# Technische Universität Chemnitz Sonderforschungsbereich 393

Numerische Simulation auf massiv parallelen Rechnern

Sven Beuchler

# The MTS-BPX-preconditioner for the *p*-Version of the fem

Preprint SFB393/01-16

#### Abstract

Finding a fast solver for the inner problem in a DD preconditioner for the *p*-version of the FEM is a difficult question. We discovered, that the system matrix for the inner problem in any dimension has a similar structure to matrices resulting from discretizations of  $-y^2u_{xx} - x^2u_{yy}$  in the unit square using *h*-version of the FEM. Numerical experiments show that the MTS-BPX-preconditioner with a tridiagonal scaling brings good results.

### Preprint-Reihe des Chemnitzer SFB 393

SFB393/01-16

May 2001

Author's addresses:

Sven Beuchler TU Chemnitz Fakultät für Mathematik D-09107 Chemnitz Germany

email: sven.beuchler@mathematik.tu-chemnitz.de

http://www.tu-chemnitz.de/sfb393/

# **1** Introduction

### **1.1** Origin of the problem from the *p*-version

Jensen/Korneev [15] and Ivanov/Korneev [13],[14] developed preconditioniers for the p-version of the FEM in a two-dimensional domain. They used DD-methods. The unknowns are splitted into 3 groups, the interior, the edge and vertex unknowns

$$A = \begin{pmatrix} A_{vert} & A_{vert,edg} & A_{vert,int} \\ A_{edg,vert} & A_{edg} & A_{edg,int} \\ A_{int,vert} & A_{int,edg} & A_{int} \end{pmatrix}.$$

The vertex unknowns can be solved separately, cf. Lemma 2.3 [13], or [3], using

$$\tilde{C} = \begin{pmatrix} A_{vert} & & \\ & A_{edg} & A_{edg,int} \\ & A_{int,edg} & A_{int} \end{pmatrix}.$$

Computing the other unknowns, we factorize the remaining stiffness matrix as follows

$$\begin{pmatrix} A_{edg} & A_{edg,int} \\ A_{int,edg} & A_{int} \end{pmatrix} = \begin{pmatrix} I & A_{edg,int}A_{int}^{-1} \\ & I \end{pmatrix} \\ \begin{pmatrix} S & \\ & A_{int} \end{pmatrix} \begin{pmatrix} I & \\ & A_{int}A_{int,edg} & I \end{pmatrix}$$

with the Schur-komplement

$$S = A_{edg} - A_{edg,int} A_{int}^{-1} A_{int,edg}$$

Computing the interior unknowns, we solve a Dirichlet problem on each quadrangle. The vertex unknowns are computed via the Schur-complement S.  $A_{int}$  is a block diagonal matrix, one block corresponds to one element.

Jensen/Korneev [15] considered as basis a scaled version of the integrated Legendre polynomials. They found a spectral equivalent preconditioner C for each block of  $A_{int}$ , which has  $\mathcal{O}(p^2)$  nonzero entries, where p is the polynomial degree. In the case of parallelogram elements, the element stiffness matrix has  $\mathcal{O}(p^2)$ nonzero entries, too. But, the suggested methods compute the solution in  $\mathcal{O}(p^3)$ arithmetical operations. Finding a fast solver for the preconditioner was an open



Figure 1: Mesh for *h*-Version.

question. This paper is concerned to the construction of a **more efficient preconditioner** for the interior problem. The matrix C is a block diagonal matrix of 4 blocks  $C^{(i)}$ . In [5], we derived a new preconditioner  $C_4$  for each block of C. This matrix is defined via the matrices  $D_3$  and  $T_3$ ,

$$D_3 = \operatorname{diag}(4(i^2 + \frac{1}{6}))_{i=1}^{n-1}, \tag{1.1}$$

$$T_3 = \frac{1}{2} \operatorname{tridiag}(-1, 2, -1),$$
 (1.2)

$$C_4 = D_4 \otimes T_3 + T_3 \otimes D_4. \tag{1.3}$$

We have proved in [5], that the condition number of matrix  $C_4^{-1}C^{(i)}$  grows as  $(1 + \log p)$ . But, the matrix  $C_4$  has an another origin, which we will see now.

## **1.2** Formulation of the elliptic problem

We consider the following problem: Find  $u\in H^1_0(\Omega)$  such that

$$a(u,v) := \int_{\Omega} y^2 u_x v_x + x^2 u_y v_y \, \mathrm{d}x \mathrm{d}y = \int_{\Omega} gv \, \mathrm{d}x \mathrm{d}y =: \langle g, v \rangle \qquad (1.4)$$



Figure 2: Notation.

 $\forall v \in H_0^1(\Omega)$  holds. The domain  $\Omega$  is the unit square  $(0,1)^2$ .

We want to find a numerical solution of (1.4) using finite elements. For this purpose, we introduce some notation. Let k be the level of approximation and  $n = 2^k$ . Let us introduce  $x_{ij}^k = (\frac{i}{n}, \frac{j}{n})$ , where  $i, j = 0, \ldots, n$ . We divide  $\Omega$  into congruent, isosceles, orthogonal triangles  $\tau_{ij}^{s,k}$ , where  $0 \le i, j < n$  and s = 1, 2, compare Figure 1. The triangle  $\tau_{ij}^{1,k}$  has the three vertices  $x_{ij}^k, x_{i+1,j+1}^k$  and  $x_{i,j+1}^k$ ,  $\tau_{ij}^{2,k}$  has the three vertices  $x_{ij}^k, x_{i+1,j+1}^k$  and  $x_{i,j+1}^k$ ,  $\tau_{ij}^{2,k}$  has the three vertices  $x_{ij}^k, x_{i+1,j+1}^k$  and  $x_{i+1,j+1}^k$  and  $x_{i+1,j+1}^k$  and  $x_{i+1,j+1}^k$  has the three vertices  $x_{ij}^k$  has the three vertices  $x_{ij}^k$ .

$$T_k = \{\tau_{ij}^{s,k}\}_{i,j=0,s=1}^{n-1,n-1,2}$$

and denote by  $\mathbb{V}_k$  the subspace of piecewise linear functions  $\phi_{ij}^k$  with

$$\phi_{ij}^k \in H^1_0(\Omega), \ \phi_{ij}^k \mid_{\tau_{lm}^{sk}} \in P^1(\tau_{lm}^{sk}),$$

where  $P^1$  is the space of polynomials of degree  $\leq 1$ . A basis of  $\mathbb{V}_k$  is the system of functions  $\{\phi_{ij}^k\}_{i,j=1}^{n-1}$  uniquely defined by

$$\phi_{ij}^k(x_{lm}^k) = \delta_{il}\delta_{jm},$$

where  $\delta_{il}$  is the Kronecker delta.

Now, we can formulate the discretized problem. Find  $u^k \in \mathbb{V}_k$  such that

$$a(u^k, v^k) = \langle g, v^k \rangle \ \forall v \in \mathbb{V}_k$$
(1.5)

holds. Problem (1.5) is equivalent to solving

$$K_{h,k}\underline{u}_h = \underline{g}_h,\tag{1.6}$$

where

$$K_{h,k} = a(\phi_{ij}^{k}, \phi_{lm}^{k})_{i,j,l,m=1}^{n-1}, \\ \underline{g}_{h} = \langle g, \phi_{lm}^{k} \rangle_{l,m=1}^{n-1}, \\ u_{h} = \sum_{i,j=1}^{n-1} u_{ij} \phi_{ij}^{k}.$$

We obtain by an easy calculation [6], [7] and (1.3)

$$K_{h,k} = \frac{1}{2n^2} C_4, \tag{1.7}$$

if we insert the boundary condition and choose a proper permutation of the unknowns. For differential equations as  $-u_{xx}-u_{yy} = f$  efficient solution techniques are found, the BPX-preconditioner [9], the HB-preconditioner [19], or multi-grid methods [11], [12]. But, we consider problems with variable coefficients which tend to 0, if  $x \to 0$  or  $y \to 0$ . The paper of Bramble and Zhang [10] considers multi-grid methods in a more general case as for Laplace.

The paper [8] deals with the solution of (1.6) by multi-grid using special linesmoothers in  $\mathcal{O}(n^2)$  arithmetical operations. This proof is a multi-grid proof of the projection type, [18], [16] or [17].

An another method is the AMLI-method derived by Axelsson and Vassilevski [1], [2], where the idea of the smoother is used. Both methods analyze a strengthened Cauchy-inequality.

In this preprint, we give numerical examples for an improved BPX-preconditioner, a MTS-BPX-preconditioner.

# 2 The definition of the preconditioner

We are interested in a fast preconditioner for  $K_{h,k}$ . This preconditioner is an BPXlike [9] preconditioner with a multiple tridiagonal scaling (MTS). In [4], numerical experiments show an increasing of the number of iterations of the PCG-method by increasing the number of unknowns using the multiple diagonal scaling-BPX (MDS) preconditioner. But this preconditioner can be improved by the following modification. Let

$$C_{h,k}^{-1} = \sum_{l=0}^{k} Q_l T_l^{-1} Q_l^t,$$

| Level | MDS-BPX                 | MTS-BPX                 |                         |                          |  |  |
|-------|-------------------------|-------------------------|-------------------------|--------------------------|--|--|
|       | $\varepsilon = 10^{-5}$ | $\varepsilon = 10^{-5}$ | $\varepsilon = 10^{-9}$ | $\varepsilon = 10^{-16}$ |  |  |
| 2     | 9                       | 8                       | 9                       | 9                        |  |  |
| 3     | 16                      | 11                      | 18                      | 27                       |  |  |
| 4     | 24                      | 14                      | 23                      | 37                       |  |  |
| 5     | 33                      | 15                      | 26                      | 44                       |  |  |
| 6     | 44                      | 16                      | 28                      | 49                       |  |  |
| 7     | 58                      | 17                      | 30                      | 52                       |  |  |
| 8     | 76                      | 17                      | 31                      | 56                       |  |  |
| 9     | 97                      | 18                      | 32                      | 58                       |  |  |

Table 1: Number of iterations of the PCG-method for solving  $K_p \underline{u}_p = \underline{f}_p$  with the preconditioner  $C_{h,k}$ .

where  $Q_l$ , l = 0, ..., k is the basis transformation matrix from the basis  $\{\phi_{ij}^l\}_{i,j=1}^{n_l} \in \mathbb{V}_l$  to  $\{\phi_{ij}^k\}_{i,j=1}^{n_k} \in \mathbb{V}_k$ , where  $n_j = 2^j - 1$ . The matrix  $T_l$  is a tridiagonal matrix in which the absolute smaller entries of the off-diagonals of the matrix  $K_{h,l} = (a_{ij})_{i,j=1}^{n_l}$  are omitted. More precisely, all off-diagonals  $a_{ij}$  with

 $4 \mid a_{ij} \mid < \max\{a_{ii}, a_{jj}\}$ 

are omitted. For more details, see [6], subsection 5.4. In this preprint, this matrix is denoted by  $\tilde{K}_h$ .

## **3** Numerical results

**3.1 Results for** 
$$-y^2u_{xx} - x^2u_{yy} = f$$

We give now results for solving

$$K_{h,k}\underline{u}_h = \underline{f}_h.$$

We solve this linear system of equations with PCG-method and the preconditioner  $C_{h,k}$ . The right-hand side  $\underline{f}_h = (1, \ldots, 1)^t$  is chosen. Table 1 displays the number of iterations for several relative accuracies  $\varepsilon$  in the preconditioned energy norm. We see in all cases constant number of iterations.

| p    | $\varepsilon = 10^{-5}$ |         | $\varepsilon = 10^{-9}$ |         | $\varepsilon = 10^{-16}$ |         |
|------|-------------------------|---------|-------------------------|---------|--------------------------|---------|
|      | It                      | time    | It                      | time    | It                       | time    |
|      |                         | [sec]   |                         | [sec]   |                          | [sec]   |
| 7    | 12                      | 0.002   | 17                      | 0.002   | 22                       | 0.004   |
| 15   | 15                      | 0.013   | 24                      | 0.023   | 38                       | 0.031   |
| 31   | 18                      | 0.071   | 28                      | 0.102   | 47                       | 0.176   |
| 63   | 20                      | 0.327   | 32                      | 0.523   | 54                       | 0.889   |
| 127  | 22                      | 1.672   | 37                      | 2.773   | 62                       | 4.987   |
| 255  | 25                      | 8.324   | 42                      | 13.688  | 70                       | 22.916  |
| 511  | 27                      | 37.956  | 46                      | 63.922  | 78                       | 108.561 |
| 1023 | 29                      | 163.822 | 50                      | 281.523 | 85                       | 478.944 |

Table 2: Number of iterations of the PCG-method for solving  $K_p \underline{u}_p = \underline{f}_p$  with the preconditioner  $C_{h,k}$ .

### **3.2** Results for the *p*-version

A typical reference example as preconditioner for the matrix  $A_{int}$  is the matrix  $K_p$ , which is the element stiffness matrix on the unit square  $(-1, 1)^2$ . Each element stiffness matrix is spectral equivalent to  $K_p$  with respect to the polynomial degree p, [15].

Now, we can apply this preconditioner as preconditioner for each of the 4 blocks of the matrix  $K_p$ . Results for solving

$$K_p \underline{u}_p = \underline{f}_p$$

are given. This linear system of equations is solved with PCG-method and the preconditioner  $C_{h,k}$ . We choose  $\underline{f}_p = (1, \ldots, 1)^t$ . Table 2 displays the number of iterations for several relative accuracies  $\varepsilon$  in the preconditioned energy norm. We see in all 3 cases a growing as  $1 + \log p$ . This preconditioner is nearly as fast as the preconditioner  $M_1^{S_1}$ , which is a multi-grid preconditioner involving the tridiagonal matrices  $T_l$  in the smoother  $S_l = I - \omega T_l^{-1} K_{h,l}$  on level l.

## References

 O. Axelsson and P.S. Vassilevski. Algebraic multilevel preconditioning methods i. *Numer. Math.*, 56:157–177, 1989.

- [2] O. Axelsson and P.S. Vassilevski. Algebraic multilevel preconditioning methods ii. SIAM J. Numer. Anal., 27(6):1569–1590, 1990.
- [3] I. Babuska, A. Craig, J. Mandel, and J. Pitkäranta. Efficent precontitioning for the *p*-version finite element method in two dimensions. *SIAM J.Numer.Anal.*, 28(3):624–661, 1991.
- [4] S. Beuchler. Lösungsmethoden bei der *p*-version der fem. Diplomarbeit, TU Chemnitz, December 1999.
- [5] S. Beuchler. A preconditioner for solving the inner problem of the *p*-version of the f.e.m. Technical Report SFB393 00-25, Technische Universität Chemnitz, May 2000.
- [6] S. Beuchler. A preconditioner for solving the inner problem of the *p*-version of the f.e.m, part ii- algebraic multi-grid proof. Technical Report SFB393 01-07, Technische Universität Chemnitz, March 2001.
- [7] S. Beuchler. A preconditioner for solving the inner problem of the *p*-version of the fem, part i- analogy to discretizations of second order problems using *h*-version of the fem or finite differences. 2001.
- [8] S. Beuchler. A preconditioner for solving the inner problem of the *p*-version of the fem, part ii- algebraic multi-grid proof. 2001.
- [9] J. Bramble, J. Pasciak, and J. Xu. Parallel multilevel preconditioners. *Math. Comp.*, 55(191):1–22, 1991.
- [10] J. Bramble and X. Zhang. Uniform convergence of the multigrid *v*-cycle for an anisotropic problem. *Math. Comp.*, 70(234):453–470, 2001.
- [11] W. Hackbusch. *Multigrid Methods and Applications*. Springer-Verlag. Heidelberg, 1985.
- [12] W. Hackbusch and U. Trottenberg. Multigrid Methods, Proceedings of the Conference held at Köln-Porz, November 23-27, 1981. Number 960 in Lecture Notes in Mathematics. Springer-Verlag. Berlin-Heidelberg-New York, 1981.

- [13] S.A. Ivanov and V.G. Korneev. On the preconditioning in the domain decomposition technique for the *p*-version finite element method. part i. Technical Report SPC 95-35, Technische Universität Chemnitz-Zwickau, December 1995.
- [14] S.A. Ivanov and V.G. Korneev. On the preconditioning in the domain decomposition technique for the *p*-version finite element method. part ii. Technical Report SPC 95-36, Technische Universität Chemnitz-Zwickau, December 1995.
- [15] S. Jensen and V.G. Korneev. On domain decomposition preconditioning in the hierarchical *p*-version of the finite element method. *Comput. Methods. Appl. Mech. Eng.*, 150(1–4):215–238, 1997.
- [16] Ch. Pflaum. Robust convergence of multilevel algorithms for convectiondiffusion equations. *Num. Lin. Alg. Appl.*, 6:701–728, 1999.
- [17] Ch. Pflaum. Robust convergence of multilevel algorithms for convectiondiffusion equations. SIAM J. Numer. Anal., 37(2):443–469, 2000.
- [18] N. Schieweck. A multigrid convergence proof by a strengthened cauchyinequality for symmetric elliptic boundary value problems. In G. Telschow, editor, *Second multigrid seminar*, *Garzau 1985*, number 08-86 in Report R-Math, pages 49–62, Berlin, 1986. Karl-Weierstraß-Insitut für Mathematik.
- [19] H. Yserentant. On the multi-level-splitting of the finite element spaces. Numer. Math., 49:379–412, 1986.