
Technische Universität Chemnitz

Sonderforschungsbereich 393

Numerische Simulation auf massiv parallelen Rechnern

Bernd Heinrich Serge Nicaise

Nitsche mortar finite element method
for transmission problems with

singularities

Preprint SFB393/01-10

Preprint-Reihe des Chemnitzer SFB 393

SFB393/01-10 March 2001



Contents

1 Introduction 1

2 Some preliminaries 2

3 Non-matching finite element discretization 5

4 Properties of the discretization 7

5 Error estimates with weighted norms 9

6 The L2-error estimate 17

7 Numerical experiments 19

Author’s addresses:

Bernd Heinrich
TU Chemnitz
Fakultät für Mathematik
D-09107 Chemnitz

http://www.tu-chemnitz.de/sfb393/

Serge Nicaise
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Nitsche mortar finite element method
for the transmission problem with singularities

B. Heinrich S. Nicaise

Abstract

The paper deals with Nitsche type finite element method (FEM) for treating non-
matching meshes at the interface of some domain decomposition. This method is applied
to some transmission (or interface) problems of the plane with Dirichlet boundary con-
ditions presenting some corner singularities. In a natural way, the interface of the non-
matching grids is taken as the interface of the problem. Properties of the finite element
scheme and error estimates are given. For appropriate graded meshes, optimal conver-
gence rates are obtained as for the classical FEM with regular solutions. Some numerical
tests illustrate the approach and confirm the theoretical results.

Key words. finite element method, non-matching meshes, mortar finite elements, corner singulari-
ties, transmission problems, Nitsche type mortaring

AMS subject classification. 65N30, 65N55

1 Introduction

Domain decomposition methods are widely used for an efficient numerical treatment of bound-
ary value problems (BVPs). They allow to work in parallel: for the generation of the meshes
in subdomains, the calculation of the corresponding parts of the stiffness matrix and of the
right-hand side, and the resolution of the system of the finite element equations.

Triangulations which do not match at the interface of the subdomains are of particular in-
terest. Indeed such non-matching meshes arise, for example, if the meshes in different sub-
domains are generated independently, or if an adaptive remeshing in some subdomain is of
primary interest. This is often caused by a large jump of the data (material properties or
right-hand sides) of the BVP in different subdomains or by a complicated geometry of the
domain, the first property also leads to solutions with singular or anisotropic behaviour.
Non-matching meshes also appear if different discretization approaches are used in different
subdomains.

There are several ways to manage non-matching meshes. In order to satisfy the continuities
on the interface (e.g. continuity of the solution and of its conormal derivative) we may use
iterative procedures (e.g. Schwarz’s method) or direct methods like the Lagrange multiplier
technique.

In the Lagrange multiplier mortar technique, see e.g. [5, 6, 9, 29, 30] and the literature
quoted in these papers, new unknowns (the Lagrange multipliers) are introduced. Therefore
the stability of the problem has to be ensured by checking an inf-sup condition (for the actual
mortar method) or using a stabilization technique.

Another approach which is of particular interest here is related to the classical Nitsche method
[20] of treating essential boundary conditions. This approach has been worked out more gen-
erally in [27, 24] and transferred to interior continuity conditions by Stenberg [25] (Nitsche

1



type mortaring), cf. also [1]. As shown in [4, 10], the Nitsche type mortaring can be inter-
preted as a stabilized variant of the mortar method based on a saddle point problem.
Compared with the classical mortar method, the Nitsche type mortaring method has sev-
eral advantages. Namely the saddle point problem, the inf–sup–condition as well as the
calculation of the Lagrange multipliers are circumvented. The method employs only a single
variational equation which is, compared with the usual equations (without any mortaring),
slightly modified by an interface term. This allows to apply existing software tools by slight
modifications. Moreover, the Nitsche type method yields symmetric and positive definite
discretization matrices if the BVP has these properties. Although the approach involves a
stabilizing parameter γ, but is not a penalty method since it is consistent with the solution
of the BVP. Note further that the parameter γ can be easily estimated (see below).

Basic aspects of the Nitsche type mortaring and error estimates for regular solutions u ∈ Hk(Ω)
(k ≥ 2) on quasi-uniform meshes may be found in [25, 4]. The extension of this method to
the Laplace equation with non-regular solutions and locally refined meshes, which are not
quasi-uniform, is given in [16].

Here we consider transmission problems with Dirichlet boundary conditions and presenting
corner singularities. Naturally we take as interface of our non-matching meshes the interface
of the problem. For the appropriate treatment of corner singularities we use meshes locally
refined around the singular corner, the grading parameter being related to the importance
of the singularity. For meshes with and without grading, basic inequalities, stability and
boundedness of the bilinear form as well as error estimates in a discrete H1-norm are proved
using new trace estimates in weighted Sobolev spaces. Adapting the standard Aubin-Nitsche
trick we further show that the rate of convergence in L2 is twice of that in the H1-norm. For
an appropriate choice of the grading parameter, the rate of convergence is optimal as in the
case of regular solutions on quasi-uniform meshes. Finally, some numerical experiments are
given which confirm the theoretical rates of convergence.

2 Some preliminaries

In the following, for a domain X and a real number s, we denote by Hs(X), the usual Sobolev
space, with the corresponding norm ‖ . ‖s,X := ‖ . ‖Hs(X). As usual if s = 0, we write H0 = L2.
In the sequel constants C or c occuring in the inequalities are generic constants. We sometimes
write a ∼= b if ca ≤ b ≤ Ca.

Let us fix a bounded polygonal domain Ω of R2, with a Lipschitz-boundary ∂Ω consisting of
straight line segments. We suppose that Ω is decomposed into two non-overlapping subdo-
mains (only for the sake of simplicity) Ω1 and Ω2 with an interface Γ satisfying

Ω = Ω1 ∪ Ω2, Ω1 ∩ Ω2 = ∅, Ω1 ∩ Ω2 = Γ.

We assume that the boundaries ∂Ωi of Ωi (i = 1, 2) are also Lipschitz-continuous and formed
by open straight line segments Γj such that

Γ =
J⋃

j=1

Γj .

We distinguish two important types of interfaces Γ:
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case 1: the intersection Γ∩ ∂Ω consists of two points P1, P2 (P1 	= P2) being the endpoints
of Γ, like in Figure 1,

case 2: Γ ∩ ∂Ω = ∅, i.e., Γ does not touch the boundary ∂Ω, like in Figure 2.

Ω2
Ω1

Γ

Figure 1:

Γ

Ω2
Ω1

Figure 2:

We further fix two positive constants p1, p2 and define the function p on Ω as follows:

p|Ωi
= pi, i = 1, 2.

For the sake of shorthness, if a function v is defined in Ω, we shall denote by vi its restriction
to Ωi, i = 1, 2.

We now consider the transmission problem with homogeneous Dirichlet boundary conditions:

− div (p∇u) = f in Ω ,
u = 0 on ∂Ω ,

(2.1)

where f is supposed to be in L2(Ω). The variational formulation of (2.1) is as follows. Find
u ∈ H1

0 (Ω) :=
{
v ∈ H1(Ω) : v|∂Ω = 0

}
such that

a(u, v) = f(v) ∀ v ∈ H1
0 (Ω), (2.2)

with a(u, v) :=
∫

Ω

p (∇u,∇v) dx , f(v) :=
∫

Ω

fv dx.

For the error analysis of our method we need to describe the regularity of the weak solution
u of (2.2) whose existence and uniqueness directly follows from Lax-Milgram’s lemma with
the a priori estimate ‖u‖1,Ω ≤ C ‖f‖0,Ω. For p1 = p2 the standard regularity theory of (2.2)
yields u ∈ H2(Ω) and ‖u‖2,Ω ≤ C ‖f‖0,Ω if Ω is convex. On the contrary u has a singular
behaviour near the corner points of Ωi [13, 19], that may be described as follows (see [13, 19]
for the details): Assume that ∂Ω has convex corners except the corners belonging to Γ and
that 1 	∈ Λj, for all j ∈ {0, · · · , J}, then u admits the representation

u = w +
J∑

j=0

ηj
∑

λj,k∈Λj

aj r
λj,k
j φj,k(ϕj), (2.3)

where w is the so-called regular part which belongs to PH2(Ω) := {w ∈ H1(Ω) : wi ∈ H2(Ωi), i =
1, 2}. Here, (rj , ϕj) denote local polar coordinates of center Pj = Γ̄j∩Γ̄j+1. The set Λj is the set
of singular exponents λj,k at Pj in ]0, 1[, which are characterized as the zeroes of an analytic
function (which has only real zeroes), φj,k is the associated eigenvalue which is piecewise

3



smooth (in ϕj) and ηj is a locally acting (smooth) cut-off function around the vertex Pj .
Moreover we have the estimate

∑
i=1,2

‖wi‖2,Ωi
+

J∑
j=0

∑
λj,k∈Λj

|aj,k| ≤ C||f ||0,Ω. (2.4)

The above decomposition (2.3) implies that our solution belongs to some weighted Sobolev
spaces that we recall hereafter: For l = 1 or 2 and α ≥ 0, let us denote by

PH l,α(Ω) = {v ∈ L2(Ω) : vi ∈ H l−1(Ωi), rαDβvi ∈ L2(Ωi), ∀|β| = l, i = 1, 2},

where r is the distance to the points Pj, j = 0, · · · , J . It is clearly a Hilbert space for the norm

||v||l,α =


∑

i=1,2

||vi||2l−1,Ωi
+
∑
|β|=l

||rαDβvi||20,Ωi




1/2

.

We can now state the

Theorem 2.1. Let u ∈ H1
0 (Ω) be the unique solution of (2.2) with f ∈ L2(Ω). If 1 	∈ Λj, for

all j ∈ {0, · · · , J}, then
u ∈ PH2,α(Ω),

for all α ∈ [0, 1) satisfying

α > 1− λj,k, ∀λj,k ∈ Λj , j = 0, · · · , J.

Moreover one has
||u||2,α ≤ C||f ||0,Ω. (2.5)

Proof. It suffices to check that each singular function ηjr
λj,k
j φj,k(ϕj) belongs to PH2,α(Ω) for

α > 1− λj,k.

The estimate (2.5) follows directly from (2.4) and the above regularity of the singular function.

In the context of our domain decomposition method the solution of the problem (2.1) is
equivalent seen as the solution of the following interface problem: Find

(
u1, u2

)
such that

−pi∆ui = f i in Ωi , i = 1, 2 ,

ui = 0 on ∂Ωi ∩ ∂Ω , i = 1, 2 ,

u1 = u2 on Γ ,

p1
∂u1

∂n1
+ p2

∂u2

∂n2
= 0 on Γ ,

(2.6)

where ni (i = 1, 2) denotes the outward normal vector along ∂Ωi∩Γ. If we introduce the spaces
V i (i = 1, 2) by

V i :=
{
vi ∈ H1(Ωi) : vi

∣∣
∂Ω∩∂Ωi

= 0
}
, (2.7)
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(note that in the case 2 V i = H1(Ωi) for ∂Ω ∩ ∂Ωi = ∅) and the space V := V 1 × V 2, then
the problem (2.6) has to be interpretated in the weak form (see e.g. [2]): u =

(
u1, u2

)
∈ V

with ui ∈ H1(∆,Ωi) :=
{
v ∈ H1(Ωi) : ∆v ∈ L2(Ωi)

}
(i = 1, 2), satisfies −pi∆ui = f i in L2(Ωi), the

continuity condition u1 = u2 on Γ is required in the sense of H
1
2∗ (Γ) while the last condition is

in the sense of H−1
2∗ (Γ) (the dual space of H

1
2∗ (Γ)). Here we define H

1
2∗ (Γ) (also written H

1
2
00(Γ))

as the trace space of H1
0 (Ω) provided with the quotient norm, see e.g. [9, 14]. So in case 2,

we have H
1
2∗ (Γ) = H

1
2 (Γ). By 〈 . , . 〉Γ we shall denote the duality pairing of H− 1

2∗ (Γ) and H
1
2∗ (Γ).

3 Non-matching finite element discretization

Let us fix a positive constant γ (to be specified subsequently) and some real parameters α1, α2

satisfying
0 ≤ αi ≤ 1 (i = 1, 2), α1 + α2 = 1.

Let T i
h be a triangulation of Ωi (i = 1, 2) made of triangles. The triangulations T 1

h and T 2
h

are independent to each other. Moreover, no compatibility of the nodes of T 1
h and T 2

h along
Γ = ∂Ω1 ∩ ∂Ω2 is required, i.e., non-matching meshes on Γ are admitted. Let h denote the
mesh parameter of these triangulations, with 0 < h ≤ h0 and sufficiently small h0. Take e.g.
h = max{hT : T ∈ T 1

h ∪ T 2
h }, where hT := diamT is the diameter of the triangle T .

Assumption 3.1.

(i) For i = 1, 2, it holds Ωi =
⋃

T∈T i
h

T. (3.1)

(ii) Two arbitrary triangles T, T ′ ∈ T i
h (T 	= T ′, i = 1, 2) are either disjoint or have a common

vertex, or a common edge.

(iii) The mesh in Ωi (i = 1, 2) is shape regular, i.e., for the diameter hT of T and the
diameter (T of the largest inscribed sphere of T , we have

hT
(T

≤ C for any T ∈ T i
h , (3.2)

where C is independent of T and h.

Clearly, the condition (3.2) implies that the angle θ at any vertex and the length hF of any
side F of the triangle T satisfy the inequalities

0 < θ0 ≤ θ ≤ π − θ0, ε1hT ≤ hF ≤ hT , (0 < ε1 < 1),

with constants θ0 and ε1 being independent of h and T . Note that (3.2) does not imply the
quasi-uniformity of the triangulation T i

h (i = 1, 2).

Consider further some triangulation Eh of Γ by intervals E (E = E), i.e. Γ =
⋃

E∈Eh
E, and

denote by hE the diameter of E. A natural choice for the triangulation Eh of Γ is Eh := E1
h if

α1 = 1 or Eh := E2
h if α2 = 1, where

E i
h = {E : E = ∂T ∩ Γ, if E is a segment, T ∈ T i

h}, for i = 1, 2, (3.3)
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Γ

EhE1
h

ΓΩ1

T 1
h =⇒

Γ

E2
h T 2

h

Ω2

⇐=

Figure 3:

cf. Figure 3.

We finally require the asymptotic behaviour of the triangulations T 1
h , T 2

h and of Eh to be
consistent on Γ in the sense of the following assumption.

Assumption 3.2. For T ∈ T i
h (i = 1, 2) and E ∈ Eh with ∂T ∩ E 	= ∅, there are positive

constants C1 and C2 independent of hT , hE and h (0 < h ≤ h0) such that the condition

C1hT ≤ hE ≤ C2hT (3.4)

is satisfied.

Relation (3.4) guarantees that the diameter hT of the triangle T touching the interface Γ
at E is asymptotically equivalent to the diameter hE of the segment E, but the equivalence
between hT and hE is required only locally.

For i = 1, 2 we introduce the finite element space V i
h (finite subspace of V i from (2.7)) of

functions vi on Ωi by

V i
h :=

{
vi ∈ H1(Ωi) : vi

∣∣
T
∈ P1(T ) ∀ T ∈ T i

h , v
i
∣∣
∂Ω∩∂Ωi

= 0
}
, (3.5)

where P1(T ) denotes the set of all polynomials on T with degree ≤ 1. The finite element space
Vh of vectorial functions vh with components vih on Ωi is given by

Vh := V 1
h × V 2

h =
{
vh =

(
v1h, v

2
h

)
: v1h ∈ V 1

h , v
2
h ∈ V 2

h

}
. (3.6)

In general, vh ∈ Vh is not continuous across Γ.

Following [25] we now introduce the bilinear form Bh(. , .) on Vh×Vh and the linear form Fh(.)
on Vh as follows:

Bh(uh, vh) :=
2∑

i=1

(
pi∇uih,∇vih

)
Ωi

−
〈
α1p1

∂u1
h

∂n1
− α2p2

∂u2
h

∂n2
, v1h − v2h

〉
Γ

−
〈
α1p1

∂v1h
∂n1

− α2p2
∂v2h
∂n2

, u1
h − u2

h

〉
Γ

+ γ
∑
E∈Eh

h−1
E

〈
u1
h − u2

h, v
1
h − v2h

〉
E
, (3.7)

Fh(vh) :=
2∑

i=1

(
f i, vih

)
Ωi

for uh, vh ∈ Vh.

Here, (. , .)Ωi
denotes the L2(Ωi)-inner product, 〈. , .〉Γ the H− 1

2∗ (Γ)×H
1
2∗ (Γ)-duality pairing and

〈. , .〉E the L2(E)-inner product.
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The finite element approximation uh of the solution u of problem (2.2) on the non-matching
triangulation Th = T 1

h ∪ T 2
h is now defined by uh =

(
u1
h, u

2
h

)
∈ Vh = V 1

h × V 2
h solution of

Bh(uh, vh) = Fh(vh) ∀ vh ∈ Vh. (3.8)

4 Properties of the discretization

First we show that the solution u of the problem (2.1) satisfies the variational equation (3.8),
i.e., u is consistent with the approach (3.8).

Theorem 4.1. Let u be the solution of (2.1). Then u =
(
u1, u2

)
satisfies

Bh(u, vh) = Fh(vh) ∀ vh ∈ Vh. (4.1)

Proof. First of all, note that Bh(u, vh) is meaningful for any vh ∈ Vh since Theorem 2.1 and
Hardy’s inequalities [14, p.28] imply that rα−1/2 ∂ui

∂ni
belongs to L2(Γ), therefore the duality

pairing 〈
α1p1

∂u1

∂n1
− α2p2

∂u2

∂n2
, v1h − v2h

〉
Γ

is well defined.

Fix any vh ∈ Vh. Since u1
∣∣
Γ
= u2

∣∣
Γ
and p1 ∂u1

∂n1

∣∣∣
Γ
= − p2 ∂u2

∂n2

∣∣∣
Γ
, cf. (2.6), we get

Bh(u, vh) =
2∑

i=1

(
pi∇ui,∇vih

)
Ωi

−
〈
p1
∂u1

∂n1
, v1h

〉
Γ

−
〈
p2
∂u2

∂n2
, v2h

〉
Γ

.

As ui ∈ H1(∆,Ωi), we may apply half Green’s formula on the domains Ωi (see Theorem 1.5.3.11
of [14]), therefore the above relation becomes

Bh(u, vh) = −
2∑

i=1

pi
(
∆ui, vih

)
Ωi

=
2∑

i=1

(
f i, vih

)
Ωi

= Fh(vh).

This proves the assertion.

Note that due to (4.1) and (3.8) we also have the Bh-orthogonality of the error u− uh on Vh,
i.e.,

Bh(u− uh, vh) = 0 ∀ vh ∈ Vh. (4.2)

For further results on stability and convergence of the method, we recall the following “weighted
discrete trace theorem”, which describes also an inverse inequality and is proved in [16].

Lemma 4.2. Let Assumption 3.1 and 3.2 be satisfied. Then, for any vh ∈ Vh the inequality

∑
E∈Eh

hE

∥∥∥∥∂vih∂ni
∥∥∥∥

2

0,E

≤ C
(i)
I

∑
F∈Ei

h

∥∥∇vih∥∥2

0,TF
(4.3)

holds, for i = 1, 2, where F ∈ E i
h is the face of a triangle TF ∈ T i

h touching Γ by F (TF ∩Γ = F ).
The constants C(i)

I (i = 1, 2) do not depend on h, hT , hE.
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Note that extending the norms on the right-hand side of (4.3) to the whole of Ωi implies

∑
E∈Eh

hE

∥∥∥∥∂vih∂ni
∥∥∥∥

2

0,E

≤ C
(i)
I

∥∥∇vih∥∥2

0,Ωi
, i = 1, 2. (4.4)

For inequalities on quasi-uniform meshes related with (4.4) see [27, 25, 4].

To derive the Vh-ellipticity and Vh-boundedness of the discrete bilinear form Bh(. , .), we in-
troduce the following discrete norm ‖ . ‖1,h:

‖vh‖2
1,h :=

2∑
i=1

∥∥∇vih∥∥2

0,Ωi
+
∑
E∈Eh

h−1
E

∥∥v1h − v2h
∥∥2

0,E
(4.5)

cf. [25] and [9, 4] for uniform weights. Then we can prove the following theorem.

Theorem 4.3. Let Assumptions 3.1 and 3.2 for T i
h (i = 1, 2) and for Eh be satisfied. Choose

the constant γ in (3.7) independently of h and such that γ > C(i)
I pi for αi = 1 (i = 1 or i = 2),

and γ > 2C(i)
I α

2
i pi for 0 < αi < 1 (i = 1, 2), with C(i)

I from (4.3). Then it holds

Bh(vh,vh) ≥ µ1 ‖vh‖2
1,h ∀ vh ∈ Vh, (4.6)

with a constant µ1 > 0 independent of h.

Proof. From the definition (3.7) of Bh(. , .), we have the identity

Bh(vh,vh) =
2∑

i=1

pi
∥∥∇vih∥∥2

0,Ωi
− 2

∑
E∈Eh

〈
α1p1

∂v1h
∂n1

− α2p2
∂v2h
∂n2

, v1h − v2h
〉
E

+γ
∑
E∈Eh

h−1
E

∥∥v1h − v2h
∥∥2

0,E
.

Using Cauchy-Schwarz’s inequality and Young’s inequality (2ab ≤ a2

ε + εb2, for ε > 0) we get

Bh(vh,vh) ≥
2∑

i=1

pi
∥∥∇vih∥∥2

0,Ωi
− 1
ε

∑
E∈Eh

hE

∥∥∥∥α1p1
∂v1h
∂n1

− α2p2
∂v2h
∂n2

∥∥∥∥
2

0,E

− ε
∑
E∈Eh

h−1
E

∥∥v1h − v2h
∥∥2

0,E
+ γ

∑
E∈Eh

h−1
E

∥∥v1h − v2h
∥∥2

0,E
.

The application of inequality (4.3) yields (4.6), with µ1 > 0, if ε is chosen as follows. For
αi = 1 (i = 1 or i = 2), take C(i)

I pi < ε < γ, and for 0 < αi < 1 (i = 1, 2): 2C(i)
I α

2
i pi < ε < γ.

Beside the Vh-ellipticity of Bh(. , .) we also prove the Vh-boundedness.

Theorem 4.4. Let Assumption 3.1 and 3.2 be satisfied. Then there is a constant µ2 > 0 such
that

|Bh (wh, vh)| ≤ µ2 ‖wh‖1,h ‖vh‖1,h ∀wh, vh ∈ Vh. (4.7)

Proof. The proof is a direct consequence of Cauchy-Schwarz’s inequality and of the estimate
(4.3).

The above results together with Lax-Milgram’s lemma yield

Corollary 4.5. Under the assumptions of Theorem 4.3, problem (3.8) has a unique solution
uh ∈ Vh.
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5 Error estimates with weighted norms

Let u be the solution of (2.1) and uh from (3.8) its finite element approximation. We shall
study the error u− uh in the norm ‖ . ‖1,h given in (4.5). An estimate of the error ||u− uh||1,h
for regular solutions u is given in [24, 4, 16]. Error estimate for corner singularities with
singular exponents > 1/2 is also given in [16] using the special form of them. Here since
singular exponents may be less than 1/2 (see [19, 12]), we make use of the regularity in term
of weighted Sobolev spaces.

Since the influence of corner singularities is local, without loss of generality, we may suppose
that only one corner Pj is singular in the sense that only the set Λj is not empty. We further
denote by λ the smallest eigenvalue in Λj and write P = Pj for shortness. For basic approaches
of treating corner singularities by finite element methods see e.g. [3, 7, 14, 21, 23, 26]. We
now suppose that our meshes are refined near Pj according to the following rule:

Assumption 5.1. There exists µ ∈ (0, 1] and R > 0 such that the triangulations T i
h , i =

1, 2 satisfy the assumptions 3.1 and 3.2 and are graded around the singular vertex P in the
following way:

(1h
1
µ ≤ hT ≤ (−1

1 h
1
µ for T ∈ T i

h : rT = 0,

(2hr
1−µ
T ≤ hT ≤ (−1

2 hr
1−µ
T for T ∈ T i

h : 0 < rT < R,

(3h ≤ hT ≤ (−1
3 h for T ∈ T i

h : rT ≥ R,

(5.1)

where rT is the distance from T to P , i.e., rT := infx∈T |x− P |, with some constants (k,
0 < (k ≤ 1 (k = 1, 2, 3) independent of h.

The value µ = 1 yields quasi-uniform meshes in the whole domain Ω, i.e.,
max

T∈T i
h
hT

min
T∈T i

h
�T

≤ C. In

[3, 21, 23] graded meshes of the above type are described. In [18] a mesh generator is given
which automatically generates a mesh of type (5.1).

We first give a trace inequality in weighted Sobolev spaces motivated by the fact that the
solution u of (2.1) satifies

∇u ∈ PH1,α(Ω)2,

for any α ≥ 0 from Theorem 2.1.

Theorem 5.2. Let T ∈ T i
h , i = 1, 2 be a triangle containing the singular point P as vertex.

Then for any α > 1/2 and any edge E of T containing P , we have∥∥∥rα−1/2v
∥∥∥2

0,E
≤ c||rα−1v‖0,T

(
h−1
T ||rαv‖0,T + ||rα∇v‖0,T

)
, (5.2)

for all v ∈ H1,α(T ) = {v ∈ L2(T ) : rα∇v ∈ L2(T )}, where r is the distance to P .

Proof. Let us assume that (5.2) holds on the reference element T̂ , namely∥∥∥r̂α−1/2v̂
∥∥∥2

0,Ê
≤ c||r̂α−1v̂‖0,T̂

(
||r̂αv̂‖0,T̂ + ||r̂α∇v̂‖0,T̂

)
, (5.3)

where r̂ is the distance to the origin. Then (5.2) holds for any element T by the change of
variables

x = BT x̂+ bT ,
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where BT ∈ R
2×2 and bT ∈ R

2 such that ||BT || ∼= hT and P = bT , which imply r ∼= hT r̂.
Therefore by the regularity of T , we have∥∥∥rα−1/2v

∥∥∥2

0,E
≤ ch2α

T

∥∥∥r̂α−1/2v̂
∥∥∥2

0,Ê

≤ ch2α
T ||r̂α−1v̂‖0,T̂

(
||r̂αv̂‖0,T̂ + ||r̂α∇v̂‖0,T̂

)
≤ ch2α

T h
−α
T ||rα−1v‖0,T

(
h−1−α
T ||rαv‖0,T + h−α

T ||rα∇v‖0,T

)
,

which yields (5.2).

It then remains to prove (5.3). For that purpose, we write

v̂ = v1 + v2 on Ê,

where v1 = λ1v̂, v2 = λ2v̂ and λ1 (resp. λ2) is the barycentric coordinate associated with (0, 0)
(resp. (0, 1)) (since without loss of generality we may assume that the extremities of Ê are
(0, 0) and (0, 1)).

For v1 we remark that it satisfies

v1(x, 1 − x) = 0 ∀x ∈ [0, 1],

therefore for any x ∈ (0, 1) we may write

x2α−1|v1(x, 0)|2 = x2α−1(|v1(x, 0)|2 − |v1(x, 1 − x)|2)

= −x2α−1

∫ 1−x

0

∂y|v1(x, y)|2 dy

= −x2α−1

∫ 1−x

0

2v1(x, y)∂yv1(x, y) dy.

Integrating this estimate on x ∈ (0, 1), we obtain∫ 1

0

x2α−1|v1(x, 0)|2 dx = −2
∫
T̂

x2α−1v1(x, y)∂yv1(x, y) dxdy.

Since x ≤ r̂, Cauchy-Schwarz’s inequality yields∥∥∥r̂α−1/2v1

∥∥∥2

0,Ê
≤ 2||r̂α−1v1‖0,T̂ ||r̂

α∇v1‖0,T̂ . (5.4)

We show the same estimate for v2, namely we may write

x2α−1|v2(x, 0)|2 = x2α−1(|v2(x, 0)|2 − |v2(0, x)|2)

= x2α−1

∫ 1

0

∂t|v2(tx, (1 − t)x)|2 dt

= 2x2α−1

∫ 1

0

v2(tx, (1 − t)x){(∂xv2)(tx, (1 − t)x) − (∂yv2)(tx, (1 − t)x)} xdt.

Integrating this estimate on x ∈ (0, 1), we obtain∫ 1

0

x2α−1|v2(x, 0)|2 dx = 2
∫ 1

0

∫ 1

0

x2α−1v2(tx, (1− t)x){(∂xv2)(tx, (1 − t)x)

− (∂yv2)(tx, (1 − t)x)} xdxdt.
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By the change of variables x1 = tx et y1 = (1− t)x and remarking that

x2
1 + y

2
1 ≥ x2/2,

the previous inequality becomes
∫ 1

0

x2α−1|v2(x, 0)|2 dx ≤ 4
∫
T̂

r̂2α−1v2(x, y)(∂xv2(x, y)− ∂yv2(x, y)) dxdy.

By Cauchy-Schwarz’s inequality we arrive at
∥∥∥r̂α−1/2v2

∥∥∥2

0,Ê
≤ 8||r̂α−1v2‖0,T̂ ||r̂

α∇v2‖0,T̂ . (5.5)

As vi = λiv̂, we have

||r̂α−1vi‖0,T̂ ≤ ||r̂α−1v̂‖0,T̂ , (5.6)
||r̂α∇vi‖0,T̂ ≤ 2||r̂αv̂‖0,T̂ + ||r̂α∇v̂‖0,T̂ . (5.7)

The estimates (5.4) to (5.7) lead to (5.3).

The above proof fails in the case α ≤ 1/2, therefore we change the left-hand side of (5.2) into
the L2-norm.

Corollary 5.3. Let T ∈ T i
h , i = 1, 2 be a triangle containing the singular point P as vertex.

Then for any α ≤ 1/2 and any edge E of T containing P , we have

‖v‖2
0,E ≤ ch1−2α

T ||rα−1v‖0,T

(
h−1
T ||rαv‖0,T + ||rα∇v‖0,T

)
∀v ∈ H1,α(T ). (5.8)

Proof. We use the same arguments than before. If (5.8) holds for T̂ then it holds for any T
by change of variables. For the reference element T̂ , we follow the same lines except for vi,
where we do not multiply by x2α−1, this yields

‖vi‖2
0,Ê ≤ c

∫
T̂

vi|∇vi| dxdy.

Since r̂ is bounded and 2α−1 ≤ 0, we have r̂2α−1 ≥ c1, for some c1 > 0 and by Cauchy-Schwarz’s
inequality we conclude that

‖vi‖2
0,Ê ≤ c||r̂α−1vi‖0,T̂ ||r̂

α∇vi‖0,T̂ .

As before this leads to (5.8) for T̂ .

For functions v satisfying vi ∈ H1(Ωi) and rα−1/2 ∂vi

∂ni
∈ L2(Γ) (i = 1, 2), we introduce the

mesh-dependent norm ‖ . ‖h,Ω by

‖v‖2
h,Ω :=

2∑
i=1


∥∥∇vi∥∥2

0,Ωi
+
∑
E∈Eh

h
2(1−αE)
E

∥∥∥∥rαE−1/2αi
∂vi

∂ni

∥∥∥∥
2

0,E


 (5.9)

+
∑
E∈Eh

h−1
E

∥∥v1 − v2∥∥2

0,E
,
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where αE = 1/2 except if α > 1/2 and E contains the singular corner P where αE = α from
Theorem 2.1. In that last case, the introduction of the weight rα−1/2 is motivated by the fact
that ∂ui

∂ni
(u solution of (2.2)) no more belongs to L2(E), the factor h2(1−α)

E will be justified in
the next Lemmas 5.4 and 5.5. Note that if α ≤ 1/2 the above norm is the one introduced in
[16]. Let us further remark that the above norm is equivalent to the norm || · ||1,h on Vh as
the next result shows.

Lemma 5.4. For all vh ∈ Vh, one has

||vh||1,h ≤ ‖vh‖h,Ω ≤ C||vh||1,h.

Proof. The first estimate directly follows from the definition of the norms. For the second
one we remark that if α > 1/2 and E contains a singular corner, then

h
2(1−αE)
E

∥∥∥∥rαE−1/2 ∂v
i
h

∂ni

∥∥∥∥
2

0,E

= h2(1−α)
E

∥∥∥∥rα−1/2 ∂v
i
h

∂ni

∥∥∥∥
2

0,E

≤ hE
∥∥∥∥∂vih∂ni

∥∥∥∥
2

0,E

,

since r ≤ hE on E. Therefore we have

∑
E∈Eh

h
2(1−αE)
E

∥∥∥∥rαE−1/2αi
∂vih
∂ni

∥∥∥∥
2

0,E

≤ C
∑
E∈Eh

hE

∥∥∥∥∂vih∂ni
∥∥∥∥

2

0,E

.

By Lemma 4.2, we get

∑
E∈Eh

h
2(1−αE)
E

∥∥∥∥rαE−1/2αi
∂vih
∂ni

∥∥∥∥
2

0,E

≤ C||∇vih||0,Ωi
.

This estimate then leads to the conclusion.

We now bound ‖u− uh‖1,h and ‖u− uh‖h,Ω by the norm || . ||h,Ω of the interpolation error
u− Ihu, where Ihu := (Ihu1, Ihu

2) is the Lagrange interpolant of u, in the sense that Ihui ∈ V i
h

is the standard Lagrange interpolant of ui in the space V i
h, i = 1, 2.

Lemma 5.5. Under the assumptions of Theorem 4.3, let u be the solution of (2.1) and uh ∈ Vh
the solution of (3.8). Then it holds

‖u− uh‖1,h ≤ ‖u− uh‖h,Ω ≤ c ‖u− Ihu‖h,Ω . (5.10)

Proof. Since Ihu ∈ Vh, the triangular inequality yields

‖u− uh‖h,Ω ≤ ‖u− Ihu‖h,Ω + ‖Ihu− uh‖h,Ω .

Since Ihu− uh ∈ Vh by Lemma 5.4, this estimate becomes

‖u− uh‖h,Ω ≤ ‖u− Ihu‖h,Ω + ‖Ihu− uh‖1,h . (5.11)

Owing to Ihu− uh ∈ Vh and to the Vh-ellipticity of Bh(. , .), we have

‖Ihu− uh‖2
1,h ≤ µ−1

1 (Bh(Ihu, Ihu− uh) − Bh(uh, Ihu− uh)) . (5.12)
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Thanks to (4.2), we get

‖Ihu− uh‖2
1,h ≤ µ−1

1 Bh(Ihu− u, Ihu− uh). (5.13)

Note that the right-hand side is meaningful due to Theorem 2.1 and Hardy’s inequality (see
above).

If we show that

|Bh(Ihu− u, Ihu− uh)| ≤ c1 ‖Ihu− u‖h,Ω ‖Ihu− uh‖1,h , (5.14)

then together with (5.13) we obtain

‖Ihu− uh‖2
1,h ≤ µ−1

1 c1 ‖Ihu− u‖h,Ω ‖Ihu− uh‖1,h . (5.15)

This inequality combined with (5.11) and with the obvious estimate ‖u− uh‖1,h ≤ ‖u− uh‖h,Ω
proves (5.10).

It then remains to prove the estimate (5.14). Writing for shortness w = Ihu − u and vh =
Ihu− uh, by Cauchy-Schwarz’s inequality we may estimate:

|Bh(w, vh)| ≤ C

(
2∑

i=1

||∇wi||20,Ωi

)1/2( 2∑
i=1

||∇vih||20,Ωi

)1/2

(5.16)

+ C
∑
E∈Eh

2∑
i=1

||rαE−1/2 ∂w
i

∂ni
||0,E ||r1/2−αE (v1h − v2h)||0,E

+ C


∑

E∈Eh

hE

2∑
i=1

||∂v
i
h

∂ni
||20,E




1/2
∑

E∈Eh

h−1
E ||w1 − w2||20,E




1/2

+ γ


∑

E∈Eh

h−1
E ||w1 − w2||20,E




1/2
∑

E∈Eh

h−1
E ||v1h − v2h||20,E




1/2

.

Since on an edge E of Eh, v1h − v2h belongs to P1(E), by change of variable one has

||r1/2−αE (v1h − v2h)||0,E ∼= |E|1/2h1/2−αE
E ||r̂1/2−αE (v̂1h − v̂2h)||0,Ê

∼= |E|1/2h1/2−αE
E ||v̂1h − v̂2h||0,Ê ∼= h1/2−αE

E ||v1h − v2h||0,E .

This equivalence yields

∑
E∈Eh

2∑
i=1

||rαE−1/2 ∂w
i

∂ni
||0,E ||r1/2−αE (v1h − v2h)||0,E ≤ C

∑
E∈Eh

2∑
i=1

h
1−αE
E ·

||rαE−1/2 ∂w
i

∂ni
||0,Eh−1/2

E ||v1h − v2h||0,E

≤ C


∑

E∈Eh

2∑
i=1

h
2(1−αE)
E ||rαE−1/2 ∂w

i

∂ni
||20,E




1/2
∑

E∈Eh

h−1
E ||v1h − v2h||20,E




1/2

.

This estimate in (5.16) leads to (5.14) thanks to Lemma 4.2.
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The above results allow to give the following error estimate.

Theorem 5.6. Let the assumption of Theorem 2.1 be satisfied. If the triangulation satisfies
Assumption 5.1 with the refinement parameter µ such that

µ < λ, (5.17)

then it holds
||u − uh||1,h ≤ ‖u− uh‖h,Ω ≤ Ch||f ||0,Ω. (5.18)

Proof. In view of (5.10) it suffices to show that

||u− Ihu||h,Ω ≤ Ch||f ||0,Ω. (5.19)

The estimate
||∇(u− Ihu)||h,Ω ≤ Ch||u||2,α (5.20)

is standard (see for instance Theorem 3.7 of [17]). It then remains to estimate the interface
terms in (5.9). We now observe that, due to the assumptions on the mesh, these terms may
be rewritten in term of the edge F of the triangle T ⊂ Ωi (T = TF ) with T ∩ Γ = F ∈ E i

h, for
i = 1 or i = 2, namely∑

E∈Eh

h−1
E ‖Ihui − ui‖2

0,E ≤ c1
∑
F∈Ei

h

h−1
F ‖Ihui − ui‖2

0,F , (5.21)

∑
E∈Eh

h
2(1−αE)
E ‖αirαE−1/2 ∂

(
Ihu

i − ui
)

∂ni
‖2
0,E ≤ c2

∑
F∈Ei

h

h
2(1−αF )
F ‖rαF −1/2∇

(
Ihu

i − ui
)
‖2
0,F , (5.22)

where αF = α if the edge F contains the singular corner and α > 1/2, otherwise αF = 1/2.

For the estimation of the right-hand side of (5.21), we apply the refined trace theorem

‖v‖2
0,F ≤ c‖v‖0,T

(
h−1
T ‖v‖0,T + ‖∇v‖0,T

)
for v ∈ H1(T ), (5.23)

which is proved in [28], cf. also [27] or Theorem 5.2. Taking v = Ihui − ui, we get

∥∥Ihui − ui∥∥2

0,F
≤ c

∥∥Ihui − ui∥∥0,T

(
h−1
T

∥∥Ihui − ui∥∥0,T
+ ||∇(Ihui − ui)||0,T

)
. (5.24)

Again standard arguments yield

||∇(Ihui − ui)||0,T ≤ Ch1−β
T ||rβ∇2ui||0,T , (5.25)

||Ihui − ui||0,T ≤ Ch2−β
T ||rβ∇2ui||0,T , (5.26)

with β = α is T contains the singular corner and β = 0 else. These estimates in (5.24) lead to

h−1
F

∥∥Ihui − ui∥∥2

0,F
≤ Ch2(1−β)

T ||rβ∇2ui||20,T . (5.27)

If T contains the singular corner, by the refinement rule hT ∼= h
1
µ , the above estimate becomes

h−1
F

∥∥Ihui − ui∥∥2

0,F
≤ Ch

2(1−α)
µ ||rα∇2ui||20,T .
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Since α is such that α > 1− λ, we may choose α such that

µ < 1− α < λ. (5.28)

For such a choice, we get

h−1
F

∥∥Ihui − ui∥∥2

0,F
≤ Ch2||rα∇2ui||20,T . (5.29)

If T does not contain the singular corner, then (5.27) may be written

h−1
F

∥∥Ihui − ui∥∥2

0,F
≤ Ch2

T ||∇2ui||20,T ≤ Ch2
T r

−2α
T ||rα∇2ui||20,T .

Again the condition (5.28) and the refinement rule (5.1) lead to

hT r
−α
T ≤ Ch,

and therefore (5.29) still holds in that case.

Summing the estimate (5.29) on F ∈ E i
h yield

∑
F∈Ei

h

h−1
F

∥∥Ihui − ui∥∥2

0,F
≤ Ch2||rα∇2ui||20,Ωi

. (5.30)

We now estimate the right-hand side of (5.22). We first consider the case when F contain the
singular corner. If α > 1/2, we may write

h
2(1−αF )
F

∥∥∥rαF −1/2∇
(
Ihu

i − ui
)∥∥∥2

0,F
= h2(1−α)

F

∥∥∥rα−1/2∇
(
Ihu

i − ui
)∥∥∥2

0,F
.

By Theorem 5.2 (and the equivalence hF ∼= hT ), we then have

h
2(1−αF )
F

∥∥∥rαF −1/2∇
(
Ihu

i − ui
)∥∥∥2

0,F
≤ Ch2(1−α)

T ||rα−1∇
(
Ihu

i − ui
)
||0,T · (5.31)(

h−1
T ||rα∇

(
Ihu

i − ui
)
||0,T + ||rα∇2ui||0,T

)
.

On the other hand if α ≤ 1/2, then

h
2(1−αF )
F

∥∥∥rαF −1/2∇
(
Ihu

i − ui
)∥∥∥2

0,F
= hF

∥∥∇ (Ihui − ui)∥∥2

0,F
,

and Corollary 5.3 yields

h
2(1−αF )
F

∥∥∥rαF −1/2∇
(
Ihu

i − ui
)∥∥∥2

0,F
≤ ChFh1−2α

T ||rα−1∇
(
Ihu

i − ui
)
||0,T ·(

h−1
T ||rα∇

(
Ihu

i − ui
)
||0,T + ||rα∇2ui||0,T

)
.

This shows that (5.31) holds in this case too since hF ∼= hT .

We now estimate the right-hand side of (5.31). First by a standard change of variables, we
have

||rα−1∇
(
Ihu

i − ui
)
||0,T ≤ Chα−1

T ||r̂α−1∇(Î ûi − ûi)||0,T̂ .

15



As α > 0, by Hardy’s inequality (see [14, p.28]) we have

||r̂α−1∇(Î ûi − ûi)||0,T̂ ≤ C
(
||∇(Î ûi − ûi)||0,T̂ + ||r̂α∇2ûi||0,T̂

)
.

Moreover as α < 1 the space H2,α(T̂ ) is compactly embedded into H1(T̂ ) (see Corollary 2.6 of
[17]), therefore

||∇(Î ûi − ûi)||0,T̂ ≤ C||r̂α∇2ûi||0,T̂ .

The three above inequalities show that

||rα−1∇
(
Ihu

i − ui
)
||0,T ≤ Chα−1

T ||r̂α∇2ûi||0,T̂ .

Going back to T in the right-hand side finally yields

||rα−1∇
(
Ihu

i − ui
)
||0,T ≤ C||rα∇2ui||0,T . (5.32)

We prove similarly that

||rα∇
(
Ihu

i − ui
)
||0,T ≤ ChT ||rα∇2ui||0,T . (5.33)

The estimates (5.32) and (5.33) into (5.31) give

h
2(1−αF )
F

∥∥∥rαF −1/2∇
(
Ihu

i − ui
)∥∥∥2

0,F
≤ Ch2(1−α)

T ||rα∇2ui||0,T .

With the refinement rule we arrive at

h
2(1−αF )
F

∥∥∥rαF −1/2∇
(
Ihu

i − ui
)∥∥∥2

0,F
≤ Ch2||rα∇2ui||0,T . (5.34)

If the edge F does not contain the singular corner, then the estimate (5.23) and the above
arguments with α = 0 (i.e. in H2(T )) yield

h
2(1−αF )
F

∥∥∥rαF −1/2∇
(
Ihu

i − ui
)∥∥∥2

0,F
= hF

∥∥∇ (Ihui − ui)∥∥2

0,F
≤ Ch2

T ||∇2ui||0,T .

As before the refinement rule (5.1) leads to (5.34).

Summing up the estimate (5.34) on all edges F ∈ E i
h, we have proved that

∑
F∈Ei

h

h
2(1−αF )
F

∥∥∥rαF −1/2∇
(
Ihu

i − ui
)∥∥∥2

0,F
≤ Ch2||rα∇2ui||20,Ωi

. (5.35)

The estimates (5.20), (5.21), (5.22), (5.30), (5.35) and Theorem 2.1 imply (5.19).

Remark 5.7. If the refinement parameter µ satisfies

µ ≥ λ,

then the above proof shows that

||u− uh||1,h ≤ ‖u− uh‖h,Ω ≤ Ch
λ
µ−ε||f ||0,Ω,

for arbitrary small ε. In particular, for quasi-uniform meshes (µ = 1) we have at least an
approximation order O(hλ−ε).
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6 The L2-error estimate

We start with the following boundedness property of Bh that we need later on (compare with
Theorem 4.4).

Lemma 6.1. Let the assumptions 3.1 and 3.2 be satisfied. Then there is a constant µ3 > 0
such that

|Bh (w, v)| ≤ µ3 ‖w‖h,Ω ‖v‖h,Ω , (6.1)

for all v, w ∈ V such that rα−1/2 ∂vi

∂ni
, rα−1/2 ∂wi

∂ni
∈ L2(Γ), i = 1, 2.

Proof. By Cauchy-Schwarz’s inequality we may write

|Bh(w, v)| ≤ C
(

2∑
i=1

||∇wi||20,Ωi

)1/2( 2∑
i=1

||∇vi||20,Ωi

)1/2

+ C


∑

E∈Eh

2∑
i=1

h
2(1−αE)
E ||rαE−1/2αi

∂wi

∂ni
||20,E




1/2
∑

E∈Eh

h
2(αE−1)
E ||r1/2−αE (v1 − v2)||20,E




1/2

+ C


∑

E∈Eh

2∑
i=1

h
2(1−αE)
E ||rαE−1/2αi

∂vi

∂ni
||20,E




1/2
∑

E∈Eh

h
2(αE−1)
E ||r1/2−αE (w1 − w2)||20,E




1/2

+ γ


∑

E∈Eh

h−1
E ||w1 − w2||20,E




1/2
∑

E∈Eh

h−1
E ||v1 − v2||20,E




1/2

.

The conclusion follows from the estimate

∑
E∈Eh

h
2(αE−1)
E ||r1/2−αE (v1 − v2)||20,E ≤ C

∑
E∈Eh

h−1
E ||v1 − v2||20,E + C

2∑
i=1

||∇vi||20,Ωi
, (6.2)

that we now show. Indeed if α ≤ 1/2 or if E ∈ Eh does not contain the singular corner P , then
αE = 1/2 and we directly get

h
2(αE−1)
E ||r1/2−αE (v1 − v2)||20,E = h−1

E ||v1 − v2||20,E . (6.3)

On the contrary if α > 1/2 and E ∈ Eh contains the singular corner P , then αE = α and the
weight hαE−1

E r1/2−αE is no more bounded by h−1/2
E . In this case by the change of variable

r = hE r̂ sending E to Ê = [0, 1], we have

h
αE−1
E ||r1/2−αE (v1 − v2)||0,E = ||r̂1/2−αE (v̂1 − v̂2)||0,Ê .

The embedding H1/2(Ê) ↪→ H1/2−ε(Ê), for all ε > 0 and Corollaries 1.4.4.5 and 1.4.4.10 of [14]
imply that

||r̂−1/2+ε(v̂1 − v̂2)||0,Ê ≤ C||v̂1 − v̂2||1/2,Ê ,

where C > 0 depends on ε. Since α < 1, choosing ε small enough, we obtain

||r̂1/2−αE (v̂1 − v̂2)||0,Ê ≤ C||v̂1 − v̂2||1/2,Ê .
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By the definition of the H1/2-norm and the triangle inequality we get

||r̂1/2−αE (v̂1 − v̂2)||0,Ê ≤ C||v̂1 − v̂2||0,Ê + C
2∑

i=1

|v̂i|1/2,Ê .

Going back to E, we have shown that

h
αE−1
E ||r1/2−αE (v1 − v2)||0,E ≤ Ch−1/2

E ||v1 − v2||0,E + C
2∑

i=1

|vi|1/2,E . (6.4)

Summing the square of the estimates (6.3) and (6.4), we deduce that

∑
E∈Eh

h
2(αE−1)
E ||r1/2−αE (v1 − v2)||20,E ≤ C

∑
E∈Eh

h−1
E ||v1 − v2||20,E + C

2∑
i=1

|vi|21/2,Γ.

As vi belongs to H1(Ωi), we clearly have

|vi|1/2,Γ ≤ C||∇vi||0,Ωi
.

Since the estimate (6.2) follows from the two above estimates, the proof is complete.

Adapting the standard Aubin-Nitsche trick, we are now able to show that the L2-error is
twice of that in the || · ||h,Ω-norm.

Lemma 6.2. Under the assumption of Theorem 5.6, the estimate

‖u− uh‖0,Ω ≤ Ch2 ‖f‖0,Ω (6.5)

holds.

Proof. Take the error u−uh, where u is the solution of (2.2) and uh its finite-element approx-
imation from (3.8), and consider the solution ue of the variational equation

find ue ∈ H1
0 (Ω) : a(ue, v) =

∫
Ω

(u− uh) v dx ∀ v ∈ H1
0 (Ω) . (6.6)

Then, the finite-element approximation of ue in Vh is defined by

find ueh ∈ Vh : Bh(ueh, vh) =
∫

Ω

(u− uh) vh dx ∀ vh ∈ Vh . (6.7)

As u − uh belongs to L2(Ω), the regularity results from section 2 may be applied to ue.
Consequently Theorem 5.6 implies the error estimate

‖ue − ueh‖h,Ω ≤ Ch ‖u− uh‖0,Ω . (6.8)

Clearly, the consistency proved by Theorem 4.1 yields here

Bh(ue, vh) =
∫

Ω

(u− uh) vh dx ∀ vh ∈ Vh . (6.9)
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Moreover, observe that for the solutions u and ue from (2.2) and (6.6), respectively, the
relation

Bh(ue, u) = a(ue, u) =
∫

Ω

(u− uh)u dx (6.10)

holds. Using (6.9) (put vh = uh), (6.10) and the orthogonality relation Bh(u − uh, vh) = 0 for
vh = ueh from (4.2) as well as the symmetry of Bh(. , .), we get the identities

‖u− uh‖2
0,Ω = Bh(ue, u− uh) = Bh(u− uh, ue − ueh) . (6.11)

By Lemma 6.1, we obtain

‖u− uh‖2
0,Ω ≤ µ3 ‖u− uh‖h,Ω ‖ue − ueh‖h,Ω .

Theorem 5.6 then yields (see (6.8))

‖u− uh‖2
0,Ω ≤ Ch2 ‖f‖0,Ω ‖u− uh‖0,Ω .

This proves (6.5).

Remark 6.3. If the refinement parameter µ satisfies µ ≥ λ, then the error estimate

||u− uh||0,Ω ≤ Ch
2λ
µ −ε||f ||0,Ω

holds for arbitrary small ε. In particular, for quasi-uniform meshes (µ = 1), we have at least
an approximation order O(h2λ−ε).

The proof is quite analogous to that of Lemma 6.2.

7 Numerical experiments

In the following we shall illustrate the behaviour of the Nitsche type finite element approxi-
mation for some transmission problem which yields a solution with one singularity function.
Moreover, we shall study the rate of convergence of this approximation in the {1, h}-norm and

ϕ

−a

b

a

−b

ϕ0 = 3
2 π

r

Ω1 Ω2

y

x

Γ

Figure 4: The L-shaped domain Ω.
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p1 30.83623 5.39245 2.23607 1.00000 0.70130 0.23606

p2 1.00000 1.00000 1.00000 1.00000 1.00000 1.00000

λ 0.51 0.55 0.6 0.66667 0.7 0.8

Table 1: Solutions λ of equation (7.3) for some pairs of p1, p2

in the L2-norm when local mesh refinement via mesh grading is applied. For that consider
the BVP

−div(p∇u) = f in Ω , u = 0 on ∂Ω , (7.1)

where Ω is the L-shaped domain of Figure 4 with Ω1 = (−a, 0)× (−b, b) and Ω2 = (0, a)× (0, b)
for some a, b > 0. For Ω1, Ω2, see also Figure 4. The line of discontinuity of the coefficient p is
given by the straight segment between (0, 0) and (0, b). The right-hand side f is chosen such
that the exact solution u of (7.1) is given by

u(x, y) = (a2 − x2)(b2 − y2)rλ




sin(λϕ) for x > 0

sin(λ(3π
2 − ϕ))

2 cos(λπ
2 )

for x < 0
(7.2)

where r2 = x2 + y2, 0 ≤ ϕ ≤ ϕ0, ϕ0 = 3
2π. The parameter λ denotes the exponent of the

singularity function with centre at P0 = (0, 0). Obviously, u ∈ H1+λ−ε(Ω) (ε > 0 arbitrary),
u|∂Ω = 0 and f ∈ L2(Ω) are satisfied. The value of λ in (7.2) is determined by the ratio of the
values p1 = p|Ω1 and p2 = p|Ω2 of the coefficient p over the subdomains Ω1 and Ω2, respectively,
and will be obtained as the smallest positive solution of the equation

−p1 sin(λπ2 ) cos(λπ) = p2 cos(λπ2 ) sin(λπ). (7.3)

This follows e.g. from [19]. In Table 1, for some pairs of p1, p2, the corresponding values of λ
are presented.

For the application of the Nitsche type mortaring method to this BVP we use an initial
mesh as shown in Figure 5. The interface Γ of the non-matching meshes coincides with
the physical interface of the jumping coefficients. Consequently, the singularity acts also in
the region of non-matching meshes. For the value λ = 0.6 the Nitsche type finite element
approximation uh ∈ Vh according to (3.8) is visualized in Figure 6. The initial mesh is refined
globally by dividing each triangle into four equal triangles such that the mesh parameters
form a sequence {h1, h2, . . .} defined by {h1,

h1
2 , . . .}. The ratio of the number of mesh segments

(without grading) on the mortar interface is given by 2 : 3 (see Figure 5).

In the numerical experiments, different values of α1 and α2 (α1 + α2 = 1) as well as different
partitions Eh on Γ are chosen. For αi = 1 (i = 1 or i = 2), the partition of Γ is obtained
by taking the trace of the triangulation T i

h of Ω̄i on the interface: Eh=E i
h. In this case, the

choice γ = 3pi is sufficient to ensure stability. Otherwise, for the case 0 < αi < 1 (i = 1, 2)
the intersection of the mesh traces of T 1

h and T 2
h on the interface Γ is (for this example) a

convenient partition Eh. Moreover, local refinement by mesh grading around the corner vertex
P0 according to Assumption 5.1 is applied. If uh denotes the finite element approximation of
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Figure 5: Non-matching triangulations with mesh ratio 2 : 3; initial mesh (h1–level, left) and
mesh on the h2–level with local grading at the interface corner (right).

the exact solution u according to (3.8), then the error estimate in the discrete norm || . ||1,h
from (4.5) is given by (5.18) (µ < λ). For measuring the convergence rate, it is supposed that

‖u− uh‖1,h ≈ Chα (7.4)

holds, with some constant C which is approximately the same for two consecutive levels of
h, like h and h

2 . The smaller h is, the better this assumption will be justified. Then α = αobs
(observed value) is derived from (7.4) by αobs := log2 qh with qh := ‖u− uh‖(

∥∥u− uh/2∥∥)−1. For
calculating the norms, cubature formulas with high accuracy are applied. By analogy to (7.4),
for the L2–norm we suppose that the relation ‖u− uh‖0,Ω ≈ Chβ is satisfied. For the choice
α1 = 1 and different values of λ and for quasi-uniform meshes (µ = 1) and for meshes with
grading (µ = 0.7λ), the observed and expected values of α and β are given in Table 2 and 3.
Further experiments with parameters α2 = 1 and 0 < αi < 1 (i = 1, 2) led to values α and β
which differed only slightly from the values associated with the parameter α1 = 1.

norm ‖ . ‖1,h λ = 0.51 λ = 0.55 λ = 0.6 λ = 2
3 λ = 0.7 λ = 0.8 expected values

αobs (µ = 1) 0.53 0.58 0.65 0.76 0.82 0.94 αexp ≈ λ

αobs (µ < λ) 0.98 0.99 0.99 0.99 0.98 0.99 αexp = 1

Table 2: Observed convergence order αobs for the error in the norm ‖ . ‖1,h for different λ, fixed
α1 = 1, Eh = E1

h, and for the grading parameters µ = 1 and µ = 0.7 · 2
3 < λ.

norm ‖ . ‖0,Ω λ = 0.51 λ = 0.55 λ = 0.6 λ = 2
3 λ = 0.7 λ = 0.8 expected values

βobs (µ = 1) 1.05 1.14 1.25 1.42 1.51 1.80 βexp ≈ 2λ

βobs (µ < λ) 1.93 1.96 1.97 1.97 1.97 1.98 βexp = 2

Table 3: Observed convergence order βobs for the error in the norm || . ||0,Ω for different λ,
fixed α1 = 1, Eh = E1

h, and for the grading parameters µ = 1 and µ = 0.7 · 2
3 < λ.
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The numerical experiments show that the observed rates of convergence αobs and βobs are
approximately equal to the values expected from the theory. In particular, αobs ≈ 1 and
βobs ≈ 2 was observed on meshes with appropriate grading. Furthermore, on those meshes
the local error as well as the error norms are diminished; cf. the error in Figure 6.
Thus, local mesh grading is suited to overcome the decrease of convergence order and the loss
of accuracy on non-matching meshes caused by interface singularities.

Acknowledgement: The authors thank Mrs. Kornelia Pietsch (Fakultät für Mathematik,
TU Chemnitz) for carrying out the computations in the numerical experiments.
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Figure 6: The approximate solution uh for the coefficient pair p1 = 2.23 and p2 = 1.00 in two
different perspectives (top), the corresponding local (pointwise) error on the h-level h4 for a
quasi-uniform mesh (bottom left) and for a mesh with grading (bottom right).
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