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Abstract

Although many ideas about protected user-level network access have been around for a
while there still hasn’t been a satisfying solution to combine extreme low-latency and high-
bandwidth over a wide range of message sizes. Uniting the Scalable Coherent Interface
(SCI), a technology to build distributed shared memory as well as message passing systems
on top of it, and the Virtual Interface Architecture (VIA), ageneric architecture aiming
at low latency, seems to be a proper solution to tackle the problem. To reap the benefits
of this approach we are developing a new Message Passing Interface (MPI) library, called
CHEMPI 1. In this paper we give a brief introduction into some relevant design principles of
CHEMPI and prove its potential regarding latency and bandwidth on base of a comparative
measurement including two other computing interface technologies.

Keywords: MPI, VIA, SCI, shared memory, and communication protocols.

1 Introduction

MPI (Message Passing Interface) is an established and de-facto standard for data exchange based
on the message-passing paradigm for developing portable parallel applications [1][2]. The MPI
Forum has introduced the MPI standard in 1996. MPI has a rapidly growing community as a
standard user Application Programming Interface (API) forparallel programming. One of the
oldest MPI libraries is MPICH, [3]. At present, there are a number of MPI implementations.

The implementation of an MPI library on top of the Scalable Coherent Interface (SCI) can
easy be done by emulating message passing on shared memory, but this implies that the CPU
participates active in the data transfer. The performance in terms of latency for sending and
receiving small message sizes is high, while the system throughput for sending and receiving
large message sizes is low due to the active involvement of the CPU for message transfer. The
CPU copies the data from local memory into imported SCI memory that consumes expensive
CPU cycles with memory copy operations. The DMA engine offers an alternative solution for
this problem. For instance Dolphin’s PCI-SCI network cardsoffer a DMA engine. But it can’t
be used to realize some kinds of protected-user level DMA. Toavoid non authorized accesses
to memory it is necessary to pass the operating system kernelwith the DMA transfer, because
only the operating system kernel is able to perform this security check. The DMA engine of the
Dolphin PCI-SCI cards D310 showed a lower bandwidth for DMA than SCI shared memory,
[8],[9]. To eliminate the operating system kernel from the critical path of the communication
operations, three major IT companies2 introduced the Virtual Interface Architecture (VIA) in
December 1997 [5]. The VIA has two communication methods: Send/Receive and RDMA.
Both methods are based on a data structure (so-called descriptor) that is used to describe a data
movement request. Consequently, the implementation of an MPI library on VIA can not achieve
ultra low latencies for small message size as it can be done inSCI by using simple memory
references. However the protected user-level DMA engine ofVIA offers high bandwidth for

1This work is part of the GRANT SFB 393/B6 of the DFG (German national Science Foundation)
2Intel, Compaq, and Microsoft.
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the MPI library. Hence, the idea to implement a new MPI based on the conjunction of the two
network cards looks good and has a great sound.

In the following section we present an overview of some important members of the abun-
dance of MPI libraries that exploit the hardware capabilities of VIA or SCI. In section three we
present the requirements for a new MPI library. Following wedescribe the structure of our new
MPI library calledCHEMPI in section four. In section five we present the implementation of
the device dependent layer in CHEMPI. In section six, we prove the send/receive capability of
CHEMPI on base of comparative measurements with two other MPI libraries. The last section is
related with the future work and conclusion.

2 An overview of relating MPI implementations

MPI/Pro [4], is a product of the MPI software Technology Inc., it was designed and imple-
mented specifically to target Virtual Interface Architecture networks and was designed to take
full advantage of VIA. It has a number of features that make ita valuable tool for efficient
programming of clusters of workstations. MPI/Pro provides: multi-threaded design, user level
thread safety, optimized protocols for short and large messages, optimized persistent mode of
MPI point-to-point operations, multidevice architecture, multiple queues for receive requests,
and asynchronous method of synchronization and notification.

ScaMPI, [6] is a commercial MPI implementation for SCI connected clusters of workstations.
ScaMPI was designed to take the advantage of SCI’s shared address space architecture. ScaMPI
provides thread safe implementation, fault tolerance, scalability, and high-performance. SCI-
MPICH, [7] is a development of MPICH. It has an ADI-2 device (MPID layer) for SCI-adapters
that enables MPICH on SCI-connected clusters. The implementation of the SCI-specific ADI-2
device is based on the SMI library that in turn uses the SISCI API and the IRM driver of the
Dolphin PCI-SCI adapter.

MPI/Pro did not support a protocol for SCI shared memory so that the ultra-low latencies
for short message sizes and synchronization are not reachable. ScaMPI, and SCI-MPICH did
not support a protected user-level DMA that is suitable for sending and receiving large message
sizes. From this point arose out the strong need for new MPI implementation, that offers the
optimal conditions for the conjunction of VIA and SCI to reapthe benefits and to avoid the
disadvantage of each network card.

3 Requirements for a new MPI

The first design requirements of a new MPI library are achievingperformance andportability .
The portability is achieved by separating a hardware dependent functionality in a special layer
(so-called device) similar to MPICH, [3]. In numerous casesclusters of the workstations use
heterogeneous networks that raise the requirement to implement a MPI library that provides an
excellent support for multiple devices. Another general requirement is to support a thread safe
programming model to achieve a high degree of parallelism ofcommunication and computation.
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Furthermore MPI-2 [2] functionality such as dynamic process creation should be integrated.
Special requirements for supporting SCI shared memory as well as VIA are:

� The registration and deregisteration memory for VIA require a VIA memory management
of the data buffers. Memory registration is a high-overheadoperation. So, it is recom-
mended to reuse the same registered segment multiple times.

� A shared memory protocol that will be used for short message sizes.

� A protocol that uses the VIA RDMA mechanism for large messagesizes.

4 CHEMPI

The CHEMPI (CHEmnitz MPI) project [11] was started in spring1999 with the objective to ful-
fill the requirements mentioned above. CHEMPI is divided into two main layers and an interface
between these layers as shown in Figure 1:
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Figure 1: Raw structure of CHEMPI

� Device Independent Layer (DIDL)contains a large amount of code and it is divided into
the following modules: data-types, MPI point-point and collective operations, connec-
tion handling, communicators, groups, topologies, error handling, memory management,
process management, and parallel I/O. These modules are still under development. In ad-
dition, CHEMPI has a small daemon (chempid) that managementthe distribution of the
network information, and MPI applications. The chempid daemon is still under develop-
ment for supporting the requirements of MPI-2, such as dynamic process creation.

� Device Dependent Interface (DDI)has two parts:

1. The core functionality has the following parts:

(a) initialization and shutdown

(b) basic point to point communication (synchronize/normal and blocking/nonblocking)
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(c) send and receive of system messages

2. The optional functionality has the following parts:

(a) collective operations
(b) one-sided communication
(c) other point to point communication modes
(d) memory management

� Device Dependent Layer (DDL), it is a layer through which the actual communication
facilities are accessed. It defines a set of point-point sendand receive operations that are
required by the upper layer of CHEMPI. In the next sections wewill present two devices:
SCI device and VIA/SCI device.

The structure of CHEMPI, as shown in Figure 1, provides the ability to generate a new
MPI implementation for a new (or not yet supported) communication network with small effort
because the effort to implement a DDL part is much smaller than the effort needed to implement
the full MPI functionality. Therefore, the structure of CHEMPI provides one of the important
characteristics of the software engineering so-calledportability .

5 CHEMPI Devices

In September 1999 VIA was integrated into the Linux kernel [10] emulating message passing
based on the distributed shared memory mode of SCI. The earlyCHEMPI device [11] was im-
plemented based on this emulator that integrated the VIA andthe SCI modes. MPI point-to-point
operations implemented on top of this device have been running correctly. But these operations
achieved only very low bandwidth and a very high latency. To overcome these limits our group is
developing a new VIA/SCI network card [8][9] that hasn’t been finished yet. This is why we im-
plemented the CHEMPI device for the Dolphin PCI-SCI adapterD310, and Giganet cLAN3,[12]
with 32/64-bit 33MHZ PCI host adapters cLAN1000. In the nextparts we present the imple-
mentation of this device.

5.1 The SCI device

The implementation of the SCI device is based on the SISCI APIand the Dolphin SCI adapter
D310. The implementation of this device has three parts:

� Initialization: During the initialization of the processes which form the MPI application,
the SISCI API and the IRM4 driver of the Dolphin PCI-SCI adapter are required to estab-
lish shared SCI memory segments mapped into the process’s address space. The initializa-
tion process starts by creating the local segments5 for all the other processes. Each segment

3The cLAN for Linux product family is a hardware implementation of the VIA standard.
4Interconnect Resource Manager,[13]
5Local segment is a memory that segment located on the same processor where the application runs and accessed

using the host memory interface.
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has a unique segment identifier. Afterwards the initialization process makes sure that all of
the local segments are accessible by an SCI adapter, maps these local segments that were
created before into the addressable space of the device implementation, and makes all of
these local segments visible to the remote nodes. Followingit connects these segments
to the associated remote segments6, and maps these remote segments into the addressable
space of the device implementation. In addition, the initialization processes should create
a so called sequence for all the other processes. This sequence is used to check if errors
have occurred during a data transfer. An example of connections established after the
initialization for four nodes is shown in Figure 2.
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Figure 2: VIA/SCI device after initialization

� Communication: The SCI device handles point to point blocking communication by di-
rect accesses to the user address space of the process and supports only a message transfer
protocol for small message sizes that will be used in SCI/VIAdevice. This protocol is
implemented as follows:

1. At the sender side, the data transfer from the local segment to the remote segment
is done by copying the data in the user address space into the remote map address of
the destination and post a ready flag. This flag is used for synchronization. Then, the
sender should wait until the data has arrived at the receiver. Using another flag called
(Completed) that will be posted by the receiver can do this.

6Remote segment represents a segment residing on a remote node and accessed via SCI link
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2. At the receiver side, it waits until the data has arrived and the ready flag is posted.
After the receiver has copied the data from its local segmentinto its application buffer,
it should post the Completed flag.

The protocol for point to point communication uses SCI remote writes accesses instead of
remote read access to get a high bandwidth and low latency.

� Shutdown: The shutdown process should do the following: disconnect the remote seg-
ments, hide the available local segments to the remote nodes, unmapped the local seg-
ments, remove the local segments, and remove the sequences.

5.2 The VIA/SCI device

The implementation of the VIA/SCI device is based on the SISCI API, the Dolphin SCI adapter
D310 and the Giganet cLAN Software version 1.0.3 for linux operating system and the cLAN
Cluster Switch with cLAN Host Adapters. A VIA/SCI contains of three parts:

� Initialization: In addition to the initialization process we mentioned before in section 5.1,
the initialization process does the following:

1. Opens the network interface controller and creates a protection tag,

2. Creates an instance of a virtual interface (VI) for each process,

3. Makes the connection between the local VI end point and theother VI’s based on
the client/server model (i.e., Each two VI’s are connected between each couple of
MPI tasks after the initialization). An example of connections established after the
initialization for four nodes is shown in Figure 2.

4. Allocates and registers memory for descriptors, and for user data buffers. Memory
registration is a high-overhead operation. CHEMPI reducesthese overheads by regis-
tering memory for descriptors outside send/receive operations, and reusing the same
registered segments multiple times.

� Communication: The VIA/SCI device handles point to point communication in two dif-
ferent ways depending on the message size. It uses the SCI Send/Receive protocol for
small message sizes7, and RDMA Write8 protocol for large messages. The VIA/SCI de-
vice implement these protocols as follows:

1. Small message protocol:This protocol uses the same protocol we mentioned before
in the SCI device at the sender and the receiver,

2. Large message protocol:This protocol is based on the VIA descriptors for transfer-
ring data as well as on SCI for posting the control variables (flags) that are used for
synchronization between the sender and the receiver processes. We use a protocol
called ”Zero Copy VIA protocol ”. In the next section, we will discuss this protocol.

7The small message is ranged from 0.. 2048 bytes.
8VIA RDMA Write for message size large than 2048.
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� Shutdown In addition to the shutdown process we mentioned before in the section 5.1, the
shutdown process should do the following:

1. Free and deregister the memory used for the descriptors,

2. Terminate the connection between the local VI end point and the other VI’s, and
destroy the local VI.

3. Destroy the protection tag, and shutdown the name service.

4. Remove the association between the local process and the VI NIC by closing the
NIC.

5.3 Zero Copy VIA protocol.

The word Zero Copy means that the data transfer requires no additional copy operations neither
at the sender nor at the receiver. This protocol should startby making sure that the user buffers at
the sender and the receiver is registered. It requires a descriptor only at the sender. The scenario
of the this protocol at the sender side and the receiver side,as shown in figure 3, is:

� At the sender side,

1. The sender checks if the user buffer is already registeredin the VIA memory man-
agement and register it if not.

2. It fills out the message envelope (tag, source, message size, and communicator) in
the remote segment.

3. The sender must know the user address space and the memory handle on the receiver
side. Now, it should wait until the receiver posts a ring, andthis information is written
to the sender local segment.

4. The sender splits the message of size M9 into N chunks, and builds N descriptors and
then sends them.

5. The sender must wait until all these descriptors have beencompleted.

6. The sender should post a flag (so called completed flag) to the receiver when all
descriptors have been completed. This flag means the messageof size M has been
sent completely.

7. It sets the user buffer in the VIA memory management unused.

� At the receiver side,

1. The receiver checks if the user buffer is already registered in the VIA memory man-
agement and register it if not.

2. It waits until it finds a match for the sender message envelope.

9In case of M is large than the descriptor length field (65535 bytes).
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3. When the receiver finds a match for the sender message envelope, it posts a ring to
the sender and fills out the remote segment by its user addressspace and memory
handle.

4. It waits until the completed flag is posted by the sender to make sure that the message
has arrived at the receiver.

5. It sets the user buffer in the VIA memory management unused.

VIA memory 
management

VIA memory 
management

VIA Driver

VIA Driver

VIA memory 
management

VIA memory 
management

Receiver

fill the message
envelope in the
remote segment

Sender

Wait for matching

Match the message

envelope

fill out remote segment
by user buffer address
and memory handle.

0 1 N

Split message

Post N descriptors

Wait for completeion

register user buffer

set memory used

Waiting for completed 
flag.

Set memory unusedSet memory unused

Waiting  for ring
post ring

  of N descriptors

Set complete flag post complete flag
if complete flag = 1

register user buffer
set memory used

yes

Figure 3: Zero copy protocol

This protocol was implemented based on theVIA RDMA Write . The sender initiates the RDMA
write process to transfer the data. The major reason of usingthe RDMA write instead of the
RDMA read is that the Giganet VIA implementation supports only the RDMA write. As men-
tioned above, the sender needs to know the user address and the memory handle at the receiver
side. CHEMPI achieves this requirement by using the SCI shared memory for transferring this
information from the sender side to the receiver side while MPI/Pro [4] achieves that by an ad-
ditional VIA send/receive operations. The VIA send/receive protocol can not achieve the low
latency as it can be done in SCI.
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6 Performance

Our test environment consisted of two Pentium III 450 MHz machines. They were equipped with
128MB and were connected by an SCI ring topology based on Dolphin’s D310 PCI-SCI bridges.
In addition, two machines had cLAN 1000 VIA adapter from Giganet Inc. Our tests machines
were running RedHat Linux 6.0. For ScaMPI tests we used Scali’s SPP version 2.0, while the
measurements on GigaNet were done using MPI/Pro by MPI software Technology Inc., which is
the only MPI with support for Giganet’s cLAN hardware. For the measurements of latency and
bandwidth, we use a simple ping-pong benchmark between two MPI processes. Each process
executes blocking send and receive operations to wait for anincoming message (MPIRecv())
and immediately responds (MPISend()) once it has arrived. The resulting round-trip timesare
then halved to give the effective latency, from that we derive the bandwidth.
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Figure 4: Ping-pong latency half round-trip between 2 MPI processes with message sizes 0Bytes
.. 1024Bytes
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Figure 5: Ping-pong latency (half round-trip) between 2 MPIprocesses with message sizes 1KB
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The graphs are shown in figures (4,5,6) present the latency (half round-trip) measurements
between two MPI processes. Figure 4 shows the MPI blocking send/receive latency of three MPI
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Figure 6: Ping-pong latency (half round-trip) between 2 MPIprocesses with message sizes 64KB
.. 8MB

libraries (CHEMPI, MPI/Pro, ScaMPI), with message sizes between zero bytes and 1024 bytes.
It can be seen clearly in this figure that CHEMPI has the smallest latency as compared to ScaMPI
and MPI/Pro. This figure shows that MPI/Pro needs more than twice as much time as CHEMPI
needs for sending/receiving a message of 1024 bytes. This isa result of VIA communications
that are based completely on explicit descriptor processing and have no way to achieves low
latency as it can be done in SCI by using simple remote memory references. Figure 5 shows
MPI blocking send/receive latency of three MPI libraries (CHEMPI, MPI/Pro, and ScaMPI),
with message sizes between 1KB and 64KB. This figure shows that ScaMPI gives better results
than MPI/Pro up to the crosspoint at 16KB. After this point MPI/Pro is faster. This confirms
the measurements presented in r14. This is from memory copy overhead in ScaMPI for long
messages. Figure 6 shows MPI blocking send/receive latencyof three MPI libraries (CHEMPI,
MPI/Pro, and ScaMPI), with message sizes between 64KB and 8MB. It shows that CHEMPI has
the smallest latency, although MPI/Pro has only a slight difference to CHEMPI. This comes from
the fact that CHEMPI uses SCI for the required synchronization. Figure 7 shows the MPI block-
ing send/receive bandwidth of all the MPI libraries. It shows that CHEMPI and ScaMPI achieve
higher bandwidth than MPI/Pro for small messages, while CHEMPI and MPI/Pro provide better
performance compared with ScaMPI for large messages. The reasons were explained above. As
seen in all figures, CHEMPI has the best performance (high bandwidth and low latency). This
is a result of CHEMPI has a dynamic adaptable device VIA/SCI.The CHEMPI VIA/SCI device
use different protocols based upon the message size and exploit the advanced hardware capabil-
ities of the two hardware network cards (Dolphin’s PCI-SCI adapter D310, and GigaNet cLAN
adapter).

7 Conclusion and future work

The implementation of the CHEMPI validates the idea of combining VIA and SCI by achieving
high bandwidth and low latency compared with other MPI libraries based upon only one of
these principles. Hence, we can imagine what performance gains we will get when we have the
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two concepts VIA and SCI integrated in the hardware of a unique network card. Currently our
research group is developing an appropriate network card [9]. Although CHEMPI is still under
development our first measures have already shown that CHEMPI is a promising MPI library.
Our future work is concerned with the implementation of further send/receive modes such as
nonblocking and collective operations as well. Furthermore we aim at integrating of advanced
MPI-2 functionalities.
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