Technische Universiit Chemnitz
Sonderforschungsbereich 393

Numerische Simulation auf massiv parallelen Rechnern

Daniel Balkanski Friedrich Seifert Wolfgang Rehm

Proposing a System Software for an
SCl-based VIA Hardware

Preprint SFB393/01-15

Preprint-Reihe des Chemnitzer SFB 393

SFB393/01-15 March 2001

Contents

1 Introduction

2 SCI Protocol And GPSB Hardware Peculiarities and Their Impact on The System
Software Design

3 Layered Architecture of System Software
3.1 GPSBKernel Agentdrivergpsbka,
3.2 GPSBlowleveldrivergpsb

4 Implementation of the VI Kernel Agent and Demands on the Lowl_evel Driver
4.1 VICreationand Destruction e
4.2 Memory Registration and Protection,
4.3 Connection setup and breakdown
4.4 SCI Shared Memory Administrationc....

5 Implementation of Low Level System Software Main Functioral Subsystems
5.1 Address Translation and Protection Tables Control

5.2 Manual Request-Send Packet and Manual Response-Seket Babsystems . .

5.3 Manual Packet Receive Subsystem
5.4 Control Message Transport Subsystem

6 Summary and Future Work

Author’s addresses:

Daniel Balkanski

Friedrich Seifert

Wolfgang Rehm

TU Chemnitz

Fakultat fur Informatik
Professur Rechnerarchitektur
D-09107 Chemnitz

http://ww. tu-chemitz.de/informatik/RA

Abstract

In this document we present the architectural design weloiever the system software,
which integrates our new architecture PCI-SCI Bridge witih gupport into the LINUX
operating system. The development of this system softvgaaepiart of a bigger project, the
end goal of which is to build a complete interconnect sotufrom the hardware to commu-
nication libraries and to prove in practice our new architesd concepts. This interconnect
solution will be suitable for building inexpensive clugte@ptimized for running MPI based
message-passing applications. The work presented hersecam as a good starting point
to a broad range of experimental designs ranging from “pMi&’ and “pure” SCI shared
memory communication devices to “combined” VIA-SCI desidjike ours.

1 Introduction

SCI [4] is a modern communication technology offering extedy low latencies and very high
bandwidth. But today’s PCI-SCI Bridge architectures $idle some disadvantages that make
building MPI based message passing applications on topcbfilsardware difficult and resource
wasting. The main disadvantage is that there is no Protédsed Level DMA available, which
can significantly increase the overall system performance.

On the other hand the Virtual Interface Architecture (VIA] flefines a standardized inter-
face between high-performance network hardware and theapg system and is intended to
improve performance of distributed applications by redgdhe latency associated with critical
message passing operations.

This motivated us to develop a new PCI-SCI Bridge Architex{], [6] that combines
the positive characteristic of SCI with advanced memoryagament and Protected User-Level
DMA of VIA in optimal way. To prove these ideas in practice wailba hardware prototype
[8] the core of which is based on reconfigurable logical devimstead of ASICs. This gives
us a flexibility to experiment with a wide range of differerf@IRSCI Bridge architectures only
by redesigning the firmware and system software. That's wayamed the prototype Generic
PCI-SCI Bridge or GPSB in short.

Currently we are developing the appropriate firmware antesysoftware for the prototype
which will realize our new PCI-SCI Bridge architecture cepts. Initially the system software
will be targeted to PC and Alpha LINUX platforms consideritihgg most attractive ones for
cluster computing.

Until now only one vendor — Dolphin Interconnect SolutionS produces commercial PCl-
SCI Bridges and details for internals of their operatiomdravailable nor the system software
is is Open Source. For that reason we decided that the desorgf our design would be of
interest for other groups that want to experiment with thét8€hnology their selves and/or the
VI Architecture especially on the basis of our highly recgafable hardware prototype. We
consider that our design can serve as a good starting pomtbimad range of experimental
designs ranging from “pure” VIA and “pure” SCI shared memopmmunication devices to
“combined” VIA-SCI designs like ours.

2 SCI Protocol And GPSB Hardware Peculiarities and Their
Impact on The System Software Design

In contrast with most of the busses SCI uses only split ti@isss, which means that they consist
of a separate request subaction and an optional responaetisub The send command inside
the packet falls into one of four main categories: respangected request, move request, event
request and response.

As the SCI standard states, the combination of initiatmtel D andtransactionlD uniquely
identifies each of the outstanding response-expectediraoss. Since the valid range fioans-
actionlD values is from 0 to 63 they are limited resource and special caist be taken to not
initiate a new response-expected request transactiohdhédtsame combination abdelD and
transactionlD before the old ones are not accomplished. Or in other worltgdoéheir corre-
sponding response subactions with sdamaasactionlD have arrived.

In contrast with response-expected transactions the nexyugests doesn’t have a response
subaction and thetransactionID can be reused immediately.

The responses can be generated only in answer of respopeetedt requests.

We will not go into details about architectural advantagessabout principles of operation
of the GPSB hardware. They are already described and thesteel reader can read more about
them in [7], [6] and [8]. We only want to briefly describe ongdresting feature of the hardware
that is slightly aside from the main functionality but whiishfrom the main importance for the
system software. This is the so called manual packet modehvpinovides the system software
with mechanisms for implementing the communication betwdi#erent nodes that is required
for its normal operation. This manual packet mode is basednenof the two different packet
types the hardware distinguishes, named automatic andahanu

The automatic request-send type packets are generatesliihobaccess to the special mem-
ory mapped I/O regions in which the imported Distributed@daviemory resides. The GPSB
hardware on the remote side automatically processes theand®gsing the requested exported
memory region and, if the transaction is response-expeotdains the required automatic re-
sponse packets. When these automatic response packetbackte the importer node they are
also automatically processed by the GPSB hardware, whigeslthe transaction after that.

The manual type packets are explicitly generated by thesysbftware and they are used
to carry control protocols between the nodes. This enabkesytstem software to implement the
functionality required for SCI and VI Architecture such asablishing connections, exporting,
importing, etc. Additionally the System software has alsb @ possibility to generate packets
manually which can be recognized and interpreted like aatmnby the peer side.

SCl is a highly reliable technology and packet loss is cargid a very rare and catastrophic
event. But anyway our design must deal with such eventsainthey are highly improbable.
As the SCI standard requires the GPSB hardware uses respoeseits to detect errors that
result in the loss of automatic request-send or responses&ckets. This is accomplished by
calculating the time interval within which a response isentpd, and when that time limit is
exceeded it signals the system software by rising an irger&ecause not responded response-
expected transactions can be generated, for instance easilaaof a PIO access from the CPU

2

to imported shared memory regions only asynchronous ewptfigation is possible. The VI
Architecture suggests the VipErrorCallback function toila@lemented in the VI User Agent
for such purposes. It can be used by the VI application tstegan error handling function.

In contrast to automatic packets manual request packetsamitomatically responded by
the GPSB hardware nor timeout detection is performed famth&hey carry control protocol
data of the System Software and must be responded by thesporméing software layer on the
peer node. If this software is not operational for some nedsa. loaded) there is no one to
generate responses. This blockstifamsactionlD’s on the requester side and will finally lead to
deadlocks.

To resolve this problem a special Transaction Tracking $&tesn is implemented in the
system software, which maintains information for thensactionlD’s of all manual requests in
progress. This enables a special watchdog timer to clegpliipesponse-expected transactions
periodically avoiding deadlocks in this way.

The synthesized reconfigurable core logic inside the pyptotealizes practically the whole
basic functionality of the hardware. To avoid deadlocksaimains separate buffers (Fig. 1) for
incoming packets, for outgoing manual and automatic reessysd packets, and for outgoing
manual and automatic response-send packets. We shoultbmérdt packets are stored if the
buffers in Blink rather than in SCI format. (The Blink formatcomposed of an SCI core and
Blink extension header and trailer.)

After issuing the send command for a given packet buffemttdze considered free for reuse
immediately, because the hardware needs some time to atisbitiye actual send of the packet.
System software must take the information for accomplistesat request and response com-
mands from the hardware. Due to hardware expense consaresathis information contains
only the number of accomplished sends after the last chéatveto the order of issuing of the
commands. This means that special care must be taken on Sktitmeato keep track of the
command issue order correctly.

Incomming Packet Buffs:
; Automatic + Manual Req. + Resp.

Outgoing Packet Buffs:
Automatic Manual | Requests

Automatic Manual | Responses

Figure 1: GPSB Packet Buffers

3 Layered Architecture of System Software

We decide to implement a layered architecture of the systdtware splitting it into two main
modules - low level device drivagpsh, and Kernel Agengpsbka (Fig. 2) This approach gives

3

us flexibility in an early stage of the project to create saftsvemulation of the GPSB hardware
andgpsb low-level driver. We avoid in this way lagging of the uppevéés of system software
and application development behind the hardware developmich is a common problem in
such projects.

Application / Library ‘

User Export /|Import ... Memory¢ read/write
Kernel v Imported
gpsbka driver Memory,
- Virtual
gpsb driver Interfaces

Generic PCI-SCI Bridge
Hardware

Figure 2. Layered architecture of System Software

From other side separating the operating system dependerdgament policies inside the
Kernel Agent from the mechanisms, which the low-level drigpsb must provide, makes our
design more structured and easy to handle and therefoee pattting of the System software to
other platforms will be more easy and painless.

3.1 GPSB Kernel Agent driver -gpsbka

The Kernel Agent in conjunction with the low level driver atlte hardware forms the VI
Provider. It is accessed by VI applications through the VetJagent. As it is part of the
operating system it can accomplish those privileged ofmraithat are needed for administrative
purposes and for ensuring protection between several ggeseThe Kernel Agent’s major tasks
are:

Creation and destruction of Virtual Interfaces

Memory registration and protection

Connection setup and breakdown.

SCI Shared memory administration

The former two involve only local operations while the lattequire communication with other
nodes. In section 4 we will take a closer look at the impleraton of the Kernel Agent.

3.2 GPSB low level driver -gpsb

Thegpsb layer provides an abstraction of a network interface cdletravhich supports a special
Distributed Shared Memory Mode, and VIA functionality. fopides the upper software levels

4

with a well-defined portable programming interface to itsdtionality. The interface functions
can be divided into several different groups, which we dbedoriefly in the following.

The first and most important group of interface functionsvtes the basis for the Kernel
Agent operation. The functions inside this group can behtursubdivided to functions for
control of Upstream and Downstream Address TranslationRnodection Tables, VI Context
Memory, Protection Tags and a Control Message TransportwilVeliscuss the purpose and
implementation of this important group of functions in béggletails in subsequent sections.

Development of the firmware for such a design is a long and tioatpd process, which
requires lots of complex tests proving the correct openatibthe synthesized logic under dif-
ferent conditions. Other kinds of tests that we often neegetdorm are to prove out and tune
some algorithms, which must be later built inside the sysseftware. These tests are very
difficult and time wasting to be programmed and debugged iaragt space and very often a
small mistakes leads to hangs of the whole system. So weeatktadorovide an additional pro-
gramming interface which offers possibilities for obtaigithe specific status and configuration
information and to establish user space mappings of mo$ieo€SR’s and memory regions of
the GPSB hardware. For similar purposes another two setdeface functions to the manual
packet send-receive functionality of the hardware areigexlz One of them makes it possible
to generate all important types of SCI packets which areuligef such non-cache coherent
PCI hardware. The second set of functions can be used tanaletzived and buffered manual
packets, separated on requests and responses.

All these additional sets of interface functions plus thamset of interface functions are
available to the user space by means of I/O controls (IOC3).8/hich gives a basis for writing
user-level diagnostics and tests and speeds up the devahbpAnother possible application can
be to analyze other SCI systems by writing applicationsitijatt or collect SCI packets.

Because the GPSB hardware is based on many programmablecamdigurable logical de-
vices we must ensure solutions for their programming anfigration from the very beginning.
Instead of designing lots of system configuration utilitiest directly interact with the hardware
and require root privileges (like for example in a CERN PQCIF8ridge design [3]) we decided
to integrate access functions to programmable devicedarke driver and provide appropriate
programming interfaces to the configuration utilities. S’gives us the advantage of concentrat-
ing the lot’s of similar code inside the driver, which makegprovements and support easier. The
only small drawback is the slightly increased size of theeatriHowever, that is not a problem
concerning the configurations which our design is targeted t

In addition thegpsb driver that has been designed to support an unlimited nuofiderards
from the very beginning is also responsible for initialinatof the GPSB hardware. Because
very often some parts of the synthesized logic of our expamtiad design fail from one firmware
version to another we decided to integrate more advancephakaic functions inside thgpsb
than are normally typical for a device driver. But insteadatélly rejecting support for a given
failed device we signal the type of failure and enable onlgtipldriver functionality which
can be more or less restricted depending on the failed stdmsysThis gives us a chance to
diagnosing the problem and to reprogram the programmagie ttevices.

5

4 Implementation of the VI Kernel Agent and Demands on
the Low Level Driver

Following we will discuss what mechanisms the low level dricnust provide in order to imple-
ment the required VIA functionality on.

4.1 VI Creation and Destruction

Virtual Interfaces (VIs in short) are the access points feouser process to the VIA hardware. A
VI comprises some main memory resources for the descriptenes and a so calléd context,
which is a memory structure located on the NIC. It contai$ust information about the VI,
attributes and FIFOs for the posted descriptors. VI costas a limited resource of the VI NIC
and their number directly determines the maximal numbeuppsrted VIs.

When a new VI is to be created a free context must be allocatddsat up appropriately.
Upon destruction of a VI the associated context must besetbagain.

So the low level driver should provide a functions to allecahd free a context of a specific
NIC. This administration must be done separately for each iNstalled. Further, functions are
needed to alter a given context, i.e. to change the statuseattributes of the VI, and to read
out the current state.

4.2 Memory Registration and Protection

Memory management is an essential part of the VI Architectut is responsible for locking
communication buffers into physical memory. This is donardymemory registration. More-
over it must ensure that several processes cannot intevfdreach other unintentionally. This
Protection is achieved by so callptbtection tags. Every registered memory region is assigned
a certain protection tag, likewise each VI. The hardwareiesssthat a memory region can only
be used for communication on VIs with the same tag.

Protection tags must be requested from the Kernel Agentéwpiplication, and the Kernel
Agent must ensure that no two processes get the same tagtanhanyrotection tags are another
limited resource of a VI NIC. By analogy to VI contexts they @dministered by the low level
driver, which provides functions to allocate and free a tagafspecific NIC installed.

During memory registration all memory pages concerned @ieell into physical memory
and locked down. Then the NIC must be informed about the phyaiddresses so that it can
access the main memory later on by DMA operations. The addnésrmation together with
the protection tags is stored in the so called Upstream AddFeanslation and Protection Table
(UpATPT) on the NIC. For every registered or exported pagepaate ATPT entry is needed.
The VI Architecture requires that a contiguous part of theeas allocated for each registered
memory region. There is no such restriction for exported mgmhowever, it simplifies the
implementation. In order to realize distributed shared mgnour hardware possesses another
table, the Downstream Address Translation and Protectiae {DnATPT).

6

The low level driver administers both tables and providesesas to them through a set of
functions to allocate and free a number of block of entriad, ta change their contents.

4.3 Connection setup and breakdown

The VI Architecture embodies a point—to—point connectiaydel. Before any communication
between two processes can take place their VIs must be daarieccach other. Managing these
connections is the most complex task of the Kernel Agentt esquires communication with
other nodes.

In order to be independent of the existence of another n&twerdecided to use only he
SCI fabric to exchange control information. Following weesih the connection setup for the
Client/Server model and analyze what transport mecharasenseeded for its realization.

In the Client/Server model a connection is initiated by tBever waiting for a connection.
After that the client can issue a connection request. It geap the address and attributes of the
local VI, the remote address and some additional informaiie., the packed size is fixed and
in our current implementation won’t exceed 64 bytes. Cotioeaequest packets are always
sent in the context of the calling process, which means tieapacket send function is allowed
to block. When the connection request arrives at the sende the Kernel Agent must check if
there is a process waiting for the request and return an pppte answer, which can be encoded
using not more than three bits. This happens in the conteptarfessing incoming packets. In
order to allow all send functions to block, we decided toaiisd kernel thread for each block
that dispatched incoming control messages.

Upon arrival of a matching connection request the servesge®returns from the wait func-
tion with the address and attributes of the remote VI. Nowait check the properties of the
remote VI and decide whether to accept or to reject the cdaimmedn order to accept it, it calls
the appropriate Kernel Agent function, which sends an aqoagket to the client node. It con-
tains the server VI attributes and a few more fields so thageiten smaller than a connect request
packet. To make sure that the client’'s request has not timectheanwhile the server waits for
a positive answer from the remote Kernel Agent. That Kerngémt checks if the request is
still pending and in case it is, it sets up the client VI andirne$ a positive status. When the
Kernel Agent on the server side receives the answer it setiseulocal VI, but it needs another
handshake with the client before the connection can be deresd established since the client’s
request could have timed out just now. For this purpose tis@m accept confirmation packet
which only identifies the remote request by an integer valles is done in the context of the
server process again. When the client Kernel Agent recéineesonfirmation and the request is
still pending it wakes up the waiting client process andmeta positive status. Finally, when
this answer arrives the server process resumes executicdh@gonnection is established.

Summarizing this protocol we can state that the low leveladrmust provide a facility to
send packets of a fixed size. Further, there must be a meanémgass incoming packets to the
Kernel Agent in an asynchronous fashion.

4.4 SCI Shared Memory Administration

A unique feature of our hardware is that it allows to share wgrbetween several nodes. Itis the
Kernel Agent’s task to set up the hardware properly. Thismaehat the Upstream Translation
Table on the exporting node must be filled with the physicdrasises of the exported area. After
that the indexes of the table entries used must be trandfertde importing node to set up the
Downstream Translation Table.

In principal itis possible to use any arbitrary set of erstfier a single area. The other extreme
is to use one consecutive block. Both methods have got aalyesit While the former avoids
fragmentation of the Upstream table the latter minimizesamount of data to be exchanged.
As a trade off we decided to use a set of blocks for each exgartea. We allocate as many
consecutive entries as possible for each block and onlsfeartheir start index and length.
However, the size of such messages depends on the size afthiezl ares. Thus, the low level
driver must be able to transfer messages of arbitrary length

5 Implementation of Low Level System Software Main Func-
tional Subsystems

As we mention in section 3.2 the main task of the low-leveleyssoftware is to provide the
required mechanisms for the Kernel Agent operation, whietcantrol of Upstream and Down-
stream Address Translation and Protection Tables, VI GoMemory management, Protection
Tag management and efficient Control Message Transport.

The Control Message Transport is based on the Manual Re§eest Packet Subsystem,
the Manual Response-Send Packet Subsystem and Manual Radeve Subsystem. Before
discussing the Control Message Transport implementat®mil briefly describe their design
and way of operation.

5.1 Address Translation and Protection Tables Control

The interface functions for Upstream Address Translatednids control enable the Kernel Agent
to implement exporting of the shared memory areas. All pafé&se host memory that are reg-
istered inside the UpATPT are accessible from remote nobes.introduction of this UpATPT
gives a possibility to export every arbitrary region fronopesses virtual address space, because
exported memory regions don’t need to consisted physicalhsecutive pages. This is one of
the main advantages in contrast with conventional PCIl-%Sighs.

A similar set of functions for Downstream Address Translaffables controls the manage-
ment of imported memory areas. By properly adjusting of tm&TPT entries for the physical
pages inside the imported memory area accesses to them danwaeded to corresponding
pages of exported memory areas on remote nodes.

The low-level driver provides only basic functionality d¢fet Address Translation and Pro-
tection Tables entries management. The interface incliwgdegions for obtaining information
about the size of the tables, for allocating a range of carisecfree entries, freeing the range of

8

entries, setting attributes of given entry and freeing aigible entries. The allocation function
simply returns the first available region with the requestied or the biggest possible one if the
request can’t be satisfied.

5.2 Manual Request-Send Packet and Manual Response-SendcRat Sub-
systems

Manual request-send and manual response-send packetsetiorality is accessible through
two sets of interface functions—one for requests and oneei&ponses. Every function of these
sets offers the generation of specific type request-senespectively response-send packet and
must always be called from process context. Both requestemmibnse types of functions accept
parameters for GPSB device number, Target 8@kl D, Source SChodelD, pointers to data
body if the packet type permits that, a pointer to an optiaxdénded header data and a flag
indicating whether the send operation must “block on semdaiod. The requests-send functions
return thetransactionID under which the packet is sent, while the response functakes the
transactionlD under which packet must be send as parameter. Besides soenspécific fields,
which are packet type specific, the other difference betwleemanual request-send and manual
response-send functions is that the former ones accepttemmalgpointer to the response buffer
and a flag whether to “block on response” or not.

To avoid redundant data copying pointers to a buffer for tkgeeted response is recom-
mended to be supplied to the manual request-send functibhis makes it possible for the
corresponding response to be fetched by the Manual PackeiveeSubsystem directly to the
caller buffer. Furthermore because actually three pantan be supplied for parameters—for
the header, for the packet body and for the trailer, packetw# be separated from the protocol
information on receiving. This saves this extra job for théler, which otherwise may need to
perform additional data copying.

The implementation of all request-send functions, whidarajeneration of different types of
request-send packets, is similar and follow the generiermehshown in Fig. 3. At the beginning
a free buffer must be allocated. If allocation fails and théotking send” flag of the caller
process is on it is put to sleep until request-send buffezsfreed. After successful request-
send buffer allocation the corresponding type of packetepared inside the buffer except the
header, the creation of which th@nsactionID is required for. If the following attempt to obtain
a freetransactionID fails and the blocking send flag of caller process is on it istpusleep
until transactionlD’s are freed. After successful obtainment dfa@nsactionlD the header is also
created and packet becomes ready for sending. If the cakethe “block on response” flag
turned on, after issuing the send command for the alloca&gdest-send buffer it is put to sleep
until the corresponding response arrives or a timeout isated.

We allocate théransactionlD just before the send of the packet because we want to deecoupl
send-buffer allocation frortransactionl D allocation allowing to start the packet preparation even
if there are currently no free transactions available.

Response send functions implementation can be illustraiibdsimilar but slightly simpli-
fied diagram. That is because transactionlD needs to be allocated. Responses send packets

9

Sleep While

Send Block Free Buffer

Sleep While
Free Transaction

Packet
Finalization
S —
Packet Send

Command

No -—

Res. Block

Sleep While

Response or
Timeout

—

End

Figure 3: Generic block diagram of the request-send funstio

10

typically are generated in response of request-send Eaaketfor this reason thieansactionlD
is known and it is supplied as parameter to the responsefseation. Of course, in such generic
block diagram for the response-send functions the “bloclesponse” part must also be missing.

Free Buffers
Ptr Queue

@ @ User context call

7 S

P Packet
N Abort/Failure Preparation
Busy + Nonblocking Transaction
Allocation
]

Finalization
Busy Buffers
Ptr Queue }
Q Command

L -

Interrupt handler

(;5 Free Buffers Ptr Queue Spinlock
(:) Busy Buffers Ptr Queue Spinlock

Figure 4: Request-Send Buffers Management

Fig. 4 shows how the request-send buffers management aggem is implemented. Point-
ers to the free request-send buffers are stored in a FreeBu#binter Queue. When the request-
send function is invoked it takes a buffer from Free Buffeognker Queue and starts preparing
the packet. If the function execution must be aborted foresogason (e.g. invalid parameters,
missing freetransactionlD’s while non- blocking send is requested or signal processire-
quired) the allocated request-send buffer must be put lwattietFree Buffers Pointer Queue. In
case of successful packet preparation a send commandeésligsthe hardware and the pointer
to the request-send buffer used is appended to the BusyrBWRf@nter Queue. After accom-
plishing the send command (or rather accomplishing the murobsend commands equal to
the number of half of the request-send buffers) hardwaremges interrupt which is serviced
by the system software. This causes that all pointers t@djraent request-send buffers are
put back to the Free Buffers Pointer Queue. Spinlocks gteahe integrity of data structures
because they are accessed concurrently from the interamgliér at interrupt context and from
several request-send functions running in user contexchwdan run simultaneously on different
CPUs on SMP machines. The Busy Buffers Queue Spinlock alsares that the order of send
commands issued matches the order of pointers to the resgredtbuffers inside Busy Buffers
Pointer Queue supplied to this commands.

11

5.3 Manual Packet Receive Subsystem

Receive functionality is accessible also through two séti&imctions—one for obtaining the
received manual request-send packets and the other fonigtaeceived manual response-send
packets. In practice they offer access to received manghbpabuffered by the system software
separately in the Manual Request Buffer Queue resp. the M&asponse Buffer Queue in host
memory. Both sets of the functions accept a flag as parantederdicates whether to block
until packet is received or not.

When manual packets arrive the GPSB hardware generateteampt, which is serviced by
the system software. The interrupt servicing routine idiestin which Manual Incoming Packet
Buffers received manual packets have received. Becausedltntoming Packet Buffers are
common for both manual requests and responses the packisriraeast be prefetched in order
to determine if the packet is of request or response type.

If the packet is a response ttransactionID is used to obtain information from the Transac-
tion Tracking Subsystem for this transaction. If the retusend function has registered a buffer
for the response, the packet is stored there. Otherwisestbied in the general Manual Re-
sponse Buffer Queue. If the transaction tracking infororathows that a process is sleeping on
the response for this transaction it is woken up.

In case a manual request packet is received it is stored iud@&equest Buffer Queue.

Whenever a packet is stored in the Manual Request or RespBaiffee Queues the processes
sleeping on the corresponding queue are woken up.

5.4 Control Message Transport Subsystem

As we mentioned above the Control Message Transport Su#msygves the upper level software
the possibility to exchange control protocol informatittrmust provide a high level of reliability
and mechanisms for synchronization because the SCI temyoloes not guarantee that the
order in which packets arrive at the receiving side will rhatee order in which they were sent.
At the same time acceptable latency and bandwidth must bédebecause it can have impact
on the overall performance of the whole communication saut

We want to emphasize here that overall performance detiveréhe applications mainly
depends on speed of the automatic packet mode of the GPS®drardBut if the application
code for example forces frequent import and unimport of athamemory regions the speed of
underlying System Software and therefore speed of oparafi€ontrol Message Transport can
have a big impact on the overall performance.

Unfortunately interrupt driven send-receive of manuakpéscan’t offer very big bandwidth
and very low latencies. That’s because on the receivingistderupts and therefore kernel call
is required. Another reason is that received packets musahsferred from on-board buffers
to system memory by the system software using the read P&actions, which are typically
more than 10 times slower than PCI write transactions.

We decided to overcome the reasons for this bad performaynesibg some mixture of
the manual and automatic mode approach. In our Control MesB&mote Write Function
we are using manually generated automatic write packetseriVg¢bich packets are received by

12

the peer node they are interpreted by GPSB hardware likerauito and their data body is
written directly to system memory. After this the receivisigle automatically generates the
corresponding responses for these write request transactiThis in combination with SCI
CRC error detection mechanisms gives to us very fast arabielivay for sending unlimitedly
long control messages. The function automatically crehtesequired automatic packets on the
basis of the accepted parameters which are GPSB device nuatetenodel D, remote buffer
virtual address, pointer to control message to be sent amdotonessage size.

Additionally other slower interface function for controbssage exchange is provided, which
is based on "pure” interrupt-driven manual packet seneivecand can be used to transfer short
messages (no longer than the longest currently supportedaahe-coherent write transactions
which is currently 64 bytes). This function is required tdially transfer the virtual address of
the remote buffer needed to the Control Message Remote Yntgion.

In our future plans for improving the system software we hiéneidea to minimize the use
of manually generated packets for Control Message Trahgganuch as possible. They shall
be used only for initial establishing of certain systemwafe dedicated shared memory areas.
These areas will be used to transfer the Control Messagegtbgnatic SCI packets.

6 Summary and Future Work

In this paper we have presented an architectural designstérsysoftware for our high speed
communication hardware that uniquely combines the Virtn&drface Architecture with SCI
distributed shared memory capabilities. It contrast tep#golutions no additional low speed
connections are needed for the implementation of sharedomyeand VIA functionality. Besides
the main functions the software provides an advanced adeffor further firmware development
and for debugging. These functions can also be used for istyiédind analyzing other SCI
systems.

Future tasks are the development of an fragmentation fgeeitims for the translation table
management and a mechanism to exploit the shared memorkilitzgs of the hardware for
Control Message Transport. Moreover, the protocols fonestion management and exporting
and importing of memory should be improved further.

References

[1] DOLPHIN INTERCONNECTSOLUTIONS AS: PCI-SCI Bridge Specification Rev. 4.01. 1997

[2] DOLPHIN INTERCONNECT SOLUTIONS AS: PSB-64/66, Features and Benefits.
http: //ww. dol phi ni cs. no

[3] HANS MULLER, A. BOGAERTS C. FERNANDES, L. McCuLLOCH, P. WERNER AND'Y.

ERMOLINE: PCI-SCI Bridge for high rate Data Aquisition ArchitectuiaslLarge Hadron
Collider.PCI'95 Week, St.Clara, March 1995.

13

[4]

[5]

[6]

[7]

[8]

[9]

IEEE: Standard for Scalable Coherent Interface (SEBE Std. 1596-1992. SCI Homepage:
http://ww. SCl zzL. com

The Virtual Interface Architecture Specification. Versib/d. Compaq, Intel and Microsoft
Corporations. Dec 16, 1997. Available at:t p: / / ww. vi ar ch. org

M. TRAMS, W. REHM, D. BALKANSKI, S. SMEONOV. Memory Management in a com-
bined VIA/SCI Hardwareln proceedings to PC-NOW 2000, International Workshop on
Personal Computer based Networks of Workstations held muoction with the IPDPS
2000, May 2000, Cancun/Mexico.

MARIO TRAMS, WOLFGANG REHM, AND FRIEDRICH SEIFERT. An ad-

vanced PCI-SCI bridge with VIA supportin: Proceedings of 2nd Cluster—
Computing Workshop held in Karlsruhe, Pages 35-44, Marc®919See also:
http: // ww. t u-chemni tz. de/ i nf or mati k/ RA/ CC99/

MARIO TRAMS AND WOLFGANG REHM: A new generic and reconfigurable PCI-SCI
bridge.Proceedings of SCI Europe’99. Toulouse, September 1999.

M-VIA: A High Performance Modular VIA for Linux. Project Homepage:
htt p: / / www. ner sc. gov/ research/ FTE vi a

[10] P. BUONADONNA, A. GEWEKE, AND D. CULLER: An Implementation and

Analysis of the Virtual Interface ArchitectureDepartment of Electrical Engineer-
ing and Computer Science, University of California, Beeyel May 1998. See also:
http://ww. cs. berkel ey. edu/ philipb/vial

14

