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1 Introduction

Several classes of boundary value problems intrinsically give rise to solutions that exhibit
lower dimensional, anisotropic behaviour. Such anisotropic solutions show little variation
in certain space directions but much variation otherwise. For example, singularly per-
turbed problems often result in solutions with boundary layers. Even the solution of the
Poisson problem in three space dimensions is generically anisotropic along some concave
edge, see also the numerical experiments of section 5. Within the finite element method,
such anisotropic solutions can be favourably resolved with anisotropic meshes. By this
we understand meshes with stretched elements which are characterized by an unbounded
aspect ratio, i.e. the ratio of the diameters of the circumscribed and inscribed sphere can
be arbitrarily large.

Our emphasis is on error estimators which form a basis of any adaptive solution al-
gorithm. The theory of error estimation in nowadays well established for conventional,
isotropic meshes (i.e. where the aspect ratio of the elements is bounded). The books
[Ver96, AO00] provide a comprehensive and useful overview of the state of the art.

On anisotropic meshes the error estimation theory is much less developed. Recently
the intensive research has led to several estimators that can be applied to different bound-
ary value problems as well as norms, see [Sie96, Kun00, KV00, Kun01a, Kun01b, Kun01c,
DGP99]. Exemplarily we mention residual error estimators and local problem error estima-
tors for the Poisson problem or a singularly perturbed problem; the error can be estimates
in the energy norm or in the L2 norm.

There is one popular estimator for isotropic meshes that did not have yet a counterpart
for anisotropic meshes. This so–called Zienkiewicz-Zhu (ZZ) estimator has been invented
in [ZZ87] and later been improved in [ZZ92]; many more variants have been developed
since. The basic idea consists in computing an improvement of the gradient of the nu-
merical solution by some post–processing procedure. The difference between this so–called
recovered gradient and the original gradient serves as error estimator. This idea of ZZ error
estimation has been very appealing and popular in the finite element community since

• the estimator is comparatively cheap because a recovered gradient is often computed
anyway,

• the estimator is astonishingly robust (in numerical experiments) for a wide range of
problems, see e.g. [BSU94a, BSU+94b].

Our work here is devoted to the extension of the ZZ estimator to anisotropic meshes.
We start with a recapitulation of the existing isotropic analysis and discuss their suitability
for anisotropic meshes. The theoretical approaches to ZZ error estimators (on isotropic
meshes) can be divided roughly into three classes:

• proving equivalence to residual error estimators,

• utilizing superconvergence properties,

• minimization approach.



2 1 INTRODUCTION

Each of these approaches will now be discussed briefly.

Equivalence to residual error estimator: Here the ZZ error estimator is proven to be equiv-
alent to a residual error estimator, thus transferring reliability and efficiency to the first
estimator. This approach goes back to [Rod94] and is repeated in [Ver96, section 1.5].

In our paper these ideas will be generalized to anisotropic meshes. Of course several
modifications and extensions are necessary:

• Although some recovered gradient is still applied, it is now scaled with weights that
depend on the stretching directions (i.e. the alignment) of the anisotropic elements.
• The anisotropic meshes have to meet additional requirements which are due to the

anisotropy. These requirements roughly mean that the anisotropic meshes should not
be totally unstructured but instead obey some ‘sensible’ geometrical principles. These
demands also seem reasonable in the light of superconvergence properties discussed
below.

Superconvergence approach: It forms the basis of most proofs concerning ZZ estimators.
Exemplarily we refer to [AO00] and the citations therein. In suitable, specialized settings
even asymptotic exactness of the (global) ZZ estimator can be shown. This requires

• consistence, localization, boundedness and linearity of the recovery operator and
• a superconvergence property of the finite element scheme.

Unfortunately the superconvergence approach inherits two drawbacks. Firstly, the theo-
retical analysis requires very specialized meshes which are rarely found in practice (e.g. in
adaptive refinement procedures). Secondly local equivalences cannot be proven.

The application of such a superconvergence analysis to anisotropic meshes is unclear
up to now. Superconvergence results are not known for general meshes but only for special
Shishkin or Shishkin–type meshes, see [RL01, Zha98]. For example, [RL01] prove a certain
kind of superconvergence for 2D Shishkin–type meshes consisting of axiparallel rectangles,
bilinear finite elements, and a singularly perturbed reaction–convection–diffusion problem
in the unit square. Most likely the results can be employed to define a ZZ estimator, even
if this is not presented in the aforementioned work.

Summarizing, we do not pursue the superconvergence approach because of the high
demands on the meshes which are hardly consistent with anisotropic solutions.

Minimization approach: A third kind of analysis utilizes a close relation between the
ZZ estimator and a minimum formulation, cf. [CB01, BC01]. It allows to investigate
general averaging operators which define the estimator, and it avoids superconvergence
assumptions. The resulting error bounds involve so–called ‘higher order terms’ that contain
the unknown solution. Hence these bounds can only be interpreted in an asymptotic sense.
Moreover the constants in the reliability result depend on the shape of the finite elements.

After presenting different techniques to analyse ZZ estimators, we will consider from
now on exclusively the first approach, namely the equivalence to a residual error estimator.
As it has been explained, this analysis seems most promising for anisotropic meshes.
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The outline of this paper is as follows. The model problem, some main notation as well
as the assumptions on the mesh are introduced in section 2. In section 3 we first recall
a known residual error estimator that is required for the subsequent analysis. Afterwards
two kinds of ZZ error estimators are derived and rigorously analysed. The first estimator
is based on a global projection property which corresponds to a particular choice of the
underlying recovered gradient. The second ZZ estimator is an improvement because the
recovered gradient can be defined with arbitrary weights. Our novel analysis additionally
yields local element–wise estimates. Section 4 is devoted to a detailed examination of the
mesh assumptions. The numerical examples of section 5 complement and confirm the
theoretical analysis.

2 Model problem and notation

2.1 Model problem

Consider a Poisson model problem with homogeneous Dirichlet boundary conditions in a
polyhedral domain Ω ⊂ Rd, d = 2, 3:

−∆u = f in Ω
u = 0 on ΓD := ∂Ω.

}

(1)

Our analysis is presented for three dimensional domains (d = 3); the application to two
dimensional domains (d = 2) is readily possible. The corresponding variational formulation
reads

Find u ∈ H1
o (Ω) :

∫

Ω

∇u∇v =

∫

Ω

f v ∀v ∈ H1
o (Ω) , (2)

where H1
o (Ω) denotes the usual Sobolev space of functions that vanish on ΓD. For f ∈

L2(Ω) problem (2) admits a unique solution due to the Lax–Milgram lemma.
In order to discretize (2), let F = {Th} be a family of triangulations Th of Ω. We assume

a conforming triangulation (cf. [Cia78, Chapter 2]) that consists of tetrahedra (d = 3) or
triangles (d = 2). Let Vh ⊂ H1

o (Ω) be the finite element space of piecewise affine linear
functions on Th that vanish on ΓD. The finite element solution uh is uniquely obtained via

Find uh ∈ Vh :

∫

Ω

∇uh∇vh =

∫

Ω

f vh ∀vh ∈ Vh . (3)

2.2 Notation

The following paragraphs now introduce most of the notation required. For some domain
ω ⊂ R2 or ω ⊂ R3 let ‖ ·‖ω := ‖ ·‖L2(ω) be the usual L2(ω) norm. The space of polynomials

of order at most k is denoted by Pk(ω). For some (column) vectors v, w let (v, w) be the
Euclidean scalar product and |v| := (v, v)1/2 be the Euclidean length. Instead of x ≤ c · y
or c1y ≤ x ≤ c2y (with positive constants independent of x, y or Th) we use the shorthand
notation x . y or x ∼ y, respectively.
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The next paragraph presents notation that is related to the triangulation Th and its
elements. Tetrahedra are denoted by T, T ′ or Ti, faces are denoted by E, and nodes of
Th are denoted by x. Next, define nodal sets NT ,NE,NΩ̄ that contain all nodes of a
tetrahedron T , a face E, or of Ω̄ (i.e. including boundary nodes), respectively. Let EΩ be
the set of all interior edges (2D) or faces (3D) of Ω. For a node x we introduce a local
neighbourhood patch ωx :=

⋃

T :x∈NT
T ⊂ R3 which is the union of all tetrahedra having

this node. Similarly for some face E let ωE ⊂ R3 be the union of both tetrahedra having
this face (with obvious boundary modifications). For a tetrahedron T , a face E or a patch
ωx set |T | = meas3(T ), |E| = meas2(E) or |ωx| = meas3(ωx), respectively (the distinction
from the Euclidean vector length is obvious from the context).

The four vertices of an arbitrary but fixed tetrahedron T ∈ Th are temporarily denoted
by P0, . . . , P3 such that P0P1 is the longest edge of T , meas2(4P0P1P2) ≥ meas2(4P0P1P3),
and meas1(P1P2) ≥ meas1(P0P2). Additionally define three pairwise orthogonal vectors p

i,T

with lengths hi,T := |p
i,T
|, see figure 1. Observe h1,T > h2,T ≥ h3,T and set

hmin,T := min
i=1...3

hi,T = h3,T .

The matrix CT ∈ R3×3 is defined as

CT := (p
1,T

, p
2,T

, p
3,T

) ,

and describes (roughly speaking) the anisotropic orientations of the tetrahedron T .

P0
P1

P2

P3

p
1,T

p
2,T

p
3,T

Figure 1: Notation of tetrahedron T

For a face E of a tetrahedron T let

hE,T := 3|T |/|E|

be the length of the height over E in T . Note that hE,T is not the diameter of E, as in the
usual convention.

The quantities hmin,T and hE,T are associated with a tetrahedron T . Often it is more
convenient to utilize equivalent data that are related to a face E or node x. To this end
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define averaged terms by

hE := (hE,T1 + hE,T2)/2 for E = T1 ∩ T2

hmin,E := (hmin,T1 + hmin,T2)/2 for E = T1 ∩ T2

hi,x :=
1

n

∑

T⊂ωx

hi,T hmin,x :=
1

n

∑

T⊂ωx

hmin,T ,

where n is the number of elements T in ωx. Note that hmin,E is not the minimal dimension
of the face E. For boundary faces E ⊂ ∂Ω modify hE := hE,T and hmin,E := hmin,T , where
∂T ⊃ E.

Next consider an arbitrary interior face E. Let nE be any of the two unit normal vectors
for E, and keep it fixed from here on. For a piecewise continuous (scalar or vector valued)
function v denote by [[v]]E the jump of v across E in the direction nE . Let ∂nE

v := nE ·∇v
be the (unitary) directional derivative. Note that the orientation of nE influences terms
like [[v]]E but not [[∂nE

v]]E.

2.3 Mesh requirements

In addition to the usual conformity conditions of the mesh (see Ciarlet [Cia78, Chapter 2])
we demand the following assumptions.

(A1) The number of tetrahedra containing a node x is bounded uniformly.

(A2) The dimensions of adjacent tetrahedra must not change rapidly, i.e.

hi,T ′ ∼ hi,T ∀T, T ′ with T ∩ T ′ 6= ∅ , i = 1 . . . d .

(A3) For each node x there exists a matrix Cx ∈ Rd×d such that

|C−1x v| ∼ |C−1T v| ∀ v ∈ Rd,∀T ⊂ ωx .

(A4) An assumption on the shape of each element:

|C−1T nE| ∼ h−1E,T ∀ E ⊂ ∂T .

(A5) The L2 projection is stable in the sense of [KV00, Section 4]. For self–containment
we repeat the definition given there. Start with two (distinct) elements T1, T2 ∈ Th
and define their (topological) edge distance by

l(T1, T2) := 1 + minimal number of edges of any edge path connecting T1 and T2.

Set l(T, T ) := 0. Note that in both the 2D and 3D case the edges count. Next, for a
given element T introduce neighbourhood (ring) patches by

Rk(T ) := {T ′ : l(T ′, T ) = k}, k ∈ N .
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Then assumption (A5) is satisfied if there exist positive constants c1, c2, α, β, r such
that

hmin,T1/hmin,T2 ≤ c1 · αl(T1,T2) ∀T1, T2 ∈ Th
card(Rk(T )) ≤ c2 · kr βk ∀T ∈ Th,∀k ∈ N+

α · β <

{ √
2 +
√
3 ≈ 3.146 if d = 2

(3 +
√
5)/2 ≈ 2.618 if d = 3.















(4)

The mesh assumptions (A1) and (A2) imply several convenient equivalences.

(A2)⇒ hi,x ∼ hi,T ∀T ⊂ ωx

(A2)⇒ hmin,x ∼ hmin,T ∀T ⊂ ωx

(A2)⇒ hmin,x ∼ hmin,E ∀E : x ∈ NE

(A2)⇒ hE ∼ hE,T ∀E ⊂ ∂T
(A1)+(A2)⇒ |T | ∼ |ωx| ∀T ⊂ ωx























(5)

Furthermore, with the help of (A2) and (A3) we can rewrite assumption (A4) as

|C−1x nE| ∼ h−1E ∀ E : x ∈ NE . (6)

Remark 2.1 The mesh assumptions are scrutinized in detail in section 4. Here some
remarks may facilitate the understanding.

Assumption (A3) roughly means that there exists a transformation C−1
x which maps the

patch ωx onto an isotropic patch of size O(1).
Assumption (A4) roughly demands for an anisotropic tetrahedron that small faces are

almost perpendicular to long edges, depending on the aspect ratio.
Finally the stability assumption (A5) is only a sufficient condition to derive the residual

error estimation. Recent research [Car01, BPS01, Ste01] suggests that the restrictions of
(A5) can be weakened; some results of the aforementioned work already apply to our setting
here.

2.4 Matching function

Reliability and efficiency are highly desirable properties in a posteriori error estimation.
They basically mean that the error ‖u − uh‖∗ (in some suitable norm) can be bounded
from above and below, respectively, with constants independent of u, uh or Th.

Most standard error estimators on isotropic finite element meshes are reliable and effi-
cient at the same time, cf. [AO00, Ver96]. Unfortunately the situation is much less obvious
on anisotropic meshes. The analysis as well as numerical experiments strongly suggest
that reliability and efficiency cannot be achieved simultaneously on arbitrary anisotropic
meshes. However if the anisotropy of the solution is sufficiently well aligned with the
anisotropy of the mesh then one can expect both properties at the same time. Intuitively
all applications of anisotropic finite elements follow this concept: an element should be
stretched in that direction where the function (or more precisely, its derivative) exhibit
little variation.
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In order to measure the alignment of an anisotropic mesh Th with an anisotropic func-
tion v, a so–called matching function has been proposed by Kunert [Kun99, Kun00].

Definition 2.2 (Matching function) Let v ∈ H1(Ω), and Th ∈ F be a triangulation of
Ω. Define the matching function m1 : H

1(Ω)×F 7→ R by

m1(v, Th) :=
(

∑

T∈Th

h−2min,T · ‖CT
T ∇v‖2T

)1/2/

‖∇v‖Ω . (7)

The vital importance of the matching function for anisotropic error estimation can be seen
in the error bounds (9), (10) and (14), (15) below.

The matching function is not central to our analysis here. Hence we refer to [Kun00]
for a comprehensive discussion, and restrict ourselves to a brief discussion of basic features.
Firstly the definition immediately implies m1(v, Th) ≥ 1. On isotropic meshes one obtains
easily m1(v, Th) ∼ 1; then the matching function merges with other constants and becomes
invisible. In contrast to this more care is necessary for anisotropic meshes. If the mesh
is suitably aligned with the anisotropic solution one still achieves m1(v, Th) ∼ 1 and thus
reliable and efficient error estimation. If however the anisotropic mesh is not aligned with
the solution then m1(v, Th) can be arbitrarily large (cf. [Kun01a, Numerical experiment 2]
or [Kun99, Remark 3.3]). Hence upper and lower error bounds may differ by an arbitrarily
large factor; thus rendering the error estimation useless.

3 Error estimators

Here we start by presenting the residual error estimator of [KV00] which forms the basis of
the subsequent analysis. Afterwards two kinds of ZZ error estimators are presented. The
first kind follows the lines of [Rod94] (also described in [Ver96, section 1.5]). It is based on
a recovered gradient ∇R1 which satisfies a global projection property. Next, we improve
this first approach by employing a much more flexible recovered gradient ∇R2 to define the
second ZZ error estimator. Accordingly a novel analysis is required (cf. lemma 3.12 and
theorem 3.13) which is based on different techniques than for the first estimator.

Note that all estimators are given in several forms. The first representation is the one
used in practice, and is related either to a face E or an element T . The other, equivalent
representation is related to a node x, and is required for analytical purposes.

3.1 Residual error estimator

In [KV00] a face residual based error estimator is introduced for interior faces by

ηR,E := hmin,Eh
−1/2
E · ‖[[∂nE

uh]]E‖E, E ∈ EΩ . (8)
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The corresponding lower and upper error bounds are given in [KV00, theorem 5.1].
Provided that mesh assumptions (A1), (A2) and (A5) are satisfied, one has

ηR,E . ‖∇(u− uh)‖ωE
+ inf

fh∈Vh

hmin,E ‖f − fh‖ωE
∀E ∈ EΩ (9)

‖∇(u− uh)‖Ω . m1(u− uh, Th)
(

∑

E∈EΩ

η2R,E + inf
fh∈Vh

∑

T∈Th

h2
min,T‖f − fh‖2T

)1/2

. (10)

Clearly ηR,E is associated with a face E. For our purposes, however, node related quantities
are much better suited. Therefore we fix a patch ωx and combine all its (interior) faces.
The first expression below introduces the local, node related error estimator. The second
definition introduces the global error estimator whereas the remaining definition facilitate
our exposition later on.

Definition 3.1 (Residual error estimators) The local and global residual error esti-
mators are given by

η2R,x := h2
min,x|ωx|

∑

E:x∈NE

h−2E [[∂nE
uh]]

2
E (11)

η2R :=
∑

x∈N
Ω̄

η2R,x (12)

η2
Ř,x

:= h2
min,x|ωx|

∑

E:x∈NE

|C−1x [[∇uh]]E|2 . (13)

Lemma 3.2 Let the mesh assumptions (A1), (A2) be satisfied. Then

η2R,x ∼
∑

E:x∈NE

η2R,E .

Proof: Recall that the dimensions of neighbouring elements must not change rapidly,
cf. (5), which implies in particular

|E| · hE = d · (|T1|+ |T2|)/2
(5)∼ |ωx| with E = T1 ∩ T2, ∀x ∈ NE .

Combining now the error estimators ηR,E for all the interior faces of ωx yields

∑

E:x∈NE

η2R,E =
∑

E:x∈NE

h2
min,E h−1E · ‖[[∂nE

uh]]E‖2E

(5)∼ h2
min,x

∑

E:x∈NE

h−2E · |E|hE · [[∂nE
uh]]

2
E ∼ η2R,x

which proves the assertion.

The error estimation by means of the node related error estimator ηR,x can now be
derived easily.
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Lemma 3.3 (Residual error estimation) Assume that mesh assumptions (A1), (A2)
and (A5) are satisfied. The error is bounded locally from below and globally from above.

ηR,x . ‖∇(u− uh)‖ωx
+ inf

fh∈Vh

hmin,x ‖f − fh‖ωx
∀x ∈ NΩ̄ (14)

‖∇(u− uh)‖Ω . m1(u− uh, Th)
(

η2R + inf
fh∈Vh

∑

T∈Th

h2
min,T‖f − fh‖2T

)1/2

. (15)

Proof: The inequalities follow immediately from (9), (10) and lemma 3.2.

The next lemma presents a sufficient condition for the equivalence of ηR,x and ηŘ,x.
This lemma will be essential for further analysis.

Lemma 3.4 Let the mesh assumption (A2)–(A4) be satisfied, i.e. in particular (6) holds:
|C−1x nE| ∼ h−1E for all faces E with x ∈ NE. Then the following equivalence holds:

ηR,x ∼ ηŘ,x . (16)

Proof: Consider an arbitrary face E, x ∈ NE, and any one of its two unit normal vec-
tors nE. Then there exist two further unit vectors τ 1, τ 2 such that (nE , τ 1, τ 2) forms an
orthonormal vector system (note that E ⊂ span{τ 1, τ 2}). Hence

nE nT
E + τ 1 τ

T
1 + τ 2 τ

T
2 = I3×3

giving nE · ∂nE
uh + τ 1 · ∂τ

1
uh + τ 2 · ∂τ

2
uh = ∇uh .

Both terms ∂τ i
uh are continuous across E; only ∂nE

uh jumps. Thus we conclude

[[∂nE
uh]]E · nE = [[∇uh]]E .

Together with assumptions (A2)–(A4) which imply (6) one obtains
∑

E:x∈NE

|C−1x [[∇uh]]E|2 =
∑

E:x∈NE

|C−1x [[∂nE
uh]]E · nE|2 =

=
∑

E:x∈NE

|C−1x nE|2 · [[∂nE
uh]]

2
E

(6)∼
∑

E:x∈NE

h−2E · [[∂nE
uh]]

2
E

which proves the assertion.

3.2 First ZZ error estimator

Let us first define the recovered gradient ∇R1 by means of a projection with respect to
a particular scalar product. For a precise definition of this inner product, let Wh be the
space of piecewise linear vector fields on the triangulation, and set Vh := Wh ∩ C(Ω,Rd),
cf. also [Ver96]. In order to shorten the notation we temporarily introduce the matrices

Bx := hmin,x C
−1
x and BT := hmin,T C−1T .
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On Wh, we introduce the mesh dependent inner product (·, ·)h by

(v, w)h :=
∑

T∈Th

|T |
∑

x∈NT

(Bx v|T (x), Bx w|T (x)), (17)

where
v|T (x) = lim

y→x

y∈T

v(y).

From mesh assumptions (A2), (A3) we have concluded (5), i.e. hmin,x ∼ hmin,T ,
|C−1x v| ∼ |C−1T v| for all T ⊂ ωx and thus also |Bxv| ∼ |BTv| for all T ⊂ ωx and all
vectors v ∈ Rd. For an arbitrary but fixed tetrahedron T and for any piecewise linear
function v ∈Wh we can further conclude

|T |
∑

x∈NT

|Bx v|T (x)|2
(A3)∼ |T |

∑

x∈NT

|BT v|T (x)|2 ∼ ‖BTv‖2T .

Therefore the mesh assumptions (A2), (A3) imply

(v, v)h ∼
∑

T∈Th

‖BTv‖2T . (18)

This last result also shows that (·, ·)h is a scalar product indeed since all BT are regular
matrices. Now the recovered gradient can be defined.

Definition 3.5 (First recovered gradient) The recovered gradient ∇R1 : Wh → Vh is
defined as the projection of ∇uh onto Vh with respect to the inner product (·, ·)h, i.e.∇R1uh ∈
Vh is uniquely determined by the condition

(∇R1uh −∇uh, vh)h = 0 ∀vh ∈ Vh . (19)

The recovered gradient ∇R1uh is piecewise linear and continuous. Its nodal values
can be computed locally and coincide with the usual recovered gradient as presented, for
example, in [Ver96, equality (1.80)]. Detail are given in the next lemma.

Lemma 3.6 The value of the recovered gradient at a node x can be determined locally by

(∇R1uh)(x) =
∑

T⊂ωx

µT ∇uh|T with weight µT :=
|T |
|ωx|
∈ R, T ⊂ ωx . (20)

Proof: The proof utilizes standard ideas as presented e.g. in [Ver96]. Fix the node x and
apply the definition of the recovered gradient with vh := ϕx · ei, where ϕx is the standard
(piecewise linear) basis function of Vh for node x, and ei ∈ Rd is the i th unit vector. Then

0 = (∇R1uh −∇uh , ϕx · ei)h
=

∑

T∈Th

|T |
∑

x′∈NT

(

BT
x′Bx′ (∇R1uh(x

′)−∇uh|T (x
′)) , ϕx|T (x

′) ei

)

=
∑

T⊂ωx

|T | ·
(

BT
x Bx (∇R1uh(x)−∇uh|T (x)) , ei

)
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holds for i = 1 . . . d. Furthermore BT
x Bx is regular, and hence

0 =
∑

T⊂ωx

|T | · (∇R1uh(x)−∇uh|T (x))

= |ωx|∇R1uh(x) −
∑

T⊂ωx

|T | · ∇uh|T (x)

which proves the assertion.
Note that the choice of the regular matrix Bx in the definition of the scalar product

(·, ·)h has no influence on the nodal value of the recovered gradient.

Now we are ready to define our anisotropic version of the first ZZ estimator. Again,
the first two terms are given in a form that can be used in practice. The third quantity is
a node related term which can be utilized in further analysis.

Definition 3.7 (First anisotropic ZZ estimators) The local and global ZZ estimators
are given by

ηZ1,T := hmin,T ‖C−1T (∇R1uh −∇uh)‖T (21)

η2Z1
:=

∑

T∈Th

η2Z1,T
(22)

η2Z1,x
:= h2

min,x |ωx|
(

∑

T⊂ωx

|T |
|ωx|
|C−1x ∇uh|T |2 −

∣

∣

∣

∣

∑

T⊂ωx

|T |
|ωx|

C−1x ∇uh|T

∣

∣

∣

∣

2
)

. (23)

Similar to the residual error estimator we first establish a relation between the global
estimator ηZ1

and the node related quantity ηZ1,x. To achieve this, assume that mesh
assumptions (A2) and (A3) hold which imply (18). Furthermore utilize the projection
property (19), recall the definition of the matrices Bx, BT and of the scalar product to
obtain

η2Z1
=

∑

T∈Th

h2
min,T ‖C−1T (∇R1uh −∇uh)‖2T

(18)∼ (∇R1uh −∇uh , ∇R1uh −∇uh)h

(19)
= (∇uh , ∇uh)h − (∇R1uh , ∇R1uh)h

(17)
=

∑

T∈Th

|T |
∑

x∈NT

h2
min,x

(

|C−1x ∇uh|T |2 − |C−1x ∇R1uh(x)|2
)

.

Insert now the nodal value of ∇R1uh and change the summation order from
∑

T∈Th

∑

x∈NT

to
∑

x∈N
Ω̄

∑

T⊂ωx

to conclude

η2Z1
∼

∑

x∈N
Ω̄

h2
min,x

∑

T⊂ωx

|T | ·
(

|C−1x ∇uh|T |2 − |C−1x ∇R1uh(x)|2
)
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(20)
=

∑

x∈N
Ω̄

h2
min,x |ωx|

(

∑

T⊂ωx

|T |
|ωx|
|C−1x ∇uh|T |2 −

∣

∣

∣

∣

∑

T⊂ωx

|T |
|ωx|

C−1x ∇uh|T

∣

∣

∣

∣

2
)

.

Hence the following relation between the global estimator ηZ1
and the node related esti-

mator ηZ1,x is obtained provided that the mesh assumptions (A2) and (A3) hold:

η2Z1
∼
∑

x∈N
Ω̄

η2Z1,x
. (24)

Let us start the analysis of the estimator with a general equivalence lemma which is
already known from isotropic investigations.

Lemma 3.8 Let mesh assumption (A1) be satisfied, and consider an arbitrary node x and
the associated patch ωx. Let v be a (scalar or vector valued) function defined on ωx such
that v|T ∈ P0(T ), i.e. v is piecewise constant. Let further µT , T ⊂ ωx be arbitrary positive
weights such that all µT are uniformly bounded away from zero, µT ≥ c > 0, and that
satisfy

∑

T⊂ωx

µT = 1. Define the ZZ averaged value by vZZ :=
∑

T⊂ωx

µTv|T . Then

∑

E:x∈NE

|[[v]]E|2 ∼
∑

T⊂ωx

µT |v|T |2 − |vZZ |2 . (25)

Proof: For two dimensional domains (d = 2) this lemma has been proven in [Rod94]; the
proof is also repeated in [Ver96, section 1.5]. An extension to three dimensional domains
(d = 3) is readily possible with the ideas from the proof of lemma 3.12.

The main result follows now.

Theorem 3.9 (Equivalences with first ZZ estimator) Let mesh assumptions (A1)–
(A4) be satisfied. Then the residual error estimator and the first ZZ error estimator are
equivalent:

ηR,x ∼ ηZ1,x (26)

ηR ∼ ηZ1
. (27)

Proof: We apply the previous lemma 3.8 with v := C−1x ∇uh and µT = |T |/|ωx| as well as
lemma 3.4 to derive

η2R,x

(16)∼ η2
Ř,x

= h2
min,x|ωx|

∑

E:x∈NE

|C−1x [[∇uh]]E|2

(25)∼ h2
min,x|ωx|

∑

T⊂ωx

|T |
|ωx|
|C−1x ∇uh|T |2 −

∣

∣

∣

∣

∑

T⊂ωx

|T |
|ωx|

C−1x ∇uh|T

∣

∣

∣

∣

2

(23)
= η2Z1,x

.
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Hence

η2R =
∑

x∈N
Ω̄

η2R,x ∼
∑

x∈N
Ω̄

η2Z1,x

(24)∼ η2Z1
.

Note that this is only an equivalence between the global estimators. An equivalence
involving the local estimator ηZ1,T cannot be proven in this way since the projection prop-
erty (19) is given globally. The procedure of the second ZZ error estimator avoids this
drawback.

3.3 Second ZZ error estimator

A different approach to describe a ZZ error estimator is given now. It avoids the global
projection property (19) at the cost of a refined analysis. As a consequence local element–
wise relations can be derived. We start with the definition of an arbitrary recovered
gradient.

Definition 3.10 (Arbitrary recovered gradient)
The arbitrary recovered gradient ∇R2 : Wh → Vh is defined by the nodal values

(∇R2uh)(x) :=
∑

T⊂ωx

µT,x∇uh|T (28)

where the non–negative weights µT,x can be chosen arbitrarily such that
∑

T⊂ωx

µT,x = 1.

The corresponding second ZZ estimator is given next. Again the first two definitions
describe the local (element related) estimator and its global counterpart. The third term
is a node related quantity required for the subsequent analysis.

Definition 3.11 (Second anisotropic ZZ estimator) The local and global ZZ estima-
tors are given by

ηZ2,T := hmin,T ‖C−1T (∇R2uh −∇uh)‖T (29)

η2Z2
:=

∑

T∈Th

η2Z2,T
(30)

η2Z2,x
:= h2

min,x|ωx|
∑

T⊂ωx

|C−1x (∇R2uh(x)−∇uh|T (x))|2 . (31)

In order to establish a relation between the node related term ηZ2,x and the element related
estimator ηZ2,T , recall that ∇R2uh −∇uh is linear on T . Together with mesh assumptions
(A1)–(A3) we conclude

η2Z2,T
∼ h2

min,T |T |
∑

x∈NT

|C−1T (∇R2uh(x)−∇uh|T (x))|2

(5),(A3)∼
∑

x∈NT

h2
min,x|ωx| · |C−1x (∇R2uh(x)−∇uh|T (x))|2 .
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Note that equivalences (5),(A3) have been applied to switch from element related data
hmin,T , C

−1
T to node related data hmin,x, C

−1
x . This yields immediately the desired inequal-

ities

η2Z2,x
.

∑

T⊂ωx

η2Z2,T
(32)

η2Z2,T
.

∑

x∈NT

η2Z2,x
(33)

provided that the mesh assumptions (A1)–(A3) are satisfied. Note that the sums on the
right–hand side of (32), (33) are necessary because ηZ2,x depends on uh|ωx

whereas ηZ2,T

depends on uh on
⋃

x∈NT

ωx.

The next lemma states a novel equivalence which is similar to the one of lemma 3.8.
The main difference is that now the weights µT do not have to be bounded away from 0.
The technique to prove this lemma seems to be new.

Lemma 3.12 Let mesh assumption (A1) be satisfied, and consider an arbitrary node x
and the associated patch ωx. Let v be a (scalar or vector valued) function defined on ωx

such that v|T ∈ P0(T ), i.e. v is piecewise constant. Let further µT , T ⊂ ωx, be arbitrary
non–negative weights such that

∑

T⊂ωx

µT = 1. Define vZZ as in lemma 3.8. Then

∑

E:x∈NE

|[[v]]E|2 ∼
∑

T⊂ωx

∣

∣vZZ − v|T
∣

∣

2
. (34)

Proof: Note first that it suffices to prove (34) component wise, i.e. assume that v ≡ v is a
scalar, piecewise constant function on ωx. For simplicity of notation denote the elements
of ωx temporarily by T1 . . . Tn. Accordingly set µi := µTi

and vi := v|Ti
. The mesh

assumptions state that n is bounded from above uniformly on Th.
We start the proof for an interior node x. Consider first the left hand side of (34) which

now reads
∑

E:x∈NE

|[[v]]E|2 =
∑

i,j

x∈NE,E=Ti∩Tj

|vi − vj|2

i.e. we sum over all elements Ti and Tj that share a common face E (in 3D) or a common
edge (in 2D). The last sum can be written in matrix notation as

0 ≤
∑

i,j

x∈NE,E=Ti∩Tj

|vi − vj|2 = (Aw,w) (35)

with

A = (ai,j)
n
i,j=1 ∈ Rn×n

ai,j =







d if i = j
−1 if Ti and Tj share a common face (3D) or edge (2D)
0 otherwise

w := (v1, v2, . . . , vn)T .
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Obviously A = AT is positively semidefinite and weakly diagonally dominant. From (35)
we further conclude that A has exactly one eigenvalue 0 corresponding to the eigenvector
w = 1 := (1, 1, . . . , 1)T ∈ Rn; all other eigenvalues are positive. The matrix A depends
solely on the topology of the patch ωx but not on its geometry. Since the number of such
topologies is finite (n is bounded because of mesh assumption (A1)), there is only a finite
number of possibilities for the corresponding matrices A. Hence all positive eigenvalues of
A are bounded from above and below (and away from 0). Note that in 2D the matrix A
simplifies to a circulant tridiagonal matrix consisting of (−1, 2,−1).

Consider next the right hand side of (34) which can be rewritten as

∑

T⊂ωx

∣

∣vZZ − v|T
∣

∣

2
=

n
∑

i=1

∣

∣

∣

∣

( n
∑

j=1

µjv
j

)

− vi

∣

∣

∣

∣

2

= (Bw,w) ,

with B = (bi,j)
n
i,j=1 ∈ Rn×n

bi,j =

{

1− 2µi + nµ2
i for i = j

nµiµj − µi − µj for i 6= j

= δij + nµiµj − µi − µj .

Introducing µ := (µ1, . . . , µn)
T ∈ Rn one derives

B = I + nµµT − µ1T − 1µT

B − I =
(n

2
µ− 1

)

µT + µ
(n

2
µ− 1

)T

= νµT + µνT

with ν :=
(n

2
µ− 1

)

.

Since B − I is symmetric, it has a full system of eigenvectors. Because B − I is of rank
2, it has n − 2 eigenvalues 0. For every other eigenvalue λ of B − I the corresponding
eigenvector is a linear combination of µ and ν. A simple calculation reveals that then λ is
also an eigenvalue of the matrix





µTν µTµ

νTν νTµ



 =





n
2
µTµ− 1 µTµ

n2

4
µTµ n

2
µTµ− 1



 ∈ R2×2 ,

i.e. λ1 = −1 and λ2 = nµTµ− 1. Hence the eigenvalues of B are

λ(B) =







0 single eigenvalue
nµTµ single eigenvalue
1, . . . , 1 n− 2 times

.

The arithmetic quadratic mean inequality gives

1 ≤ nµTµ = n

n
∑

i=1

µ2
i ≤ n ,
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hence all positive eigenvalues of B lie in the range [1, n]. The eigenvalue 0 is associated
with the eigenvector 1.

Summarizing, A and B both have a single eigenvalue 0 corresponding to the same
eigenvector 1. All other eigenvalues are positive and bounded from above and below. This
implies

A ∼ B and (Aw,w) ∼ (Bw,w) ∀w ∈ Rn

which proves the lemma for an interior node x.
For a boundary node x we can proceed in almost the same way. The only difference

consists in a slight modification of the matrix A, namely, ai,i = d−k where k is the number
of boundary faces (of the element Ti) that contain the node x. The properties of A and
the remainder of the proof stay exactly the same as before.

Now we are able to prove equivalences with the second ZZ estimator (involving the
arbitrary recovered gradient ∇R2).

Theorem 3.13 (Equivalences with second ZZ estimator) Let the mesh assumptions
(A1)–(A4) be satisfied. Then the following local and global relations hold (for all x ∈ NΩ̄

or T ∈ Th).

ηR,x ∼ ηZ2,x (36)

ηR ∼ ηZ2
(37)

η2R,x .
∑

T⊂ωx

η2Z2,T
(38)

η2Z2,T
.

∑

x∈NT

η2R,x . (39)

Proof: To prove (36), fix an arbitrary node x ∈ NΩ̄ and consider v := C−1x ∇uh on the
patch ωx. Since v is piecewise constant on ωx, lemma 3.12 can be applied which implies

vZZ =
∑

T⊂ωx

µT,xC
−1
x ∇uh|T = C−1x ∇R2uh(x) .

In conjunction with lemma 3.4 this yields

η2R,x

(16)∼ η2
Ř,x

= h2
min,x|ωx|

∑

E:x∈NE

| [[C−1x ∇uh]]E|2

(34)∼ h2
min,x|ωx|

∑

T⊂ωx

|C−1x ∇R2uh(x)− C−1x ∇uh|T |2 = η2Z2,x
.

Next, (38) is a direct consequence of (36) and (32):

η2R,x = η2R,x

(36)∼ η2Z2,x

(32)
.

∑

T⊂ωx

η2Z2,T
.
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The converse relation (39) can be concluded similarly:

η2Z2,T

(33)
.

∑

x∈NT

η2Z2,x

(36)∼
∑

x∈NT

η2R,x =
∑

x∈NT

η2R,x .

Finally the global equivalence (37) can be proven via (38) and (39).

η2R =
∑

x∈N
Ω̄

η2R,x

(38)
.

∑

x∈N
Ω̄

∑

T⊂ωx

η2Z2,T
= (d+ 1)

∑

T∈Th

η2Z2,T
= (d+ 1)η2Z2

(39)
.

∑

T∈Th

∑

x∈NT

η2R,x .
∑

x∈N
Ω̄

η2R,x = η2R .

Note that the sums in (38) and (39) appear because ηR,x is a node related term whereas
ηZ2,T is an element related quantity.

Theorem 3.14 (ZZ error estimation) Assume that mesh assumptions (A1)–(A5) are
satisfied. Then the error is bounded locally from below and globally from above.

ηZ2,x . ‖∇(u− uh)‖ωx
+ inf

fh∈Vh

hmin,x ‖f − fh‖ωx
∀x ∈ NΩ̄ (40)

‖∇(u− uh)‖Ω . m1(u− uh, Th)
(

η2Z2
+ inf

fh∈Vh

∑

T∈Th

h2
min,T‖f − fh‖2T

)1/2

. (41)

Proof: These are immediate consequences of lemma 3.3 and theorem 3.13.

Corollary 3.15 (ZZ error estimation on isotropic meshes) Assume that an isotro-
pic mesh satisfies mesh assumption (A5). Then the ZZ error estimator ηZ2,x is reliable and
efficient.

This holds even when the corresponding recovered gradient ∇R2 is defined with arbitrary
weights (non–negative with sum 1).

As far as we know this result is new even for isotropic meshes. So far special weights had
to be chosen for the recovered gradient in order to prove equivalence with the residual error
estimator and, in turn, reliability and local efficiency of the ZZ error estimator, cf. [Ver96,
Section 1.5]. Now there is the freedom to choose arbitrary weights.

Note that reliability alone for an arbitrary recovered gradient has been shown in [CB01].
Global efficiency (up to higher order terms) is obtained in the sequel [BC01].
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4 The mesh assumptions revisited

As we have seen, the analysis of the ZZ error estimators required several mesh assumptions
that were introduced in section 2.3. These assumptions are now discussed in more detail.

In section 4.1 it is shown that there exist meshes which satisfy all assumptions. Sec-
tions 4.2 and 4.3 are devoted to mesh assumption (A3) while section 4.4 investigates mesh
assumption (A4). With that help we can prove in section 4.5 that the mesh assumptions
are satisfied for another class of meshes.

In section 4.6 the role of the mesh assumptions is examined by showing that assump-
tion (A4) is a necessary condition for error estimation. Finally section 4.7 summarizes the
occurrences of the mesh assumptions in a compact way.

4.1 Rectangular tensor product type meshes satisfy the mesh
assumptions

In this section we prove that the mesh assumptions (A1)–(A5) can be satisfied. To this end
we consider rectangular tensor product type tetrahedral meshes. By this we understand
that the tetrahedra of Th can be grouped such that a set of six of them forms a rectangular
hexahedron, cf. also figure 2. Assumption (A1) then clearly holds.

At this stage of generality, assumption (A2) obviously can be satisfied, so we assume
that it holds. It states that the dimension of the tetrahedra (in each of the three anisotropic
directions) must not change rapidly across neighbouring elements. This assumption is quite
weak. It allows, for example, meshes that resolve boundary layers, see e.g. figure 2.

Figure 2: Anisotropic tensor product type mesh

For rectangular tensor product type meshes we now prove that (A1) and (A2) imply
(A3)–(A5). Let us start with (A3), i.e. we construct a matrix Cx and show the correspond-
ing properties. Our exposition describes the 3D case; the 2D analogies are straightforward.
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Proof of assumption (A3)

Start with a node x of Th and an arbitrary tetrahedron T ⊂ ωx. For this tetrahedron
recall the definition of the matrix CT , of the orthogonal vectors p

i,T
and their length hi,T ,

i = 1, 2, 3, cf. section 2.
Since we consider tensor product type meshes there exists a circumscribing rectangular

brick (i.e. hexahedron) B ⊃ T . The three edge lengths of this brick B are denoted by

h1,B ≥ h2,B ≥ h3,B .

Choose corresponding edge vectors p
i,B

, i = 1, 2, 3, i.e. such that |p
i,B
| = hi,B. The

orientation of these orthogonal vectors does not matter. The notation is visualized in
figure 3.

p
1,B

p
2,B

p
3,B

p
1,T

p
2,T

p
3,T

Figure 3: Tetrahedron T and vectors p
i,T

(top)

Box B and vectors p
i,B

(bottom)

Define next the matrix CB ∈ R3×3 whose columns are formed by the vectors p
i,B

,

CB := (p
1,B

, p
2,B

, p
3,B

) .

Finally recall the node related, averaged lengths hi,x. Define three orthogonal vectors

p
i,x

:=
hi,x

hi,B

· p
i,B

= hi,x ·
p
i,B

|p
i,B
| i = 1, 2, 3
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which are oriented along the edges vectors p
i,B

of B but which have a different length

|p
i,x
| = hi,x. Define the matrix Cx ∈ R3×3 by

Cx := (p
1,x

, p
2,x

, p
3,x

) .

This immediately implies CT
x Cx = diag(h2

1,x, h
2
2,x, h

2
3,x). Furthermore the geometric prop-

erties as well as relations (5) yield the equivalences

hi,T ∼ hi,B ∼ hi,x i = 1, 2, 3 . (42)

Now we are ready to prove assumption (A3) which reads

|C−1x v| ∼ |C−1T v| ∀v ∈ R3 .

Let us start with investigations of the linear transformations associated with CB and
C−1T . Recall first that ei ∈ R3 is the i th unit vector. Because of CBei = p

i,B
∈ R3, the

transformation via CB maps the unit cube [0, 1]3 onto the brick B (or more precisely onto
the corresponding brick at the origin of the coordinate system). Since the four vertices of
T ⊂ B are also vertices of B, the transformation via CB thus maps

CB : T̃ → T ,

where T̃ ⊂ [0, 1]3 is a tetrahedron whose four vertices are also vertices of the unit cube
[0, 1]3. Therefore the diameter %(T̃ ) of the inscribed sphere of T̃ is of order O(1),

%(T̃ ) ∼ 1 .

Similarly the second transformation via C−1T is examined. It maps

C−1T : T → T̂ ,

where the tetrahedron T̂ has vertices (0, 0, 0)T , (1, 0, 0)T , (x2, 1, 0)
T and (x3, y3, 1)

T , with
0 ≤ x2, x3 ≤ 1 and |y3| ≤ 1, cf. the definition of CT or [Kun00, Section 1.2]. Thus the
diameter diam(T̂ ) of the tetrahedron T̂ satisfies

1 < diam(T̂ ) ≤
√
6 .

The combined transformation via C−1T CB now maps

C−1T CB : T̃ → T̂ .

Hence the spectral norm of this matrix can be bounded from above by

‖C−1T CB‖ ≤
diam(T̂ )

%(T̃ )
. 1 .
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This inequality can be used to derive the matrix bound

‖C−1T CxC
T
x C−T

T ‖ = ‖C−1T CB · C−1B CxC
T
x C−T

B · CT
BC−T

T ‖ ≤ ‖C−1B Cx‖2 · ‖C−1T CB‖2

. max
i=1,2,3

h2
i,x

h2
i,B

· 1 . 1

since C−1B Cx = diag(h1,x/h1,B , h2,x/h2,B , h3,x/h3,B), and because of (42). The first matrix
M := C−1T CxC

T
x C−T

T is symmetric and positive definite. For such matrices the largest
eigenvalue is λmax(M) = ‖M‖ and hence

λmax(C
−1
T CxC

T
x C−T

T ) . 1 .

In a completely analogous fashion one treats M−1 = CT
T C−T

x C−1x CT to obtain

λmax(M
−1) = ‖CT

T C−T
x C−1x CT‖ . 1 .

This implies λmin(M) = (λmax(M
−1))−1 & 1, i.e. all eigenvalues of M are of order O(1).

Since the eigenvalues of M = C−1T CxC
T
x C−T

T and of (C−T
x C−1x )−1C−T

T C−1T are the same, one
further concludes

vTC−T
x C−1x v ∼ vTC−T

T C−T
T v ∀v ∈ R3 .

This finally gives |C−1x v| ∼ |C−1T v| for all v ∈ R3 which proves the remaining equivalence
of (A3).

Proof of assumption (A4)

We now prove that (A2) also yields (A4). Thus let T be an arbitrary tetrahedron and
E be any face thereof. Employ the notation of the previous paragraphs and consider the
brick B that circumscribes T . Then C−1B maps T onto T̃ (see above). Next we consider
the vector hE,T nE in a geometric way. If the unit vector nE points inward (with respect
to T ) then hE,T nE points from the face E of T (or its plane) to the opposite vertex of T .
If nE is the outward vector then consider −hE,T nE instead.

Therefore C−1B hE,T nE is a vector that points from the face Ẽ := C−1B E of T̃ to the
opposite vertex of T̃ . This results in

1 ∼ %(T̃ ) < |C−1B hE,T nE| <
√
3 , i.e. |C−1B nE| ∼ h−1E,T .

Next recall that C−1x CB is a diagonal matrix. Apply the equivalence hi,B ∼ hi,x from above
to conclude

min
i=1,2,3

hi,B

hi,x

· |C−1B nE| ≤ |C−1x nE| = |C−1x CB · C−1B nE| ≤ max
i=1,2,3

hi,B

hi,x

· |C−1B nE| .

In conjunction with (A3) one finally arrives at the desired equivalence

h−1E,T ∼ |C−1B nE| ∼ |C−1x nE|
(A3)∼ |C−1T nE| .
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Proof of assumption (A5)

For (A5) to hold we have to specify assumption (A2) slightly more precisely, namely we
demand

hmin,T1

hmin,T2

< αd :=

{ √
2 +
√
3 ≈ 3.146 if d = 2

(3 +
√
5)/2 ≈ 2.618 if d = 3

∀T1 ∩ T2 6= ∅ .

This slightly more restrictive assumption on the change of hmin,T across neighbouring
elements immediately implies the first inequality of (4) in (A5).

In order to investigate the neighbourhood patches Rk(T ) observe first that
⋃k

l=0 Rl(T )
contains O(kd) elements. Hence Rk(T ) contains O(kd−1) elements, and the second inequal-
ity of (4) in (A5) holds with r = d− 1, β = 1.

With these values of αd and β the third inequality of (4) in (A5) is satisfied as well.

4.2 Assumption (A3) implies (A1) and (A2)

In this section it is proven that assumptions (A1) and (A2) are already consequences of
assumption (A3).

First we show that (A3) implies a bounded number of elements in each patch ωx (uni-
formly over Th). To this end consider a patch ωx and an arbitrary element T thereof. In
both the 2D and 3D case take an arbitrary edge of T and denote the corresponding edge
vector by v. Assumption (A3) yields for some matrix Cx

|C−1x v| ∼ |C−1T v| .

Next consider the inverse mapping C−1T which maps T onto T̂ (for simplicity we omit the

transitional part of the mapping; see also section 2.2). Thus v̂ := C−1T v is an edge of T̂ .

Hence this mapped edge has a length |v̂| = |C−1T v| ∼ diam(T̂ ) ∼ 1 which gives

|C−1x v| ∼ 1 .

Since this holds for all edges of ωx, the transformation via C−1x maps ωx onto a patch
C−1x ωx whose edges all have a length of O(1). Therefore C−1x ωx is a patch consisting of
isotropic elements. Clearly the number of elements in such a patch is bounded, and so is
the number of elements in the original patch ωx. Thus (A1) holds uniformly over Th.

Next we prove that assumption (A3) also implies (A2). Consider again a patch ωx

and two arbitrary elements T1, T2 thereof. Apply the transformation via C−1x to the patch
ωx which results in the transformed patch C−1x ωx having the transformed elements T̃i :=
C−1x Ti, i = 1, 2, cf. figure 4. Above we have proved that T̃i are isotropic elements of size
O(1). Therefore we can scale T̃2 with some factor α ∼ 1 such that

α · T̃2 ⊂ T̃1 .

In figure 4, T̃2 and α · T̃2 are depicted by the shaded triangles (the necessary translation is
again omitted for ease of notation).
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T1

T2

T̃1

T̃2

C−1x

Figure 4: Patches ωx (left) and C−1x ωx (right)

The transformation via Cx back to the original domain yields

α · T2 ⊂ T1 .

and thus

α · |T2| ≤ |T1|
α · h1,T2 ≤ diam(T1) ∼ h1,T1

%(αT2) ∼ α · hmin,T2 ≤ hmin,T1 .

Since T1, T2 are completely arbitrary and thus interchangeable, and because of a scaling
factor α ∼ 1, one obtains

|T1| ∼ |T2|
h1,T1 ∼ h1,T2

hmin,T1 ∼ hmin,T2 .

In the 2D case this already constitutes the desired assumption (A2). For the 3D case
recall additionally that 6 |T | = h1,T · h2,T · h3,T which results in the remaining equivalence
h2,T1 ∼ h2,T2 .

Remark 4.1 Assumption (A3) implies (A1) and (A2) but not vice versa, as a compara-
tively simple counterexample can show. Thus (A3) is a stronger assumption.

4.3 Necessary and sufficient condition for mesh assumption (A3)

Here we state a geometrical condition which is necessary and sufficient for assumption
(A3) on unstructured tetrahedral meshes. Recall that p

i,T
are the three main anisotropic

direction vectors of an element T , and that hi,x are the averaged lengths of a patch ωx,
i = 1 . . . d, cf. section 2.2. The space dimension is either d = 3 or d = 2. We start with
some technical equivalences.
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Lemma 4.2 The assumption (A3) is equivalent to the condition

||C−1x CT || ∼ 1 and ||C−1T Cx|| ∼ 1 ∀T ⊂ ωx and all nodes x . (43)

Proof: ⇒: Starting from (A3) and taking v := CTw, we get

|C−1x CTw| = |C−1x v| (A3)∼ |C−1T v| = |w| ∀w ∈ Rd,∀T ⊂ ωx .

This yields
||C−1x CT || = max

|w|=1
|C−1x CTw| ∼ 1.

We obtain similarly the second bound by taking v := Cxw.
⇐: Define the symmetric, positive definite matrix M := C−1

T CxC
T
x C−T

T . Completely
analogous to section 4.1 one concludes

λmax(M) = ‖C−1T CxC
T
x C−T

T ‖ ≤ ‖C−1T Cx‖2 ∼ 1

and
λmin(M) = (λmax(M

−1))−1 = ‖CT
T C−T

x C−1x CT‖−1 ≥ ‖C−1x CT‖−2 ∼ 1 .

Hence all eigenvalues of M are of order O(1). Following once more the arguments of
section 4.1 yields

|C−1T v| ∼ |C−1x v| ∀ v ∈ Rd ,

which is nothing else than (A3).

Corollary 4.3 The assumption (A3) is equivalent to the condition

||C−1T1
CT2|| . 1 ∀T1, T2 ⊂ ωx and all nodes x. (44)

Proof: For the necessity of the condition (44) apply lemma 4.2 and write

||C−1T1
CT2|| = ||C−1T1

CxC
−1
x CT2|| ≤ ||C−1T1

Cx|| · ||C−1x CT2|| ∼ 1 ∀T1, T2 ⊂ ωx .

The sufficiency of (44) follows directly by the choice Cx := CT ′ for an arbitrary element
T ′ ⊂ ωx.

Theorem 4.4 (Equivalent formulation of (A3)) Assume that for all patches ωx and
any two elements T1, T2 ⊂ ωx the inequality

∣

∣

∣
cos^[p

i,T1
, p

j,T2
]
∣

∣

∣
.

hi,T1

hj,T2

∀ 1 ≤ i, j ≤ d (45)

is satisfied. Then we can fix an arbitrary element T ′ ⊂ ωx and set Cx := CT ′. This choice
implies assumption (A3), i.e.

|C−1x v| ∼ |C−1T v| ∀ v ∈ Rd,∀T ⊂ ωx .

Conversely the assumption (A3) implies that (45) holds for all T1, T2 ⊂ ωx and all nodes x.
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Proof: Let us first derive an equivalent formulation of inequality (45). Fix an arbitrary
patch ωx and two arbitrary elements T1, T2 ⊂ ωx. Since the vectors p

i,T1
are mutually

orthogonal, there exists a unique decomposition

p
j,T2

=
d
∑

i=1

αij · pi,T1 ∀ j = 1 . . . d .

The real coefficients αij satisfy

(p
j,T2

, p
i,T1

) = αij · (pi,T1 , pi,T1) = αij · h2
i,T1

.

Utilizing the definition of hi,Tk
one obtains

αij =
hj,T2hi,T1 · cos^[p

i,T1
, p

j,T2
]

h2
i,T1

=
hj,T2

hi,T1

· cos^[p
i,T1

, p
j,T2

] .

Condition (45) of the theorem is thus equivalent to

|αij| . 1 ∀ 1 ≤ i, j ≤ d .

Recall next that the matrices CT1 , CT2 are formed by

CTk
:= (p

1,Tk
, p

2,Tk
, p

3,Tk
) ,

cf. section 2.2, which results in

C−1T1
p
j,T2

= C−1T1

d
∑

i=1

αijpi,T1
=

d
∑

i=1

αijei

C−1T1
CT2 = (αij)

d
i,j=1

∥

∥C−1T1
CT2

∥

∥ ∼ max
i,j=1...d

|αij| .

Hence ‖C−1T1
CT2‖ . 1 is equivalent to |αij| . 1 ∀ i, j and to (45). From here we conclude

the desired result thanks to Corollary 4.3.

Remark 4.5 The previous theorem provides the means for practical tests whether assump-
tion (A3) is satisfied on a real mesh. For neighbouring elements one has to compute the
angle between the main anisotropic direction vectors p

i,T1
and p

j,T2
and compare its cosine

with the stretching ratio hi,T1/hj,T2.
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4.4 Necessary and sufficient condition for mesh assumption (A4)

In this section we give equivalent formulations of mesh assumption (A4), both of which
are geometrically characterized.

Theorem 4.6 (Equivalent formulation of (A4)) The assumption (A4) holds if and
only if for all elements T and all faces E ⊂ ∂T one has

max
i=1,···,d

| cos^[p
i,T

, nE]|
hi,T

. h−1E,T . (46)

Proof: Fix an element T and a face E ⊂ ∂T . As before we may write in a unique way

nE =
d
∑

i=1

αi · pi,T ,

with

(nE, pi,T ) = αi · h2
i,T and αi =

cos^[p
i,T

, nE]

hi,T

.

Since C−1T p
i,T

= ei we obtain C−1T nE = (α1, α2, α3)
T . From the equivalence of norms in Rd

we conclude

||C−1T nE|| ∼ max
i=1,···,d

| cos^[p
i,T

, nE]|
hi,T

which finishes the proof.

Next we derive a purely geometrical characterization of (A4). This assumption states

|C−1T hE,TnE| ∼ 1 ∀ E ⊂ ∂T .

Thus fix an arbitrary element T . Given a face E ⊂ ∂T , denote temporarily its opposite
vertex by VE. Let UE be the orthogonal projection of VE onto E (or the plane that contains

E). Hence
−→

UEVE is the height of VE onto the plane of E.
Next we have to define an appropriate neighbourhood of E. To this end denote by Eα

the face E scaled by the real factor α with respect to the midpoint ME of E. In vector
notation this can be written as Eα := { ~ME + α · (y− ~ME) : y ∈ E}. In other words, Eα is
contained in the plane of E, and E1 ≡ E.

With that definition we can reformulate (A4) as an equivalent geometrical condition.

Theorem 4.7 (Equivalent formulation of (A4))
(A4) holds if and only if UE ∈ Eα is satisfied for all E ⊂ ∂T with some α . 1.

Proof: Obviously the vector
−→

UEVE equals

−→

UEVE= ±hE,TnE .
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Since C−1T maps T onto T̂ , the vector
−→

UEVE is mapped onto a vector from the point

ÛE := C−1T (UE) of the the face Ê := C−1T (E) of T̂ to the opposite vertex V̂E := C−1T (VE).

Utilizing ±C−1T hE,TnE = C−1T (
−→

UEVE) =
−→

ÛEV̂E, assumption (A4) can be rewritten as

|
−→

ÛEV̂E | ∼ 1 .

Because T̂ is an isotropic tetrahedron of size O(1) and V̂E is a vertex thereof, this is
equivalent to ÛE ∈ Êα and UE ∈ Eα, with α . 1.

4.5 Prismatic tensor product type meshes satisfy the mesh as-
sumptions

In section 4.1 we have shown that the mesh assumptions are satisfied for tetrahedral meshes
which are the tensor product of three 1D meshes. In this section we prove that the as-
sumptions (A3)–(A5) hold also for anisotropic tensor product meshes of a prismatic domain
Ω = G× (a, b) with a < b, obtained using a 2D refined isotropic mesh of Raugel’s type in
G and a uniform mesh in the third direction. Examples of such meshes are given in the
right part of figure 7 and in [Ape99].

We define families of meshes Th of Ω by introducing in G the standard mesh grading
for two-dimensional corner problems, see for example [OR79, Rau78]. Let TG = {K} be a
regular isotropic triangulation of G; the elements K are triangles. Let rK be the distance
of K to the corner,

rK := inf
(x1,x2)∈K

(x2
1 + x2

2)
1/2,

(note that Ω is scaled such that rK < 1). With h being a global mesh parameter and
µ ∈ (0, 1] being a grading parameter, we assume that the element size hK := diamK
satisfies

hK ∼
{

h1/µ for rK = 0,

hr1−µ
T for rK > 0.

This graded two-dimensional mesh is now extended in the third dimension using the uni-
form mesh size h. In this way we obtain a pentahedral (i.e. prismatic) triangulation and, by
dividing each pentahedron into three tetrahedra, we further get a tetrahedral triangulation
Th of Ω, see the right part of figure 7 for an illustration.

Proof of assumption (A3)

Each tetrahedron T is included in a prism Q = K × I, where K is an isotropic element in
G of diameter hK . h and I is a real interval of length hI ∼ h (this notation will be used
in the rest of the section). We now define the matrix

CQ =





0
0

BK

hI 0 0



 ,
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where BK is a 2×2 matrix which maps the usual reference element K̂ of R2 onto K. Then
||BK || ∼ hK . Since C−1Q maps T into an element T̃ such that ρ(T̃ ) ∼ 1 as well as diam T̃ ∼ 1

and C−1T maps T into a reference element T̂ such that ρ(T̂ ) ∼ 1 and diam T̂ ∼ 1, we get

||C−1T CQ|| ≤
diam T̂

ρ(T̃ )
∼ 1,

and similarly

||C−1Q CT || ≤
diam T̃

ρ(T̂ )
∼ 1.

By lemma 4.2, we obtain

|C−1T v| ∼ |C−1Q v| ∀ v ∈ Rd .

For a node x we now define

Cx :=





0 h2,x 0
0 0 h2,x

h1,x 0 0



 .

For any prism Q = K × I that has x as a node, the construction of the mesh implies

h1,x ∼ hI and h2,x ∼ h3,x ∼ hK .

Subsequently one obtains

||C−1Q Cx|| ∼ ||C−1x CQ|| ∼ 1 .

Applying lemma 4.2 one more, this yields for the node x of the prism Q

|C−1Q v| ∼ |C−1x v| ∀ v ∈ Rd .

In combination with |C−1T v| ∼ |C−1Q v| from above one ends up with the desired equivalence
(A3).

Proof of assumption (A4)

To check this assumption we use the equivalent formulation given by theorem 4.6. Thus
consider a tetrahedron T lying inside the prism Q = K × I.

If hI ≤ hK then T is an ‘outer’ tetrahedron (rT ∼ 1), and one even has hI ∼ hK . Hence
T is an isotropic element for which assumption (A4) always holds.

For all other tetrahedra T one has hI > hK and h1,T ∼ hI , h2,T ∼ h3,T ∼ hK . For such
anisotropic elements we need to distinguish between ‘large’ faces and ‘small’ faces of T .
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a) For a large face E, we have |E| ∼ h1,Th3,T and therefore hE,T ∼ h3,T . Consequently for
such a face the condition (46) always holds, i.e.

max
i=1,···,d

| cos^[p
i,T

, nE]|
hi,T

. h−1E,T .

b) For small faces the situation is more delicate since |E| ∼ h2
3,T and therefore hE,T ∼

h1,T ∼ hI . This situation only occurs for a tetrahedron T having a face parallel to the
x1, x2-plane. Then the small face E is such that nE = ±e3. From

cos^[p
i,T

, nE] = ±
(p

i,T
)3

hi,T

,

where (pi,T )k means the kth component of the vector pi,T , we see that
∣

∣

∣cos^[p
i,T

, nE]
∣

∣

∣

hi,T

=
|(p

i,T
)3|

h2
i,T

. (47)

This directly yields (46) for i = 1 because |(p
1,T

)3| ≤ |p1,T | = h1,T .

For i = 2 or 3, we need to estimate |(p
i,T

)3|. The orthogonality relation (pi,T , p1,T ) = 0

for i = 2 or 3 yields

(p
i,T

)3(p1,T )3 = −
2
∑

k=1

(p
i,T

)k(p1,T )k .

The assumption hI > hK implies that p
1,T

is an edge common to two large faces of T and

consequently

|(p
1,T

)3| ∼ h1,T

|(p
1,T

)k| . h3,T ∀k = 1, 2

as well as |(p
i,T

)k| ≤ |p
i,T
| ∼ h3,T ∀i = 2, 3,∀k = 1, 2, 3 .

Combining these inequalities and equivalences yields immediately

|(p
i,T

)3| .
h2
3,T

h1,T

∀i = 2, 3 .

Inserting this bound into (47) proves that (46) holds also for i = 2, 3; hence (A4) follows
from theorem 4.6.

Proof of assumption (A5)

This assumption holds under exactly the same conditions as described for the rectangular
tensor product type meshes of section 4.1. The completely analogous reasoning is thus
omitted.
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4.6 Mesh assumption (A4) is necessary for error estimation

In the previous sections we investigated what meshes satisfy the mesh assumptions. In
contrast, this section sheds light on the role that the mesh assumptions play in error
estimation.

Our main theorem 3.13 states that mesh assumptions (A1)–(A4) are sufficient to prove
equivalences between the residual error estimator and the ZZ error estimator. Here we
prove that mesh assumption (A4) is also a necessary condition. To this end we present a
2D counterexample where (A4) is violated and consequently the desired equivalences no
longer hold.

Consider a criss–cross type mesh with nodal points located at

xik =

(

i · h1 + k · h2

k · h2

)

= i · h1

(

1
0

)

+ k · h2

(

1
1

)

i, k ∈ Z ,

where 0 < h2 ¿ h1 are fixed parameters, cf. figure 5.

T

x00 x10

x01

h1

h2

Figure 5: Mesh for the counterexample

This mesh clearly satisfies assumptions (A1) and (A2). It can be verified easily that
assumption (A3) holds as well for the choice Cx := diag(h1, h2) for all nodes x of Th. Mesh
assumption (A4) however is violated:

|C−1T nE| ∼ h−1E,T ∀ E ⊂ ∂T

does not hold anymore. This is mainly due to the fact that the triangles are not rectangular
(or at least close to that).

We now prescribe a finite element solution uh := max{0, y − x, x − y − h1} which has
in particular the nodal values

uh(xik) =

{

0 for i = 0 or i = 1
h1 for i = 2 or i = −1 ,

see figure 6. In the next paragraphs we compute the residual error estimator ηR,x for the
nodes x00, x10, x01 as well as the ZZ error estimator ηZ2,T for the triangle T that corresponds
to the three aforementioned nodes. It will turn out that the desired equivalence of both
error estimators does not hold anymore due to the violation of assumption (A4).
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–1
0

1
2

3

x

–1

0

1

2

3

y

0

1

2

3

4

Figure 6: Finite element solution uh for the counterexample

Residual error estimator ηR,x

A straightforward computation of the required terms results in

hmin,T ∼ h2 ∀T ∈ Th
hmin,x ∼ h2 ∀x ∈ NΩ̄

|ωxik
| =

{

2h1h2 for i+ k even
4h1h2 for i+ k odd

[[∂nE
uh]]E =

{ √
2 ∀ edges E on the lines y = x or y = x− h1

0 otherwise

hE =
1√
2
h1 ∀ edges E parallel to the line y = x .

Altogether one obtains

1

2
η2R,x10

=
1

2
η2R,x01

= η2R,x00

(11)
= h2

min,x00
|ωx00|

∑

E:x00∈NE

h−2E [[∂nE
uh]]

2
E

∼ h2
2 · 2h1h2 · 2 ·

(

1√
2
h1

)−2

·
√
2
2

∼ h−11 h3
2

and eventually
∑

x∈NT

η2R,x ∼ h−11 h3
2 .
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ZZ error estimator ηZ2,T

Here we utilize a recovered gradient with weights

µT,xik
:=
|T |
|ωxik
| =

{

1/4 for i+ k even
1/8 for i+ k odd ,

cf. (28). The terms that are required to compute the ZZ error estimator ηZ2,T then become

∇R2uh(x00) = ∇R2uh(x01) = −∇R2uh(x10) =
1

2

(

1
−1

)

∇R2uh|T =

(

x− y

h1

− 1

2

)

·
(

1
−1

)

∇uh|T =

(

0
0

)

CT = diag(h1, h2)

hmin,T = h2 .

The ZZ error estimator now evaluates to

η2Z2,T

(29)
= h2

min,T ‖C−1T (∇R2uh −∇uh)‖2T = h2
2 ·

h2
1 + h2

2

24h1h2

∼ h1h2 .

In conjunction with the results from above one concludes

η2Z2,T
∼ h2

1

h2
2

∑

x∈NT

η2R,x

η2Z2,T
6.

∑

x∈NT

η2R,x ,

i.e. relation (39) of theorem 3.13 does not hold anymore. Consequently the local equivalence
(36) is violated at certain nodes x of Th. This proves the necessity of the mesh assumption
(A4).

4.7 Short summary of the Assumptions

The table below summarizes main ingredients and results together with the mesh assump-
tions required for corresponding proof.
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Lemma Requires assumption

Thm Eqn Formula (A1) (A2) (A3) (A4) (A5)

- (6) |C−1x nE| ∼ h−1E x x x

3.2 η2R,x ∼
∑

E:x∈NE

η2R,E x x

3.3 (14), (15) Residual error estimation x x x

3.4 (16) ηR,x ∼ ηŘ,x x x x

- (18) (v, v)h ∼
∑

T∈Th

‖BTv‖2T x x

3.6 (20) (∇R1uh)(x) =
∑

T⊂ωx

µT ∇uh|T

- (24) η2Z1
∼ ∑

x∈N
Ω̄

η2Z1,x
x x

3.8 (25) Auxiliary lemma for ηZ1,x x

3.9 (26), (27) ηR,x ∼ ηZ1,x x x x x

- (32) η2Z2,x
.
∑

T⊂ωx

η2Z2,T
x x x

- (33) η2Z2,T
.
∑

x∈NT

η2Z2,x
x x x

3.12 (34) Auxiliary lemma for ηZ2,x x

3.13 (36)–(39) ηR,x ∼ ηZ2,x etc. x x x x

3.14 (40), (41) ZZ error estimation with ηZ2
x x x x x
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5 Numerical experiments

The aims of the numerical experiments are threefold. Firstly we investigate the mesh
assumptions. Secondly the main theoretical predictions are to be verified. Lastly the
constants that are involved in most inequalities/equivalences are examined numerically,
and the asymptotic behaviour is observed.

To this end we present three experiments. The first one features an isotropic solution on
an isotropic mesh, and thus tells what can reasonably be expected. The second experiments
exhibits an anisotropic solution on tensor product type, rectangular anisotropic mesh. We
believe such structured meshes to be best suited for ZZ error estimation. Finally the third
experiment involves an anisotropic solution on a more irregular anisotropic mesh (which is
unstructured in the xy directions, cf. also section 4.5).

In section 5.1 we present the details of each experiment. Section 5.2 is devoted to the
mesh assumptions (A3) and (A4). Finally in section 5.3 the main theoretical results are
tested numerically. We restrict ourselves to the second ZZ error estimator ηZ2

because it
is more general than the first ZZ estimator ηZ1

, and since the second estimator allows local
equivalences/estimates.

The results are given both numerically in tables and graphically as figures. Experi-
ment 1 is represented in all figures by the symbols , experiment 2 by , and
experiment 3 by .

5.1 Description of the experiments

Experiment 1: Isotropic solution + uniform mesh

This experiment utilizes the most favourite settings; thus one can observe which results
reasonably can be expected. Here we solve the Poisson problem

−∆u = f in Ω := (0, 1)3, u = uD on ∂Ω .

The exact isotropic solution u is prescribed to be

u = e−x + e−y + e−z ,

and the data f, uD are chosen accordingly. We employ isotropic, uniform tetrahedral
meshes Tl, l = 1 . . . 5, which are the tensor product of three uniform 1D meshes of mesh
size h = 2−l. The table below displays some interesting information about mesh and
solution.

Level l Elements ‖∇(u− uh)‖Ω max
T∈Tl

h1,T/h3,T m1(u− uh, Tl)
1 48 1.61E − 1 2.45 1.71
2 384 8.16E − 2 2.45 1.71
3 3 072 4.10E − 2 2.45 1.71
4 24 576 2.05E − 2 2.45 1.71
5 196 508 1.03E − 2 2.45 1.71
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Experiment 2: Anisotropic solution + structured anisotropic mesh

Here again the Poisson problem with inhomogeneous Dirichlet boundary conditions is
solved in Ω := (0, 1)3. The exact anisotropic solution u is here prescribed to be

u = e−x/ε + e−y/ε + e−z/ε, ε := 10−2,

and thus exhibits sharp boundary layers along the planes x = 0, y = 0 and z = 0.
The data f, uD are chosen accordingly. We employ structured anisotropic meshes Tl,
l = 1 . . . 5, cf. left part of figure 7. These meshes are formed by the tensor product of three
1D Bakhvalov type meshes with transition point at τ = 2ε| ln ε|, see also [Kun01c] for a
comprehensive description.

Figure 7: Meshes T3 of experiment 2 (left) and 3 (right)

In a similar fashion as before we present details of mesh and solution.

Level l Elements ‖∇(u− uh)‖Ω max
T∈Tl

h1,T/h3,T m1(u− uh, Tl)
1 48 9.91E + 0 14.1 1.61
2 384 8.82E + 0 14.3 1.71
3 3 072 6.28E + 0 14.4 1.70
4 24 576 3.67E + 0 14.5 1.67
5 196 508 1.94E + 0 14.5 1.62

Note first that the problem is comparatively poorly resolved. This is mainly due to the
right hand side f = −∆u ≡ ε−1u which has large and steep boundary layers (although still
f ∈ L2(Ω)). Secondly, the maximum aspect ratio of the anisotropic meshes is about 1:15.
These meshes are well suited to the anisotropic solution, as the small matching number
m1(u− uh, Tl) ≈ 1.7 confirms (cf. also exp. 1).
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Experiment 3: Anisotropic solution + semi–structured anisotropic mesh

The domain Ω here consists of 3/4 of a cylinder of height and radius 1, cf. the right part
of figure 7. The exact anisotropic solution u is prescribed to be

u(r, ϕ, z) = rλ · sin(λϕ) ·







1 + 2z(2z − 1) for z ∈ (0, 1/2)

1 + (3− 4z)(2z − 1) for z ∈ (1/2, 1)
, λ = 1/3.

This function behaves anisotropically along the concave edge, and is piecewise quadratic
in z direction. The data f, uD are chosen accordingly.

The sequence of meshes Tl, l = 1 . . . 5, is constructed by first generating an isotropic,
uniform mesh in the domain Ω. The subsequent nodal coordinate transformation

(x, y, z)T := (ρ · x̂, ρ · ŷ, ẑ)T with ρ := {x̂2 + ŷ2}(1−µ)/2µ, µ = 0.4,

yields the final, anisotropic mesh, see right part of figure 7. Hence the semi–structured
meshes Tl are the tensor product of an unstructured, graded 2D mesh in the xy plane, and
a uniform 1D mesh in the z direction, as in section 4.5.

The details of the meshes and the solution are displayed below. The problem is well
resolved, and all anisotropic meshes are well adapted to the solution, i.e. m1 < 2.

Level l Elements ‖∇(u− uh)‖Ω max
T∈Tl

h1,T/h3,T m1(u− uh, Tl)
1 96 1.59E + 0 5.4 1.91
2 768 8.60E − 1 9.7 1.86
3 6 144 4.50E − 1 27.3 1.83
4 49 152 2.33E − 1 77.0 1.83
5 393 216 1.21E − 1 217.7 1.83

5.2 Mesh Assumptions (A3) and (A4)

Here the mesh assumptions are investigated numerically.

Mesh Assumption (A3)

This assumption can be reformulated as

c1 · |C−1x v| ≤ |C−1T v| ≤ c2 · |C−1x v| ∀ v ∈ Rd,∀T ⊂ ωx .

In order to investigate this condition numerically we have to specify the matrix Cx for a
given node x. In view of theorem 4.4 choose that element T ⊂ ωx that has the smallest
aspect ratio h1,T/h3,T , and set Cx := CT .

Table 1 gives the corresponding values of c1, c2 for all three experiments, and all
meshes Tl. Figure 8 presents the same results graphically (note the logarithmic y scale).
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Experiment 1 Experiment 2 Experiment 3
Level c1 c2 c1 c2 c1 c2

1 0.500 1.856 0.082 11.908 0.451 6.169
2 0.500 1.856 0.078 11.730 0.323 7.328
3 0.500 1.856 0.078 11.640 0.379 8.178
4 0.500 1.856 0.078 13.444 0.372 8.336
5 0.500 1.856 0.078 13.419 0.353 8.357

Table 1: Values of c1, c2 for assumption (A3); all experiments
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Figure 8: Values of c1, c2 for assumption (A3); all experiments

On isotropic meshes (experiment 1) one always has c1 ∼ c2 ∼ 1 which is confirmed
by the moderate values. For the anisotropic mesh of experiment 2, the theoretical con-
siderations of section 4.1 reveal that (A3) holds as well. The values of c1, c2, however,
are less favourable than in the isotropic case. This mainly seems to be due to relatively
large changes of the element sizes hi,T across neighbouring elements. This observation is
strengthened by the results of experiment 3 which features a more steady change of the
element sizes, and where the values of c1, c2 are more moderate.

Summarizing, a suitably graded mesh will be advantageous for (A3) to hold.
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Mesh Assumption (A4)

The assumption (A4) on the shape of the elements can be rewritten as

c3 ≤ |C−1T nE| · hE,T ≤ c4 ∀T ∈ Tl, ∀ E ⊂ ∂T .

Utilizing the theory of section 4.4, we can apply theorem 4.7 to all three experiments which
yields c3 ∼ c4 ∼ 1 (alternatively employ the results of section 4.1 for experiments 1 and 2,
as well as the results of section 4.5 for experiment 3). This is verified impressively by the
numerical results presented in table 2 and graphically in figure 9. Summarizing, (A4) does
not cause problems for well shaped elements.

Experiment 1 Experiment 2 Experiment 3
Level c3 c4 c3 c4 c3 c4

1 0.754 1.202 0.901 1.492 0.760 1.415
2 0.754 1.202 0.754 1.497 0.723 1.564
3 0.754 1.202 0.754 1.500 0.714 1.690
4 0.754 1.202 0.754 1.501 0.714 1.714
5 0.754 1.202 0.754 1.502 0.712 1.717

Table 2: Values of c3, c4 for assumption (A4); all experiments
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5.3 Main numerical results

In this section the main theoretical results for the second ZZ error estimator are tested
numerically. First we investigate relations (36), (37) of theorem 3.13 which state a local
and global equivalence between the residual error estimator and the ZZ error estimator,
respectively. Afterwards the results of the actual ZZ error estimation of theorem 3.14 are
presented.
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Results for theorem 3.13

The local equivalence (36) can be rewritten as

c5 · ηZ2,x ≤ ηR,x ≤ c6 · ηZ2,x ∀ x ∈ NΩ̄ .

The values of c5, c6 are given in table 3 and graphically in figure 10. One observes that
the equivalence between both error estimators diminishes for anisotropic meshes but is
still acceptable (note that c5, c6 describe only the worst cases over all x ∈ NΩ̄). The
comparatively large values of c6 in experiment 2 seem to be caused by (A3), see above,which
underlines the importance of that mesh assumption.

Experiment 1 Experiment 2 Experiment 3
Level c5 c6 c5 c6 c5 c6

1 0.855 1.309 0.197 3.420 0.844 4.354
2 0.826 1.309 0.843 14.854 0.848 5.512
3 0.817 1.309 0.562 15.576 0.859 5.607
4 0.815 1.309 0.541 14.546 0.797 5.500
5 0.815 1.309 0.598 13.833 0.725 5.440

Table 3: Values of c5, c6 for equivalence (36); all experiments
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The global equivalence (37) between the residual estimator and the ZZ estimator reads

ηR ∼ ηZ2
.

Thus we present ηR/ηZ2
for all meshes and experiments. The results of table 4 and figure 11

confirm the theoretically proven equivalence. Note that the comparatively large values of
ηR/ηZ2

are mainly due to the different range of the sums, cf. (12) and (30). Furthermore
the summand ηR,x is contains the factor |ωx| while ηZ2,T is related to |T |.

ηR/ηZ2

Level Experiment 1 Experiment 2 Experiment 3

1 25.1 39.9 43.7
2 28.7 35.1 36.7
3 31.2 28.2 39.5
4 32.8 30.5 43.0
5 33.8 33.6 45.8

Table 4: Equivalence (37); all experiments
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Results for theorem 3.14

In order to present the results of the ZZ error estimation clearly, let us denote the data
approximation term of theorem 3.14 by

ζx := hmin,x ‖f − Lhf‖ωx
ζ2 :=

∑

T∈Th

h2
min,T‖f − Lhf‖2T ∼

∑

x∈N
Ω̄

ζ2x ,

with Lh being the linear Lagrange interpolation operator. Then inequalities (40), (41) of
theorem 3.14 can be reformulated as

ηZ2,x

‖∇(u− uh)‖ωx
+ ζx

. 1 ∀x ∈ NΩ̄

‖∇(u− uh)‖Ω
m1(η2Z2

+ ζ2)1/2
. 1 ,

i.e. both ratios have to be bounded from above. These theoretical predictions are confirmed
by the numerical results presented in table 5 and figures 12 and 13. We note that the global
ZZ error estimator ηZ2

is fairly close to the true error as soon as the solution features are
well resolved.

Lastly, the comparatively poor results in experiment 2 on the coarse meshes (level 1–3)
are mainly due to the poor resolution of the problem. There the data approximation terms
ζx and ζ dominate the error terms by far.

Lower error bound Upper error bound

max
x∈N

Ω̄

ηZ2,x

‖∇(u− uh)‖ωx
+ ζx

‖∇(u− uh)‖Ω
m1(η2Z2

+ ζ2)1/2

Level Exp. 1 Exp. 2 Exp. 3 Exp. 1 Exp. 2 Exp. 3

1 7.094 0.379 2.990 1.819 0.015 0.110
2 7.968 4.180 6.567 1.935 0.048 0.167
3 8.235 5.462 7.866 1.864 0.180 0.246
4 8.302 10.744 8.265 1.834 0.678 0.356
5 8.319 8.201 8.382 1.823 1.479 0.505

Table 5: Lower and upper ZZ error bounds of theorem 3.14; all experiments
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6 Summary

Zienkiewicz–Zhu error estimators are popular because of their cheap implementation and
their astonishing robustness. We have proposed and rigorously analysed two kinds of ZZ
error estimators that can be applied to anisotropic tetrahedral finite element meshes. Both
estimators have been defined by scaling the components of the original gradient ∇uh and
some recovered gradient ∇Ruh.

While our first ZZ estimator is related to a particular choice of the recovered gradient,
our second ZZ estimator is much more flexible because arbitrary weights can be employed
to define the recovered gradient. Hence our novel analysis proves that each averaging
technique yields reliable and efficient error control.

Further emphasis has been given to the requirements on the anisotropic mesh. The
analysis has been complemented and confirmed by several numerical examples.
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