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Sonderforschungsbereich 393

Numerische Simulation auf massiv parallelen Rechnern

Sven Beuchler

The MTS-BPX-preconditioner for the
p-Version of the fem

Preprint SFB393/01-16

Abstract

Finding a fast solver for the inner problem in aDD preconditioner for
the p-version of the FEM is a difficult question. We discovered, that the
system matrix for the inner problem in any dimension has a similar structure
to matrices resulting from discretizations of−y2uxx − x2uyy in the unit
square usingh-version of the FEM. Numerical experiments show that the
MTS-BPX-preconditioner with a tridiagonal scaling brings good results.

Preprint-Reihe des Chemnitzer SFB 393

SFB393/01-16 May 2001



Author’s addresses:

Sven Beuchler
TU Chemnitz
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1 Introduction

1.1 Origin of the problem from the p-version

Jensen/Korneev [15] and Ivanov/Korneev [13],[14] developed preconditioniers for
thep−version of the FEM in a two-dimensional domain. They usedDD-methods.
The unknowns are splitted into 3 groups, the interior, the edge and vertex un-
knowns

A =

 Avert Avert,edg Avert,int
Aedg,vert Aedg Aedg,int
Aint,vert Aint,edg Aint

 .

The vertex unknowns can be solved separately, cf. Lemma 2.3 [13], or [3], using

C̃ =

 Avert
Aedg Aedg,int
Aint,edg Aint

 .

Computing the other unknowns, we factorize the remaining stiffness matrix as
follows (

Aedg Aedg,int
Aint,edg Aint

)
=

(
I Aedg,intA

−1
int

I

)
(
S

Aint

)(
I

A−1
intAint,edg I

)
with the Schur-komplement

S = Aedg − Aedg,intA−1
intAint,edg.

Computing the interior unknowns, we solve a Dirichlet problem on each quadran-
gle. The vertex unknowns are computed via the Schur-complementS. Aint is a
block diagonal matrix, one block corresponds to one element.
Jensen/Korneev [15] considered as basis a scaled version of the integrated Leg-
endre polynomials. They found a spectral equivalent preconditionerC for each
block of Aint, which hasO(p2) nonzero entries, wherep is the polynomial de-
gree. In the case of parallelogram elements, the element stiffness matrix hasO(p2)
nonzero entries, too. But, the suggested methods compute the solution inO(p3)
arithmetical operations. Finding a fast solver for the preconditioner was an open
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Figure 1: Mesh forh-Version.

question. This paper is concerned to the construction of amore efficient precon-
ditioner for the interior problem. The matrixC is a block diagonal matrix of 4
blocksC(i). In [5], we derived a new preconditionerC4 for each block ofC. This
matrix is defined via the matricesD3 andT3,

D3 = diag(4(i2 +
1

6
))n−1
i=1 , (1.1)

T3 =
1

2
tridiag(−1, 2,−1), (1.2)

C4 = D4 ⊗ T3 + T3 ⊗D4. (1.3)

We have proved in [5], that the condition number of matrixC−1
4 C(i) grows as

(1 + log p). But, the matrixC4 has an another origin, which we will see now.

1.2 Formulation of the elliptic problem

We consider the following problem: Findu ∈ H1
0 (Ω) such that

a(u, v) :=

∫
Ω

y2uxvx + x2uyvy dxdy =

∫
Ω

gv dxdy =: 〈g, v〉 (1.4)
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Figure 2: Notation.

∀v ∈ H1
0 (Ω) holds. The domainΩ is the unit square(0, 1)2.

We want to find a numerical solution of (1.4) using finite elements. For this
purpose, we introduce some notation. Letk be the level of approximation and
n = 2k. Let us introducexkij = ( i

n
, j
n
), wherei, j = 0, . . . , n. We divideΩ into

congruent, isosceles, orthogonal trianglesτ s,kij , where0 ≤ i, j < n ands = 1, 2,

compare Figure 1. The triangleτ 1,k
ij has the three verticesxkij, x

k
i+1,j+1 andxki,j+1,

τ 2,k
ij has the three verticesxkij, x

k
i+1,j+1 andxki+1,j, see Figure 2. We use linear finite

elements on the mesh

Tk = {τ s,kij }
n−1,n−1,2
i,j=0,s=1

and denote byVk the subspace of piecewise linear functionsφkij with

φkij ∈ H1
0 (Ω), φkij |τsklm∈ P

1(τ sklm),

whereP 1 is the space of polynomials of degree≤ 1. A basis ofVk is the system
of functions{φkij}n−1

i,j=1 uniquely defined by

φkij(x
k
lm) = δilδjm,

whereδil is the Kronecker delta.
Now, we can formulate the discretized problem. Finduk ∈ Vk such that

a(uk, vk) = 〈g, vk〉 ∀v ∈ Vk (1.5)

holds. Problem (1.5) is equivalent to solving

Kh,kuh = g
h
, (1.6)
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where

Kh,k = a(φkij, φ
k
lm)n−1

i,j,l,m=1,

g
h

= 〈g, φklm〉n−1
l,m=1,

uh =
n−1∑
i,j=1

uijφ
k
ij.

We obtain by an easy calculation [6], [7] and (1.3)

Kh,k =
1

2n2
C4, (1.7)

if we insert the boundary condition and choose a proper permutation of the un-
knowns. For differential equations as−uxx−uyy = f efficient solution techniques
are found, the BPX-preconditioner [9], the HB-preconditioner [19], or multi-grid
methods [11], [12]. But, we consider problems with variable coefficients which
tend to 0, ifx → 0 or y → 0. The paper of Bramble and Zhang [10] considers
multi-grid methods in a more general case as for Laplace.
The paper [8] deals with the solution of (1.6) by multi-grid using special line-
smoothers inO(n2) arithmetical operations. This proof is a multi-grid proof of
the projection type, [18], [16] or [17].
An another method is the AMLI-method derived by Axelsson and Vassilevski [1],
[2], where the idea of the smoother is used. Both methods analyze a strengthened
Cauchy-inequality.
In this preprint, we give numerical examples for an improved BPX-preconditioner,
a MTS-BPX-preconditioner.

2 The definition of the preconditioner

We are interested in a fast preconditioner forKh,k. This preconditioner is an BPX-
like [9] preconditioner with a multiple tridiagonal scaling (MTS). In [4], numeri-
cal experiments show an increasing of the number of iterations of the PCG-method
by increasing the number of unknowns using the multiple diagonal scaling-BPX
(MDS) preconditioner. But this preconditioner can be improved by the following
modification. Let

C−1
h,k =

k∑
l=0

QlT
−1
l Qt

l ,
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Level MDS-BPX MTS-BPX
ε = 10−5 ε = 10−5 ε = 10−9 ε = 10−16

2 9 8 9 9
3 16 11 18 27
4 24 14 23 37
5 33 15 26 44
6 44 16 28 49
7 58 17 30 52
8 76 17 31 56
9 97 18 32 58

Table 1: Number of iterations of the PCG-method for solvingKpup = f
p

with the
preconditionerCh,k.

whereQl, l = 0, . . . , k is the basis transformation matrix from the basis
{φlij}

nl
i,j=1 ∈ Vl to {φkij}

nk
i,j=1 ∈ Vk, wherenj = 2j − 1. The matrixTl is a

tridiagonal matrix in which the absolute smaller entries of the off-diagonals of the
matrixKh,l = (aij)

nl
i,j=1 are omitted. More precisely, all off-diagonalsaij with

4 | aij |< max{aii, ajj}

are omitted. For more details, see [6], subsection 5.4. In this preprint, this matrix
is denoted byK̃h.

3 Numerical results

3.1 Results for−y2uxx − x2uyy = f

We give now results for solving

Kh,kuh = f
h
.

We solve this linear system of equations with PCG-method and the preconditioner
Ch,k. The right-hand sidef

h
= (1, . . . , 1)t is chosen. Table 1 displays the number

of iterations for several relative accuraciesε in the preconditioned energy norm.
We see in all cases constant number of iterations.
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p ε = 10−5 ε = 10−9 ε = 10−16

It time It time It time
[sec] [sec] [sec]

7 12 0.002 17 0.002 22 0.004
15 15 0.013 24 0.023 38 0.031
31 18 0.071 28 0.102 47 0.176
63 20 0.327 32 0.523 54 0.889

127 22 1.672 37 2.773 62 4.987
255 25 8.324 42 13.688 70 22.916
511 27 37.956 46 63.922 78 108.561

1023 29 163.822 50 281.523 85 478.944

Table 2: Number of iterations of the PCG-method for solvingKpup = f
p

with the
preconditionerCh,k.

3.2 Results for thep-version

A typical reference example as preconditioner for the matrixAint is the matrixKp,
which is the element stiffness matrix on the unit square(−1, 1)2. Each element
stiffness matrix is spectral equivalent toKp with respect to the polynomial degree
p, [15].
Now, we can apply this preconditioner as preconditioner for each of the 4 blocks
of the matrixKp. Results for solving

Kpup = f
p

are given. This linear system of equations is solved with PCG-method and the
preconditionerCh,k. We choosef

p
= (1, . . . , 1)t. Table 2 displays the number

of iterations for several relative accuraciesε in the preconditioned energy norm.
We see in all 3 cases a growing as1 + log p. This preconditioner is nearly as
fast as the preconditionerMS1

1 , which is a multi-grid preconditioner involving the
tridiagonal matricesTl in the smootherSl = I − ωT−1

l Kh,l on levell.
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ing for the p-version finite element method in two dimensions.SIAM
J.Numer.Anal., 28(3):624–661, 1991.

[4] S. Beuchler. L̈osungsmethoden bei derp-version der fem. Diplomarbeit, TU
Chemnitz, December 1999.

[5] S. Beuchler. A preconditioner for solving the inner problem of thep-version
of the f.e.m. Technical Report SFB393 00-25, Technische Universität Chem-
nitz, May 2000.

[6] S. Beuchler. A preconditioner for solving the inner problem of thep-version
of the f.e.m, part ii- algebraic multi-grid proof. Technical Report SFB393
01-07, Technische Universität Chemnitz, March 2001.

[7] S. Beuchler. A preconditioner for solving the inner problem of thep-version
of the fem,
part i- analogy to discretizations of second order problems usingh-version
of the fem or finite differences. 2001.

[8] S. Beuchler. A preconditioner for solving the inner problem of thep-version
of the fem,
part ii- algebraic multi-grid proof. 2001.

[9] J. Bramble, J. Pasciak, and J. Xu. Parallel multilevel preconditioners.Math.
Comp., 55(191):1–22, 1991.

[10] J. Bramble and X. Zhang. Uniform convergence of the multigridv-cycle for
an anisotropic problem.Math. Comp., 70(234):453–470, 2001.

[11] W. Hackbusch.Multigrid Methods and Applications. Springer-Verlag. Hei-
delberg, 1985.

[12] W. Hackbusch and U. Trottenberg.Multigrid Methods, Proceedings of the
Conference held at K̈oln-Porz, November 23-27, 1981. Number 960 in Lec-
ture Notes in Mathematics. Springer-Verlag. Berlin-Heidelberg-New York,
1981.

7



[13] S.A. Ivanov and V.G. Korneev. On the preconditioning in the domain decom-
position technique for thep-version finite element method. part i. Technical
Report SPC 95-35, Technische Universität Chemnitz-Zwickau, December
1995.

[14] S.A. Ivanov and V.G. Korneev. On the preconditioning in the domain decom-
position technique for thep-version finite element method. part ii. Technical
Report SPC 95-36, Technische Universität Chemnitz-Zwickau, December
1995.

[15] S. Jensen and V.G. Korneev. On domain decomposition preconditioning in
the hierarchicalp−version of the finite element method.Comput. Methods.
Appl. Mech. Eng., 150(1–4):215–238, 1997.

[16] Ch. Pflaum. Robust convergence of multilevel algorithms for convection-
diffusion equations.Num. Lin. Alg. Appl., 6:701–728, 1999.

[17] Ch. Pflaum. Robust convergence of multilevel algorithms for convection-
diffusion equations.SIAM J. Numer. Anal., 37(2):443–469, 2000.

[18] N. Schieweck. A multigrid convergence proof by a strengthened cauchy-
inequality for symmetric elliptic boundary value problems. In G. Telschow,
editor,Second multigrid seminar, Garzau 1985, number 08-86 in Report R-
Math, pages 49–62, Berlin, 1986. Karl-Weierstraß-Insitut für Mathematik.

[19] H. Yserentant. On the multi-level-splitting of the finite element spaces.Nu-
mer. Math., 49:379–412, 1986.

8


