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Abstract

Although many ideas about protected user-level networkssbave been around for a
while there still hasn't been a satisfying solution to congbéxtreme low-latency and high-
bandwidth over a wide range of message sizes. Uniting th&aldeaCoherent Interface
(SCI), a technology to build distributed shared memory alé agemessage passing systems
on top of it, and the Virtual Interface Architecture (VIA), generic architecture aiming
at low latency, seems to be a proper solution to tackle thblgno. To reap the benefits
of this approach we are developing a new Message PassinmtptgeMPI) library, called
CHEMPI %, In this paper we give a brief introduction into some reléwdgsign principles of
CHEMPI and prove its potential regarding latency and badtdwon base of a comparative
measurement including two other computing interface telduies.

Keywords: MPI, VIA, SCI, shared memory, and communicatioot@cols.

1 Introduction

MPI (Message Passing Interface) is an established ancctiedtandard for data exchange based
on the message-passing paradigm for developing portabddigdapplications [1][2]. The MPI
Forum has introduced the MPI standard in 1996. MPI has alsagidwing community as a
standard user Application Programming Interface (APIl)darallel programming. One of the
oldest MPI libraries is MPICH, [3]. At present, there are antner of MPI implementations.

The implementation of an MPI library on top of the Scalableh@ent Interface (SCI) can
easy be done by emulating message passing on shared mentattyisimplies that the CPU
participates active in the data transfer. The performanderms of latency for sending and
receiving small message sizes is high, while the systenugfimout for sending and receiving
large message sizes is low due to the active involvementeo€CfU for message transfer. The
CPU copies the data from local memory into imported SCI mgntloat consumes expensive
CPU cycles with memory copy operations. The DMA engine sffam alternative solution for
this problem. For instance Dolphin’s PCI-SCI network cawéfer a DMA engine. But it can't
be used to realize some kinds of protected-user level DMAavimd non authorized accesses
to memory it is necessary to pass the operating system keftiethe DMA transfer, because
only the operating system kernel is able to perform this sgccheck. The DMA engine of the
Dolphin PCI-SCI cards D310 showed a lower bandwidth for DMWart SCI shared memory,
[8],[9]. To eliminate the operating system kernel from thigical path of the communication
operations, three major IT compariastroduced the Virtual Interface Architecture (VIA) in
December 1997 [5]. The VIA has two communication methodsnd8eeceive and RDMA.
Both methods are based on a data structure (so-called pesthat is used to describe a data
movement request. Consequently, the implementation of @hlilrary on VIA can not achieve
ultra low latencies for small message size as it can be doBCinby using simple memory
references. However the protected user-level DMA engin¥Iéf offers high bandwidth for

1This work is part of the GRANT SFB 393/B6 of the DFG (Germarioradl Science Foundation)
2Intel, Compag, and Microsoft.



the MPI library. Hence, the idea to implement a new MPI bagethe conjunction of the two
network cards looks good and has a great sound.

In the following section we present an overview of some ingoormembers of the abun-
dance of MPI libraries that exploit the hardware capab#itdf VIA or SCI. In section three we
present the requirements for a new MPI library. Followingdescribe the structure of our new
MPI library calledCHEMPI in section four. In section five we present the implemenitatb
the device dependent layer in CHEMPI. In section six, we erihe send/receive capability of
CHEMPI on base of comparative measurements with two othddiliaries. The last section is
related with the future work and conclusion.

2 An overview of relating MPIl implementations

MPI/Pro [4], is a product of the MPI software Technology Init.was designed and imple-
mented specifically to target Virtual Interface Architeetumnetworks and was designed to take
full advantage of VIA. It has a number of features that maka utaluable tool for efficient
programming of clusters of workstations. MPI/Pro providesilti-threaded design, user level
thread safety, optimized protocols for short and large agss, optimized persistent mode of
MPI point-to-point operations, multidevice architectumsultiple queues for receive requests,
and asynchronous method of synchronization and notificatio

ScaMPIl, [6] is a commercial MPI implementation for SCI cocteel clusters of workstations.
ScaMPI was designed to take the advantage of SCI's sharedssdspace architecture. ScaMPI
provides thread safe implementation, fault tolerancelabddy, and high-performance. SCI-
MPICH, [7] is a development of MPICH. It has an ADI-2 deviceRND layer) for SCl-adapters
that enables MPICH on SCI-connected clusters. The impléatien of the SCI-specific ADI-2
device is based on the SMI library that in turn uses the SISEI @nd the IRM driver of the
Dolphin PCI-SCI adapter.

MPI/Pro did not support a protocol for SCI shared memory sa the ultra-low latencies
for short message sizes and synchronization are not relach&baMPI, and SCI-MPICH did
not support a protected user-level DMA that is suitable @&rding and receiving large message
sizes. From this point arose out the strong need for new MPBlamentation, that offers the
optimal conditions for the conjunction of VIA and SCI to rete benefits and to avoid the
disadvantage of each network card.

3 Requirements for a new MPI

The first design requirements of a new MPI library are achigperformance andportability .
The portability is achieved by separating a hardware degerfdinctionality in a special layer
(so-called device) similar to MPICH, [3]. In numerous caskssters of the workstations use
heterogeneous networks that raise the requirement to mgpliea MPI library that provides an
excellent support for multiple devices. Another generguieement is to support a thread safe
programming model to achieve a high degree of parallelisoonfmunication and computation.
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Furthermore MPI-2 [2] functionality such as dynamic precereation should be integrated.
Special requirements for supporting SCI shared memory dsa/¥/IA are:

e The registration and deregisteration memory for VIA reg@VIA memory management
of the data buffers. Memory registration is a high-overhepdration. So, it is recom-
mended to reuse the same registered segment multiple times.

e A shared memory protocol that will be used for short messegss

e A protocol that uses the VIA RDMA mechanism for large messsges.

4 CHEMPI

The CHEMPI (CHEmnitz MPI) project [11] was started in sprit@99 with the objective to ful-
fill the requirements mentioned above. CHEMPI is divided imto main layers and an interface
between these layers as shown in Figure 1:

‘ J— ‘

Errrrrrrrrr . MPI-2 AP
-Binding (C++/Fortran)

Chempid Device Independent
daemo Layer (DIDL)

Device Dependent

}/\//\/\\/\/\//\/\\/\/\//\/\\/\/\//\/\\/\/\//\/\\/\/\//\/\\/\/\//\/\\/\1 Interface (DDl)
Device A| . | Device N| Device Dependent Layer
e.g VIA/SC] (DDL)

Figure 1: Raw structure of CHEMPI

e Device Independent Layer (DIDL) contains a large amount of code and it is divided into
the following modules: data-types, MPI point-point andleciive operations, connec-
tion handling, communicators, groups, topologies, erardiing, memory management,
process management, and parallel /0. These modules khrenger development. In ad-
dition, CHEMPI has a small daemon (chempid) that managethendistribution of the
network information, and MPI applications. The chempidrdas is still under develop-
ment for supporting the requirements of MPI-2, such as dyo@nocess creation.

e Device Dependent Interface (DDIhas two parts:

1. The core functionality has the following parts:

(a) initialization and shutdown
(b) basic pointto point communication (synchronize/ndramal blocking/nonblocking)
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(c) send and receive of system messages
2. The optional functionality has the following parts:

(a) collective operations

(b) one-sided communication

(c) other point to point communication modes
(d) memory management

¢ Device Dependent Layer (DDL) it is a layer through which the actual communication
facilities are accessed. It defines a set of point-point sendreceive operations that are
required by the upper layer of CHEMPI. In the next sectionsmliepresent two devices:
SCI device and VIA/SCI device.

The structure of CHEMPI, as shown in Figure 1, provides thiétyalio generate a new
MPI implementation for a new (or not yet supported) commatian network with small effort
because the effort to implement a DDL part is much smallar tha effort needed to implement
the full MPI functionality. Therefore, the structure of CNIPI provides one of the important
characteristics of the software engineering so-cgledability .

5 CHEMPI Devices

In September 1999 VIA was integrated into the Linux kern@l] [@mulating message passing
based on the distributed shared memory mode of SCI. The €&sMPI device [11] was im-
plemented based on this emulator that integrated the VIAB®&8CI modes. MPI point-to-point
operations implemented on top of this device have been mgrecorrectly. But these operations
achieved only very low bandwidth and a very high latency. Veroome these limits our group is
developing a new VIA/SCI network card [8][9] that hasn’t bdmished yet. This is why we im-
plemented the CHEMPI device for the Dolphin PCI-SCI adapt&t0, and Giganet cLARN[12]
with 32/64-bit 33MHZ PCI host adapters cLAN1000. In the npatts we present the imple-
mentation of this device.

5.1 The SCI device

The implementation of the SCI device is based on the SISClakdithe Dolphin SCI adapter
D310. The implementation of this device has three parts:

e Initialization: During the initialization of the processes which form the INPBplication,
the SISCI API and the IRKIdriver of the Dolphin PCI-SCI adapter are required to estab-
lish shared SCI memory segments mapped into the proceskssakspace. The initializa-
tion process starts by creating the local segntdotsall the other processes. Each segment

3The cLAN for Linux product family is a hardware implementatiof the VIA standard.

4Interconnect Resource Manager,[13]

SLocal segment is a memory that segment located on the sarmessar where the application runs and accessed
using the host memory interface.



has a unique segment identifier. Afterwards the initialcraprocess makes sure that all of
the local segments are accessible by an SCI adapter, magasltival segments that were
created before into the addressable space of the devicenmepiation, and makes all of
these local segments visible to the remote nodes. Followiognnects these segments

to the associated remote segmé&rasid maps these remote segments into the addressable
space of the device implementation. In addition, the ilztzion processes should create

a so called sequence for all the other processes. This segjigensed to check if errors
have occurred during a data transfer. An example of cormestestablished after the
initialization for four nodes is shown in Figure 2.

fffffff .-
e i ] i

\V/
N\ .

7
4

y
7

\

AN

,,,,,,,

§ 7
Local Segment Remote Segment
\ v 0 9
| |

~——= connected VI's

Figure 2: VIA/SCI device after initialization

e Communication: The SCI device handles point to point blocking communicaby di-
rect accesses to the user address space of the process padsaply a message transfer
protocol for small message sizes that will be used in SCI/d&ice. This protocol is
implemented as follows:

1. At the sender side the data transfer from the local segment to the remote seigme
is done by copying the data in the user address space interti@e map address of
the destination and post a ready flag. This flag is used forsgnzation. Then, the
sender should wait until the data has arrived at the recdil&ng another flag called
(Completed) that will be posted by the receiver can do this.

5Remote segment represents a segment residing on a remetamdccessed via SCI link
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2. At the receiver sideg it waits until the data has arrived and the ready flag is gbste
After the receiver has copied the data from its local segimmémtts application buffer,
it should post the Completed flag.

The protocol for point to point communication uses SCI reamatites accesses instead of
remote read access to get a high bandwidth and low latency.

e Shutdown: The shutdown process should do the following: disconnextrémote seg-
ments, hide the available local segments to the remote nodesapped the local seg-
ments, remove the local segments, and remove the sequences.

5.2 The VIA/SCI device

The implementation of the VIA/SCI device is based on the $I8@1, the Dolphin SCI adapter
D310 and the Giganet cLAN Software version 1.0.3 for linue@ing system and the cLAN
Cluster Switch with cLAN Host Adapters. A VIA/SCI containktbree parts:

e Initialization: In addition to the initialization process we mentioned befm section 5.1,
the initialization process does the following:

1. Opens the network interface controller and creates &gtion tag,
2. Creates an instance of a virtual interface (VI) for eadtess,

3. Makes the connection between the local VI end point andther VI's based on
the client/server model (i.e., Each two VI's are connectetiken each couple of
MPI tasks after the initialization). An example of conneos established after the
initialization for four nodes is shown in Figure 2.

4. Allocates and registers memory for descriptors, and $er data buffers. Memory
registration is a high-overhead operation. CHEMPI redtivese overheads by regis-
tering memory for descriptors outside send/receive ofmrsitand reusing the same
registered segments multiple times.

e Communication: The VIA/SCI device handles point to point communicationvm tdif-
ferent ways depending on the message size. It uses the S@IR&eeive protocol for
small message siz€sand RDMA Writé protocol for large messages. The VIA/SCI de-
vice implement these protocols as follows:

1. Small message protocolThis protocol uses the same protocol we mentioned before
in the SCI device at the sender and the receiver,

2. Large message protocolThis protocol is based on the VIA descriptors for transfer-
ring data as well as on SCI for posting the control variabliegi§) that are used for
synchronization between the sender and the receiver mesed\e use a protocol
called "Zero Copy VIA protocol . In the next section, we will discuss this protocol.

’The small message is ranged from 0.. 2048 bytes.
8VIA RDMA Write for message size large than 2048.
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e Shutdown In addition to the shutdown process we mentioned beforediséiation 5.1, the
shutdown process should do the following:

1. Free and deregister the memory used for the descriptors,

2. Terminate the connection between the local VI end poiat thie other VI's, and
destroy the local VI.

3. Destroy the protection tag, and shutdown the name service

4. Remove the association between the local process andltheC/by closing the
NIC.

5.3 Zero Copy VIA protocol.

The word Zero Copy means that the data transfer requiresditathl copy operations neither
at the sender nor at the receiver. This protocol shouldisyartaking sure that the user buffers at
the sender and the receiver is registered. It requires aigeswonly at the sender. The scenario
of the this protocol at the sender side and the receiver aglshown in figure 3, is:

e Atthe sender side

1. The sender checks if the user buffer is already registeréie VIA memory man-
agement and register it if not.

2. It fills out the message envelope (tag, source, messaggeasid communicator) in
the remote segment.

3. The sender must know the user address space and the meandig bn the receiver
side. Now, it should wait until the receiver posts a ring, #ms information is written
to the sender local segment.

4. The sender splits the message of siZémb N chunks, and builds N descriptors and
then sends them.

5. The sender must wait until all these descriptors have bespleted.

6. The sender should post a flag (so called completed flag)etoetteiver when all
descriptors have been completed. This flag means the mestage M has been
sent completely.

7. It sets the user buffer in the VIA memory management unused
e Atthe receiver side

1. The receiver checks if the user buffer is already regast@r the VIA memory man-
agement and register it if not.

2. It waits until it finds a match for the sender message epeelo

%In case of M is large than the descriptor length field (65538&)y
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3. When the receiver finds a match for the sender messageopeyd posts a ring to

the sender and fills out the remote segment by its user adsipase and memory
handle.

4. It waits until the completed flag is posted by the senderakersure that the message
has arrived at the receiver.

5. It sets the user buffer in the VIA memory management unused

Sender Receiver
register user buffgr .
register user buffer
\ set memory used

VIA memory VIA memory
management management |

 Wait for matching

fill the message
envelope in the .
remote segment ’ =| Match the message

envelope

i fill out remote segment
g post ring by user buffer address
Waiting for ring .= and memory handle.
| Split message
‘ DD DD g Waiting for completed
Lot N flag. ‘
Post N descriptors :
AN
|

“ Wait for completeioh
. of N descriptors ™\

|
Set complete flag post complete flag = — :
¥ if complete flag =

\ V yes
[Setmenory uneed

-
VIA memory VIA memory
management management

Figure 3: Zero copy protocol

This protocol was implemented based on#& RDMA Write . The sender initiates the RDMA
write process to transfer the data. The major reason of ubmdgRDMA write instead of the
RDMA read is that the Giganet VIA implementation supportyydhe RDMA write. As men-
tioned above, the sender needs to know the user addresseangkthory handle at the receiver
side. CHEMPI achieves this requirement by using the SClesharemory for transferring this
information from the sender side to the receiver side whilelMdro [4] achieves that by an ad-
ditional VIA send/receive operations. The VIA send/reegprotocol can not achieve the low
latency as it can be done in SCI.



6 Performance

Our test environment consisted of two Pentium 11l 450 MHz maes. They were equipped with
128MB and were connected by an SCI ring topology based ontio$pD310 PCI-SCI bridges.
In addition, two machines had cLAN 1000 VIA adapter from Gigalnc. Our tests machines
were running RedHat Linux 6.0. For ScaMPI tests we used 'S@&HP version 2.0, while the
measurements on GigaNet were done using MPI/Pro by MPI aoftivechnology Inc., which is
the only MPI with support for Giganet’s cLAN hardware. Foetimeasurements of latency and
bandwidth, we use a simple ping-pong benchmark between tRbpgvbcesses. Each process
executes blocking send and receive operations to wait fon@ming message (MBERecv())
and immediately responds (MBend()) once it has arrived. The resulting round-trip tiraes
then halved to give the effective latency, from that we dethe bandwidth.

Latency (MicroSeconds)

8 256 512 1024

Figure 4: Ping-pong latency half round-trip between 2 MRIgasses with message sizes OBytes
.. 1024Bytes

1200

1000

Latency (MicroSeconds)

0
1024 2048 4096 8192 16384 32768 65536
Message size (Bytes)

Figure 5: Ping-pong latency (half round-trip) between 2 MRicesses with message sizes 1KB
.. 64KB

The graphs are shown in figures (4,5,6) present the lateratf/rhund-trip) measurements
between two MPI processes. Figure 4 shows the MPI blockind/seceive latency of three MPI
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Figure 6: Ping-pong latency (half round-trip) between 2 MRIcesses with message sizes 64KB
.. 8BMB

libraries (CHEMPI, MPI/Pro, ScaMPI), with message sizesveen zero bytes and 1024 bytes.
It can be seen clearly in this figure that CHEMPI has the srsidbi¢ency as compared to ScaMPI
and MPI/Pro. This figure shows that MPI/Pro needs more thagetas much time as CHEMPI
needs for sending/receiving a message of 1024 bytes. Thisdasult of VIA communications
that are based completely on explicit descriptor procgsaimd have no way to achieves low
latency as it can be done in SCI by using simple remote menedeyances. Figure 5 shows
MPI blocking send/receive latency of three MPI librariesHEMPI, MPI/Pro, and ScaMPl),
with message sizes between 1KB and 64KB. This figure showsStaMPI gives better results
than MPI/Pro up to the crosspoint at 16KB. After this point INFfPo is faster. This confirms
the measurements presented in r14. This is from memory cepshead in ScaMPI for long
messages. Figure 6 shows MPI blocking send/receive latgfityee MPI libraries (CHEMPI,
MPI/Pro, and ScaMPI), with message sizes between 64KB ari8l 8dhows that CHEMPI has
the smallest latency, although MPI/Pro has only a sligliedéihce to CHEMPI. This comes from
the fact that CHEMPI uses SCI for the required synchrororatiFigure 7 shows the MPI block-
ing send/receive bandwidth of all the MPI libraries. It slsatvat CHEMPI and ScaMPI achieve
higher bandwidth than MPI/Pro for small messages, while @IREand MPI/Pro provide better
performance compared with ScaMPI for large messages. Hsems were explained above. As
seen in all figures, CHEMPI has the best performance (highwatth and low latency). This
is a result of CHEMPI has a dynamic adaptable device VIA/SGe CHEMPI VIA/SCI device
use different protocols based upon the message size armité¢kpl advanced hardware capabil-
ities of the two hardware network cards (Dolphin’s PCI-S@&pter D310, and GigaNet cLAN
adapter).

7 Conclusion and future work
The implementation of the CHEMPI validates the idea of carimg VIA and SCI by achieving

high bandwidth and low latency compared with other MPI litgs based upon only one of
these principles. Hence, we can imagine what performanos ga will get when we have the
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Figure 7: Ping-pong bandwidth (half round-trip) between RIMrocesses

two concepts VIA and SCI integrated in the hardware of a umigetwork card. Currently our
research group is developing an appropriate network cdrd\ihough CHEMPI is still under
development our first measures have already shown that CHEMPpromising MPI library.
Our future work is concerned with the implementation of lfert send/receive modes such as
nonblocking and collective operations as well. Furtheenee aim at integrating of advanced
MPI-2 functionalities.
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