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1 Introduction

Singularly perturbed problems play an important role in the numerical simulation of phys-
ical phenomena. Here we consider a singularly perturbed reaction diffusion model problem
which generically gives rise to solutions with boundary layers. When discretizing prob-
lems with such solutions by the finite element method, it can be advantageous to employ
anisotropic finite elements. By this we understand elements whose aspect ratio can be
arbitrarily large, i.e. the ratio of the diameters of the circumscribed and inscribed spheres
can be unbounded.

The focus of this paper is on a posteriori error estimators that form an indispensable
ingredient of any self–adaptive, reliable solution algorithm. By now the theory of error
estimation for isotropic finite element meshes is well understood; we refer to the overview
textbooks by Verfürth [Ver96] and Ainsworth/Oden [AO00] and the citations therein. For
anisotropic meshes the theory of error estimation is much less developed but has attracted
some attention recently, see [Sie96, Kun99, Kun00, KV00, Kun01a, DGP99]. Similarly,
only lately error estimators have been proposed that are suitable for singularly perturbed
diffusion–(convection)–reaction problems (on isotropic meshes), cf. [Ver98a, Ver98b, SK01,
San01, FPZ01].

Here we concentrate on the combination of the previous two challenges, namely ro-
bust error estimation for a singularly perturbed reaction diffusion problem on anisotropic
meshes. Recently the author succeeded to derive and investigate two kinds of error estima-
tors for the energy norm [Kun01b, Kun01c]. The present paper, however, is devoted to the
error measurement in the H1 seminorm. Forthcoming research will extend the results ob-
tained here to diffusion convection problems. Indeed, our exposition here has been inspired
partially by [SK01] where exactly the latter problem is treated (on isotropic meshes).

Our main results provide error estimates in the H1 seminorm for a singularly perturbed
reaction diffusion problem on anisotropic meshes. We propose and analyse a residual
error estimator and a local problem error estimator, both of which are presented in an
element based form as well as in a face based version. Moreover we state and discuss three
modifications of the error estimators. The results show that a proper definition of the
estimators is far from obvious. Furthermore it turns out that there is some relation to
estimators for the energy norm although there are also distinct differences. Hence we are
able to isolate effects that are due to the H1 seminorm.

The remainder of the paper is organized as follows. After presenting the model problem
in Section 2, we introduce in Section 3 some notation as well as main tools for the subse-
quent analysis. Section 4 is devoted to the residual error estimator and its modification. A
local problem error estimator and two modifications are given and examined in Section 5.
Finally Section 6 investigates the numerical performance of all estimators.
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2 The reaction diffusion model problem

For a small, positive parameter ε¿ 1 we consider the singularly perturbed reaction diffu-
sion model problem with mixed boundary conditions

−ε∆u + u = f in Ω,
u = 0 on ΓD,

ε · ∂nu = g on ΓN.







(1)

The domain Ω ⊂ Rd, d = 2, 3, is assumed to be polyhedral with Lipschitz boundary
∂Ω = ΓD ∪ ΓN, ΓD ∩ ΓN = ∅. Such a problem frequently gives rise to boundary layers.

Denote by H1
o (Ω) the usual Sobolev space of functions from H1(Ω) whose trace vanishes

on ΓD. The variational formulation related to (1) then becomes

Find u ∈ H1
o (Ω) : a(u, v) = 〈f, v〉 ∀ v ∈ H1

o (Ω) , (2)

with a(u, v) :=
∫

Ω
ε∇u · ∇v + uv and 〈f, v〉 :=

∫

Ω
fv +

∫

ΓN
gv. It admits a unique solution

provided that f ∈ L2(Ω), g ∈ L2(ΓN) and measd−1(ΓD) > 0.
In order to solve problem (2) approximately with the finite element method, introduce

a family F = {Th} of triangulations Th of Ω. Let Vo,h ⊂ H1
o (Ω) be the finite element space

of continuous functions that are piecewise linear over Th, and that vanish on ΓD. The finite
element formulation corresponding to (2) becomes

Find uh ∈ Vo,h : a(uh, vh) = 〈f, vh〉 ∀ vh ∈ Vo,h . (3)

Again it admits a unique solution due to the Lax–Milgram Lemma.

3 Notation and analytical ingredients

This section introduces the notation and important ingredients for the subsequent analysis.
The presentation is given for the three dimensional (3D) case. The 2D analogies can be
derived easily.

Let ω ⊂ Rd, d = 2, 3, be some domain, and denote by |ω| := measd(ω) its measure. Let

(v, w)ω be the usual L2(ω) scalar product of functions v and w, and let ‖v‖ω := (v, v)
1/2
ω be

the associated L2 norm. The energy norm related to the bilinear form becomes |||v|||ω :=
(ε‖∇v‖2ω + ‖v‖2ω)1/2. Let Pk(ω) be the space of polynomials of order k or less over the
domain ω. Finally, for terms x and y we use the shorthand notation x . y or x ∼ y
if there exist positive constants (independent of x, y, ε, and Th) such that x ≤ cy or
c1x ≤ y ≤ c2x, respectively.

3.1 Tetrahedra – Subdomains – Mesh requirements

Tetrahedron: The four vertices of an arbitrary tetrahedron T ∈ Th are denoted by
P0, . . . , P3 such that P0P1 is the longest edge of T , meas2(4P0P1P2) ≥ meas2(4P0P1P3),
and meas1(P1P2) ≥ meas1(P0P2).
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Additionally define three pairwise orthogonal vectors pi with lengths hi,T := |pi|R3 , see
Figure 1. Trivially one gets h1,T > h2,T ≥ h3,T . Set hmin,T := h3,T and define the matrix

CT := (p1,p2,p3) ∈ R3×3 .

P0
P1

P2

P3

p1

p2

p3

Figure 1: Notation of tetrahedron T

Tetrahedra are denoted by T, T ′ or Ti. Faces of a tetrahedron are denoted by E. Set
|T | = meas3(T ), |E| = meas2(E), and let

hE,T := 3|T |/|E|

be the length of the height over a face E. Note that hE,T is not the diameter of E, as in the
usual convention. A closer investigation of the geometrical properties of the tetrahedron
yields

hE,T > hmin,T/2 ∀E ⊂ ∂T . (4)

When deriving the error estimates, one often encounters a term

αT := min{1, ε−1/2 · hmin,T} . (5)

This factor is closely related to the singular character of the reaction diffusion problem.
We remark its similarity to the Peclet number for convection diffusion problems.

Squeezed tetrahedron TE,δ: Since we are dealing with a singularly perturbed problem,
we can employ advantageously a sub–tetrahedron TE,δ ⊂ T which depends on a face E
of T and a real number δ ∈ (0, 1]. Such a sub–tetrahedron has been introduced first in
[Ver98b] (in a simpler form there) and subsequently improved in [Kun01b]. This squeezed
tetrahedron will be utilized to define the squeezed face bubble functions of Section 3.2.

For a precise definition, let T be an arbitrary but fixed tetrahedron, and enumerate
temporarily its vertices such that E = Q1Q2Q3 and T = OQ1Q2Q3, cf. Figure 2. With
SE being the midpoint (i.e. center of gravity) of the face E, introduce the point P that

lies on the line SEO such that | ~SEP | = δ · | ~SEO|. Then the squeezed tetrahedron TE,δ is
the tetrahedron with vertices P and Q1, Q2, Q3, i.e. TE,δ has the same face E as T but
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Q3

Q2 PSE

Q1

O

Figure 2: Tetrahedra T = OQ1Q2Q3 and TE,δ = PQ1Q2Q3

the fourth vertex is moved towards E with the rate δ. Note that for δ = 1 one obtains
TE,δ ≡ T whereas in the limiting case δ → 0 the tetrahedron TE,δ collapses to the face E.

Auxiliary subdomains: We repeat the standard definitions of [Ver96, AO00]. For an
arbitrary element T define the subdomain ωT that consists of T itself and all elements
having a common face with it. Note that ωT consists of less than five tetrahedra if T has a
boundary face. For an interior face E denote by ωE the union of both elements with that
face. For a boundary face E modify ωE accordingly.

Mesh requirements: In addition to the usual conformity conditions of the mesh (see
Ciarlet [Cia78], Chapter 2) we assume the following two requirements.
1. The number of tetrahedra containing a node xj is bounded uniformly.
2. The dimensions of adjacent tetrahedra must not change rapidly, i.e.

hi,T ′ ∼ hi,T ∀T, T ′ with T ∩ T ′ 6= ∅ , i = 1 . . . d .

Remark 3.1 Occasionally we do not want to employ element based quantities (such as
hmin,T ) but use face related terms instead. To this end consider an interior face E = T1∩T2,
and define the terms

hE :=
hE,T1

+ hE,T2

2
, hmin,E :=

hmin,T1
+ hmin,T2

2
, αE :=

αT1
+ αT2

2
.

The mesh assumptions from above imply hE ∼ hE,Ti
as well as hmin,E ∼ hmin,Ti

and
αE ∼ αTi

. For a boundary face E ⊂ ∂T ∩ Γ define similarly hE := hE,T , hmin,E := hmin,T ,
αE := αT .

Note that hmin,E is not the minimal size of a face E, as the notation might suggest. ¤

3.2 Bubble functions

Bubble functions play an important role in the analysis of residual error estimators and in
the definition and investigation of local problem error estimators. Partly we can follow the
standard techniques as presented e.g. in [Ver96, AO00]. However, the singularly perturbed
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problem considered here leads to certain modifications of the face bubble functions. For
these we follow the lines of [Kun01b, Ver98b].

Let λT,1, . . . , λT,4 be the barycentric coordinates of an arbitrary tetrahedron T . The
element bubble function bT is given by

bT := 44 · λT,1 · λT,2 · λT,3 · λT,4 ∈ P4(T ) on T . (6)

Next we require face bubble functions. Let E = T1 ∩ T2 be an interior face (triangle)
of Th. The vertices of T1 and T2 are enumerated such that the vertices of E are numbered
first. Now define the standard face bubble function bE ∈ C0(ωE). It acts on ωE = T1 ∪ T2

and is given in a piecewise fashion by

bE|Ti
:= 33 · λTi,1 · λTi,2 · λTi,3 on Ti, i = 1, 2 .

Both bubble functions are extended by zero outside of their original domain of definition.
Note that 0 ≤ bT (x), bE(x) ≤ 1 and ‖bT‖∞ = ‖bE‖∞ = 1.

By standard scaling arguments one obtains the anisotropic equivalences below. Note
that they are originally called ‘inverse inequalities’.

Lemma 3.1 (Inverse equivalences I) Assume ϕT ∈ P1(T ) and ϕE ∈ P0(E). Then

‖b1/2T · ϕT‖T ∼ ‖ϕT‖T , (7)

‖∇(bT · ϕT )‖T ∼ h−1min,T · ‖ϕT‖T , (8)

‖b1/2E · ϕE‖E ∼ ‖ϕE‖E. (9)

Proof: See e.g. [Kun99].

As mentioned above we have to modify the face bubble functions to analyse successfully
the singularly perturbed problem. Following [Kun01b], we start with some interior face E.
Let T1, T2 be its two neighbouring tetrahedra, i.e. ωE = T1∪T2. For an arbitrary real num-
ber δ ∈ (0, 1] consider both squeezed tetrahedra T1,E,δ ⊂ T1 and T2,E,δ ⊂ T2, cf. Figure 2.
Define the squeezed face bubble function bE,δ to be the standard face bubble function on
the squeezed tetrahedra Ti,E,δ, i.e.

supp bE,δ = T1,E,δ ∪ T2,E,δ .

To facilitate the understanding, Figure 3 depicts the subdomain ωE and the squeezed face
bubble function bE,δ (in the 2D case).

For clarity of notation we also introduce a trivial extension operator Fext : P0(E) →
P0(ωE) that maps a constant function over some face E to the same constant function
acting on ωE. If E is a boundary face then Fext as well as bE and bE,δ are obviously defined
only on the single tetrahedron T ⊃ E.

As before, inverse inequalities are sought for the squeezed face bubble functions.
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Figure 3: Subdomain ωE and squeezed face bubble function bE,δ (2D case)

Lemma 3.2 (Inverse equivalences II) Let E be an arbitrary face of T , assume ϕE ∈
P0(E), and let δ ∈ (0, 1] be arbitrary. Then one has

‖bE,δ · Fext(ϕE)‖T ∼ δ1/2 · h1/2
E,T · ‖ϕE‖E, (10)

‖∇(bE,δ · Fext(ϕE))‖T ∼ δ1/2 · h1/2
E,T ·min{δ · hE,T , hmin,T}−1 · ‖ϕE‖E . (11)

Proof: The proof employs refined scaling arguments (for the squeezed tetrahedron). De-
tails are given in [Kun01c].

3.3 Interpolation estimates and matching function

Interpolation error estimates are crucial ingredients to derive residual error estimates,
cf. [Ver96, AO00]. When one tries to adopt the standard interpolation estimates to an-
isotropic meshes, one discovers an additional dependence on the anisotropic function to
be interpolated. More precisely, the desired estimates are only valid when the anisotropic
mesh and the anisotropic function correspond in a certain way. The anisotropic element
should be stretched in that direction where the anisotropic function exhibits little variation.

For a rigorous mathematical description we define a measure of the alignment of the
anisotropic mesh and function. For this purpose a so–called matching function has been
introduced and discussed in [Kun99, Kun00].

Definition 3.1 (Matching function) Let v ∈ H1(Ω), and Th ∈ F be a triangulation
of Ω. Define the matching function m1 : H

1(Ω)×F 7→ R by

m1(v, Th) :=
(

∑

T∈Th

h−2min,T · ‖C>T ∇v‖2T
)1/2/

‖∇v‖Ω ,

with CT given in Section 3.1. This implies m1(v, Th) ≥ 1.

The influence of the matching function can be observed in Theorem 3.3 below, or in
the error estimates of Theorems 4.1 and 5.3. To enhance the insight into the matching
function, consider first isotropic meshes. There the matching function is always O(1); thus
m1 merges with other constants and becomes invisible.
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On anisotropic meshes that are well–aligned with the anisotropic function one still
obtains m1 ∼ 1. In numerical experiments one observes a range of about 1.5 . . . 4. In
contrast to this, mis–aligned anisotropic meshes may lead to arbitrarily large values of m1,
which is confirmed numerically in [Kun01a]. For further discussion see Remark 4.2.

Next we consider the Clément interpolation operator and the corresponding interpola-
tion inequalities. As it will turn out later, we can utilize exactly the same interpolation
estimates that have been derived previously in [Kun01b, Kun01c]. Hence we present here
only the result. To this end recall the definition of αT and αE from (5) and Remark 3.1.

Lemma 3.3 Let v ∈ H1
o (Ω). The Clément interpolation operator Ro : H1

o (Ω) 7→ Vo,h

satisfies the inequalities below:

∑

T∈Th

α−2T · ‖v −Rov‖2T . m1(v, Th)2 · |||v|||2Ω (12)

ε1/2
∑

E⊂Ω̄\ΓD

α−1E · ‖v −Rov‖2E . m1(v, Th)2 · |||v|||2Ω , (13)

where the sum over E ⊂ Ω̄ \ ΓD includes all interior faces and Neumann boundary faces.

Proof: The proof is given in [Kun01b].

4 Residual error estimation

4.1 Residual error estimator

Residual error estimators are obtained by measuring and weighting the residuals. As it is
common [Ver96], one first replaces the input data f and g by approximations fh and gh
that are piecewise polynomial over the elements of Th and the faces of ΓN, respectively.
Here we use piecewise constant approximations.

Define now the element residual rT ∈ P1(T ) over an element T by

rT := fh − (−ε∆uh + uh) on T.

For x ∈ E define the face residual rE ∈ P0(E) by

rE(x) :=















ε · lim
t→+0

[∂nE
uh(x+ tnE)− ∂nE

uh(x− tnE)] if E ⊂ Ω \ Γ

gh − ε · ∂nuh if E ⊂ ΓN

0 if E ⊂ ΓD .

Here nE ⊥ E is any of the two unitary normal vectors whereas n ⊥ E ⊂ ΓN denotes the
outer unitary normal vector. Hence rE is the ε scaled gradient jump for interior faces.
With the help of these residuals the error estimator is defined now, and the corresponding
error estimates are stated and proven.
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Definition 4.1 (Element based residual error estimator)
For a tetrahedron T , define the element based residual error estimator by

ηH1,R,T :=
(

ε−1α2
T · ‖rT‖2T + ε−3/2αT ·

∑

E⊂∂T\ΓD

‖rE‖2E
)1/2

. (14)

To shorten the notation, introduce the local approximation term

ζH1,T :=
(

ε−1α2
T · ‖f − fh‖2ωT

+ ε−3/2αT ·
∑

E⊂∂T∩ΓN

‖g − gh‖2E
)1/2

. (15)

Finally, define the global terms

η2H1,R :=
∑

T∈Th

η2H1,R,T and ζ2H1 :=
∑

T∈Th

ζ2H1,T .

Theorem 4.1 (Residual error estimation)
The error is bounded locally from below for all T ∈ Th by

ηH1,R,T . ‖∇(u− uh)‖ωT
+ ε−1/2αT · ‖u− uh‖ωT

+ ζH1,T . (16)

The error is bounded globally from above by

‖∇(u− uh)‖Ω . m1(u− uh, Th) ·
[

η2H1,R + ζ2H1

]1/2
. (17)

Both error bounds are uniform in ε.

Proof: The methodology of the proof is analogous to that of known residual error estima-
tors, cf. [AO00, Ver96, Ver98b]. In order to treat anisotropic elements, we require modified
tools and a refined analysis. Since similar ingredients have already been applied in our
previous works [Kun00, Kun01b], we present only major steps in our exposition here.

Start with the lower error bound (16) for an arbitrary but fixed tetrahedron T , and
consider the norm ‖rT‖T of the element residual rT = fh+ε ·∆uh−uh. Since we use linear
ansatz functions there holds rT ≡ fh − uh ∈ P1(T ). For x ∈ T let

w(x) := rT (x) · bT (x) ∈ P5(T ) ∩H1
o (T ) ,

with bT being the element bubble functions of (6). Integration by parts yields

∫

T

rT · w =

∫

T

ε∇(u− uh) · ∇w +

∫

T

(u− uh)w +

∫

T

(fh − f)w

|(rT , w)T | ≤ ε · ‖∇(u− uh)‖T · ‖∇w‖T + ‖u− uh‖ · ‖w‖T + ‖f − fh‖T · ‖w‖T .

The inverse inequalities (7), (8) and 0 ≤ bT ≤ 1 readily imply the bounds

|(rT , w)T | ∼ ‖rT‖2T , ‖∇w‖T . h−1min,T · ‖rT‖T , ‖w‖T ≤ ‖rT‖T .
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In conjuction with (5) one obtains

ε−1α2
T · ‖rT‖2T . ‖∇(u− uh)‖2T + ε−1α2

T · (‖u− uh‖2T + ‖f − fh‖2T ) . (18)

Next we derive a bound of the norm ‖rE‖E of the face residual for some interior face
E ⊂ ∂T . The linear ansatz functions imply rE ∈ P0(E). Denote temporarily by T1 ≡ T
and T2 the two tetrahedra that E belongs to. Define the function

w := bE,δE
· Fext(rE) ∈ H1

o (ωE) ,

with Fext being the trivial extension operator (cf. Section 3.2) and bE,δE
being the squeezed

face bubble functions of Section 3.2. The real number δE will be chosen later. Integration
by parts then yields

−
∫

E

rE · w = ε
2
∑

i=1

∫

∂Ti

w · ∂uh

∂n
= ε

2
∑

i=1

∫

Ti

(∇uh · ∇w + ∆uh w)

=
2
∑

i=1

∫

Ti

(ε∇(uh − u) · ∇w + (uh − u)w + (rTi
+ f − fh)w) .

From
∫

E
rE w = ‖b1/2E · rE‖2E ∼ ‖rE‖2E one infers

‖rE‖2E ≤
2
∑

i=1

(

ε ‖∇(u− uh)‖Ti
· ‖∇w‖Ti

+
[

‖u− uh‖Ti
+ ‖rTi

‖Ti
+ ‖f − fh‖Ti

]

· ‖w‖Ti

)

.

Apply the inverse inequalities (10), (11) to bound ‖w‖Ti
and ‖∇w‖Ti

, respectively. In order
to obtain the desired bound, we choose now the parameter

δE := min{1, ε1/2/hE , hmin,E/hE} ∼ ε1/2 · h−1E · αE . (19)

This implies in particular min{δE · hE,Ti
, hmin,Ti

} ∼ ε1/2 · αTi
, cf. (11). Finally insert the

previous estimate (18) which provides a bound of ‖rTi
‖Ti

, and note that hmin,Ti
, αTi

and
hE,Ti

do not change rapidly across adjacent tetrahedra. Eventually this leads to

ε−3/2αT · ‖rE‖2E . ‖∇(u− uh)‖2ωE
+ ε−1α2

T · (‖u− uh‖2ωE
+ ‖f − fh‖2ωE

) .

For a Neumann face E ⊂ ΓN ∩ ∂T one proceeds similarly and infers

ε−3/2αT ·‖rE‖2E . ‖∇(u−uh)‖2T + ε−1α2
T ·(‖u−uh‖2T +‖f−fh‖2T ) + ε−3/2αT ·‖g−gh‖2E .

Summing up over all faces E of T , recalling the definition of ηH1,T and employing (18)
finishes the proof of the lower error bound (16).

The upper error bound (17) is a consequence of the results of [Kun01b], save for the
treatment of Neumann boundary conditions. For self–containment we repeat major steps
of the proof. Recall first that Ro denotes the Clément interpolation operator. The Galerkin
orthogonality and integration by parts imply for all v ∈ H1

o (Ω)
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a(u− uh, v) = a(u− uh, v −Rov)

=
∑

T∈Th

(rT + f − fh, v −Rov)T +
∑

E⊂Ω̄\ΓD

(rE, v −Rov)E +
∑

E⊂ΓN

(g − gh, v −Rov)E

≤
∑

T∈Th

αT (‖rT‖T + ‖f − fh‖T ) · α−1T ‖v −Rov‖T +

+
∑

E⊂Ω̄\ΓD

ε−1/4α
1/2
E ‖rE‖E · ε1/4α

−1/2
E ‖v −Rov‖E +

+
∑

E⊂ΓN

ε−1/4α
1/2
E ‖g − gh‖E · ε1/4α−1/2E ‖v −Rov‖E .

The discrete Cauchy-Schwarz inequality and the interpolation estimates (12), (13) yield

∑

T∈Th

αT (‖rT‖T + ‖f − fh‖T ) · α−1T ‖v −Rov‖T .

(12)
.

(

∑

T∈Th

α2
T

(

‖rT‖2T + ‖f − fh‖2T
)

)1/2

·m1(v, Th) · |||v|||Ω
∑

T∈Th

∑

E⊂∂T\ΓD

ε−1/4α
1/2
E ‖rE‖E · ε1/4α

−1/2
E ‖v −Rov‖E .

(13)
.

(

ε−1/2
∑

T∈Th

∑

E⊂∂T\ΓD

αE‖rE‖2E
)1/2

·m1(v, Th) · |||v|||Ω .

Combining all estimates implies

a(u− uh, v) .

(

∑

T∈Th

ε ·
[

η2H1,R,T + ζ2H1,T

]

)1/2

· m1(v, Th) · |||v|||Ω .

Substituting v := u−uh ∈ H1
o (Ω) and recalling ε1/2‖∇v‖Ω ≤ |||v|||Ω finishes the proof.

Remark 4.1 The lower error bound (16) contains the additional L2 error term ε−1/2αT ·
‖u− uh‖ωT

that is not present in the upper error bound (17). Hence both bounds do not
correspond completely. We note that a very similar situation is seen for error estimators
for convection diffusion problems [Ver98a, SK01].

On the other hand the upper and lower error bound will be of the same quality only if
the L2 error term ε−1/2αT ·‖u−uh‖ωT

is dominated by the H1 error term ‖∇(u−uh)‖ωT
. In

analogy to convection diffusion problems this requires suitable meshes, i.e. correct control
on the factor ε−1/2αT of the L2 error term.

We believe that the additional L2 error term is mainly due to the H1 seminorm. In
contrast, for the energy norm (which is naturally associated with the differential equation)
the upper and lower error bounds contain the same terms [Kun01b]. ¤
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Remark 4.2 The upper error bound (17) contains the matching function m1(u− uh, Th)
which cannot be computed. For a comprehensive discussion of m1 we refer to [Kun00,
Kun01b] since the same matching function occurs there, and has been treated there. Here
two remarks should suffice.

Firstly, although m1(u − uh, Th) cannot be computed exactly, it can be approximated
quite well, e.g. by means of a recovered gradient. Secondly, our numerical experience tells
that m1 ranges from about 1.5 . . . 4 for sensible anisotropic meshes. Summarizing, the
upper error bound could theoretically be regarded as useless. From a practical point of
view, however, it is a reliable and important result. ¤

Using the same ideas as before, one can easily derive a face based estimator.

Definition 4.2 (Face based residual error estimator)
For a face E, define the face based residual error estimator by

ηH1,R,E :=
(

ε−1α2
E

∑

T⊂ωE

‖rT‖2T + ε−3/2αE · ‖rE‖2E
)1/2

.

To shorten the notation, introduce the local approximation term

ζH1,E := ε−1/2αE · ‖f − fh‖ωE
+ ε−3/4α

1/2
E · ‖g − gh‖E∩ΓN

.

With these definitions the following error estimates can be proven.

Theorem 4.2 (Residual error estimation)
The error is bounded locally from below for all faces E of Th by

ηH1,R,E . ‖∇(u− uh)‖ωE
+ ε−1/2αE · ‖u− uh‖ωE

+ ζH1,E .

The error is bounded globally from above by

‖∇(u− uh)‖Ω . m1(u− uh, Th) ·
(

∑

E∈Th

η2H1,R,E + ζ2H1,E

)1/2

,

where the sum over E ∈ Th includes interior and boundary faces of the triangulation. Both
error bounds are uniform in ε.

Proof: The derivation of the error bounds is completely analogous to the proof of Theo-
rem 4.1 and thus omitted.
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4.2 Modified residual error estimator

The previous residual error estimator can be modified slightly which implies error bounds
of a similar structure but with different scaling factors.

Definition 4.3 (Modified residual error estimator)
For a tetrahedron T , define the modified residual error estimator by

η̃H1,R,T :=
(

ε−2h2
min,T · ‖rT‖2T + ε−2hmin,T ·

∑

E⊂∂T\ΓD

‖rE‖2E
)1/2

. (20)

To shorten the notation, introduce the modified local approximation term

ζ̃H1,T :=
(

ε−2h2
min,T · ‖f − fh‖2ωT

+ ε−2hmin,T ·
∑

E⊂∂T∩ΓN

‖g − gh‖2E
)1/2

.

Define again the global terms η̃2H1,R :=
∑

T∈Th

η̃2H1,R,T and ζ̃2H1 :=
∑

T∈Th

ζ̃2H1,T .

Theorem 4.3 (Modified residual error estimation)
The error is bounded locally from below for all T ∈ Th by

η̃H1,R,T . ‖∇(u− uh)‖ωT
+ ε−1hmin,T · ‖u− uh‖ωT

+ ζ̃H1,T . (21)

The error is bounded globally from above by

‖∇(u− uh)‖Ω . m1(u− uh, Th) ·
[

η̃2H1,R + ζ̃2H1

]1/2

. (22)

Both error bounds are uniform in ε.

Proof: Let us start by comparing the original and the modified residual error estimator.
One has

ε−2h2
min,T = ε−1α2

T ·max{1, ε−1h2
min,T} , ε−2hmin,T = ε−3/2αT ·max{1, ε−1/2hmin,T}.

Recalling the definitions of ηH1,R,T and ζH1,R,T from (14) and (15), this implies

max{1, ε−1/2hmin,T} · η2H1,R,T ≤ η̃2H1,R,T ≤ max{1, ε−1h2
min,T} · η2H1,R,T

max{1, ε−1/2hmin,T} · ζ2H1,R,T ≤ ζ̃2H1,R,T ≤ max{1, ε−1h2
min,T} · ζ2H1,R,T .

In conjunction with (17) this proves immediately the upper error bound (22).

In order to derive the lower error bound (21), proceed analogously to the proof of The-
orem 4.1. The main difference is now the choice of δE to define the face bubble functions,
cf. (19). Here we have to use δE := min{1, hmin,E/hE} ∼ hmin,E/hE (cf. (4)) to obtain the
desired result. The rest of the proof is omitted.

Remark 4.3 Just by comparing the results of Theorems 4.1 and 4.3 it is not clear whether
the original or the modified residual error estimator should be favoured. One distinct
difference is that the original estimator implies an equivalence with some local problem
error estimator (see Theorem 5.2 below) which could not be established for the modified
residual estimator. Furthermore the original estimator has a smaller L2 error term and
smaller data approximation term which is a slight advantage. ¤
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5 Local problem error estimation

The key idea consists in solving the local problem with higher accuracy but only on a
small local subdomain. The norm of the difference between this (hopefully more accurate)
local solution and the original (piecewise linear) solution uh serves as local problem error
estimator, cf. the textbooks [AO00, Ver96]. Furthermore the underlying ideas have been
adapted successfully to anisotropic elements [Kun01a, Kun01c].

Here we present three approaches that try to estimate the error in the H 1 seminorm.
The first approach in Section 5.1 provides a local problem error estimator that is equivalent
to the residual error estimator ηH1,R,T of Section 4.1. Almost immediately the actual error
bounds follow.

In Section 5.2 two further approaches are presented that differ from the first estimator
either by the local problem or by the definition of the estimator. One of them is even
the seemingly ‘natural’ choice for defining the estimator. Unfortunately only suboptimal
results are achieved. This illustrates the difficulties in finding an appropriate local problem
error estimator.

5.1 Local problem error estimator

Consider an arbitrary but fixed element T . The local problem will be posed over the
local subdomain ωT . The local, finite dimensional space VT is spanned by a single element
bubble function and some squeezed face bubble functions,

VT := span{bT , bE,δE
: E ⊂ ∂T \ ΓD} .

The ‘squeezing’ parameters δE of the squeezed face bubble functions (cf. Section 3.2) is
chosen exactly as in the proof of the residual error estimation, namely

δE := min{1, ε1/2/hE , hmin,E/hE} , (23)

cf. (19). Now the estimator can be defined.

Definition 5.1 (Element based local problem error estimator)
Find a solution eT ∈ VT of the local variational problem:

a(eT , vT ) =

∫

ωT

fhvT +

∫

∂ωT∩ΓN

ghvT −
∫

ωT

ε∇uh · ∇vT −
∫

ωT

uhvT (24)

for all vT ∈ VT . The local and global error estimators then become

ηH1,D,T := ε−1/2 · |||eT |||ωT
and η2H1,D :=

∑

T∈Th

η2H1,D,T . (25)
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Two equivalent formulations of the local problem are derived by partial integration.
Equivalent descriptions: Find eT ∈ VT such that

a(eT , vT ) = a(u− uh, vT )−
∫

ωT

(f − fh) vT −
∫

∂T∩ΓN

(g − gh) vT ∀ vT ∈ VT (26)

a(eT , vT ) =
∑

T ′∈ωT

∫

T ′

rT ′ · vT +
∑

E⊂∂T\ΓD

∫

E

rE · vT ∀ vT ∈ VT . (27)

The local problem solved here is exactly the same as for the energy norm error estimator
of [Kun01c]. The difference is the choice of the norm that defines the error estimator.

Not surprisingly, the techniques for proving the error estimates here are similar to that
of [Kun01c] but of course adapted to the error measurement in the H1 seminorm. For
this reason we present the major steps only in our exposition. We start with an essential
lemma.

Lemma 5.1 The following relations hold for all vT ∈ VT .

‖vT‖ωT
. hmin,T · ‖∇vT‖ωT

(28)

‖vT‖E . h
−1/2
E δ

−1/2
E ·min{hmin,T , δE hE} · ‖∇vT‖ωT

∀E ⊂ ∂T . (29)

The inequalities are uniform in the squeezing parameter δE ∈ (0, 1].
If T has at least two Neumann boundary faces then the constants in (28), (29) can

depend on the shape of the Neumann boundary (but do not depend on the triangulation
Th nor on T ). More precisely, the constants depend on the angle between the Neumann
boundary faces. The smaller this angle, the worse the constants may be.

Proof: The technical proof is given in [Kun01c, Kun01c].

Next a certain local equivalence of the residual error estimator and the local problem
error estimator is established. For simplicity of notation introduce

η2H1,R,ωT
:=

∑

T ′⊂ωT

η2H1,R,T ′ , η2H1,D,ωT
:=

∑

T ′⊂ωT

η2H1,D,T ′ .

Theorem 5.2 (Equivalence with residual error estimator) The local problem er-
ror estimator ηH1,D,T is equivalent to the residual error estimator ηH1,R,T in the following
sense:

ηH1,D,T . ηH1,R,ωT
(30)

ηH1,R,T . ηH1,D,ωT
. (31)

Both inequalities are uniform in ε.
If T has at least two Neumann boundary faces then the constant in (30) can depend on

the shape of the Neumann boundary (but does not depend on Th nor on T ).
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Note that the equivalences hold only for the original residual error estimator ηH1,R,T . Sim-
ilar relations for the modified residual error estimator η̃H1,R,T could not be achieved.
Proof: Start with the equivalent formulation (27) of the local problem giving

|||eT |||2ωT

(27)
=

∑

T ′∈ωT

∫

T ′

rT ′ · eT +
∑

E⊂∂T\ΓD

∫

E

rE · eT

≤
(

∑

T ′⊂ωT

‖rT ′‖2T ′

)1/2

· ‖eT‖ωT
+

∑

E⊂∂T\ΓD

‖rE‖E · ‖eT‖E.

Next we aim at bounds of ‖eT‖ωT
and ‖eT‖E , E ⊂ ∂T . Apply Lemma 5.1 and recall the

definition of αT and δE from (5) and (23) to obtain

‖eT‖ωT
. αT · |||eT |||ωT

(32)

‖eT‖E
(29)
. ε−1/4 α

1/2
T |||eT |||ωT

, (33)

cf. also [Kun01c, Theorem 4.3]. Both inequalities (in conjunction with αT ∼ αT ′ for
neighbouring tetrahedra) result in

|||eT |||2ωT
.

(

∑

T ′⊂ωT

α2
T ′ · ‖rT ′‖2T ′ + ε−1/2 αT ·

∑

E⊂∂T\ΓD

‖rE‖E
)1/2

· |||eT |||ωT

which, together with ηH1,D,T = ε−1/2 |||eT |||ωT
, proves (30).

In order to derive (31) one has to bound ηH1,R,T , and thus ‖rT‖T and ‖rE‖E. The proof is
similar to our analysis in [Kun01c]. Let us start with the term ‖rT‖T . Set vT := bT ·rT ∈ VT ,
with bT being the element bubble function of (6). The local problem (27) and equivalence
(7) imply

‖rT‖2T
(7)∼ ‖b1/2T · rT‖2T

(27)
= a(eT , vT ) ≤ |||eT |||T · |||vT |||T .

The inverse inequality (8) yields

|||vT |||2T = ε ‖∇(bT · rT )‖2T + ‖bT · rT‖2T
(8)∼ α−2T ‖rT‖2T .

Both relations together result in

‖rT‖T . α−1T · |||eT |||T ≤ α−1T · ε1/2 · ηH1,D,T . (34)

Analogously one bounds the norm of rE ∈ P0(E) for an interior face E ⊂ ∂T \Γ. Recall
the definition of the squeezed face bubble function bE,δ, and set vE := bE,δ · Fext(rE) ∈ VT .
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The local problem (27) implies

‖rE‖2E
(9)∼ ‖b1/2E · rE‖2E

(27)
= a(eT , vE) −

∑

T ′⊂ωE

∫

T ′

rT ′ vE

≤ |||eT |||ωE
· |||vE|||ωE

+
∑

T ′⊂ωE

‖rT ′‖T ′ · ‖vE‖T ′ .

The inverse inequalities provide bounds of the norms of vE. Furthermore utilize the specific
value of δE from (19), leading to

‖vE‖T ′ = ‖bE,δ · Fext(rE)‖T ′

(10)
. δ

1/2
E · h1/2

E,T ′ · ‖rE‖E
(19)∼ ε1/4 α

1/2
T · ‖rE‖E

|||vE|||ωE
= (ε‖∇(vE)‖2ωE

+ ‖vE‖2ωE
)1/2

(11),(19)
. ε1/4 α

−1/2
T · ‖rE‖E ,

cf. also [Kun01c]. In conjunction with the previous bound (34) of ‖rT ′‖T ′ for both tetra-
hedra T ′ ⊂ ωE we infer

‖rE‖E . ε3/4 α
−1/2
T ·

∑

T ′⊂ωE

ηH1,D,T ′ ∀E ⊂ ∂T \ Γ .

The norm of rE ∈ P0(E) for a Neumann boundary face E ⊂ ∂T ∩ ΓN is bounded

similarly and gives the corresponding result ‖rE‖E . ε3/4 α
−1/2
T · ηH1,D,T . Combining all

bounds of ‖rT‖T and ‖rE‖E establishes (31).

Utilizing the previous theorem and its proof, we can easily derive the error bounds for
the local problem error estimator.

Theorem 5.3 (Local problem error estimation)
The error is bounded locally from below for all T ∈ Th by

ηH1,D,T ≤ ‖∇(u− uh)‖ωT
+ ε−1/2 · ‖u− uh‖ωT

+ c ζH1,T . (35)

The error is bounded globally from above by

‖∇(u− uh)‖Ω . m1(u− uh, Th) ·
[

η2H1,D + ζ2H1

]1/2
. (36)

Both inequalities are uniform in ε.
The lower error bound (35) is a strict inequality where the only constant c is at the data

approximation term ζH1,T . As always, this constant c is independent of ε, T , u and uh.
However, if T has at least two Neumann boundary faces then c can depend on the shape
of the Neumann boundary (but does not depend on the triangulation Th nor on T ).

Proof: In order to show (35), utilize formulation (26) of the local problem and obtain

|||eT |||2ωT

(26)
= a(u− uh, eT )−

∫

ωT

(f − fh) · eT −
∫

ΓN∩∂T

(g − gh) · eT

≤ |||u− uh|||ωT
· |||eT |||ωT

+ ‖f − fh‖ωT
· ‖eT‖ωT

+ ‖g − gh‖ΓN∩∂T · ‖eT‖ΓN∩∂T .
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The bounds (32), (33) as well as ηH1,D,T = ε−1/2 |||eT |||ωT
provide the lower error bound.

The upper error bound is an immediate consequence of the residual error estimate (17)
and the relation (31) between ηH1,R,T and ηH1,D,T .

Remark 5.1 The lower error bound can be rephrased slightly such that it has the same
structure as the residual error bound (16), i.e.

ηH1,D,T ≤ ‖∇(u− uh)‖ωT
+ c · ε−1/2αT · ‖u− uh‖ωT

+ c ζH1,T .

The difference is only at the L2 error term. ¤

Remark 5.2 Since the local problem here is the same as for the energy norm error esti-
mation, we refer to [Kun01c] for a discussion of implementational aspects. This includes
for example the choice of a stable basis for the local problem and the fast generation and
solution of the local problem. ¤

Similar to the exposition at the end of Section 4.1 one can derive a face based local
problem estimator. To this end let the local space associated with a face E be

VE := span{bE,δE
if E 6⊂ ΓD , bT ∀T ⊂ ωE} ,

where the squeezed face bubble functions are as above (in particular with the same squeez-
ing parameter δE).

Definition 5.2 (Face based local problem error estimator)
Find the solution eE ∈ VE of the local problem

a(eE, vE) =

∫

ωE

fhvE +

∫

E∩ΓN

ghvE −
∫

ωE

ε∇uh · ∇vE −
∫

ωE

uhvE

for all vE ∈ VE. The face based local error estimator is then given by

ηH1,D,E := ε−1/2 · |||eE|||ωE
.

With the same techniques as above one infers the following error estimates.

Theorem 5.4 (Face based local problem error estimation)
The face based residual error estimator and local problem error estimator are equivalent:

ηH1,R,E ∼ ηH1,D,E ∀E ∈ Th .

The error is bounded locally from below for all faces E of Th by

ηH1,D,E ≤ ‖∇(u− uh)‖ωE
+ ε−1/2 · ‖u− uh‖ωE

+ c ζH1,E ,

with the constant c at the data approximation term being as in Theorem 5.3.
The error is bounded globally from above by

‖∇(u− uh)‖Ω . m1(u− uh, Th) ·
(

∑

E∈Th

η2H1,D,E + ζ2H1,E

)1/2

.

All relations are uniform in ε.

Proof: The proofs are similar to the ones above and therefore omitted.
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5.2 Two further, modified local problem error estimators

This section shows that the choice of an appropriate local problem error estimator is far
from obvious. To this end we present two suboptimal estimators with different features.

Start with the local problem estimator of Section 5.1. In our opinion the corresponding
local problem does not seem to be the ‘natural’ choice. The ‘natural’ choice would be to
solve the original reaction diffusion problem with higher accuracy, and then measure the
local solution in the same H1 seminorm in which we seek to bound the error. This leads
to the definition below. The only difference to the original estimator of (25) is the different
norm.

Definition 5.3 (First modified local problem error estimator)
Solve the same local problem (24) as before but define the local and global error estimator
by

η̃H1,D,T := ‖∇eT‖ωT
, η̃2H1,D :=

∑

T∈Th

η̃2H1,D,T , η̃2H1,D,ωT
:=

∑

T ′⊂ωT

η̃2H1,D,T ′ .

Unfortunately, however, this approach does not yield an equivalence to the residual error
estimator ηH1,R,T .

Theorem 5.5 (Comparison with residual error estimator) The local problem er-
ror estimator η̃H1,D,T is related to the residual error estimator ηH1,R,T in the following
sense:

η̃H1,D,T . ηH1,R,ωT
(37)

ηH1,R,T . max{1, ε−1/2hmin,T} · η̃H1,D,ωT
. (38)

If T has at least two Neumann boundary faces then the constant in (37) can depend on the
shape of the Neumann boundary.

The proof employs the same techniques as before and is thus omitted. As a consequence
of (38) and (17) the desired upper error bound is not obtained while a lower error bound
(corresponding to (35)) still holds.

For the second approach we do not solve a local reaction diffusion problem but only
the corresponding (ε scaled) Poisson part of it.

Definition 5.4 (Second modified local problem error estimator)
Find a solution ěT ∈ VT of the local variational problem:

ε

∫

ωT

∇ěT∇vT =

∫

ωT

fh · vT +

∫

∂ωT∩ΓN

gh · vT −
∫

ωT

ε∇uh∇vT −
∫

ωT

uhvT

for all vT ∈ VT . The local and global error estimators then become

η̌H1,D,T := ‖∇ěT‖ωT
, η̌2H1,D :=

∑

T∈Th

η̌2H1,D,T , η̌2H1,D,ωT
:=

∑

T ′⊂ωT

η̌2H1,D,T ′ .
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This leads to the following theorem whose proof is again omitted.

Theorem 5.6 (Comparison with residual error estimator) The local problem er-
ror estimator η̌H1,D,T is related to the residual error estimator ηH1,R,T in the following
sense:

η̌H1,D,T . max{1, ε−1/2hmin,T} · ηH1,R,ωT
(39)

ηH1,R,T . η̌H1,D,ωT
. (40)

If T has at least two Neumann boundary faces then the constant in (39) can depend on the
shape of the Neumann boundary.

Hence the usual upper error bound holds (cf. Theorem 5.3). In contrast, the lower error
bound changes and becomes

η̌H1,D,T . ‖∇(u− uh)‖ωT
+ max{1, ε−1/2hmin,T} ·

[

ε−1/2αT · ‖u− uh‖ωT
+ ζH1,T

]

.

Here, however, we can draw a different conclusion. If the element T has lengths such that
ε−1/2hmin,T < 1 then this lower bound coincides with the usual lower bound (as in (16) or
Remark 5.1). Hence one may solve the reduced problem of Definition 5.4 for such elements.

Finally we remark that other choices of the local space VT or different parameters δE
to define the squeezed face bubble functions bE,δE

do not improve the results.

6 Numerical experiments

Here we aim to verify our theoretical results. To this end we discuss in detail the numerical
performance of the residual error estimator ηH1,R,T (Theorem 4.1) and of the local problem
error estimator ηH1,D,T (Theorem 5.3). Additionally we present the results of the modified
estimators graphically. This should give enhanced insight although we are aware that
it is impossible to demonstrate every feature of the modified estimators on just a single
example.

Starting with the problem description, we solve

−ε∆u+ u = 0 in Ω := (0, 1)3 , u = uD on ΓD := ∂Ω .

The exact solution is prescribed to be

u = e−x/
√
ε + e−y/

√
ε + e−z/

√
ε, ε = 10−4,

with uD chosen accordingly. This anisotropic solution exhibits three distinct boundary
layers. We utilize a sequence of tetrahedral meshes Tk, k = 1 . . . 6, that are the tensor
product of three 1D Bakhvalov type meshes, each having 2k intervals and the transition
point τ :=

√
ε| ln√ε|, cf. Figure 4 and [Kun01b]. Strictly speaking these meshes do not

satisfy our mesh requirements since the dimensions of neighbouring tetrahedra may change
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Figure 4: Mesh 2 – Mesh 3

heavily. This happens, however, only at the transition point. Since the solution is well
resolved there, the adverse effect of the significantly different element sizes can be neglected.

The following table provides details of the meshes and of the error.

Mesh Tk # Elements max
T∈Tk

h1,T

h3,T

‖∇(u− uh)‖Ω m1(u− uh, Tk)

1 48 29.4 9.23E+0 1.55
2 384 69.5 4.57E+0 1.62
3 3 072 82.6 2.18E+0 1.69
4 24 576 88.6 1.08E+0 1.88
5 196 608 91.5 5.46E−1 2.37
6 1 572 864 92.9 2.79E−1 3.04

The numerical convergence rate of approximately N−0.33 is close to the optimal value. In
conjunction with the comparatively small values of the matching function this confirms
that the anisotropic meshes Tk are well–suited to discretize our problem.

6.1 The original estimators ηH1,R,T and ηH1,D,T

Let us start with the main results and consider the residual error estimator ηH1,R,T and
the local problem error estimator ηH1,D,T . Note that the data approximation terms vanish,
ζH1,T = ζH1 = 0. Denote the error by e := u− uh for the remainder of this section.

In order to investigate the upper error bounds (cf. (17) and (36)), we compute the
terms ‖∇e‖Ω/(m1 ηH1,∗) which have to bounded from above. The table below confirms
this behaviour:

Relation T1 T2 T3 T4 T5 T6
‖∇e‖Ω/(m1 ηH1,R) (17) 0.259 0.141 0.111 0.094 0.073 0.057
‖∇e‖Ω/(m1 ηH1,D) (36) 0.581 0.692 0.694 0.620 0.488 0.383
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These results are also given graphically in Figure 5. We remark that the error is in-
creasingly overestimated, and the residual estimator overestimates more that the local
problem estimator. Such a behaviour has been experienced before for different problems,
see [Kun00, Kun01a] and [Kun01b, Kun01c].

Secondly, to verify the lower error bounds (16) and (35), we proceed similarly by com-
puting the corresponding element–wise ratios, cf. the next table below. These ratios have
to bounded from above uniformly in T ∈ Tk. This is confirmed by the next table. As
before, the results are also found in Figure 6.

Relation T1 T2 T3 T4 T5 T6
max
T∈Tk

ηH1,R,T

‖∇e‖ωT
+ ε−1/2αT‖e‖ωT

(16) 1.026 2.699 4.229 4.186 4.085 4.010

max
T∈Tk

ηH1,D,T

‖∇e‖ωT
+ ε−1/2‖e‖ωT

(35) 0.449 0.509 0.549 0.550 0.542 0.532

Thirdly, Theorem 5.2 states the equivalence of both local estimators. Hence the related
ratios have to bounded from above uniformly in Tk which is verified by the next table as
well as by Figures 7 and 8.

Relation T1 T2 T3 T4 T5 T6
max
T∈Tk

ηH1,R,T/ηH1,D,ωT
(31) 1.611 4.385 4.971 4.864 4.721 4.781

max
T∈Tk

ηH1,D,T/ηH1,R,ωT
(30) 0.291 0.284 0.351 0.327 0.256 0.210

6.2 The modified estimators

After having examined the main results for the original estimators ηH1,R,T and ηH1,D,T ,
we now turn to the modified residual estimator η̃H1,R,T and both modified local problem
estimators η̃H1,D,T and η̌H1,D,T . As indicated before, we intend to get some impression about
their particularities but cannot expect to observe all features with our single example.
Altogether we compare five estimators, i.e. the two original ones and three modifications.
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Starting with the upper error bound again, we compute the ratio ‖∇e‖Ω/(m1 η) as
before, where η is one of the five estimators. The ratios have to be bounded from above for
all estimators except the first modified local problem estimator η̃H1,D. This is confirmed
by the results of Figure 5. Note that even the ratios for η̃H1,D are bounded from above. We
believe that this behaviour is due to our particular problem and the well–adapted meshes.
The error is (locally) overestimated on those elements T with a large minimal size hmin,T .
There, however, the error is small, and the global influence of the overestimation should
be neglectable.
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Figure 5: Upper error bound

In order to analyse the lower error bounds, proceed analogously as before and compute
the ratios ηT/(‖∇e‖ωT

+γ ·‖e‖ωT
), where ηT is one of the five local estimators. The factor γ

equals ε−1/2αT for the residual estimator and both modified local problem estimators; the
factor γ is ε−1/2 for the local problem estimator, and γ is ε−1hmin,T for the modified residual
estimator, cf. (16), (21), (35) and Theorems 5.5, 5.6. The ratios have to be bounded from
above for all estimators except the second modified local problem estimator η̌H1,D,T . This
can be observed in Figure 6. We even notice that η̌H1,D,T performs differently than the
other two local problem error estimators. As to be expected, this behaviour occurs on the
coarse triangulations where hmin,T is large in comparison with ε1/2, cf. Theorem 5.6.

Referring to Remark 5.1, the local problem estimator ηH1,D,T performs very similar if
the factor ε−1/2 in the ratio above is replaced by ε−1/2αT .
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Figure 6: Lower error bound

Finally we explore the local equivalence of estimators. In addition to the results from
above we now also compare both modified local problem estimators with the original
residual estimator, and the modified residual estimator with the original local problem
estimator. The theoretical results for the first pairs of estimators are given in Theorems 5.2,
5.5 and 5.6. For the last pair of estimators we could not establish an equivalence, see
Remark 4.3.

Let us start with inequality (31), i.e. ηH1,R,T/ηH1,D,ωT
is bounded uniformly on Tk. A

corresponding inequality has been proven for the second modified local problem estimator
η̌H1,D,ωT

but not for the modified residual estimator η̃H1,R,T and the first modified local
problem estimator η̃H1,D,ωT

. The anticipated behaviour is partially seen in Figure 7. Note,
however, that the first modified local problem estimator η̃H1,D,ωT

does not fail for our
example.

For the converse inequality (30) one computes the ratio ηH1,D,T/ηH1,R,ωT
and the cor-

responding terms for the modified estimators. Similarly, the ratio has been proven to
be uniformly bounded for the first modified local problem estimator η̃H1,D,T . Utilizing
the proof of Theorem 4.3 one easily obtains that ηH1,D,T/η̃H1,R,ωT

is uniformly bounded
as well (this ratio corresponds to the modified residual estimator). In contrast to this,
η̌H1,D,T/ηH1,R,ωT

(for the second modified local problem estimator) need not be bounded.
The expected results are clearly visible in Figure 8.
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7 Summary

For the H1 seminorm we have investigated a posteriori error estimation that is applicable
to singularly perturbed reaction diffusion problems on anisotropic meshes. A residual error
estimator and a local problem error estimator have been proposed and analysed. They are
locally equivalent and bound the error reliably from above provided the anisotropic mesh
is sufficiently aligned with the anisotropic solution.

The lower error bound contains an additional L2 error term. Hence efficient error
control is achieved for suitable meshes where some local term is small enough. This local
term can be viewed as some analogy to a local mesh Peclet number for convection diffusion
problems. The similarity to such convection diffusion problems is also seen in the structure
of the error bounds, cf. Remark 4.1 or [Ver98a, SK01].

Three further, modified error estimators have been suggested and discussed. Partially
they are equivalent to the previous, original versions. Finally, numerical experiments for
all estimators complement and confirm the theoretical results.
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