsional rigidity. Observing

(3.12) and (3.13), we �nd the equation

�

�

T � T

L

�

�

=

�

�

�

�

2

Z

�

�

@v

@n

+ !

�

d� � 2

Z

�

�

@v

@n

+ !

L

�

d�

�

�

�

�

= 2

�

�

(! � !

L

; 1)

L

2

(�)

�

�

:

Hence, invoking (3.19) we conclude

�

�

T � T

L

�

�

� 2k! � !

L

k

H

�2

(�)

k1k

H

2

(�)

. 2

�3L

k!k

H

1

(�)

:
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Next, we estimate the error with respect to the directional derivative of the torsional

rigidity. We �nd

�

�

(rT �rT

L

)[dr]

�

�

=

�

�

�

�

Z

2�

0

rdr

�

@v

@n

+ !

�

2

d��

Z

2�

0

rdr

�

@v

@n

+ !

L

�

2

d�

�

�

�

�

� 2

�

�

�

�

rdr

@v

@n

; ! � !

L

�

L

2

([0;2�])

�

�

�

+

�

�

�

�

rdr; !

2

� !

2

L

�

L

2

([0;2�])

�

�

�

:

The �rst term is estimated by

�

�

�

�

rdr

@v

@n

; ! � !

L

�

L

2

([0;2�])

�

�

�

�





rdr

@v

@n





H

1

([0;2�])

k! � !

L

k

H

�1

([0;2�])

. 2

�2L





rdr

@v

@n





H

1

([0;2�])

k!k

H

1

(�)

since k �k

H

s

(�)

� k�k

H

s

([0;2�])

for all s 2 R if  is smooth. With respect to the second

term, we �nd

�

�

�

�

rdr; !

2

� !

2

L

�

L

2

([0;2�])

�

�

�

� max

�2[0;2�]

�

r(�)dr(�)

	

�

�

�

(! � !

L

; ! + !

L

�

L

2

([0;2�])

�

�

�

= max

�2[0;2�]

�

r(�)dr(�)

	

�

�

�

(! � !

L

; ! � !

L

)

L

2

([0;2�])

� 2

�

!; ! � !

L

�

L

2

([0;2�])

�

�

�

� max

�2[0;2�]

�

r(�)dr(�)

	

h

k! � !

L

k

2

L

2

([0;2�])

+ 2k!k

H

1

([0;2�])

k! � !

L

k

H

�1

([0;2�])

i

. 2

�2L

h

3 max

�2[0;2�]

�

r(�)dr(�)

	

k!k

2

H

1

(�)

i

:

This proves the assertion.

Remark 3.3. One requires O(2

2L

) triangles for the discretization of the domain

in order to ensure the step width h

L

. Hence, the complexity of globally continuous

linear �nite elements is O(2

2L

) while we �nd the asymptotics

�

�

T � T

L

�

�

. h

2

L

and

�

�

(rT �rT

L

)[dr]

�

�

. h

L

.

4. Numerical results

In this section, we report the experiences from our numerical experiments. With re-

spect to the given problems, we investigate the behaviour of the presented algorithms

for various choices of the bounds of the constraints.

An overview of the behaviour of the algorithms is tabulated in table 4.1. It turns out

that the Augmented Lagrangian is more robust and more accurate in comparison

with the penalty functional. In particular, the penalty algorithm is divergent with

respect to problem (P1). However, we observe that the convergence depends on the

ratio h

y

=h

x

of the semiaxis of the stationary ellipse. Roughly spoken, the algorithms

are convergent for randomly generated initial guesses if h

y

=h

x

2 [1; 2]. Starting with
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nearly optimal shapes the convergence is extended to the range h

y

=h

x

2 [2; 3]. But

the algorithms do not �nd the optimimum for h

y

=h

x

> 3.

Remark 4.1. The behaviour of penalty functional of the problem (P1) di�ers cru-

cially from those of the problems (P2) and (P3). Namely, for all �nite values �

holds

inffP

�

(
) : V (
) = V

0

;
b
x

b

(
) = 0g = �1:

This is readily veri�ed by considering a concentric ellipse with constant volume V

0

where the ratio of the semiaxes h

y

=h

x

increases to1. Whereas this is not a complete

proof it illustrates the di�culties of the penalty approach for problem (P1).

(P1) (P2) (P3)

Penalty functional � � �

Augmented Lagragian � � �

h

y

=h

x

2 [1; 2] random start domain

h

y

=h

x

2 [2; 3] good initial guess

h

y

=h

x

> 3 no convergence

Table 4.1. Comparison of the applicability and behaviour of the

algorithms for the di�erent problems.

Table 4.2 is concerned with the comparison Quasi-Newton method versus gradient

method. To that aim we choose N = 16 and L = 8, respectively. We iterate 20 times

the penalty functional for problem (P2) applying the Quasi-Newton descent. This

leads to the l

2

-di�erence 0:025 between the approximated and the exact Fourier-

coe�cients. The gradient method requires more than three times the number of

iterations in order to attain this accuracy. Due to the line search, the cpu-time

increases even by a factor close to �ve.

penalty functional for (P2) Quasi-Newton method gradient method

number of iterations 20 64

l

2

-error of Fourier coe�cients 0.025 0.025

cpu-time in sec. 32 151

Table 4.2. Comparison of Quasi-Newton method vs. gradient method.

Remark 4.2. We observe the convergence of the Lagrange multipliers �! �

?

for

the Augmented Lagrangian. In particular, �

b
x

b

= 0 is found also by our numerical

experiments. As a consequence, strict complementarity holds not for the problems

(P1), (P2) and (P3). Nevertheless, linear indepedence of the gradients of the active

constraints might be satis�ed at 


?

as it is known from [3, 15].
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Figure 4.3. The l

2

-error of the Fourier coe�cients vs. the number

of unknowns N

r

and L.

Next, we investigate the error of approximation. We solve the optimization prob-

lem (P2) by using the Quasi-Newton method for the Augmented Lagrangian. We

meassure the l

2

-di�erence between the computed and the exact Fourier coe�cients

in dependance of the length N of the Fourier series and the number of boundary

elements 2

L

. Figure 4.3 shows this di�erence with respect to a log

10

-scale for all

10 � N � 20 and 5 � L � 13. It turns out that, for N �xed and L increasing, the

error decreases up to a certain threshold. We suggest that this threshold is induced

by the error of approximation of r

N

(2.9) since it depends on N . On the other hand,

for a �xed level L of discretization of the stress function, more Fourier coe�cients

seem �rst to improve and then to deteriorate of the error. Clearly, the improvement

is realized by the higher power of approximation of r

N

. The deterioration might be

caused by oscillations of r

N

which cannot be resolved by the number of boundary

elements. Summarized one concludes that N and L should increase simultaneously,

i.e., N � L. This observation seems to arise naturally from the orders of conver-

gence (2.9) and (3.20).

A part of a iteration is speci�ed in �gure 4.4. We plot the domains obtained in the

�rst 20 steps of the optimization of the penalty functional for problem (P2) where

the descent is computed via the Quasi-Newton method. We choose N = 16 and

256 boundary elements while the penalty � = 5 is �xed. The computation requires

45 sec. We emphasize that not only the presented domains are computed. In the

most steps also the line search is active. In the 20th step, the l

2

-distance of the

approximated Fourier-coe�cients to those of the optimal ellipse is 0:032.
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Figure 4.4. Resulting domains with respect to problem (P2) com-

puted by the Quasi-Newton method for the penalty functional.
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