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Abstrat

We onsider parallelization strategies for the two most important algorithms used in numerial investigations of

the Anderson model of loalization, a paradigmati model of disordered quantum systems. After a brief review of

the physis of Anderson loalization, we outline the Cullum-Willoughby implementation of the Lanzos diagonal-

ization sheme and the transfer-matrix method used for the numerial haraterization of loalization properties.

For appliations of these algorithms to massively parallel luster arhitetures, we develop and test various paral-

lelization strategies.
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1. Introdution

Disordered systems represent a major hallenge

for modern omputational methods. Due to their

ubiquitous nature and their many appliations,

there is an ever growing need to understand the

physis that governs their behavior [1{3℄. Unfor-

tunately, it is exatly their disordered nature that

also makes any analytial approah and thus a

simple mathematially tratable solution so very

hard to ome by. Nevertheless, in reent years a

vast and extensive body of knowledge has been

olleted mainly based on extensive use of high-

performane omputing [2℄. In the present paper,

we will onsider modern numerial approahes

to the so-alled Anderson model of loalization

[4℄, a quantum system of disordered eletrons.

In partiular, we will review two reent e�orts

in onstruting algorithms that work on modern

day omputer systems using salable distributed

memory and luster arhitetures [5℄.

The paper is organized as follows. In setion 2 we

desribe the underlying quantum physis problem,

i.e., the Anderson model of loalization, and intro-

due the parameters used in our paper. In setion 3

we briey review the two main algorithms onsid-

ered, namely the Cullum-Willoughbyversion of the

Lanzos method and the transfer-matrix method.

We then give in setion 4 a detailed aount of our

parallelizationstrategies.We onlude in setion 5.

Preprint submitted to Computer Physis Communiations Revision : 1:2; printed 16 Otober 2001



2. The Anderson model of loalization and

its physis

The Anderson model of loalization [4℄ is a

paradigmati model for the investigation of ele-

troni properties of disordered systems [1{3℄.

Although it represents a severe simpli�ation of

amorphous materials [6℄, alloys [7,8℄, and disor-

dered semiondutors [9,10℄, it is urrently widely

used in the theoretial desription of quantum me-

hanial e�ets suh as loalization of eletroni

wave funtions [11{15℄ and the metal-insulator

transition (MIT) [16{18℄. The quantum mehan-

ial problem is represented mathematially by a

Hamilton operator in the form of a real symmetri

matrix A. The quantum mehanial energy levels

are given by the eigenvalues E

n

and the respetive

wave funtions are simply the eigenvetors x

n

ofA

[5℄. E.g., for a simple ubi lattie withN�N�N

sites, we have to solve the eigenvalue equation

Ax = Ex, whih is given in site representation as

x

i�1;j;k

+ x

i+1;j;k

+ x

i;j�1;k

+ x

i;j+1;k

+

x

i;j;k�1

+ x

i;j;k+1

+ "

i;j;k

x

i;j;k

= Ex

i;j;k

; (1)

with i; j; k denoting the Cartesian oordinates of

a site. The o�-diagonal entries of A orrespond to

hopping amplitudes of the eletrons from one site

to a neighboring site and are hosen to be equal for

simpliity. They have been set to one in (1) de�n-

ing the energy sale. The disorder is enoded in the

random potential site energies "

i;j;k

on the diago-

nal of the matrixA. We onsider only the standard

ase of "

i;j;k

being uniformly distributed in the in-

terval [�W=2;+W=2℄ with W ranging from 1 to

30. The boundary onditions are usually periodi,

but hard wall and helial [19℄ boundary onditions

are sometimes also used. Aording to the Gers-

gorin irle theorem [20℄ every suh matrix A has

eigenvalues in the interval [�W=2� 6;+W=2+ 6℄.

Possible generalizations of the Anderson model in-

lude anisotropi [21{26℄ or even random hopping

[12{15℄, various hoies of the distribution fun-

tion of the site energies [27℄, a �nite magneti �eld

[28{32℄ and spin e�ets [33{35℄.

Although the above matrix seems to be fairly

simple, the intrinsi physis is surprisingly rih [1{

3,36℄. For small disorder (W � 16:5) and energies

in the band entre (jEj � 6), the eigenvetors are

extended, i.e., x

i;j;k

is utuating from site to site

but the envelope jxj is approximately a non-zero

onstant. For large disorder (W � 16:5) and large

energies (jEj � 6), all eigenvetors are loalized,

i.e., the envelope jx

n

j of the nth eigenstate may

be approximatelywritten as exp[�jr�r

n

j=�

n

(W )℄

with r = (i; j; k)

T

and �

n

(W ) denoting the lo-

alization length of the eigenstate at the spei�ed

strength W of the disorder [2℄. r

n

denotes the ap-

proximate enter of the eigenstate.

Sine extended at temperature T = 0 states an

ontribute to eletron transport, whereas loalized

states annot, the Andersonmodel thus desribes a

T = 0 metal-to-insulator transition [2,3℄: In three-

dimensional samples for small disorder only few

states in the band tails are loalized.With inreas-

ing disorder more and more states beame loal-

ized until at W = W



� 16:5, the last remaining

extended states at energy E = 0 vanish and no

urrent an ow. Diretly atW



there is a so-alled

ritial regime where the eigenvetors are multi-

fratal entities [19,23,27,37℄ showing harateristi

utuations of the amplitude on all length sales,

see Fig. 1. In order to numerially distinguish these

three regimes, namely loalized, ritial and ex-

tended behavior, one needs to (i) go to extremely

large system sizes and (ii) average over many dif-

ferent realizations of the disorder, i.e., ompute

eigenvalues or -vetors for many matries with dif-

ferent diagonals [38℄.

3. Numerial approahes to the problem

For the numerial haraterization of the Ander-

son loalization problem, we need to ompute suit-

ably hosen states and energies of the Hamilton

matrix A of the Anderson model. Measures of lo-

alization an then be omputed from multifratal

analysis [19,23℄, energy level statistis [25,39{44℄,

studies of partiipation numbers [12,13℄ and wave

funtion statistis [45{50℄. Therefore the ompu-

tational task is to ompute (a few) interior eigen-

values and the assoiated eigenvetors of a family
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Fig. 1. Spatial probability distribution of a mul-

tifratal wave funtion at the Anderson transition

(W



= 16:5, E = 0) for an isotropi system of size

N

3

= 111

3

= 1367631. Probability values larger than av-

erage are denoted by boxes of di�erent sizes aording to

their value. Note how the wave funtion appears both ex-

tended throughout the whole system and at the same time

loalized to a few regions in spae. The olor ode denotes

the position with respet to the right bottom axis.

of strutured large, sparse, real, symmetri, indef-

inite matries.

3.1. Solving the eigenvalue problem by Lanzos

diagonalization

Previously this problem was often solved by us-

ing the 1987 Cullum and Willoughby implementa-

tion of the Lanzos algorithm [51,52℄, in the fol-

lowing alled CWI. This algorithm iteratively gen-

erates a sequene of orthogonal vetors v

i

, i =

1; : : : ;K, suh that V

T

K

AV

K

= T

K

, with V =

fv

1

;v

2

; � � � ;v

K

g and T

K

a symmetri tridiagonal

K �K matrix. One obtains the reursion

�

k+1

v

k+1

= Av

k

� �

k

v

k

� �

k

v

k�1

; (2)

where �

k

= v

T

k

Av

k

and �

k+1

= v

k+1

Av

k

are the

diagonal and subdiagonal entries of T

K

, v

0

= 0

and v

1

is an arbitrary starting vetor. In �nite pre-

ision arithmeti, the Lanzos vetors v

k

typially

lose their orthogonality after a small number of

Lanzos iterations. Consequently, there usually ap-

pear so-alled \spurious" or \ghost" eigenvalues in

the spetrum �(T

K

), whih do not belong to �(A).

The solution to this problem as implemented in

CWI [52℄ uses a simple and highly suessful proe-

dure to identify the spurious eigenvalues, thereby

avoiding reorthogonalization.

In the last 10 years several new eigenvaluemeth-

ods have been developed and implemented as soft-

ware pakages, that seem, at least at �rst glane,

more

appropriate than CWI, see, e.g., the reent sur-

vey and omparison given in Ref. [53℄. In Ref. [5℄

we have tested several of these more modern meth-

ods to ompute a few interior eigenvetors of the

Anderson matrix. The impliitly restarted Arnoldi

method [54℄ in onnetion with polynomial on-

vergene aeleration [55℄ and in shift-and-invert

mode with several diret and iterative solvers for

the arising systems of linear equations [56℄ was

ompared to the CWI of the Lanzos method

[51,52℄. Despite the reent progress in linear sys-

tem solvers [53℄ we found [5℄ all onsidered modern

methods to be inappliable for very large system

sizes, beause either the omputation times or the

memory requirements are muh to large. Thus

CWI Lanzos is urrently still the most eÆient

method for the matrix type we are interested in

and should therefore serve as the starting point

for parallelization shemes. We emphasize that

the wave funtion displayed in Fig. 1 is urrently

the largest suh wave funtion ever to have been

onstruted [57℄.

3.2. Solving the loalization problem by

transfer-matrix methods

An alternative state-of-the-art method for om-

puting loalization lengths � diretly is the so-

alled transfer-matrix method (TMM) [2,58{61℄.

This iterative method is very similar to the stan-

dard power seriesmethod for omputing the largest

eigenvalue [62℄. It is based on rewriting the eigen-

value equation (1) in the reursion from

X

k+1

= (EI�A

k

)X

k

�X

k�1

(3)
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where X

k

and A

k

denote a omplete set of wave

vetors and the system matrix projeted onto the

lth slie of a quasi one-dimensional bar of length

L�M , respetively. Here,M indiates the trans-

verse extent of the bar. Starting from a omplete

orthogonal basis set X

0

, i.e. a matrix with 2M

2

�

2M

2

entries, one an determine the Lyapunov ex-

ponents desribing the exponential inrease of the

amplitudes along the bar. The inverse of the small-

est exponent yields the physially relevant largest

loalization length �.

There are two main bene�ts when using the

TMM. First, it is not neessary to ompute all

wave funtions. Sine the system size to be on-

sidered should be at least of the same order as �,

this would be extremely memory and omputation

time onsuming lose to the MIT. Seond, the a-

uray an be ontrolled a priori in a TMM alu-

lation due to the physis onept of self-averaging

[2,59℄. Thus there is no need for any a posteri-

ori averaging over a large number of eigenstates.

However, a major drawbak of the method is an

inherent instability due to loss of orthogonality of

the initially omplete basis set of vetors X

0

onto

whih A is repeatetly multiplied. This instability

due to �nite preision arithmeti must be om-

pensated by regularly applying a Gram-Shmidt

reorthonormalization proedure [59℄.

4. Parallelization

Even when using well adapted numerial algo-

rithms on state-of-the-art onventional single pro-

essor mahines, the size of the system that an be

treated is limited. This is a severe limitation, es-

peially when ritial properties lose to an MIT

are to be onsidered. Possible further progress an

be ahieved by using massively parallel omputer

arhitetures together with suitably hosen algo-

rithms [57℄. In this spirit, we will in the follow-

ing introdue and disuss parallelization strategies

for Lanzos diagonalization and the TMM. These

ideas have been implemented in a parallel CWI

program (P-CWI) and a parallel TMM program

(P-TMM) and used to generate the large system

size data for Refs. [14,15,23{26,38,63{65℄.
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Fig. 2. Shemati diagram of the matrix-vetor multiplia-

tion in the P-CWI for a 4

3

system with periodi boundary

onditions. The 16 � 16 matries A

i

, I, and 0 denote the

Hamiltonian within the ith 4 � 4 plane and the oupling

to the other planes. Eah proessor owns the part of the

matrix and of the Lanzos vetor orresponding to a sin-

gle plane and the vetors of the two neighboring slies to

whih the matrix ouples. Thus, proessor #1 owns the

slie vetors x

1

, x

2

, and x

4

(due to the periodi bound-

aries). In a ring topology network for the ommuniation

neighboring slies are loated on neighbors in the ring.

4.1. Parallel Lanzos diagonalization

As reviewed in Se. 3 the CWI is reliable and

highly eÆient for diagonalizing the Anderson

Hamiltonian [5℄. Therefore, it is worth trying to

port it to parallel mahines. Most of the ompu-

tational e�ort in the Lanzos algorithm (at least

in the ase where only a few eigenvetors are to

be omputed) is spent on the iteration of Eq. (2),

i.e., on matrix-vetor multipliations and vetor

additions. These an e�etively be parallelized

sine in these operations eah vetor element an

be alulated independently of all others. Thus,

the main part of CWI is easily parallelized by

splitting eah of the Lanzos vetors v

i

among the

proessors. This we all the distributed element

sheme (DES). Eah mahine performs only part

of the matrix-vetor multipliation for eah ve-

tor. All other parts of the ode an be left more

or less untouhed. Here, a \naive parallelization"

strategy is used: the eigenvetors to be omputed

are distributed over the nodes. In this manner,

we implemented a parallel version of the CWI for

distributed-memory arhitetures by using a par-

allelization library developed at the TU Chemnitz
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[66℄.
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Fig. 3. Time to ompute all eigenvalues (left) or 5 inner

eigenvetors (right) using P-CWI for di�erent numbers of

proessors on a Parsyte GC/Power Plus. The system size

is N

3

= 32

3

.

The parallel matrix-vetor multipliationAx is

skethed in Fig. 2. We exploit the fat that a plane

in the 3D ube ouples only to the two neighboring

planes. Eah node owns the part of the matrix be-

longing to a number of adjaent slies of the ube

and the orresponding part of the Lanzos vetors.

Additionally, the vetors of the two neighboring

slies are opied from the neighboring nodes and

also stored loally. Now, eah proessor an per-

form its part ofAx independent of the others. This

is implemented very eÆiently with a number of

nested loops; only the diagonal elements have to

be stored.

Unfortunately, the resulting parallel Lanzos it-

eration does not sale very well, at least on the

present hardware available at the TU Chemnitz.

As an be seen in the right part of Fig. 3, the pro-

gram needs more time on 16 proessors than on

8. In eah iteration step, the vetors of two planes

have to be exhanged between neighboring proes-

sors, one forward and the other bakward in the

(virtual) ring network onneting the nodes. The

time spent on this ommuniation operation de-

pends only on the system size, but it is indepen-

dent of the number of proessors in use. Further-

more, there are two inner produts whih require

summations over all nodes. This takes more time if

more proessors are involved. Only the number of

arithmeti operations sales nearly in an optimal

way. But this needs only little time, sine there are

only 7 non-zero matrix elements per row in A. For

N

3

= 32

3

, eah of the 16 proessors owns only two

planes and almost all time is spent on ommuni-

ation. In order to run eÆiently, eah node must

own a larger number of about O(10) slies.

In the ase where all eigenvalues are to be om-

puted, most of the time is spent on determining

the eigenvalues of the tridiagonalmatrix. In the P-

CWI this part of the program is again \naively"

parallelized. Eah proessor works on a di�erent

part of the energy interval of interest and one ob-

tains nearly optimal speedup. Although the basi

Lanzos iteration sales badly again, the overall

performane is muh better for larger numbers of

proessors ompared to the eigenvetor omputa-

tion. In the left part of Fig. 3 it is shown that om-

puting time still dereases from 8 to 16 proessors

for system size N

3

= 32

3

. Most of the large-size

data (N

3

= 50

3

) used, e.g., in Ref. [25℄ for energy

level statistis were omputed with P-CWI on a

luster of Linux PCs onneted by Fast Ethernet.

We expet a thread parallelization [67℄ of the

CWI for dual proessor PCs to be quite eÆient

sine no data have to be ommuniated over a

network and the number of slies per proessor is

rather high. However, this was not yet tested due

to the large hanges in the program required.

4.2. Parallel TMM

The TMM algorithm mainly onsists of two nu-

merially expensive parts. First, there is the reur-

sion Eq. (3) whih is a matrix-vetor multiplia-

tion. It an be parallelized as desribed in the pre-

vious setion. Seond, there is the reorthonormal-

ization whih needs most of the omputing time

(� 90%) for larger system sizes.

For the matrix multipliation of the TMM there

are at least two possibilities of parallelization. The

�rst sheme is again the DES, i.e. based on stor-

ing the elements of eah vetor x

l

on di�erent ma-

hines as shown in Fig. 4. Thus the speedup of this

part of the algorithm is proportional to the num-

ber of mahines used. However, at the boundaries,

the mahines need to ommuniate due to the hop-

ping in the diretion perpendiular to the TMM

propagation, i.e., theA

l

�X

l

terms in Eq. (3). This

dereases the speedup as in P-CWI. On the other

hand, the reorthogonalization an be done fairly

fast in this DES sheme sine the relevant salar

produts an be omputed �rst loally and only a

simple addition over all mahines is needed. Thus

5
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Fig. 4. Shemati diagram of the two possible shemes for

storing vetors in the P-TMM. Eah data olumn of the

6 � 6 matrix X represents a single vetor. The solid lines

indiate the distributed elements sheme (DES), whereas

the dashed lines show the distributed vetor sheme (DVS).

the DES dereases the amount of omputer time

needed for the matrix-vetor multipliations and

allows for a simple parallelization of the reorthog-

onalization.

The seond parallelization sheme is based in

storing the omplete vetors on individual ma-

hines as also shown in Fig. 4. Let us all it the

distributed vetor sheme (DVS). No ommunia-

tion is needed for the matrix-vetor multipliation

part of the algorithm for the DVS and the speedup

is proportional to the number of mahines used.

Unfortunately, the DVS needs a lot of ommunia-

tion for the reorthonormalization sine it requires

to send eah vetor to every other vetor on eah

proessor in order to ompute the neessary salar

produts. In Fig. 5 we show an implementation

of the DVS sheme that is nevertheless rather

e�etive for the orthogonalization.

At �rst glane, the seond sheme looks muh

less onvining than the �rst, sine in the re-

orthonormalization,mahines suh as pro.#0 are

idle for a long time. Nevertheless, a diret ompar-

ison between the distributed element (DES) and

the distributed vetor shemes (DVS) shows that

the latter is faster. The DVS an be additionally

aelerated by reduing the number of reorthonor-

malizations. This redution an be ahieved by

adapting the number of matrix multipliations be-

tween suessive reorthonormalizations aording

to the di�erene in norms of smallest and largest

Lyapunov exponents [68,59℄ after eah reorthonor-

malization. In Fig. 6 we show how these improve-
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Fig. 5. Shemati diagram of the orthogonalization proe-

dure for the P-TMM based on the DVS. The vetors in X

l

are distributed on k + 1 proessors, so that the ith pro-

essor owns n

i

vetors. In step 0, the �rst of n

0

vetors

on proessor 0 is orthonormalized with respet to all other

n

0

� 1 vetors and then sent to proessor 1. Then the se-

ond vetor on proessor 0 is orthonormalized and so on

until all n

0

vetors are orthonormal. In the meantime, the

other proessors have already orthonormalized their ve-

tors with respet to the ones sent to them from proessor

0. The algorithm now ontinues in step 1 with the n

1

ve-

tors on proessor 1 until �nally in step k all vetors on all

k mahines are orthonormal.
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Fig. 6. Left: Performane data of the P-TMM for various

implementations of the DVS algorithm. The times for data

indiated by squares and diamonds in the left panel or-

respond to �xed and adaptive orthonormalization shemes

as outlined in the text. Right: Speedup for di�erent sys-

tem sizes from 8�8 to 14�14 as a funtion of the number

of proessors used for the DVS. Note that the speedup for

small system sizes deays upon inreasing the number of

proessors already for a small number of proessors due to

the inreased ommuniation.

ments lead to a redution in the time needed for

the P-TMM runs. For example, P-TMM runs for

the 3D Anderson model with random hopping

[12{15℄ with system size (ross setion) 14 � 14

need only about 20% of omputation time for 32

proessors when ompared to a single proessor.

The speedup urves of Fig. 6 show that for

the parallel arhiteture of a GC/PowerPlus-128

(Parsyte)-parallel omputer (GCPP), the imple-
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Fig. 7. Comparison of the best 3D P-TMM implementation

on the GCPP with up to 32 proessors with the 3D TMM

implementation on a 400 MHz Pentium II (NAG, PGI) as

a funtion of system sizeM�M . NAG and PGI distinguish

di�erent Fortran ompilers; the PGI ompiler an optimize

ode for the Pentium II arhiteture.

mentation of the P-TMM does in fat give a net

redution in omputing time for large system sizes.

However, the real test of the usefulness of these

odes omes when omparing to the performane

on the fastest available serial omputers. In Fig.

7 we show that at present due to the slowness of

an individual proessor on the GCPP, it is only

for very large system sizes that the P-TMM per-

forms better then its single-proessor version on a

Pentium II arhiteture.

We had hoped that a threaded parallelization

would be very eÆient on a shared-memory arhi-

teture dual proessor PC. The inner loop of the

reorthonormalization onsists of an inner produt

and a vetor multipliation/addition. The vetors

are split in two parts and eah CPU performs the

operations for either the upper or lower half, in-

dependently of the other. Unfortunately, the gain

was muh less than expeted, the speedup even for

extreme system sizes of M = 40 was learly less

than 2. Two synhronizations are neessary to en-

sure that the orret result of the inner produt

is available on both proessors. However, even for

very large system sizes, in terms of the TMM, the

vetor lengths on the two nodes are only of the or-

der ofM

2

= 30

2

= 900. Sine the vetor operations

are performed extremely eÆiently by using a ma-

hine spei� optimized BLAS library [69℄, the ef-

fort of the synhronization is apparently not small

ompared to the O(900) oating point operations.

An equivalent parallelization of the Lanzos it-

eration an be expeted to be muh more eÆient.

Although there are two global summations and

thus 4 synhronizations instead of 2 in eah it-

eration step, the vetor lengths would be of the

order N

3

= 50

3

= 125000 resulting in a better

arithmeti-to-ommuniation ratio.

5. Conlusions

In onlusion, we have onsidered the strategies

employed in our parallelization shemes for the

CWI and the TMM in the Andersonmodel of loal-

ization. Both algorithms rely on fast matrix-vetor

multipliations and this part of the algorithms is

ideally suited for a massively parallel approah. On

the other hand, the eÆieny of P-CWI is redued

due to the inreasing ommuniation between dif-

ferent setions of the matrix. Also, the eÆieny of

P-TMM is limited due to the required orthogonal-

ization of all vetors with eah other whih nees-

sarily implies a large ommuniation e�ort.

Our results show that the appliation of par-

allel methods to the Anderson problem is never-

theless useful when large system sizes have to be

reahed, e.g. for a speial set of parameters suh as

E = 0 and W



= 16:5 that haraterize the MIT.

There, we have been able to investigate hitherto

unreahed system sizes.
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