
Technische Universiẗat Chemnitz
Sonderforschungsbereich 393

Numerische Simulation auf massiv parallelen Rechnern

Daniel Balkanski Friedrich Seifert Wolfgang Rehm

Proposing a System Software for an
SCI–based VIA Hardware

Preprint SFB393/01-15

Preprint-Reihe des Chemnitzer SFB 393

SFB393/01-15 March 2001

Contents

1 Introduction 1

2 SCI Protocol And GPSB Hardware Peculiarities and Their Impact on The System
Software Design 2

3 Layered Architecture of System Software 3
3.1 GPSB Kernel Agent driver -gpsbka . 4
3.2 GPSB low level driver -gpsb . 4

4 Implementation of the VI Kernel Agent and Demands on the LowLevel Driver 6
4.1 VI Creation and Destruction 6
4.2 Memory Registration and Protection 6
4.3 Connection setup and breakdown 7
4.4 SCI Shared Memory Administration 8

5 Implementation of Low Level System Software Main Functional Subsystems 8
5.1 Address Translation and Protection Tables Control 8
5.2 Manual Request-Send Packet and Manual Response-Send Packet Subsystems . . 9
5.3 Manual Packet Receive Subsystem 12
5.4 Control Message Transport Subsystem 12

6 Summary and Future Work 13

Author’s addresses:

Daniel Balkanski
Friedrich Seifert
Wolfgang Rehm
TU Chemnitz
Fakultät für Informatik
Professur Rechnerarchitektur
D-09107 Chemnitz

http://www.tu-chemnitz.de/informatik/RA

Abstract

In this document we present the architectural design we develop for the system software,
which integrates our new architecture PCI–SCI Bridge with VIA support into the LINUX
operating system. The development of this system software is a part of a bigger project, the
end goal of which is to build a complete interconnect solution from the hardware to commu-
nication libraries and to prove in practice our new architectural concepts. This interconnect
solution will be suitable for building inexpensive clusters optimized for running MPI based
message-passing applications. The work presented here canserve as a good starting point
to a broad range of experimental designs ranging from “pure”VIA and “pure” SCI shared
memory communication devices to “combined” VIA-SCI designs like ours.

1 Introduction

SCI [4] is a modern communication technology offering extremely low latencies and very high
bandwidth. But today’s PCI–SCI Bridge architectures stillhave some disadvantages that make
building MPI based message passing applications on top of such hardware difficult and resource
wasting. The main disadvantage is that there is no ProtectedUser Level DMA available, which
can significantly increase the overall system performance.

On the other hand the Virtual Interface Architecture (VIA) [5] defines a standardized inter-
face between high-performance network hardware and the operating system and is intended to
improve performance of distributed applications by reducing the latency associated with critical
message passing operations.

This motivated us to develop a new PCI–SCI Bridge Architecture [7], [6] that combines
the positive characteristic of SCI with advanced memory management and Protected User-Level
DMA of VIA in optimal way. To prove these ideas in practice we built a hardware prototype
[8] the core of which is based on reconfigurable logical devices instead of ASICs. This gives
us a flexibility to experiment with a wide range of different PCI–SCI Bridge architectures only
by redesigning the firmware and system software. That’s why we named the prototype Generic
PCI–SCI Bridge or GPSB in short.

Currently we are developing the appropriate firmware and system software for the prototype
which will realize our new PCI-SCI Bridge architecture concepts. Initially the system software
will be targeted to PC and Alpha LINUX platforms consideringthe most attractive ones for
cluster computing.

Until now only one vendor — Dolphin Interconnect Solutions AS produces commercial PCI–
SCI Bridges and details for internals of their operation aren’t available nor the system software
is is Open Source. For that reason we decided that the description of our design would be of
interest for other groups that want to experiment with the SCI technology their selves and/or the
VI Architecture especially on the basis of our highly reconfigurable hardware prototype. We
consider that our design can serve as a good starting point toa broad range of experimental
designs ranging from “pure” VIA and “pure” SCI shared memorycommunication devices to
“combined” VIA–SCI designs like ours.

1

2 SCI Protocol And GPSB Hardware Peculiarities and Their
Impact on The System Software Design

In contrast with most of the busses SCI uses only split transactions, which means that they consist
of a separate request subaction and an optional response subaction. The send command inside
the packet falls into one of four main categories: response-expected request, move request, event
request and response.

As the SCI standard states, the combination of initiatornodeID andtransactionID uniquely
identifies each of the outstanding response-expected transactions. Since the valid range fortrans-
actionID values is from 0 to 63 they are limited resource and special care must be taken to not
initiate a new response-expected request transactions with the same combination ofnodeID and
transactionID before the old ones are not accomplished. Or in other words before their corre-
sponding response subactions with sametransactionID have arrived.

In contrast with response-expected transactions the move requests doesn’t have a response
subaction and theirtransactionID can be reused immediately.

The responses can be generated only in answer of response-expected requests.
We will not go into details about architectural advantages nor about principles of operation

of the GPSB hardware. They are already described and the interested reader can read more about
them in [7], [6] and [8]. We only want to briefly describe one interesting feature of the hardware
that is slightly aside from the main functionality but whichis from the main importance for the
system software. This is the so called manual packet mode, which provides the system software
with mechanisms for implementing the communication between different nodes that is required
for its normal operation. This manual packet mode is based onone of the two different packet
types the hardware distinguishes, named automatic and manual.

The automatic request-send type packets are generated in result of access to the special mem-
ory mapped I/O regions in which the imported Distributed Shared Memory resides. The GPSB
hardware on the remote side automatically processes them byaccessing the requested exported
memory region and, if the transaction is response-expected, returns the required automatic re-
sponse packets. When these automatic response packets comeback to the importer node they are
also automatically processed by the GPSB hardware, which closes the transaction after that.

The manual type packets are explicitly generated by the system software and they are used
to carry control protocols between the nodes. This enables the system software to implement the
functionality required for SCI and VI Architecture such as establishing connections, exporting,
importing, etc. Additionally the System software has also got a possibility to generate packets
manually which can be recognized and interpreted like automatic by the peer side.

SCI is a highly reliable technology and packet loss is considered a very rare and catastrophic
event. But anyway our design must deal with such events although they are highly improbable.
As the SCI standard requires the GPSB hardware uses responsetimeouts to detect errors that
result in the loss of automatic request-send or response-send packets. This is accomplished by
calculating the time interval within which a response is expected, and when that time limit is
exceeded it signals the system software by rising an interrupt. Because not responded response-
expected transactions can be generated, for instance, as a result of a PIO access from the CPU

2

to imported shared memory regions only asynchronous error notification is possible. The VI
Architecture suggests the VipErrorCallback function to beimplemented in the VI User Agent
for such purposes. It can be used by the VI application to register an error handling function.

In contrast to automatic packets manual request packets arenot automatically responded by
the GPSB hardware nor timeout detection is performed for them. They carry control protocol
data of the System Software and must be responded by the corresponding software layer on the
peer node. If this software is not operational for some reason (e.g. loaded) there is no one to
generate responses. This blocks thetransactionID’s on the requester side and will finally lead to
deadlocks.

To resolve this problem a special Transaction Tracking Subsystem is implemented in the
system software, which maintains information for thetransactionID’s of all manual requests in
progress. This enables a special watchdog timer to cleanup split response-expected transactions
periodically avoiding deadlocks in this way.

The synthesized reconfigurable core logic inside the prototype realizes practically the whole
basic functionality of the hardware. To avoid deadlocks it maintains separate buffers (Fig. 1) for
incoming packets, for outgoing manual and automatic request-send packets, and for outgoing
manual and automatic response-send packets. We should mention that packets are stored if the
buffers in Blink rather than in SCI format. (The Blink formatis composed of an SCI core and
Blink extension header and trailer.)

After issuing the send command for a given packet buffer it can’t be considered free for reuse
immediately, because the hardware needs some time to accomplish the actual send of the packet.
System software must take the information for accomplishedsent request and response com-
mands from the hardware. Due to hardware expense considerations, this information contains
only the number of accomplished sends after the last check relative to the order of issuing of the
commands. This means that special care must be taken on SMP machines to keep track of the
command issue order correctly.

Incomming Packet Buffs:

Outgoing Packet Buffs:

ManualAutomatic

ManualAutomatic

Automatic + Manual

Requests

Req. + Resp.

Responses

Figure 1: GPSB Packet Buffers

3 Layered Architecture of System Software

We decide to implement a layered architecture of the system software splitting it into two main
modules - low level device drivergpsb, and Kernel Agentgpsbka (Fig. 2) This approach gives

3

us flexibility in an early stage of the project to create software emulation of the GPSB hardware
andgpsb low-level driver. We avoid in this way lagging of the upper levels of system software
and application development behind the hardware development, which is a common problem in
such projects.

Application / Library

Kernel

read/writeUser

Generic PCI-SCI Bridge
Hardware

Export / Import ... Memory

Imported
Memory,
Virtual

Interfaces

gpsbka driver

gpsb driver

Figure 2: Layered architecture of System Software

From other side separating the operating system dependent management policies inside the
Kernel Agent from the mechanisms, which the low-level driver gpsb must provide, makes our
design more structured and easy to handle and therefore latter porting of the System software to
other platforms will be more easy and painless.

3.1 GPSB Kernel Agent driver -gpsbka

The Kernel Agent in conjunction with the low level driver andthe hardware forms the VI
Provider. It is accessed by VI applications through the VI User Agent. As it is part of the
operating system it can accomplish those privileged operations that are needed for administrative
purposes and for ensuring protection between several processes. The Kernel Agent’s major tasks
are:

� Creation and destruction of Virtual Interfaces

� Memory registration and protection

� Connection setup and breakdown.

� SCI Shared memory administration

The former two involve only local operations while the latter require communication with other
nodes. In section 4 we will take a closer look at the implementation of the Kernel Agent.

3.2 GPSB low level driver -gpsb

Thegpsb layer provides an abstraction of a network interface controller which supports a special
Distributed Shared Memory Mode, and VIA functionality. It provides the upper software levels

4

with a well-defined portable programming interface to its functionality. The interface functions
can be divided into several different groups, which we describe briefly in the following.

The first and most important group of interface functions provides the basis for the Kernel
Agent operation. The functions inside this group can be further subdivided to functions for
control of Upstream and Downstream Address Translation andProtection Tables, VI Context
Memory, Protection Tags and a Control Message Transport. Wewill discuss the purpose and
implementation of this important group of functions in bigger details in subsequent sections.

Development of the firmware for such a design is a long and complicated process, which
requires lots of complex tests proving the correct operation of the synthesized logic under dif-
ferent conditions. Other kinds of tests that we often need toperform are to prove out and tune
some algorithms, which must be later built inside the systemsoftware. These tests are very
difficult and time wasting to be programmed and debugged in a kernel space and very often a
small mistakes leads to hangs of the whole system. So we decided to provide an additional pro-
gramming interface which offers possibilities for obtaining the specific status and configuration
information and to establish user space mappings of most of the CSR’s and memory regions of
the GPSB hardware. For similar purposes another two sets of interface functions to the manual
packet send-receive functionality of the hardware are provided. One of them makes it possible
to generate all important types of SCI packets which are useful for such non-cache coherent
PCI hardware. The second set of functions can be used to obtain received and buffered manual
packets, separated on requests and responses.

All these additional sets of interface functions plus the main set of interface functions are
available to the user space by means of I/O controls (IOCTLS’s), which gives a basis for writing
user-level diagnostics and tests and speeds up the development. Another possible application can
be to analyze other SCI systems by writing applications thatinject or collect SCI packets.

Because the GPSB hardware is based on many programmable and reconfigurable logical de-
vices we must ensure solutions for their programming and configuration from the very beginning.
Instead of designing lots of system configuration utilitiesthat directly interact with the hardware
and require root privileges (like for example in a CERN PCI-SCI Bridge design [3]) we decided
to integrate access functions to programmable devices inside the driver and provide appropriate
programming interfaces to the configuration utilities. This gives us the advantage of concentrat-
ing the lot’s of similar code inside the driver, which makes improvements and support easier. The
only small drawback is the slightly increased size of the driver. However, that is not a problem
concerning the configurations which our design is targeted to.

In addition thegpsb driver that has been designed to support an unlimited numberof boards
from the very beginning is also responsible for initialization of the GPSB hardware. Because
very often some parts of the synthesized logic of our experimental design fail from one firmware
version to another we decided to integrate more advanced diagnostic functions inside thegpsb
than are normally typical for a device driver. But instead oftotally rejecting support for a given
failed device we signal the type of failure and enable only partial driver functionality which
can be more or less restricted depending on the failed subsystem. This gives us a chance to
diagnosing the problem and to reprogram the programmable logic devices.

5

4 Implementation of the VI Kernel Agent and Demands on
the Low Level Driver

Following we will discuss what mechanisms the low level driver must provide in order to imple-
ment the required VIA functionality on.

4.1 VI Creation and Destruction

Virtual Interfaces (VIs in short) are the access points froma user process to the VIA hardware. A
VI comprises some main memory resources for the descriptor queues and a so calledVI context,
which is a memory structure located on the NIC. It contains status information about the VI,
attributes and FIFOs for the posted descriptors. VI contexts are a limited resource of the VI NIC
and their number directly determines the maximal number of supported VIs.

When a new VI is to be created a free context must be allocated and set up appropriately.
Upon destruction of a VI the associated context must be released again.

So the low level driver should provide a functions to allocate and free a context of a specific
NIC. This administration must be done separately for each NIC installed. Further, functions are
needed to alter a given context, i.e. to change the status or the attributes of the VI, and to read
out the current state.

4.2 Memory Registration and Protection

Memory management is an essential part of the VI Architecture. It is responsible for locking
communication buffers into physical memory. This is done during memory registration. More-
over it must ensure that several processes cannot interferewith each other unintentionally. This
Protection is achieved by so calledprotection tags. Every registered memory region is assigned
a certain protection tag, likewise each VI. The hardware ensures that a memory region can only
be used for communication on VIs with the same tag.

Protection tags must be requested from the Kernel Agent by the application, and the Kernel
Agent must ensure that no two processes get the same tag at anytime. Protection tags are another
limited resource of a VI NIC. By analogy to VI contexts they are administered by the low level
driver, which provides functions to allocate and free a tag for a specific NIC installed.

During memory registration all memory pages concerned are forced into physical memory
and locked down. Then the NIC must be informed about the physical addresses so that it can
access the main memory later on by DMA operations. The address information together with
the protection tags is stored in the so called Upstream Address Translation and Protection Table
(UpATPT) on the NIC. For every registered or exported page a separate ATPT entry is needed.
The VI Architecture requires that a contiguous part of the table is allocated for each registered
memory region. There is no such restriction for exported memory, however, it simplifies the
implementation. In order to realize distributed shared memory our hardware possesses another
table, the Downstream Address Translation and Protection Table (DnATPT).

6

The low level driver administers both tables and provides access to them through a set of
functions to allocate and free a number of block of entries, and to change their contents.

4.3 Connection setup and breakdown

The VI Architecture embodies a point–to–point connection model. Before any communication
between two processes can take place their VIs must be connected to each other. Managing these
connections is the most complex task of the Kernel Agent, as it requires communication with
other nodes.

In order to be independent of the existence of another network we decided to use only he
SCI fabric to exchange control information. Following we sketch the connection setup for the
Client/Server model and analyze what transport mechanismsare needed for its realization.

In the Client/Server model a connection is initiated by the server waiting for a connection.
After that the client can issue a connection request. It comprises the address and attributes of the
local VI, the remote address and some additional information, i.e., the packed size is fixed and
in our current implementation won’t exceed 64 bytes. Connection request packets are always
sent in the context of the calling process, which means that the packet send function is allowed
to block. When the connection request arrives at the server node the Kernel Agent must check if
there is a process waiting for the request and return an appropriate answer, which can be encoded
using not more than three bits. This happens in the context ofprocessing incoming packets. In
order to allow all send functions to block, we decided to install a kernel thread for each block
that dispatched incoming control messages.

Upon arrival of a matching connection request the server process returns from the wait func-
tion with the address and attributes of the remote VI. Now it can check the properties of the
remote VI and decide whether to accept or to reject the connection. In order to accept it, it calls
the appropriate Kernel Agent function, which sends an accept packet to the client node. It con-
tains the server VI attributes and a few more fields so that it’s even smaller than a connect request
packet. To make sure that the client’s request has not timed out meanwhile the server waits for
a positive answer from the remote Kernel Agent. That Kernel Agent checks if the request is
still pending and in case it is, it sets up the client VI and returns a positive status. When the
Kernel Agent on the server side receives the answer it sets upthe local VI, but it needs another
handshake with the client before the connection can be considered established since the client’s
request could have timed out just now. For this purpose it sends an accept confirmation packet
which only identifies the remote request by an integer value.This is done in the context of the
server process again. When the client Kernel Agent receivesthe confirmation and the request is
still pending it wakes up the waiting client process and returns a positive status. Finally, when
this answer arrives the server process resumes execution and the connection is established.

Summarizing this protocol we can state that the low level driver must provide a facility to
send packets of a fixed size. Further, there must be a mechanism to pass incoming packets to the
Kernel Agent in an asynchronous fashion.

7

4.4 SCI Shared Memory Administration

A unique feature of our hardware is that it allows to share memory between several nodes. It is the
Kernel Agent’s task to set up the hardware properly. This means that the Upstream Translation
Table on the exporting node must be filled with the physical addresses of the exported area. After
that the indexes of the table entries used must be transferred to the importing node to set up the
Downstream Translation Table.

In principal it is possible to use any arbitrary set of entries for a single area. The other extreme
is to use one consecutive block. Both methods have got advantages. While the former avoids
fragmentation of the Upstream table the latter minimizes the amount of data to be exchanged.
As a trade off we decided to use a set of blocks for each exported area. We allocate as many
consecutive entries as possible for each block and only transfer their start index and length.
However, the size of such messages depends on the size of the exported ares. Thus, the low level
driver must be able to transfer messages of arbitrary length.

5 Implementation of Low Level System Software Main Func-
tional Subsystems

As we mention in section 3.2 the main task of the low-level system software is to provide the
required mechanisms for the Kernel Agent operation, which are control of Upstream and Down-
stream Address Translation and Protection Tables, VI Context Memory management, Protection
Tag management and efficient Control Message Transport.

The Control Message Transport is based on the Manual Request-Send Packet Subsystem,
the Manual Response-Send Packet Subsystem and Manual Packet Receive Subsystem. Before
discussing the Control Message Transport implementation we will briefly describe their design
and way of operation.

5.1 Address Translation and Protection Tables Control

The interface functions for Upstream Address Translation Tables control enable the Kernel Agent
to implement exporting of the shared memory areas. All pagesof the host memory that are reg-
istered inside the UpATPT are accessible from remote nodes.The introduction of this UpATPT
gives a possibility to export every arbitrary region from processes virtual address space, because
exported memory regions don’t need to consisted physicallyconsecutive pages. This is one of
the main advantages in contrast with conventional PCI–SCI designs.

A similar set of functions for Downstream Address Translation Tables controls the manage-
ment of imported memory areas. By properly adjusting of the DnATPT entries for the physical
pages inside the imported memory area accesses to them can beforwarded to corresponding
pages of exported memory areas on remote nodes.

The low-level driver provides only basic functionality of the Address Translation and Pro-
tection Tables entries management. The interface includesfunctions for obtaining information
about the size of the tables, for allocating a range of consecutive free entries, freeing the range of

8

entries, setting attributes of given entry and freeing all possible entries. The allocation function
simply returns the first available region with the requestedsize or the biggest possible one if the
request can’t be satisfied.

5.2 Manual Request-Send Packet and Manual Response-Send Packet Sub-
systems

Manual request-send and manual response-send packet send functionality is accessible through
two sets of interface functions—one for requests and one forresponses. Every function of these
sets offers the generation of specific type request-send or respectively response-send packet and
must always be called from process context. Both request andresponse types of functions accept
parameters for GPSB device number, Target SCInodeID, Source SCInodeID, pointers to data
body if the packet type permits that, a pointer to an optionalextended header data and a flag
indicating whether the send operation must “block on send” or not. The requests-send functions
return thetransactionID under which the packet is sent, while the response functionstake the
transactionID under which packet must be send as parameter. Besides some other specific fields,
which are packet type specific, the other difference betweenthe manual request-send and manual
response-send functions is that the former ones accept an optional pointer to the response buffer
and a flag whether to “block on response” or not.

To avoid redundant data copying pointers to a buffer for the expected response is recom-
mended to be supplied to the manual request-send functions.This makes it possible for the
corresponding response to be fetched by the Manual Packet Receive Subsystem directly to the
caller buffer. Furthermore because actually three pointers can be supplied for parameters—for
the header, for the packet body and for the trailer, packet data will be separated from the protocol
information on receiving. This saves this extra job for the caller, which otherwise may need to
perform additional data copying.

The implementation of all request-send functions, which offer generation of different types of
request-send packets, is similar and follow the generic scheme shown in Fig. 3. At the beginning
a free buffer must be allocated. If allocation fails and the “blocking send” flag of the caller
process is on it is put to sleep until request-send buffers are freed. After successful request-
send buffer allocation the corresponding type of packet is prepared inside the buffer except the
header, the creation of which thetransactionID is required for. If the following attempt to obtain
a free transactionID fails and the blocking send flag of caller process is on it is put to sleep
until transactionID’s are freed. After successful obtainment of atransactionID the header is also
created and packet becomes ready for sending. If the caller has the “block on response” flag
turned on, after issuing the send command for the allocated request-send buffer it is put to sleep
until the corresponding response arrives or a timeout is detected.

We allocate thetransactionID just before the send of the packet because we want to de-couple
send-buffer allocation fromtransactionID allocation allowing to start the packet preparation even
if there are currently no free transactions available.

Response send functions implementation can be illustratedwith similar but slightly simpli-
fied diagram. That is because notransactionID needs to be allocated. Responses send packets

9

Packet
Finalization

Packet Send
Command

Transaction
Allocation

Packet
Preparation

Buffer
Allocation

Sleep While
Response or

Timeout

Sleep While
Free Transaction

Sleep While
Free Buffer

Res. Block

Success

Success

Send Block

Send Block

Begin

End

No

No

No

Yes

Yes

Figure 3: Generic block diagram of the request-send functions

10

typically are generated in response of request-send packets and for this reason thetransactionID
is known and it is supplied as parameter to the response-sendfunction. Of course, in such generic
block diagram for the response-send functions the “block onresponse” part must also be missing.

Free Buffers
Ptr Queue

Busy Buffers
Ptr Queue }

User context call

Abort/Failure

Busy + Nonblocking

In
te

rr
u

p
t

h
a

n
d

le
r

Free Buffers Ptr Queue Spinlock

Busy Buffers Ptr Queue Spinlock

Packet Send
Command

Packet
Finalization

Packet
Preparation

Transaction
Allocation

Figure 4: Request-Send Buffers Management

Fig. 4 shows how the request-send buffers management organization is implemented. Point-
ers to the free request-send buffers are stored in a Free Buffers Pointer Queue. When the request-
send function is invoked it takes a buffer from Free Buffers Pointer Queue and starts preparing
the packet. If the function execution must be aborted for some reason (e.g. invalid parameters,
missing freetransactionID’s while non- blocking send is requested or signal processing is re-
quired) the allocated request-send buffer must be put back to the Free Buffers Pointer Queue. In
case of successful packet preparation a send command is issued to the hardware and the pointer
to the request-send buffer used is appended to the Busy Buffers Pointer Queue. After accom-
plishing the send command (or rather accomplishing the number of send commands equal to
the number of half of the request-send buffers) hardware generates interrupt which is serviced
by the system software. This causes that all pointers to already sent request-send buffers are
put back to the Free Buffers Pointer Queue. Spinlocks guarantee the integrity of data structures
because they are accessed concurrently from the interrupt handler at interrupt context and from
several request-send functions running in user context, which can run simultaneously on different
CPUs on SMP machines. The Busy Buffers Queue Spinlock also ensures that the order of send
commands issued matches the order of pointers to the request-send buffers inside Busy Buffers
Pointer Queue supplied to this commands.

11

5.3 Manual Packet Receive Subsystem

Receive functionality is accessible also through two sets of functions—one for obtaining the
received manual request-send packets and the other for obtaining received manual response-send
packets. In practice they offer access to received manual packets buffered by the system software
separately in the Manual Request Buffer Queue resp. the Manual Response Buffer Queue in host
memory. Both sets of the functions accept a flag as parameter that indicates whether to block
until packet is received or not.

When manual packets arrive the GPSB hardware generates an interrupt, which is serviced by
the system software. The interrupt servicing routine identifies in which Manual Incoming Packet
Buffers received manual packets have received. Because Manual Incoming Packet Buffers are
common for both manual requests and responses the packet header must be prefetched in order
to determine if the packet is of request or response type.

If the packet is a response thetransactionID is used to obtain information from the Transac-
tion Tracking Subsystem for this transaction. If the request-send function has registered a buffer
for the response, the packet is stored there. Otherwise it isstored in the general Manual Re-
sponse Buffer Queue. If the transaction tracking information shows that a process is sleeping on
the response for this transaction it is woken up.

In case a manual request packet is received it is stored in Manual Request Buffer Queue.
Whenever a packet is stored in the Manual Request or ResponseBuffer Queues the processes

sleeping on the corresponding queue are woken up.

5.4 Control Message Transport Subsystem

As we mentioned above the Control Message Transport Subsystem gives the upper level software
the possibility to exchange control protocol information.It must provide a high level of reliability
and mechanisms for synchronization because the SCI technology does not guarantee that the
order in which packets arrive at the receiving side will match the order in which they were sent.
At the same time acceptable latency and bandwidth must be provided because it can have impact
on the overall performance of the whole communication solution.

We want to emphasize here that overall performance delivered to the applications mainly
depends on speed of the automatic packet mode of the GPSB hardware. But if the application
code for example forces frequent import and unimport of shared memory regions the speed of
underlying System Software and therefore speed of operation of Control Message Transport can
have a big impact on the overall performance.

Unfortunately interrupt driven send–receive of manual packets can’t offer very big bandwidth
and very low latencies. That’s because on the receiving sideinterrupts and therefore kernel call
is required. Another reason is that received packets must betransferred from on-board buffers
to system memory by the system software using the read PCI transactions, which are typically
more than 10 times slower than PCI write transactions.

We decided to overcome the reasons for this bad performance by using some mixture of
the manual and automatic mode approach. In our Control Message Remote Write Function
we are using manually generated automatic write packets. When such packets are received by

12

the peer node they are interpreted by GPSB hardware like automatic and their data body is
written directly to system memory. After this the receivingside automatically generates the
corresponding responses for these write request transactions. This in combination with SCI
CRC error detection mechanisms gives to us very fast and reliable way for sending unlimitedly
long control messages. The function automatically createsthe required automatic packets on the
basis of the accepted parameters which are GPSB device number, remotenodeID, remote buffer
virtual address, pointer to control message to be sent and control message size.

Additionally other slower interface function for control message exchange is provided, which
is based on ”pure” interrupt-driven manual packet send-receive and can be used to transfer short
messages (no longer than the longest currently supported non cache-coherent write transactions
which is currently 64 bytes). This function is required to initially transfer the virtual address of
the remote buffer needed to the Control Message Remote Writefunction.

In our future plans for improving the system software we havethe idea to minimize the use
of manually generated packets for Control Message Transport as much as possible. They shall
be used only for initial establishing of certain system software dedicated shared memory areas.
These areas will be used to transfer the Control Messages by automatic SCI packets.

6 Summary and Future Work

In this paper we have presented an architectural design of system software for our high speed
communication hardware that uniquely combines the VirtualInterface Architecture with SCI
distributed shared memory capabilities. It contrast to other solutions no additional low speed
connections are needed for the implementation of shared memory and VIA functionality. Besides
the main functions the software provides an advanced interface for further firmware development
and for debugging. These functions can also be used for studying and analyzing other SCI
systems.

Future tasks are the development of an fragmentation free algorithms for the translation table
management and a mechanism to exploit the shared memory capabilities of the hardware for
Control Message Transport. Moreover, the protocols for connection management and exporting
and importing of memory should be improved further.

References

[1] DOLPHIN INTERCONNECTSOLUTIONS AS: PCI–SCI Bridge Specification Rev. 4.01. 1997

[2] DOLPHIN INTERCONNECT SOLUTIONS AS: PSB-64/66, Features and Benefits.
http://www.dolphinics.no

[3] HANS M ÜLLER, A. BOGAERTS, C. FERNANDES, L. MCCULLOCH, P. WERNER AND Y.
ERMOLINE: PCI–SCI Bridge for high rate Data Aquisition Architecturesat Large Hadron
Collider.PCI’95 Week, St.Clara, March 1995.

13

[4] IEEE: Standard for Scalable Coherent Interface (SCI)IEEE Std. 1596-1992. SCI Homepage:
http://www.SCIzzL.com

[5] The Virtual Interface Architecture Specification. Version1.0. Compaq, Intel and Microsoft
Corporations. Dec 16, 1997. Available at:http://www.viarch.org

[6] M. TRAMS, W. REHM, D. BALKANSKI , S. SIMEONOV. Memory Management in a com-
bined VIA/SCI Hardware.In proceedings to PC–NOW 2000, International Workshop on
Personal Computer based Networks of Workstations held in conjunction with the IPDPS
2000, May 2000, Cancun/Mexico.

[7] M ARIO TRAMS, WOLFGANG REHM, AND FRIEDRICH SEIFERT: An ad-
vanced PCI–SCI bridge with VIA support.In: Proceedings of 2nd Cluster–
Computing Workshop held in Karlsruhe, Pages 35-44, March 1999. See also:
http://www.tu-chemnitz.de/informatik/RA/CC99/

[8] M ARIO TRAMS AND WOLFGANG REHM: A new generic and reconfigurable PCI–SCI
bridge.Proceedings of SCI Europe’99. Toulouse, September 1999.

[9] M-VIA: A High Performance Modular VIA for Linux. Project Homepage:
http://www.nersc.gov/research/FTG/via

[10] P. BUONADONNA, A. GEWEKE, AND D. CULLER: An Implementation and
Analysis of the Virtual Interface Architecture.Department of Electrical Engineer-
ing and Computer Science, University of California, Berkeley, May 1998. See also:
http://www.cs.berkeley.edu/ philipb/via/

14

