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In a reent ommuniation to the ond-mat arhives,

Suslov [1℄ severely ritiizes a multitude of numerial re-

sults obtained by various groups for the ritial exponent

� of the loalization length at the disorder-indued metal-

insulator transition (MIT) in the three-dimensional (3D)

Anderson model (AM) of loalization as \entirely ab-

surd" and \evident desinformation". These laims are

based on the observation that there still is a large dis-

agreement between analytial, numerial and experimen-

tal results for the ritial exponent [2℄. The author pro-

poses, based on a \simple proedure to deal with orre-

tions to saling", that the numerial data support � � 1,

whereas reent numerial papers �nd � = 1:58 � 0:06

[3{5℄.

As we show below, these laims are entirely wrong.

The proposed sheme does neither yield any improved

auray when ompared to the existing �nite-size saling

(FSS) methods, nor does it give � � 1 when applied to

high-preision data.

FSS at the Anderson MIT has a noteworthy his-

tory, reahing a �rst peak with the seminal papers of

Pihard/Sarma [6,7℄ and MaKinnon/Kramer [8,9℄. Es-

peially in Ref. [9℄, the groundwork for a reliable, nu-

merial FSS proedure was laid and saling urves ould

be onstruted that proved the existene of an MIT

in 3D. In these and later studies based on the same

analysis tehnique [2℄, the ritial exponent �, as esti-

mated from the divergene of the in�nite-size loaliza-

tion and orrelation lengths �(W ) at the transition W



,

i.e., � / j1�W=W



j

��

, is systematially underestimated,

sine the divergent nature at the transition an only be

poorly aptured by FSS of data obtained for small system

sizes and large errors " in these �nite-size data. However,

as more powerful omputers beame availably in the last

deade, one observed a trend towards larger values of

� � 1:35 [10{13℄ for " � 1%.

In 1994, high-preision data (" � 0:2%) showed a hith-

erto negleted systemati shift of the transition point

W



with inreasing system size. Taking this into a-

ount phenomenologially, � = 1:54 � 0:08 was found

[14℄. A subsequent approah by Slevin/Ohtsuki [3{5℄ in-

orporated these shifts as irrelevant saling variables and

further allowed for orretions to saling due to nonlin-

earities. With higher-preision data (" � 0:1%), they

found � = 1:57� 0:04. Further results for, e.g., the AM

with anisotropi hopping [15{17℄, the o�-diagonal AM

[18,19℄, the AM in a magneti �eld [20,21℄, on�rmed

this value of � within the error bars (see Fig. 1). Also,

� is idential for the MIT as a funtion of disorder or

energy [18,19℄. We emphasize that a properly performed

Slevin/Ohtsuki saling (SOS) proedure needs to assume

various �t funtions and that the �nal estimates are to

be suitably extrated from many suh funtional forms

[16{18℄; bootstrap [3{5℄ or Monte Carlo methods [16{18℄

then need to be employed for a preise estimate of error

bars.

We have tested the method proposed by Suslov [1℄ �rst

with the transfer-matrix (TM) data of Refs. [15,18,19℄

with " � 0:1%; we �nd �

Suslov

= 1:75 � 0:17 for the

anisotropi and 1:55� 0:04 for the random-hopping AM.

The SOS gives � = 1:61� 0:07 [15℄ and � = 1:54� 0:03

[18,19℄, respetively. Using for a seond test energy-

level-statistis (ELS) data [16℄ with " � 1%, we �nd

�

Suslov

= 1:51 � 0:25, whereas SOS gives 1:45 � 0:2

[16℄. Last, for arti�ially generated data with preisely

known W



= 16:5 and varying � 2 [0:5; 2:0℄ the results of

the Suslov method are omparable to the results of the

MaKinnon/Kramer FSS and slightly less reliable than

the SOS.
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FIG. 1. Results for W



and �, for the anisotropi AM

[15,16℄ using SOS of TM data (open symbols) and ELS data

(�lled symbols) for various �t funtions. The error bars show

the 95% on�dene intervals. The auray of TM loalization

lengths data is an order of magnitude higher than that of the

ELS data and the system sizes of TM data are larger than

for ELS data, giving systematially larger � values for the

former. The goodness of a �t is reeted in the size of the

symbol. The 2 thik error bars mark high quality ELS �ts for

large system sizes. The gray Æ and 2 and the orresponding

error bars (dashed lines) represent �

Suslov

of TM data and

ELS data for the anisotropi AM, respetively. The solid line

marks the result of [3℄.

We onlude that the method proposed by Suslov also

yields � � 1:58 and not � � 1 for the MIT of the AM.

In priniple, the Suslov method does not need to as-

sume any funtional form of the FSS urves just as the

MaKinnon/Kramer method. As a numerial tool, the

Suslov method is not unreasonable, but ertainly not

better than the established methods: it does not take

into aount the systemati shift due to irrelevant sal-

ing variables, it relies on an a-priori knowledge ofW



and

inherently produes rather large error bars for the ritial

exponent. We note that Suslov in his numerial test [1℄

used data for 3 small system sizes 6

3

, 12

3

and 28

3

, while

urrently sizes � 50

3

(for ELS) and 18

2

� 10

8

(for TM)

are standard. It is evident to people with experiene in

FSS that Suslov's erroneously small � is due to his use of

too few and too small system sizes.

1



In onlusion, high-preision numeris with error " �

0:1% together with all the above mentioned FSS methods

produe a ritial exponent � � 1:58 > 1 for 3D. The

numerial values of � for dimensions 2 < d < 3 [22℄ and

4 [22,20℄ remain valid, they are ertainly not \entirely

absurd" although there is only limited agreement with

the �eld theoreti approah [2℄. Similarly preise data are

muh harder to obtain for our experimental olleagues,

but reent advanes in this diretion show a lear trend

towards inreasing � [23,24℄.
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