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1 Introduction

The mathematical formulation of many problems in Mathematical Physics and
in the Mechanics of Continuous Media leads to boundary value problems which
result in linear systems of equations of the form(

K B
BT −C

)(
x

y

)
=

(
f

g

)
after discretization. In this paper the matrix K will be symmetric and positive
definite, C is assumed to be positive semidefinite. Because the coefficient ma-
trix of the whole system is indefinite special methods are necessary for solving
the given system. In [6], e.g., the usage of preconditioned Uzawa-type iterative
methods is described. A drawback of such methods results from the costs of the
action of K−1 on various vectors being involved in these algorithms.
Looking for a method without the necessity of computing the action of K−1

Bramble and Pasciak in [3] introduced a preconditioning technique which leads
to an ‘optimally’ converging scheme applied to the conjugate gradient method.
In this paper we will introduce a generalization of this preconditioning technique.
We start with a description of the technique given by Bramble and Pasciak with a
slight generalization in Section 2. In Section 3 we present the numerical analysis
for our technique, followed by some implementational aspects in Section 4. Fi-
nally, the results of numerical experiments using our method are given in Section
5.

2 The Preconditioning Technique of Bramble

and Pasciak and a Generalization

We consider the system given in Section 1. Let K be a (N × N)–matrix and
C a (m×m)–matrix. As already mentioned the given system requires a special
numerical treatment because the system matrix is indefinite. In [3] Bramble and
Pasciak describe a way to develop a positive definite system for solving the given
problem. They start with assuming K0 to be a preconditioner for K, that is,
there are positive constants γ and γ with a small ratio γ/γ such that

γ(K0u, u) ≤ (Ku, u) ≤ γ(K0u, u) for all u ∈ RN.

Under these assumptions they multiply the given system from the left with the
matrix (

K−1
0 O

BTK−1
0 −I

)
and get the system(

K−1
0 K K−1

0 B
BTK−1

0 (K −K0) C +BTK−1
0 B

)(
x

y

)
=

(
K−1

0 f

BTK−1
0 f − g

)
.
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It is proved that the system matrix of this system is symmetric and positive
definite in a special inner product.
Our main idea consists in introducing an additional Matrix B0 that shall be a
preconditioner for BTK−1

0 B + C in some sense:

β(B0u, u) ≤ ((BTK−1
0 B + C)u, u) ≤ β(B0u, u) for all u ∈ Rm.

We insert B−1
0 instead of the unity matrix I within the matrix for multiplication

given above. Additionally, we include two scaling factors δ and γ which, to begin
with, only have to be positive. Finally we get as new system matrix

A =

(
K−1

0 O
δB−1

0 BTK−1
0 −γδB−1

0

)(
K B
BT −C

)
.

In the following section we will show that these generalizations are possible with-
out losing the properties proven by Bramble and Pasciak. Only a restriction for
the choice of γ will be necessary. By the way, newer results for the analysis of
the technique of Bramble and Pasciak are to be found in [8].

3 Numerical Analysis

It is

A =

(
K−1

0 K K−1
0 B

δB−1
0 BT (K−1

0 K − γI) δB−1
0 (BTK−1

0 B + γC)

)
and consequently

Ax =

(
K−1K0x+K−1

0 Bx
δB−1

0 BT (K−1
0 K − γI)x+ δB−1

0 (BTK−1
0 B + γC)x

)
for x =

(
x
x

)
with x ∈ RN and x ∈ Rm. In the following let (K − γK0) be positive definite,
what obviously means a condition for the choice of γ:
From the assumption for K0 we have

γK0 ≤ K, i.e. K − γK0 > 0 if γ < γ .

Then we can define a special inner product by

< x,y >:= ((K − γK0)x, y) + ((δ−1B0)x, y),

where (., .) denotes the usual inner product in RN or in Rm, respectively. This
leads to

< Ax,y > = ((K − γK0)(K−1
0 Kx+K−1

0 Bx), y)

+ (δ−1B0δB
−1
0 [BT (K−1

0 K − γI)x+ (BTK−1
0 B + γC)x], y)

= ((K − γK0)(K−1
0 K)x, y) + ((KK−1

0 − γI)Bx, y)

+ (BT (K−1
0 K − γI)x, y) + (BTK−1

0 B + γC)x, y)

= ((K − γK0)(K−1
0 K)x, y) + ((KK−1

0 − γI)Bx, y)

+ (x, (KK−1
0 − γI)By) + (BTK−1

0 B + γC)x, y).
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Thus, A is symmetric with respect to the inner product defined. In the following
we will prove that A is also positive definite (if (K − γK0) is positive definite as
already stated above). This is a direct consequence of the suceeding lemma.

Lemma. Let M be defined by

M :=

(
K−1

0 K O
O δB−1

0 (BTK−1
0 B + γC)

)
.

Then the following inequalities hold:

α <Mx,x > ≤ < Ax,x > ≤ α <Mx,x > . (1)

Whereas Bramble and Pasciak use some decomposition to prove a similar result
in their paper, we will prove this lemma using considerations on spectra.

Proof. Because

M−1 =

(
K−1K0 O
O (BTK−1

0 B + γC)−1δ−1B0

)

we have

M−1A =

(
I K−1B

(BTK−1
0 B + γC)−1BT (K−1

0 K − γI) I

)
=

(
I E
F T I

)

with E = K−1B and F T = (BTK−1
0 B + γC)−1BT (K−1

0 K − γI).

In the following, σ(A) will denote the spectrum of a matrix A and ρ(A) its spectral
radius. Obviously, all eigenvalues λ ∈ σ(M−1A) either are equal 1 or have the
structure

λ = 1 + λ′ = 1±
√
λ′′ with λ′ ∈ σ

(
O E
F T O

)
and λ′′ ∈ σ(F TE),

respectively. That’s why we have

σ(M−1A) ⊂
[
1−

√
ρ(F TE), 1 +

√
ρ(F TE)

]
.

Consequently, (1) is valid with

α = 1−
√
ρ(F TE) and α = 1 +

√
ρ(F TE).

Let us consider ρ(F TE) now. It holds

ρ(F TE) = max
x

(BT (K−1
0 K − γI)K−1Bx, x)

((BTK−1
0 B + γC)x, x)
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≤ max
x

(BT (K−1
0 − γK−1)Bx, x)

(BTK−1
0 Bx, x)

≤ max
y

((K−1
0 − γK−1)y, y)

(K−1
0 y, y)

with y = Bx

= max
z

((K0 − γK0K
−1K0)z, z)

(K0z, z)
where y = K0z

= ρ((I − γK−1K0)).

Our assumption for the preconditioner K0 causes

σ(K−1
0 K) ⊂

[
γ, γ

]
, and therefore σ(K−1K0) ⊂

[
1

γ
,

1

γ

]
.

Thus, we have

ρ(F TE) ≤ 1− γ

γ
, i.e. α = 1−

√
1− γ

γ
and α = 1 +

√
1− γ

γ
.

Remark. The constants α and α would tend to one (giving a well conditioned
system) if γ tends to γ. Because of γ < γ (to ensure positive definiteness of
K − γK0) γ near γ should be a good choice.

Let us consider the condition number κ(A) of the matrixA now. From our lemma
we have

α
<Mx,x >

< x,x >
≤ < Ax,x >

< x,x >
≤ α

<Mx,x >

< x,x >
, and thus,

κ(A) ≤ κ(M)
α

α
= κ(M)

1 +
√

1− ξ
1−
√

1− ξ
= κ(M)

(
1 +
√

1− ξ
)2

ξ
≤ 4

ξ
κ(M),

where ξ =
γ

γ
.

M is a symmetric operator with respect to the inner product chosen. Thus, from
the block structure of M we have

κ(M) =
λmax(M)

λmin(M)
=

max(γ, δβ)

min(γ, δβ)

with λmax and λmin being the largest and the smallest eigenvalue, respectively,
and consequently

κ(A) ≤ 4
γ

γ

max(γ, δβ)

min(γ, δβ)
.

Remark. With a suitable choice of δ we can attain that γ ≤ δβ ≤ δβ ≤ γ. In
this case we have

κ(A) ≤ 4
γ

γ − ε
γ

γ

if γ = γ − ε.
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4 Some Aspects of Implementation

Because of the properties of A proved before a number of iterative techniques
can be applied to solve the system with this system matrix. For the numerical
experiments presented in the following section we use the conjugate gradient
method in the inner product introduced above. For the preconditioner K0 we
will choose the hierarchical preconditioner with a coarse grid solver coupled with
some Jacobi preconditioning to handle, e.g., the influence of material coefficients.
For B0 a diagonal matrix is used. The matrices are obtained from a finite element
discretization of a typical saddlepoint or mixed problem with either triangles or
quadrilaterals.
Our algorithm is implemented in such a way that it runs on parallel computers,
too. That is sensible for a number of processors up to the number of elements
included within the user grid. Then, each processor deals with, at least, one
element of the user grid. The number of iterations needed is independent of the
number of processors.

5 Numerical Examples

5.1 Linear Elasticity Problem

In this subsection we will present an important application of the method intro-
duced before. We consider the linear elasticity problem. For the state of plane
strain we have the following weak formulation for the equilibrium of forces:

Find ~u ∈
(
H1

0 (Ω)
)2

: aλ(~u,~v) = F (~v) for all ~v ∈
(
H1

0 (Ω)
)2

with

aλ(~u,~v) =
∫

(2µ ε(~u) : ε(~v) + λ div ~u div ~v) dΩ and

F (~v) =
∫

Ω

~f ~v dΩ +
∫

Γ2
~g 2~v dΓ .

Here,

ε(~u) =
1

2

(
∇~u+ (∇~u)T

)
is the linear strain tensor. Furthermore, it denotes

~u the displacement vector ~u = (u1, u2)T ,

~f the vector of the body forces ~f = (f1, f2)T ∈ (L2(Ω))2 , and

~g2 the vector of the specified boundary forces ~g2 = (g2
1, g

2
2)T ∈ (H1/2(Γ2))2.

µ =
E

2(1 + ν)
and λ =

Eν

(1 + ν)(1− 2ν)
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are LAME’s coefficients with YOUNG’s modulus E and POISSON’s ratio ν (ν ∈
[0, 0.5)). If ν tends to 0.5 (i.e. if the material becomes nearly incompressible) the
coefficient λ tends to infinity. Thus, for this case a special treatment would be
necessary. Defining

p = λ div ~u

we get the problem

Find ~u ∈ V =
(
H1

0 (Ω)
)2

and p ∈M = L2(Ω) :

a0(~u,~v) + b(p,~v) = F (~v) for all ~v ∈ V

b(q, ~u) − <
1

λ
p, q > = 0 for all q ∈M

with a0(~u,~v) =
∫

Ω
2µ ε(~u) : ε(~v) dΩ and b(p,~v) =

∫
Ω
p div ~v dΩ .

Applying a finite element discretization on this problem we get

Find ~uh ∈ Vh ⊂ V and ph ∈Mh ⊂M :

a0(~uh, ~vh) + b(ph, ~vh) = F (~vh) for all ~vh ∈ Vh

b(qh, ~uh) − <
1

λ
ph, qh > = 0 for all qh ∈Mh .

Here, among other assumptions, the so–called discrete LBB–condition has to be
fulfilled, i.e. there must exist a constant β > 0 such that

sup
~vh∈Vh

b(qh, ~vh)

‖~vh‖V
≥ β‖qh‖M for all qh ∈Mh (~vh 6=

(
0

0

)
).

For this, the choice of the finite element spaces Vh and Mh takes a leading part. In
[6], e.g., a survey of some combinations of possible finite elements is given. Further
information can be found, e.g., in [1, 5, 7, 4]. In our experiments we have used the
so–called Taylor–Hood–Elements (cf., e.g., [2]), i.e. we use six node triangles (or
the appropriate quadrilaterals, respectively) and take linear (bilinear) elements
for p and piecewise linear elements (being linear on subelements we get from
dividing the elements into four parts) for ~u.

Choosing suitable finite element basis functions ~Φ on Vh and Ψ on Mh (~Φ and Ψ
are row–vectors of (vector–/ scalar–)functions) the discrete problem is equivalent
to the linear system (

K B
BT −C

)(
u

p

)
=

(
f

0

)
,
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where ~uh = ~Φu and ph = Ψp. Here,

K =
(
a0(~φj, ~φi)

)
i, j = 1 . . . N ,

B =
(
b(ψj, ~φi)

)
i = 1 . . . N, j = 1 . . .m , and

C =
(
<

1

λ
ψj, ψi >

)
i, j = 1 . . .m

If the ψj are constant on each element the matrix C is diagonal, and we can
eliminate p from the system (on element level). In our case the ψj are piecewise
linear on the elements such that a solver for the whole system is required. This
system is exactly of the type introduced in section 1.

5.2 Test Examples and numerical results

In the following we present some numerical results of calculations carried out us-
ing the algorithm described above. We consider the following three test examples
for the linear elasticity problem where the pictures always show the domain Ω,
the user grid and calculated isolines for the components u1 and u2 as well as for
the pressure p:

Example 1:

We used Ω = [0, 4]2, E = 20000., and some values of ν between 0.3 and 0.5
(cf. the table). As boundary conditions ~u = ~0 on {y = 0} and ~g2 = (0, 1)T on
{x ∈ [1, 3], y = 4} were choosen.
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Example 2:

We used Ω as illustrated by the picture, E = 100000., and some values of ν as
for the first example. For the boundary conditions we put ~u = ~0 on {x = 0} and
~g2 = (0, 1)T on the right boundary ({x = 10.}).

 

 

 

 

 

 

 

 

 

 

Example 3:

Here we used Ω = [0, 4]2 again, but this time a nearly incompressible material with
E = 1. was simulated in the inner part ([1, 3]2). For the outer part E = 200000.
was used; for the values of ν cf. the table again. The boundary conditions were
the same as for Example 1.
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In the following table the total numbers of degrees of freedom are given for
different numbers of refinement levels (valid for all three examples; 0 level means
the user grid).

level 0 1 2 3 4 5 6 7
d. of fr. 243 867 3267 12675 49923 198147 789507 3151875

At first we will give some results for the choice of γ and δ. It will be our aim,
of course, to get iteration numbers as low as possible to fulfill some error criterion
for stopping the iteration process. From our analytical considerations it follows
that a parameter γ as big as possible (i.e. near the bound γ) will be a good choice
to reach this. Thus, we started with looking for such a value of γ. More precisely,
we searched for a γ still yielding to a positive definite system independent of δ. It
turned out that small values of δ especially have to be considered for this purpose.
In a second step we looked for a value of δ for which a low number of iterations
is necessary to solve the resulting system using the parameter γ found out. In
addition we repeated this for some smaller values of γ. Indeed, our experiments
have shown that our given assumption referring to γ is true at least for the first
and the third example. For the second example we could observe that there are
relatively low values of γ (typically about one third of the ”maximal” value) with
iteration numbers being slightly lower for certain choices of δ than those we can
reach using the big γ. In the following scheme we present the iteration numbers
needed for the second example in dependence on δ using the ”maximal” γ for
four up to seven levels.

400

450

500

550

600

650

700

750

800

850

900

0 1 2 3 4 5 6 7 8 9 10

ite
ra

tio
ns

delta

4 level
5 level
6 level
7 level

The following table includes the minimal iteration numbers and the attached
values of γ and δ found for the first and third example. In the second column
”3” means triangular grids, and ”4” stands for quadrilaterals.
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5.3 Calculations on a PC Cluster

As mentioned above our algorithm
was also implemented for use on
parallel computers. We tested it
on the ”Chemnitzer Linux Cluster”
(CLiC), a cluster consisting of 528
personal computers each of them
having a Intel Pentium III processor
(800 MHz). In the table some CPU
times are presented showing the effi-
ciency of our parallization. We give
two times in each column: the CPU
time totally needed for the calcula-
tions and the maximal time needed
for arithmetics on a single processor.
For 6 and 7 levels some calcula-
tions could not carried out with low
numbers of processors because there
was not enough memory available.
In these cases we put a dash into
the according columns of the table.
That means (as to be expected) that
using a cluster enables calculations
with more unknowns if necessary. —
Considering the total CPU times for
a fixed number of levels and a in-
creasing number of processors a de-
crease is to be seen in most cases.
Of course, for low numbers of lev-
els the use of many processors is
not effective at all because commu-
nication times strongly dominate in
such cases (compare the two values
in the according columns). On the
other hand, for higher numbers of
unknowns the CPU times approxi-
mately are halved if the number of
processors is doubled — i.e. our way
of parallization is very effective as
stated before. This assertion is also
proved if we compare the CPU times E
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needed or certain numbers of levels and processors with those needed for one
more level (i.e. the fourfold number of unknowns) and the fourfold number of
processors. In this case we have nearly the same times.

6 Summary

We introduced a generalization of the preconditioning technique of Bramble and
Pasciak. It was shown that the choosen way of generalization preserves the
properties of the original method. The user of our method can choose the values of
two parameters. We illustrated the application of the method to linear elasticity
problems especially including problems of nearly incompressible materials. Our
algorithm was implemented for use on parallel computers. Results given for
calculations on a PC cluster demonstrated the high efficiency of the parallel
code.
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01-05 A. Eilmes, R. A. Römer, C. Schuster, M. Schreiber. Two and more interacting
particles at a metal-insulator transition. February 2001.

01-06 D. Michael. Kontinuumstheoretische Grundlagen und algorithmische Behand-
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