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1 Introduction

Jensen/Korneev [12] and Ivanov/Korneev [10],[11] developed preconditioners
for the p—version of the FEM in a two-dimensional domain. They used D D-
methods. The unknowns are splitted into 3 groups, the interior, the edge
and vertex unknowns

Avert Avert,edg Avert,int

A = Aedg,vert Aedg Aedg,int
Aint,vert Aint,edg Aint

The vertex unknowns can be solved separately, cf. Lemma 2.3 [10], using

Avert
C = Aedg Aedg,int
Aint,edg Aint

Computing the other unknowns, we factorize the remaining stiffness matrix
as follows

< Aedg Aedg,int) — <I Aedg,intAi_n%e>
Aint,edg Aint I

S I
Aint A;mltAint,edg I

—1
S = Aedg - Aedg,intAintAint,edg-

with the Schur-komplement

Computing the interior unknowns, we solve a Dirichlet problem on each quad-
rangle. The vertex unknowns are computed via the Schur-complement S.
We need 3 tools, a preconditioner for the interior problem, a preconditioner
for the Schur-komplement and a extension operator from the edges of a quad-
rangle to the interior. Ivanov/Korneev derived 3 types C;s i =1,...,3, of
preconditioning the Schur-complement. The condition number for C’Z.TslS is
in the worst case O(log?p), where p is the polynomial degree. The solution
of C; sx =y costs O(p) arithmetical operations.

Furthermore, Jensen/Korneev found a spectral equivalent preconditioner for
the interior problem, which has O(p?) nonzero entries. In the case of par-
allelogram elements, the element stiffness matrix has O(p?) nonzero entries,

3



too. But, the suggested methods compute the solution in O(p?) arithmetical
operations. Finding a fast solver for the preconditioner was an open question.
This paper is concerned to the construction of a more efficient preconditioner
for the interior problem.

We derive a preconditioner for the interior problem, such that the number of
iterations of the PCG-method shows an increasing as O(logp) or less in nu-
merical experiments and costs of O(p?) arithmetical operations. The origin
of this preconditioner is the multi-grid method. We give a proof for the con-
vergence of the multi-grid method using the strenghtened Cauchy-inequality.
The paper is organized as follows. In section 2, we consider the stiffness ma-
trix for the model problem and their most important properties. In section
3, we introduce and modify the preconditioner of Jensen/Korneev. Section
4 shows that the modified preconditioner can be obtained by discretizing
ellpitic problems with variable coefficients using finite differences or the h-
version of the finite element method. In section 5, we give a proof for the
convergence of the multi-grid method for this problem with variable coef-
ficients. In section 7, we consider the AMLI-method, [2], [3]. Finally, we
consider extensions to the three dimensional case.

Throughout this paper, Q will denote the unit rectangle (—1,1)2, €; the
rectangle (0,1)2. The integer p is the polynomial degree, L; the i—th in-
tegrated Legendre polynomial. The real number A,,,,(A) will denote the
largest eigenvalue of a matrix A and A.,;,(A) the smallest eigenvalue of A.
The parameter ¢; will describe a constant, which is independent of p or h.

2 Origin and properties of the stiffness ma-
trix

2.1 Model problem

We try to find a numerical solution of the model problem

—Au = f,inQ=(-1,1) (2.1)

U|39 = 0.

Problem (2.1,2.2) is the typical model problem for solving a linear system
with the matrix A;,;.



2.2 Discretization, shape functions

We solve (2.1,2.2) using the p—version of the FEM with only one element €.
As finite element space, we choose
M = {u € H;(Q),u |o€ P},

where PP is the space of all polynomials of degree < p in both variables. The
discretized problem is: find u, € M

/Vup-vad(x,y) = / fopd(z,y)
Q Q

for all v, € M. As basis in M, we choose the integrated Legendre polynomi-

als, which we define below.
Let for s =0,1,...

1 d
) = S
the i-th Legendre polynomial,

Li(z) = / ' Li 1(s) ds

-1

(@ — 1)

the i-th integrated Legendre polynomial, and Vi > 2

Ay (CELICES CES AR S ECr

4
the i-th integrated Legendre polynomial with scaling. By definition,
- 1+
LO('CC) = 9 )
A 11—z
The properties
! 2
/ L)L) e = dygo (2.4)
A (20 +1)(2i — 3)
Li = Lz - L’i* ) 2.5
(@) \/ f— 1) ()~ Lial@).(25)
Li(1) = o, (2.6
Li(-1) = o, (2.7



are true for ¢ > 2, [19].
As basis in M, we choose

A

Lij(z,y) = f/z(x)ffy(?/)v

(2.9)

with p > 4,7 > 2. For satisfying (2.2), the polynomials Lo and L; are not

used, compare (2.6,2.7). The stiffness matrix K is determined by

K = (aij,kl)ﬁjzz;kvlzg = / V[A/tj (56'7 y) : Vﬁkl(xv y) d(xv y)
Q
We get
aijrp = dipfi+ fadj,

where

1

~

F= (e = [ L)L) do.

-1

L'd. d .
D= (@l = [ Gl gL do

(2.10)

(2.11)

(2.12)

Using (2.4,2.5), we determine the entries of the one-dimensional mass matrix,

namely

and the one-dimensional stiffness matrix, namely

dy 0
D= dlag(dz)fzz = 0 d3
0 0



with the coefficients

@i-3)ei+s)
@ T N@i-1D@2i+3)

(2i — 3)(2i + 1)
> :

d;

[12]. The stiffness matrix for the two-dimensional Laplace can be written
using the matrices F' and D by

compare (2.10). Applying a permutation P of rows and columns, we get

K

K,

PKP™!' = (2.13)

K
Ky

The first block contains the polynomials EZi,?jv the second IA/%H,QJ-? the third
flgi,zjﬂ and the fourth I:QHLQJ-H. If p is odd, all four blocks have the same
size. We wish to find a fast solver for a system of linear equations with the
matrix K or equivalently, K;. This solver should perform the solution in not
more than O(p®logp) arithmetical operations.

3 Deriving a preconditioner for K

In the following, we assume p is odd. We introduce n = [p—gl] + 1. Applying
a basis-transformation using the permutation P, (2.13), Cy and Cj are block
diagonal matrices of 4 identical blocks C's and (s, where

Cs = D3®Ts+Ts® Ds, (3.1)
Ce = D3® (T3 +D3')+ (T +D3') ® Dy
with
Ds = diag(4i®)'7}, (3.3)
T3 = %tridiag(—l, 2,—1). (3.4)



Furthermore, we need the matrices
1 n—1
Dy = 4 diag <i2 + —)
6/
and
04 = D4 X T3 + T3 (24 D4. (35)
From [5] and [4], we get

THEOREM 3.1 . Let K;,i =1,...,4 are the j blocks of K. The following

statements are valid Yv and 1 =1,... ,4:
c7(Csv,v) < (Kiv,v) < cs(1+ logp)(Csu, v),
c11(Cev,v) < (Kw,v) < c12(Cou, v),
co(Cy,v) < (Kw,v) < cpo(l + logp)(Cyv, v).

4 Similar systems of linear equations for
other methods of discretization

4.1 Finite differences

The matrix C5 is the system matrix for a discretization of

—2 (yQUa:x_xQUyy) = 9

in Q; = (0, 1)? using finite differences and the grid of Figure 1.
Indeed, we denote the approximation in %(i,j) by u™. We approximate
the second derivatives by the usual second order central difference quotient:

2 ~  A22(,1+1, i—1, %,
Y Upy <_7_> ~ ] (U J+u ! —2u J)a
n
w2y, [ L1) a2 it oy
yy ) ~~ .

If we insert the boundary condition and sort the unknowns in the order

ubt o ut? T et u T we get the system matrix 1C5 (3.1).
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Figure 1: Mesh for h-Version (below), grid (above).



1,J T -1,7+1

Lk
K 2,k
ij

k k
Tij Tit1,

Figure 2: Notation within a cell 5{‘3

REMARK 4.1 The discretization of

2 2 ?/2 s
_2(y Upy — T Uyy)+ﬁ+gu = g,

as above leads to the system matriz Cq (3.2)

4.2 h-version of the FEM
We consider the following problem: Find u € H}(2) such that

a(u,v) := /Qyzuxv;C + 2?uyv, dedy = /ng dzdy =: (g, v) (4.3)

Vv € H(2) holds. The domain € is the unit square (0, 1)2.

We want to find a numerical solution of (4.3) using finite elements. For
this purpose, we introduce some notation. Let k be the level of approximation
and n = 2*. Let us introduce xfj = (%,%), where 7,7 = 0,...,n. We
divide €2 into congruent, isosceles, right triangles Tf’j’k,
and s = 1,2, compare Figure 1. The triangle Tlljk has the three vertices

ko ok k 2,k ; ko ok k
Tip Ty jo1 and 27,4, 7.7 has the three vertices =7}, ', ;14 and 274 ;, see

Figure 2. Furthermore, let & = 7.;* U " be the square

2i—|—1 » ij—|—1
n n n n |

10
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We use linear finite elements on the mesh

T = {7'isj’k}wl’2

ij=1,5=1

and denote by V;, the subspace of piecewise linear functions ¢;; with

di; € Hy(Q), ¢35

Tlsricl € Pl (TZSk)v

m

where P! is the space of polynomials of degree < 1. A basis of V}, is the
system of functions {qﬁfj n1 uniquely defined by

t,j=1

(@) = 0uljm,

where ¢§; is the Kronecker delta.

Now, we can formulate the discretized problem. Find u* € V, such that
a(uf, v*) = (g, ") Yo € V,, (4.4)

holds. Problem (4.4) is equivalent to solving

Khpw, = g, (4.5)
where
E ik \n—1
Knr = aldi Oim)ijim=1s
E \n-1
gh = <g’ ¢lm>Zm:17
n—1
ij=1

11



Figure 3: Sketch for calculation the matrix entry between two adjacent nodes.

k
YR

/T ( " ) ( b ) ( 0 ) d(r, )

i,j—1

We determine now a(¢j;, ¢}, ;). We obtain by a simple integration

a( ?jv ?+1,j)

- -2 (é " f) , (46)

where n > 4, j and j > 0, but i > 0. By symmetry, we have (¢ >0, j>0)

1 /1
a(d, 67 j11) = T2 <6 +22>

and
a(d)i'cjv dfj) = _(a(¢§jv d)i'chl,j) + a(¢§jv ¢§,j+1) + a(d)fj, ¢§,j—1) + a(¢§jv d)i'cq,j))-

12



All other matrix entries are zero. Inserting the boundary condition and using
(3.5), we arrive after a proper permutation of the unknowns

1
Kh,k = 2—7’1204 (47)

5 Multi-grid proof for —yu,, —ru,, using the

strengthened Cauchy-inequality

We are interested in finding a fast solver for (4.4). We will see that we can
prove the convergence for a multi-grid algorithm.

REMARK 5.1 Note, that a(-,-) is on Vi positive definite.

5.1 Theory of algebraic multi-grid proofs

In this chapter, we discuss the theory of algebraic multi-grid proofs, [15],
[16]. We split

Vi =Vi_1 W,

Algebraic multi-grid proofs analyze the angle between the two subspaces
Vi1 and Wy, or equivalently, the strengthened Cauchy-inequality

(a(v,w))* < ¥*a(v,v)a(w,w) Yo € V;_1,w € W, (5.1)

with v2 < 1.

5.1.1 Multi-grid algorithm

We describe in this section the multi-grid method for solving (4.4). Let

ug be the initial value. We define the iterate u; by the recursive process
uy = MULT(k, uo, g).

o Set [ =k.
e If [ =1, then solve
a(w,v) = (g,v) — a(ug,v) Vv € V,

exactly. Else, do

13



Pre-smoothing on W;_y:
Solve for w € W;_;

a(w,v) = (g,v) — a(ug,v) := (r,v) Yo € W,
using v steps of a simple iterative method w = S7r. Set uj = ug + w.

Coarse grid correction on V;_;:
Solve for w € V;_4

a(w,v) = (g,v) — a(uy, v) = (r,v) Yo € V;_;

using g1 steps of the algorithm @w = MULT(l — 1,0,r). Set u? =
ug + .

Post-smoothing on W;_;:
Solve for w € W;_;

a(w,v) = (g,v) — a(ud,v) = (r,v) Vo € W, ;
using v steps of a simple iterative method w = Sr. Set u; = u3 + w.

end-if.

5.1.2 Convergence theory for multi-grid

We want to prove the convergence of the multi-grid algorithm for solving
(4.4) using ¢ = 3 and the smoother S, which will be defined in (5.33). The
main tool is the theory of algebraic multi-grid proofs, [15], [16]. We formulate
only the main theorem.

THEOREM 5.2 Let us assume that the following assumptions are fulfilled.

o Let a(-,-) be a symmetric and positive definite bilinear form on V.

o Let S be a smoother with

| 8w l2< Co™ | w |7 Yw € Wy, (5.2)
where 0 < p < 1 independent of k and C' > 0.
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e There is a constant 0 < v < 1 independent of k such that
(a(v,w))* < ¥*a(v,v)a(w, w) Vw € Wy, Vv € Vi (5.3)
holds.

o Letujyr1, = MULT(k,ujy, g), let u* be the exact solution of (4.4) and
let

| wjirn — v la

oL =  sup
ik —u* €V H Uik — u* ||a

be the convergence rate of MULT with v smoothing operations.
Then, the following recursion formula holds
op < 0"+ (L= 1) (Cp" + (1= Cp")y). (5.4)

Proof: Theorem 2.2 of [16] with p; = p3, see also Theorem 4 of [15] O
The following lemma of the standard multi-grid theory is helpful for the
analysis of the recursion formula (5.4).

LEMMA 5.3 Let pyp =p €N, p>1, and

-1
k=Cp’"+(1—Cp')y < MT

The elements oy, of the recursion
o = 0,
o = Kk+oh_(1—kK).
are contained in the interval [0,0). Then, the equation
o= (k+o"(1l—r)

has a solution o € (0,1). More precisely, the sequence {o}}3, is monotoni-
cally increasing and bounded from above by 1 for 0 < k < 1. Especially, we
have for =2

lim:{ 1 for I{Z%}

k=00 o for H<%

and pp =3
lim:{ — Q%} (55)
k—00 1t — 3 for k<3



Proof: The proof can be found in several papers, see Lemma 3 of [15] and
Lemma 3.2 of [16]. O

Using Theorem 5.2 and Lemma 5.3, we can prove the mesh-size inde-
pendent convergence rate of a symmetric bilinear form a in the case p = 2
(W-cycle), if k < 1 and p =3 if £ < 2, if the smoother S satisfies (5.2).

REMARK 5.4 For given values of ¥* and p are needed for =3

smoothing steps if v* < %

5.2 Hierarchical decomposition of V,

We want to prove multi-grid convergence for system (4.5) via Theorem 5.2.
For this aim, we have to determine bounds for p in (5.2) and 72 in (5.3). The
next subsection dervives some lemmata which are helpful for our aim.

5.2.1 Basic definitions and helpful lemmata of the linear algebra

Let us introduce some more notation. We have
Vi = Span{¢§j Z;:ll
We can represent the space V; by the space V;_; and a space Wy, i.e.
Vi =V 1 & Wy,
where
W, = span{¢fj}(i,j)€Nk. (5.6)
The subset N}, is given by

Ny ={(i,j) eN>1<i,j<n—1,i=2m+1orj=2m+1,me N}
(5.7)
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For proving a sufficent strengthened Cauchy-inequality
(a(v,w))* < ¥?a(v,v)a(w, w) Vv € Vi_1,w € Wy, (5.8)

with v2 < 1, we split a(v,w) into
a(v,w) = /y%mwm + 2?v,w, drdy
Q
= Z/ Y v, +x2vywy dxdy
. JEk.
i,J i,7
- Za“:ik,j (U,w), (5.9)
2
DEFINITION 5.5 Let V be a space of functions on 2. Let Oy C Q. We

denote the restriction of V on Qy by V |g,.

LEMMA 5.6 Leta(-,-) be a symmetric, positive definite bilinear form. Un-
der the assumption that

(a3 (v, w))? < 7%ai (v, 0)a" (w, w) (5.10)
for all v € V |5ikj and w € Wy, |5ikj we have
(a(v,w))* < ¥?a(v,v)a(w,w) Vv € Vi, w € Wy.

Proof: [6], [14]. O
We need for some special elements the trivial

LEMMA 5.7 . Let a(-,-) be any bilinear form. We assume that we have
(a(u,v))* < y2a(v,v)a(w, w) Yv € V, Yw € W.

Let Vo C V and Wy C W. Then,
(a(u,v))* < y*a(v,v)a(w,w) Yv € Vo, Yw € Wy

holds.

The following lemma, see [9], [18], relates the constant of the strength-
ened Cauchy-inequality to the largest eigenvalue of a generalized eigenvalue
problem. In order to formulate it, we need 2 definitions.
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DEFINITION 5.8 Leta(-,-) : VxV — R be any bilinear form. We define
ker a = {v € V:a(v,w) =0Vw € V}.
as the kernel of the bilinear form a.

DEFINITION 5.9 Let X be a linear (finite dimensional) space, Y a sub-
space of X. We define the difference X —Y as a linear subspace satisfying

X=Yap(X-Y)
Note that the choice of X — Y is not unique.

LEMMA 5.10 Consider the splitting V & W. Let

V= Spa”{@}?:law = Spa”{%‘}?il,

A =a(pi, ¢5)i -1, B' = a(di, )i 21, C = a(ts, )5y
Furthermore, let
VNnW={0}
and
ker a C V.

The bilinear form a(-,-) is symmetric and positive semidefinite. Then, the
minimal constant % with

a(v,w)? < y*a(v,v)a(w,w) Vv € V,w € W
s equal to the largest eigenvalue A of
VIB'C'BVw = A\V'AVw, (5.11)
with V € R™, imV = R"™ — ker A and ker V! = 0.

18



Proof: We have
a(v,w)? < y?a(v,v)a(w,w) Vv € V,w € W, (5.12)

where 4?2 is as small as possible. For v € ker a this inequality is satisfied.
Hence, it is equivalent to restrict ourselves to v € V — ker a. Because of the
positive semidefinitness of a, we can write using ker a C V

a(v, w)?

a(v,v)a(w,w) =7

for all v € V — ker a, w € W. Hence, the inequality (5.12) is equivalent to

(a(v, w))? >

sup a0 v)a(w,w) =, (5.13)

v€eV —kera
we W

Now, we transform the left hand side of (5.13). Using vectors of R™, we have

2 (a(v,w))? (w'Bu)?
7= Sup v alww) sup v Av w'Cw
veV —kerq Vel w) Cpn o g VAW Cw

w e W w e R™

Because of our assumptions, the matrix C' is a symmetric positive definite
. 1 .
matrix. We can substitute © = C'2w and we obtain

) (u'C'~3 Bv)?
7= sup A
v ER" —kerA v'Av u'u
u € R™

The right hand side is maximal, if u = O_%BQ. Inserting this, we have

. vB'C !By

¥ =  sup —
vER™ —ker A vAv
yViB!C-1BVy

= sup = =

yeﬂfq yViAVy

which is the largest eigenvalue of the generalized eigenvalue problem
VtBtC'*lBVg = A\V'AVy,

ie. Apaw =72 O
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DEFINITION 5.11 Let A = (a;;)} ;- € R™". We denote by

n

trace(A) = Z @i

i=1

the trace of the matriz A.

For estimating the eigenvalues of a 2 x 2 matrix, we need

LEMMA 5.12 . Let M € R?? be a matriz with real eigenvalues and K a
real number with

p=2K — trace(M) >0 (5.14)
and
q = det M + (* — ttrace(M) > 0. (5.15)
Then, we have
Amaz (M) < v

Proof: The characteristical polynomial of a 2 x 2 matrix M is given by
pe(r) = 2° — trace(M)x + det M. (5.16)
Set y = x — K, then

y> + (20 — trace(M))y + det M + ¢* — vtrace(M),
= vy +py+aq (5.17)

pe()

Because of our assumption, M has real eigenvalues, and (5.16) and (5.17),
this polynomial has 2 real roots. Using (5.14) and (5.15) we can conclude
that both are nonpositive. Hence, we have the roots x; 5 of p, fulfill z; , < K.
O

The following lemma [1] is helpful for the proof of the smoothing property
(5.3).

20



LEMMA 5.13 Let {A; € R™™}" | be a finite set of symmetric positive
definite matrices. Let

A= zn: LIAL;,
i=1

where L; € R™™ and A € R™™. Furthermore, let C; a good preconditioner
for the matriz A;, i.e. for all w € R™ the relation

Ai(Cow, w) < (4w, w) < XN (Ciw, w) (5.18)
with 0 < X' and 0 < \; holds. Let

i=1
Then, Yv € R™

A(Cv,v) < (Av,v) < X(Cu,v)
1s valid with

A=min); , A = max \’,

Proof: Using (5.18) we obtain
(Ciw, w) > 0.

Now, we can estimate Yv € R™

(Av,0) = (Y LiAiLiw,v)
i=1

= Z(AiLiQ, Liﬂ)

=1

i )\i(CiLiQa Liﬂ)

=1

i X(CiLiQa Liﬂ)

=1

= ACu,v).

IN

IN

The second inequality follows with same arguments. O
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Figure 4: Local numbering of the nodes and sub-triangles of Sfj

5.2.2 Discussion of the strengthened Cauchy-inequality on subele-
ments &;;

We prove the strengthened Cauchy-inequality (5.1) on the macro-elements
SZ"; It will be done it the case ¢,7 > 0 by proving in the triangles Tzljk and
7%, but for ij = 0 in the sub-cells ££.

Consider Figure 4. We want to have the stiffness matrix on the macro-
elements Sfj with respect to the two level basis. We start with the introduc-

tion of the basis functions on 5{‘3 Note, that the triangle lejk consists of the

. 2k+1 _Lk+l _2k+1 2,k+1 . 1,k :
triangles 757 5: ", To/\1 955 Tajy1.0; and 7o 154, the triangle 7, consists of the

: Lk+1 _Lk+1 _2k+1 1,k+1 koook k
triangles Toini s Toinji1s Toioji1 and Toit1.2j41- The nodes Tijy Tiiv1s iyl

k ' k+1 k+1 k+1
and 7, ;. are the coarse grid nodes, the nodes r3; 5 5;, 75,5511, T3 09711,

k+1 k+1 .

Using this splitting, we have with (5.7)

k
span{@,m}(hm)eN}/f =V “:ikj
and
k+1 _
Span{d)l,m (l,m)EN.“];.[k+1 - Wk"i'l |8ikj?
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where
Vi _ 2 - . . )
N ={(lm) eN*i<I<i+1l,j<m<j+1}
and

Ni‘}jkﬂ:{(z,m)eN2,2z‘§l§2i+2,2j§m§2j+2}me.

We have to cancel for sub-cells Sfj withi=0,7=0,i=n—-1,7=n—1
several unknowns because of V;, € H}(Q). We define the matrices

gk k k
e J
4 a( wd)lvm)(r,s),(z,m)eNXk’
k
Bt _ CLSU k k+1
( r,s) Flim )(T,S)ENyj’“,(l,m)EN)}:k“’
LAY NS YN |
C = a%i (¢ i )(r,s),(l,m)eNx”““'

The indices 7,7 and k are omitted. We introduce the matrices A, B, C in

: : 2k
the same way for the element stiffness matrices on 7;;%, i.e.

_ EE ok
A = a J( .87 ¢l’m)(T75),(l,m)€Ni2’jvk7
to— GEH(pE pRtL
B" = a J( 8 Yl,m )(r S)ENg’Vk (1 m)EN?’WkWLl’
’ i,y N7 1,j
_ SEE kL k41
C = a J(¢r,s 'y Prm )(rs) (Lam)e N> Wr 1
9 9 b Z,]
where
2vwk _ 2 . . Wk
and

27W 1 __ 2 - . A% 1
Nt =A{(l,m) € N% i — j <l —m}NN; ;"

The ordering of the rows and columns in the matrices A and C' corresponds
to the ordering of the coarse grid and new nodes written above.
We start with the case 0 < 7,7 <n —1.
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LEMMA 5.14 Let 0 <i,j <n— 1. Let

4817 + 48i + 14

192n2 ’
b 481 4+ 161 + 2
B 192n2
48 +80i+34
© - 19202
. 4852 + 487 + 14
B 192n2 ’
48524165 +2
© = 19202
48574805 + 34
/ 192n2
T%en,uxzhave(nzég
a+b+d+e —d—e —a—1b
A = —d—e a+c+d+e 0
—a—b 0 a+b+d+ f
0 —a—c —d—f
0 0 —d —a a+d
‘ a 0 d 0 —-a-—d
B =2 0O d 0 a —-a-—d |’
—a —d 0 0 a+d
a+e 0 0 0 —a
0 b+d O 0 —d
C = 4 0 0 c+d 0 —d
0 0 0 a+f —a

—a —d —d —a 2a+ 2d

24
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. . 2,k
In the case of matrices on the triangle 7;;", we have

d+e —d—e 0
A = —d—e a+c+d+e —a—c |,
0 —a —c a+c
0 —d d
B = 2 a d —a-—d |,
—a 0 a
a—+e 0 —a

C = 4 0 c+d —d
—a —d a+d

Proof: The proof is a simple calculation. O

REMARK 5.15 In the case of elements laying on the boundary, the equa-
tions hold, but we have to cancel all rows and columns on A, B and C, which
correspond to boundary nodes.

COROLLARY 5.16 We have kerA C kerB in both cases.

Proof: We have in the case of Eikj

ker A = span{(1,1,1,1)"}
and for 775 we have

ker A = span{(1,1,1)"}.

d
Now, we try to determine the constant v _». For this purpose is
ij

LEMMA 5.17 . We have for Tiz-’k 1<4,7<n-2

¥i ’
(a7 (v, w))? < 7%@7% (v, v)a™ (w, w) Yo € Vy |Tiz]_,w € Wi |Ti2j (5.21)

95

75+ The constant is optimal in the case 1 =j = 1.

with v2,, =
Tij
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Proof: Corollary states5.16 ker A C ker B and Lemma 5.12 states that ker C
is trivial. Hence, we can apply Lemma 5.10. We know

ker A = span{(1,1,1)"}.

Thus, we choose

1
V=10
0

o = O

The matrix V! AV is symmetric and positive definite, the matrix V! B'C~!BV
is symmetric. Therefore, the generalized 2 x 2 eigenvalue problem has real
eigenvalues and is equivalent to the eigenvalue problem

(VIAV) W'B'C'BVz = Az.

This is a 2 x 2 eigenvalue problem, for which we can apply Lemma 5.12. We
build using the help of a computer algebra system the matrix

M = (V'AV) 'W'B'C'BV

and show with 42,, = 2
Ti]-’

176
p= 27%,,c — trace(M) >0 (5.22)
and
q=det M + 7%,1« - V%,ktrace(M) > 0. (5.23)

Using Lemmata 5.10 and 5.12 we have (5.21). O

REMARK 5.18 1. We obtain the constant me = % fori=7=1 by
ij

a direct calculation.

2. By symmetry, the relation (5.21) is valid for 77"

k0 <ij<n—1.

3. Using the arguments of Lemma 5.6 we can prove (5.21) for Sfj, 0 <
1, <n—1.

(agikj (v,w))* < ngla,gikf (v,v)a’gff(w,w)Vv € Vi |er,w € Wy, |cr (5.24)
ij ij ij
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4. The values p (5.22) and q (5.23) are broken rational functions in i and
7. We give the exact values in the appendiz.

COROLLARY 5.19 Letij > 0. The inequality

(a‘gl‘kf (v, w))* < ’yg_k‘a‘gff (v,v)a‘gikf (w,w) Yv € Vy, |5,kj,w € Wi |5k] (5.25)
ij 7, i

is valid for i =mn —1 orj:n—lwith’@,k,g%-
ij

Proof: We consider the case t = n—1and 0 < j < n — 1. We omit the
unknowns corresponding to ¢f+17j, ¢?+1,j+1 and ¢§;1272j+1. We have to cancel
the second and last row and column in (5.19) and the third in (5.20). We do
not use the assumption ¢ < n — 1 in the proof of Lemma 5.17. Hence, the
estimate is valid for i =n —1 and 0 < 5 < n —1. By Lemma 5.7, we can
conclude that a Dirichlet boundary condition does not increase the constant
of the strengthened Cauchy inequality. The cases j =n—1,0<i<n—1

and i = 7 = n — 1 follow with same arguments or by symmetry. O

We consider now the case 0 < i < n — 1 and j = 0. We cannot split Sfj

. 1k 2k . : : 1k :
into 7;;" and 7;;" in the case j = 0. On the triangle 7;;" we have no influence

of the Dirichlet boundary condition. We would obtain a constant «_1,» which
2,0

is closer to 1. To avoid this phenomenon, we determine g direc‘tly. We
ij

omit the unknowns corresponding to ¢¥ , o, ¥, and ¢! | corresponding

to the first two rows and columns in (5.19) and the first in (5.20), and the
corresponding rows and columns in B?.
We obtain from Lemma 5.10

A —4801 a-+c—+ 4801

B — 9 1401 0 a —CL—1401
N —-14Cy 0 0 a4+ 14C, )7

b+ 14C4 0 0 —14C,
oo 0  c+14C; 0 —14Cy
0 0 a + 34CY —a
—1401 —1401 —a 2a + 2801
with C1 = 53—. From ker A = {0} follows that the identity matrix is a

possible choice for V. Using a computer algebra program we get with the
same arguments as in the proof of Lemma 5.17
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LEMMA 5.20 . We have

95
2 — 5.26
’ygi,o < 176 ( )
forO0<i<n—1and
95
2
— 5.27

for0<j<n-—1.

REMARK 5.21 The estimates (5.26) and (5.27) can be extended to i =
n—1 and j =n — 1 using the same arqguments as in the proof of Corollary
5.19.

The last case is ©+ = 7 = 0. We have
a=d=14C1,b=e =2C4, ¢ = f = 34C}

We have only the shape functions ¢f |, ¢i3', ¢51" and ¢{}'. We obtain
from Lemma 5.14 by canceling the first three rows and columns in (5.19) and
the first two rows and columns in (5.20),

A = (2(a+0)),
B = (00 4a),
a—+c 0 —a
cC = 4 0 at+c —a
—a —a 4a

A is regular. Thus, we choose V = 1 and a short computation shows using
Lemma 5.10

LEMMA 5.22 . It holds

a 7
= —. 5.28
a+2c 41 ( )

Ve, = (VIAV)T'W!B'C™'BV =
Now, we can formulate

THEOREM 5.23 . The inequality

(a(v,w))* < ¥?a(v,v)a(w, w) Vv € Vi, w € Wi, ;.

is valid with v* = %.

Proof: The proof is done by Lemmata 5.6, 5.20 and 5.22, Remarks 5.21 and
5.18, Corollary 5.19 and inequality (5.24). O
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5.2.3 Construction of the smoother

We need a good smoother for applying multi-grid to the linear system (4.5).
This smoother will be contructed by the local behaviour of the differential
operator. An idea of [1] for anisotropic problems is extended to the problem
(4.3). This smoother operates only on the space Wy ;. Consider the triangle
Tfjk For our discussion is needed only the sub-matrix C', which corresponds
to the nodal basis functions on Wy1. We discuss the two cases ¢ < j and
1 > j. We start with + < 5. We have from Lemma 5.14

a+e 0 —a
Cz,ij:4 0 c+d —d
—a —d a+d

The index £ is omitted. Let for i < j

. at+e 0 0
Cz,ij:4 0 c+d —d
0 —d a+d

We prove now

LEMMA 5.24 . It holds for 0 <i < j <n

1
Amm( i}-og,ij) 2 1—5\/§and

J

~ 1
)\maa:(cg_,iljclij) S 1+ g\/g
Proof: Let

B =ac+ ad+ cd.

Then, we have

- 1 d a+e
_ —a
O2,ij02,ij B 7acﬂfad ! ;
5 0 1

We get the characteristical polynomial

det(\ — Cy1:Cs5) = (1 — X) <1 —A)? -

2,17

a ac+ ad
a+eac+ad+cd)’
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We can estimate using a < ¢

ac + ad - ac + ad B c+d . 1
ac+ad+ed ~ ac+2ad  c+2d 1+

.
c
atl

We have for + < j — 1 that 5 <1 and £ > 1. Therefore, we obtain

ac + ad 2
— < = 5.29
ac+ad+cd — 3 (5:29)
and
1
¢ < (5.30)
at+e 2
The roots of the charactertistical polynomial are
)\1 - ]_,
Ny = 1% 0,
where
a ac + ad

pza—l—eac—i—ad—l—cd'

Inserting the estimates (5.30) and (5.29), we obtain

1 1
1—3/ =< X< <1 —.
[ensnziny!

Hence, the assertion follows immediately. O
We consider now ¢ > j. Let for ¢ > j

. a+t+e 0 —a
Coij =4 0 c+d 0
—a 0 a+d

We prove now

LEMMA 5.25 . It holds

1
Amin ( zfiljcz,ij) > 1- 1—0\/55 and
= 1
/\max(cz_,iljcz,ij) < 1+ 1—0\/§5.
forn>1i>7>0.
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Proof: We start with the case i < n — 1 and 7 > 0. The proof is similar to
the proof of Lemma 5.24. A short calculation yields

d ad + ed
d+cae+ad+ed)’

det(AI — é_l-cz,ij) =(A-1) <()‘ —1)*

2,5

We have from ¢ > j

c
->1
d
and using 7 > 1
d 5
< 2
e 3
Hence, we can estimate
d ad + ed 7

d+cae+ad+ed< 20

The assertion follows as in the proof of Lemma 5.24.
We consider now ¢ = n — 1. Then, we can cancel the second row and
column of Cy;; and C5;;. These matrices are identical and we obtain

M(Cop 1 jCon1j) = X(Cop 1 ;Con14) = L.

The last case is j = 0. We have to omit the first row and column. A short
calculation shows

14C4 14C4
c+ ]_4:01 a—+ 1401 ’

da@f—éﬁgawy:@—1f—

We have a > 14C and ¢ > 14C with C; = ﬁ.
roots of the charcateristical polynomial the estimates

1
2

Hence, we get for the

3
< < A < 5
Ol
REMARK 5.26 We define matrices C’l,ij in the same way:

) b+d 0  —d
Ol,ij:4 0 a+f 0 fOI‘ZS]
—d 0 a+d
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and

) b+d 0 0
Ol,ij:4 0 a+f —a fori > j
0 —a a+d

By the symmetry of the differential operator, we obtain the same results for
the triangles Tzljk as i Lemmata 5.24 and 5.25.

Ngw, we define a global preconditioner C,, using the local matrices CA’s,ij
and C;;;. We know that

gkl gkdly
KWk+1_a(¢z‘j » Pim )(i,J)»(l»m)GNkHv

is the stiffness matrix K restricted to the space Wy compare (5.6), (5.7).
The matrix Kw,,, is the result of assembling the local stiffness matrices
Csijy s=1,2and 4,5 =0,... ,n—1, ie.
2 n-1
Kw,,, = Z Z LY ;iCsiiLisij- (5.31)

s=1 1,j=0

. Ak—1_ok . .
The matrices Lg; € R**™ ~2# are the usual finite element assembling ma-
trices, because

(2k . 1)2 . (2k—1 - 1)2 =3. 4k—1 - 2k
DEFINITION 5.27 We define the matrizv Cw, ., by

2 n—1
CWk+1 = Z Z Li,ijcs,ij[/s,ij- (5.32)

s=1 14,j=0
We formulate now the main theorem of this section.

THEOREM 5.28 It holds
. 1
Amin (C, Kwiyn) = 1—1—0\/55,

1
Amao(C Kweyy) < 1+1—0\/§5.
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Proof: Use lemmata 5.13, 5.24 and 5.25, Remark 5.26 and relations (5.31)
and (5.32). O

COROLLARY 5.29 Let
S=171— wC\_NlHlKWHl (5.33)
be a w-Jacobi- like smoother on Level k + 1. Let
| w[|3= a(w, w).
Then, for all w € Wy,
| S"w < p” || w |la

holds, where

and
1
= —v35. 5.34
p mxf (5.34)

Proof: We have by calculation

S 2

go oy LSulE
weW, o || w3

— sup (KWkHSw?Sw)

w (KWkva w)
= sup (K“;’i+1StKWk+1SK“;\’i+1Q7Q)
u (u, u)
_1 _1
= /\max(KWi+1StKWk+1SKWi+1) = (/\max(s2)) = ()‘max(S))z-
The assertion follows using (5.33) and Theorem 5.28. O
We have defined a relatively difficult preconditioner Cyy, , for the matrix

Kw,,,- The question is why do we not use simple diagonal preconditioner?
Consider the matrix Cy (3.5), which is

1
—Cy,.

K. =
hk 2n
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compare (4.7). Furthermore,
Kw, = V'K,V

with V = diag(v;;)!+1; and

ij=1
Vis = 1 (Zaj)eNk
L0 @) ENE S
We have from (3.5)

1
Ky = W(D4 R Ts+T5® Dy).

The main diagonal of this matrix is given by

1
Dy = ﬁ(D4®I+I®D4), (5.35)

where I denotes the identity matrix. Then
Dw, =V'D,V
is the main diagonal of Kw, . Evidently,

(Kw,v,v)

Amin (D, Kw,) = y?ﬁiilv (Dw,0,0) (5.36)
and
(D, Ky,) = max (Kw,0.0) (5.37)
vgker V (Dyy, v, v)
Consider now the vector
v, =2z® e, (5.38)
where z is some vector and g; is the k-th unit vector. Forl =1,3,... ,n—1,

we have
Vu =v, & ker V.
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Using the properties of the Kronecker product and (5.35) and (5.38), we
obtain

(Kw,,v,) _ (Daz, z)(Tsep, e) + (Tsz, ) (Daey, )

(Dwyvpvy)  (Daz,z)(Iey, e) + (Iz, ) (Dagy, €))

A simple calculation shows

(D4Qlagl) = 4(12 + 6)7
(T3Qz,Qz) = 1,
(lepe) = 1.

Inserting this, we obtain, setting [ =n — 1,

(KWan—laQn—l) _ (D4£? £) + (T3£7 £)4((n - 1)2 + %)

- ) 5.39
(Pt 00) — Dazoz) + Tz DA((n D2+ 1) (529
We introduce the matrix
1 1 1\
-0+ 5 T a1+ ] 6') o,
Inserting (5.40) into (5.39), we have
(Kwkyn—layn—l) _ (D7£7£) + (T3£a l) _ ((D7 + T3)£7£) (5 41)

(Dwyby_1,0,-1)  (Drz,z)(Tz,z) (D4 Dz,z)
The matrix D7 + I is spectral equivalent to the unity matrix 7, i.e.
(z,2) < (D7 + Dz, z) < 2(z, z)
for all z € R" !. Therefore, we obtain

(Kw,v_1,V,1) _ (D7 +T3)z, x)

(Dw,Up—1: V1) (z,z)

)

where z is any vector of R""!. We calculated the maximal and minimal
eigenvalue of the matrix D; + T3 using a matlab routine for several values of
n. Table 1 displays the results. We see that the eigenvalue A,,q. (T3+ D7) < 3,
this estimate can be proven:

1< )\maa:(T?)) < )\maa:(TS + D7) S Ama:c(TVS) + )\maa:(D7) S 2+1=3.
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n )\mm )\max %
41 0.6908 | 2.3547 3.4125
8 10.2995 | 2.5319 8.4546
16 | 0.1407 | 2.6710 18.9827
32 | 0.0683 | 2.7755 40.6542
64 | 0.0336 | 2.8497 84.7278
128 | 0.0167 | 2.9009 | 173.7657
256 | 0.0083 | 2.9353 | 352.9433
512 | 0.0042 | 2.9581 | 712.6717

1024 | 0.0021 | 2.9731 | 1433.8

Table 1: Eigenvalues of the matrix 75 + Dy

The calculation shows, that A,;, (T3 + D7) goes to zero with order 1. Hence,
we can deduce that

C

Amax (D{le Kwk) > C16-

Thus using (5.36) and (5.37), we cannot expect that a simple Jacobi-method
with diagonal preconditioning fulfills the smoothing property of Corollary
5.29.

REMARK 5.30 A simple Jacobi-method with diagonal scaling does not ful-
fill the assertion of Corollary 5.29.

5.2.4 Application of the multi-grid theory to —2u,, — y*u,, = ¢

We apply now the theory of 5.1 to the problem (4.4). With Theorem 5.23
assumption (5.3) is fulfilled with 4? < 2. The second assumption, (5.2), of
Theorem 5.2 is fulfilled for the smoother S defined in (5.33). Hence, we can
prove a convergence rate 0 < o < 1 of the multi-grid algorithm for p > 3 if
we do sufficiently many smoothing steps. The parameter o does not depend
on the level k. No mesh-size independent convergence rate can be proven for
p < 2 because 2 > % We summarize the results in

THEOREM 5.31 . Consider (4.4) with the exact linear system solution

*

u* . We solve this linear system using the multi-grid algorithm wj i) =
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14 g
<2 1
31 0.88063
41 0.79639
8 1 0.70453
oo | 0.69283

Table 2: Estimates for convergence rates o for p = 3.

MULT (k,uj,g) with ;n > 3 and v smoothing steps. The rate of convergence

| wjirn — v la

o=  sup
uj p—u* €V H Ujf — u* ||a

on level k can be bounded by
o, <o <l1.

Using Lemma 5.3, we can analyze the number of smoothing steps v, which
are necessary for a convergence rate o < 1. We have

k=Cp"+ (1= Cp")y",

with ¢ =1, 4 = & and from (5.34) p = 151/35. Using Remark 5.4, we
have for

In67 — 1In 243
>0 ~24
V= In7—1n20 g

a mesh-size independent convergence rate ¢ < 1. Table 2 displays the theo-
retical convergence rates o for several values of v obtained by Lemma 5.3 for

p=3.

5.3 Implementional details

During this subsection the procedure of solving the linear system

Cw, =1 (5.42)
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Figure 5: En-coupling of the nodes.

is discussed. We consider the sub-cell Sfj with ¢ < j. Here, we have the
matrix

a+e 0 0 0 0
0 b+d 0 0 —d
C= 0 0 c4+d 0 —d
0 0 0 a+f 0
0 -d -d 0 2a+2d

Using the notation of Figure 4. The nodes xé#lyzj and x§£1172j+2 on &
are decoupled from the remaining unknowns. The basis function ¢g;11 95
associated to this node has a support contained in Ei’“j U Ei’fj_l. The node
w55 o; plays on the macro-element & ;_; the same rule as 25} 5. on &
and is decoupled on the macro-element &; ;_; . Hence, the functions ¢o;11 ;
are decoupled for 7 < j. The functions ¢g; 241 are decoupled for ¢« < j by
symmetry. We consider now Figure 5. The nodes marked with O are coarse
grid nodes or nodes on the boundary and do not exist for the matrices Cyy,
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Level =1 =2 pw=3 p=4
It o It o It o It o
18 1 0.4070 | 18 | 0.4070 | 18 | 0.4070 | 18 | 0.4070
32 1 0.6017 | 24 | 0.4997 | 22 | 0.4778 | 22 | 0.4722
50 | 0.7239 | 25 | 0.5221 | 22 | 0.4698 | 21 | 0.4583
72 1 0.7974 | 27 | 0.5449 | 22 | 0.4770 | 21 | 0.4582
97 1 0.8463 | 30 | 0.5755 | 24 | 0.5035 | 22 | 0.4719

128 | 0.8814 | 34 | 0.6201 | 25 | 0.5156 | 22 | 0.4788

176 | 0.9123 | 37 | 0.6432 | 26 | 0.5282 | 23 | 0.4838

247 1 0.9373 | 41 | 0.6724 | 26 | 0.5339 | 23 | 0.4847

300 | 0.9545 | 44 | 0.6901 | 26 | 0.5380 | 23 | 0.4841

S O 00 O T Wi

—_

Table 3: Convergence rates of multi-grid algorithm MU LT using smoother
S (v =1).

and Ky, ,. The nodes marked with o are decoupled for the preconditioner.
The remaining nodes are coupled. The remaining functions ¢g;y1,2541 are
coupled in the groups 2m + 1, where

max=m, m=1,2,...,
i

SE

Hence, Cw,,, is after a proper permutation a block diagonal matrix of di-
agonal and tridiagonal blocks. Therefore, we can solve the system (5.42)
using Cholesky decomposition in O(n?) flops. Hence, the operation Sw is
arithmetically optimal.

The unknowns of the system (4.4) increase per level to the factor 4. Fur-
thermore, we can choose v = 3 on each level. So, using Theorem 5.31 the
multi-grid algorithm MULT for u = 3 is an arithmetical optimal method.

5.4 Numerical results
5.4.1 Convergence rate of multi-grid

Table 3 shows the convergence rates of the multi-grid algorithm MULT' for
solving (4.4) with ¢ = 1 used for a several kind of cycles. We stop the
algorithm, if the relative error in the energy norm is lower than 10~7. The
V-cycle has clearly growing numbers of iterations, but for x > 3 we have
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mesh-independent convergence rates. We can not say what happens for the
W-cycle. The bad numbers of iterations for the V-cycle are not satisfactory.

The reason is the smoother S which operates only on the nodes on Wy.
We define now a better smoother on V;. We consider Figure 4. We introduce
the matrix

a+b+d+e —d—e 0 0
. —d—e at+c+d+e 0 0
Yo 0 0 a+b+d+f —d—f
0 0 —d—f at+c+d+f

for ¢ < j, the matrix

a+b+d+e 0 —a—> 0
A - 0 a+c+d+e 0 —a—c
Yo 0 0 a+b+d+ f 0
0 —a—c 0 at+c+d+ f
for 2 > 7 and
a+b+d+e 0 0 0
A — 0 a+c+d+e 0 —a—c
Yo 0 0 a+b+d+ f —d—f
0 —a—c —d—f a+c+d+f

for + = 7. The matrix K}, is the result of assembling local stiffness matrices,
ie.

n—1
Kh - Z LEJAULU
1,7=0

with some matrices L;; and the matrices A;; of Lemma 5.14. We define now
the matrix

n—1
Ky=Y LjA;Ly
i,j=0

and the Jacobi-smoother

S, =1—-wK,'K, (5.43)
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Level =1 =2

It o It o
21 901611 9| 0.1611
311 0.2290 | 10 | 0.1951
4113 |0.2723 | 12 | 0.2522
5115 0.3250 | 14 | 0.2941
6 |16 | 0.3517 | 15 | 0.3192
7116 | 0.3619 | 15 | 0.3331
8 [ 17| 0.3680 | 15 | 0.3392
9 (17 0.3720 | 16 | 0.3429
10 | 17| 0.3750 | 16 | 0.3442

Table 4: Convergence rates of multi-grid algorithm MU LT using smoother
Sl (I/ = 1)

on Level k. This smoother is very similar to S. The matrix Kj, is block

tridiagonal. One block corresponds to nodal basis functions qbfj with

max=m, m=1,2,... ,n.
i

Therefore,
Sjw=r

can be done using Cholesky decompostion in O(n?) flops. This smoother
operates on the space V; and we expect better convergence rates of the
multi-grid algorithm MULT. Table 4 displays the convergence rates for
MULT using the smoother S;. We solve (4.4) with ¢ = 1 and we stop the
algorithm, if the error in the energy norm is lower than 10=7. We choose
w = 0.8, which shows the best convergence rates. We see for V' and W-
cycle mesh-independent convergence rates, but the convergence rates are not
satisfactory.

We expect to obtain better results by using a preconditioned conjugate
gradient method with one multi-grid cycle as preconditioner. Table 5 shows
the number of iterations to reduce the error in the preconditioned energy
norm up to a factor 107?. We choose f = 1. We see constant number of
iterations in two cases, V-cycle with smoother S; and y = 3 with smoother
S, but nonconstant number of iterations for the V-cycle and smoother S.
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Level S S1

p=1|p=2|p=3p=
7 8 7 7
12 12 11 9
15 13 13 10
16 14 13 10
18 14 13 11
21 15 13 11
23 16 14 11
25 16 14 11

© 00 3O T i W N

Table 5: Number of iterations of the PCG-method using a multi-grid pre-
conditioner with smoother S (w =1) and S; (w =0.8) and v = 1.

We cannot say if the number of iterations for the W-cycle with smoother S
are constant.

6 AMLI-method

6.1 Convergence theory for AMLI

We discuss the possibility of applying the Algebraic Multi-Level precondi-
tioner (AMLI), derived by Axelsson and Vassilevski [2], [3]. Consider the
stiffness matrix for (4.5). We introduce the block structure of the stiffness

matrix
Ky = K Kiop
’ Koy Koy )

where Ky, = Kw, corresponds to the nodal basis functions in W, and

k k 5-1
Kll,k = a(¢2i,2ja ¢2z,2m)i2,j,z,m:1

corresponds to nodal basis functions of nodes on the coarse grid. Let Ch,
be a matrix satisfying

(Ka2,v,v) < (Cogv,v) < (14 b)(Ka,v,v) (6.1)
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forallv,l=1,... /kand b > 0. Let

A A

T < K Kiop )
h,k — > )
Ko Ko

be the stiffness matrix with respect to the two level basis

k—1y5-1
{6i; 321 € Vi

and
{¢§j}a d)Z € Wy,

corresponding to the splitting V;, = V1 & Wy. Thus, we have
Kig = Kpnj1.

Obviously, we have
f(h,k = JuKn i JL,

with the interpolation matrix

(T g
=g ).

We define now, see [3],[13], the preconditioning matrix Cj, 4.
DEFINITION 6.1 Let P, be a polynomial of degree pu satisfying
P,(0) =1 (6.2)
and
0<P,(t)<lfor0<t<1.

Let Cyy a matriz which fulfilles (6.1). Then, we define preconditioning
matriz Ch . by

ce Ko + J Koy — C
O = ( ;6,1 12,k 12,8( 22,k 92,k ) (6.3)
22,k
( : )
Oz_g}k(Kél,k + (Koo — Cop) J1ay) T )7
with
(Ci)™h = (I = Pu(Crp 1 Kn)) K (6.4)
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Examples for the choice of P, are given in [2], [3], we consider

P.(t) = (Tu (%) + 1) / <Tu (ij) + 1) (6.5)

with some 0 < @ < 1. T,(z) denotes the p-th Chebyshev-polynomial

T,(x) = cos(p arccos(z)).
The following theorem holds.

THEOREM 6.2 Consider the preconditioner Cy, . (6.3) with the polynomial
(6.5). Let us assume, that

Thus, the inequality
c17(Ch v, v) < (Kp v, v) < (Chiv,v)

holds for all v, where

ar = (1 =77 (b+ <(1+\/5)“+(1_\/a)u>2>—1.

(1+ Vay = (1= ya)

The constant «y is the constant of the strengthened Cauchy-inequality (5.1),
the constant b the constant of (6.1). The parameter « is the smallest positive
solution of the polynomial equation

2

(1+ V)" + (1 = Vi)* )
VNG (NG

1—72:tb+< (6.7)

Proof: [3]. O
We describe now the algorithm for solving a linear system with the matrix
Ct_ 4 (6.4). From (6.2), we can deduce

Pﬂ(t) = Z ajtja

j=0
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where ay = 1. Hence, we obtain

(015—1)71 = ([ - Pu(Ol;,llc—lKh,kfl))Kl;,lq
I
= (I - a]'(Ch_,llcflKh,k—l)j)Kh_,llcfl

= —C’,;k_l(al + Kh,k_lC,;}c_l(ag + ...
St Kh,k_lC};}C_l(au_l + auKh,k_lC,;}C_l) Ce ))

Thus, a linear system with the matrix C}_; can be solved by solving  linear
systems with the matrix C, j_1.

6.2 Application to —:1:2uyy — YUy
We apply now this theory to problem (4.5). We have from Theorem 5.23,
that the constant in the strengthened Cauchy-inequality (5.1)

, 95

BT

Thus, we have

Using (6.6), we can choose y = 2. Hence, we obtain

T.(z) = Ta(z) = 22° — 1

and
2t

-7 +a)2. (6.8)

Py(t) = (1

Furthermore, we have to ensure (6.1). Using Theorem 5.28, we have for all
keN

c18(Cw2,0) < (Kw, v, v) < c19(Cw, 0, ),
where ¢ = 1 — %\/55 and cj9g =1+ %\/55, or equivalently

o (Kw,v,v) < (Cw,v,v) < cig (Kw,v,v).
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DEFINITION 6.3 We define now
022,1 = CIQCWVp
forl=1,... k.

Hence, we obtain

C
(Ka2v,v) = (Kw,v,v) < (Cov,v) < %(Kzz,lﬂa v),
18

e.g. (6.1) is satisfied with

3119

1056 (6.9)

~ C19 4 14
:—1 _ = — —_—
b +C18 13\/35+13<

With b = 32 and 42 = 2. we obtain as smallest positive solution of (6.7)

1056 176°
2
a=—.
33
Thus, we choose
66
Pyos(t) = (1~ gt)? (6.10)

We summarize these observations in

THEOREM 6.4 . Consider the matriz Cy . of Definition 6.1 with Cay,
l=1,...,k of Definition 6.3 and the polynomial Pz,%(t) (6.10). Then

c17(Chpv, v) < (Kp v, v) < (Chpv, v)

holds Yv € R™ with

40 324

- ~ 0.001048.
a?(4b+ 1)+ 1+2a 309095

crr = (1—797)

6.3 Numerical results

We consider (4.5) and solve this linear system with the preconditioned con-
jugate gradient method. As preconditioner we choose C}, ;. of Definition 6.1.
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Level | Pi(t) | Poa(D) | Pozz(0) | Proo (D) | Poal?)
2 8 8 8 8 8
3 17 16 16 16 16
4 23 17 17 18 17
5 28 18 17 19 18
6 33 19 17 21 18
7 39 20 18 21 18
8 46 21 18 21 18
9 52 22 17 22 18

Table 6: Number of iterations of the PCG-method with AMLI-
preconditioners.

The relative accuracy is 1079 in the preconditioned energy norm, and g = 1
is chosen. We consider for the choice of the polynomial P,(t) the cases

P,i(t) = (1=t forp=1,23,
52 66
PQ,T(t) = (]_ — Tt)z forr = £, % (6].].)

The matrix Css; of Definition 6.3 is chosen. Note, that we have proved
Theorem 6.4 for Pz%(t). But, the estimates of the maximal and minimal
eigenvalue of C\_)xflk+1KWk+1 in Theorem 5.28 are estimates and we do not
know the exact values, which can be better. The polynomial P, s (t) is that

polynomial (1 — rt)*> with the lowest number of iterations in Level 9 for
_ 36 38 66
T—g,g,... ) 35 -

Table 6 displays the number of iterations for the AMLI-preconditioners
with the several polynomials. The number of iterations are constant for
P, 52 (t), Pyes(t), Psa(t) and grow proportional to the number of levels for
Pl,l(t) and Pz,l(t)..
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7 Preconditioning for the p-version matrix K

7.1 Estimates for the multi-grid method MULT and
the AMLI-method as preconditioner

We are interested in a good preconditioner for the matrix K, the element
stiffness matrix for the interior unknowns on (—1,1)? with respect to the basis
of the integrated Legendre polynomials f/ij, 2 <1i,7 <p. From Theorem 3.1,
we have that a matrix Cy is a good preconditioner for each block K; of the
matrix K. From (4.7) we can conclude, the matrix Cy can be interpreted as
the stiffness matrix for —z%u,, — y*u,, using piecewise linear shape functions
on isosceles, right and congruent triangles on the domain (0, 1)® with Dirichlet
boundary conditions, i.e.

1
Kh,k - ﬁcq

We have proved in Theorem 5.31, that the multi-grid algorithm MULT
brings a mesh-independent convergence rate ¢ < 1 for g = 3 and the
smoother S. Therefore using Theorem 6.5. of [8], we have proved

THEOREM 7.1 . Let le the preconditioner resulting from 1 iteration
multi-grid algorithm MULT with p = 3 and the smoother S. Let K;, i =
1,...,4 the 4 blocks of K. The statement

1
c13(M3v,0) < E(Kiﬂa v) < cra(1 +logp) (M v, v).

is valid for allv and i = 1,...4. The constants do not depend on p.

Hence, we have found a nearly assymptotical optimal method. But, we have
pt = 3. The next theorem considers the application of C,; of Definition 6.1
with Cs . of Definition 6.3 and the polynomial P,(¢) (6.10) as preconditioner
for Kl,Z: ]_, ,4.

THEOREM 7.2 Let K;, 1 =1,...,4 be the 4 blocks of the matriz K. The
statement

1
crcr7(Chpn,v) < Q—pQ(KiQ,y) < c12(1 + log p) (Ch kv, v).
is valid for all v and i = 1,...4. The constants of Theorems 3.1 and 6./ do
not depend on p.
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Proof: We observe from (4.7)
1
Ky = —C4.
k= 5504

Using Theorems 3.1 and 6.4, the assertion follows immediately. O
Thus, we have found a second nearly assymptotically optimal method,
but we have chosen a polynomial of degree p = 2.

7.2 Numerical results
7.2.1 Multi-grid preconditioner

We solve the system
Ku, = ip (7.1)

using the PCG-method with the preconditioner M on each block K;. We
choose

f=(11 ... 1),

—Pp

All calculations are done on a Pentium-IIT 800 MHz. Table 7 displays the
number of iterations and time to reduce the error in the preconditioned en-
ergy norm up to a factor 107?. We see in the two cases MISH V-cycle with
smoother Sy, and M3 a slight increase of the number of iterations and for
M7 a stronger increasing number of iterations. The method using the pre-
conditioner M;" is the fastest method.

7.2.2 AMLI-preconditioner

We solve the system (7.1) using the PCG-method with the preconditioner
Ch.r; on each block K;. We choose

f=(11 .. 1)

as before. All calculations are done on a Pentium-III 800 MHz. Table 8 dis-
plays the number of iterations and time to reduce the error in the precondi-

tioned energy norm up to a factor 1079 for the polynomials (6.11) and Cyy; of
Definition 6.3. We see in the two cases P(t) = (1—2¢)? and P(t) = (1—352t)°
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P My MY My Mg

It | time It | time It | time It | time

[sec] [sec] [sec] [sec]
7115 0.008 | 16 0.008 | 16 0.012 | 16 0.008
15 | 17 0.035 | 20 0.035 | 20 0.066 | 20 0.062
31|20 0.148 | 26 0.171 | 23 0.203 | 23 0.301
63 | 21 0.637 | 31 0.844 | 24 0.855 | 24 1.238
127 | 22 2.988 | 36 4.301 | 26 3.887 | 25 5.520
255 | 23| 13.855 | 42| 22457 | 28 | 18.145 | 26 | 24.508
511 | 24 | 64.539 | 50 | 121.793 | 29 | 84.406 | 27 | 112.371
1023 | 24 | 265.621 | 59 | 595.727 | 30 | 368.695 | 28 | 496.777

Table 7: Number of iterations for the PCG-method for K using several multi-
grid preconditioners M50,

P Py Py Py s Py 12
It | time It | time It | time It | time
[sec] [sec] [sec] [sec]

716 0.004 | 16 0.008 | 18 0.004 | 17 0.008

15 | 22 0.035 | 22 0.039 | 23 0.039 | 22 0.039
31| 28 0.184 | 25 0.203 | 26 0.211 | 26 0.215
63 | 34 0.941 | 28 0.992 | 29 1.031 | 28 1.004
127 | 43 5.273 | 31 4.859 | 31 4.855 | 29 4.625
255 | 51| 29.086 | 33 | 23.633 | 33 | 23.637 | 30 | 21.887
511 | 61 | 162.699 | 35 | 117.761 | 34 | 114.437 | 31 | 106.195
1023 | 73 | 815.035 | 37 | 537.500 | 34 | 493.477 | 31 | 458.015

Table 8: Number of iterations for the PCG-method for K using several
AMLI-preconditioners M 5 mooth,
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a slight increase of the number of iterations. For P(t) = (1 — t), similar to
the V-cycle of multi-grid, there is a stronger increasing number of iterations.
The method using the preconditioner P(t) = (1 — %t)? is the fastest AMLI-
preconditioner.

But, the comparison of the results for the AMLI-preconditioners of Table 8
with the multi-grid preconditioners of Table 7 shows significantelly lower the
number of iterations for some multi-grid preconditioners (M;* than for all
AMULI-preconditioners. And, less time to reduce the error is needed.

If we compare the preconditioners My of Theorem 7.1 and Cj,;, with P(t) =
(1 — 22£)? of Theorem 7.2, we see that the number of iterations is slightly
lower for M3, but the time to reduce the error is about the same for both
preconditioners.

8 Further remarks

8.1 Improvement for rectangular elements

Let us assume that in (2.1,2.2) Q is the rectangle (—a, a) x (=b,b). Thus, we
have the element stiffness matrix

a

Ka,b = b

(F®D)+§(D®F).

We should obtain a faster method if we use a multi-grid preconditioner re-
sulting from

a b

2 2 _
_gy Uz — ax Uyy = 9
instead of
2 2
Y Upy — T Uyy = (.

8.2 Extensions to the three-dimensional case

We consider

~Au = f,inQ=(-1,1)° (8.1)
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We solve (8.1) using the p-Version of the FEM with only one element. Defin-
ing the space M as in 2.2, we obtain: Find u, € M, such that

a(uy, vy) = /QVup-vad(x,y) = /vapd(x,y)

holds Vv, € M. As basis in M, we choose

A ~

Liji(v,y,2) = Li(x)Lj(y) Li(2)

with the integrated Legendre-polynomial L; (2.3), 2 <, j,k < p. With same
arguments as in 2.2, we have

=TT P
KSD - a'(Ll]kalen)i,j&:g;l,m,n:z

= FRQFQD+FRDRF+D®FQF,
(8.2)

with the one dimensional mass matrix F' (2.11) and the one dimensional
stiffness matrix D (2.12). Applying a permutation P of rows and columns,
we have as in (2.13)

PK3;pP™' = diag(Ksp,)i ;-

The theory of chapter 3 can now be generalized. Using the arguments of
Theorem 3.1, we can prove

THEOREM 8.1 . Let

C7 - T3®T3®D3+T3®D3®T3+D3®T3®T3, (83)
Cs = (T3+D3")Y®(Ts+D;'®@Ds+ (Ts + D3')® Ds @ (Ts + D3 )
+Ds® (Ts + Dy ') @ (Ts + D3 1) (8.4)

with the matrices Dy (3.3) and Ts (3.4). Let Ksp;,i = 1,...,8 are the 8
blocks of K3sp. The following statements are valid Vv and 1 =1,...,8:

ca3(1 + log p)*(Cru, v),

c21(Cru,v) < (Ksp,v,v)
< c24(Csv, ).

<
(K3p,iv,v) <

C22 (CBQ, 2)
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) 1 -2

Figure 6: Stencils for discretizing 1,4y,

Analogously to chapter 4, we obtain that C; is the discretization matrix of

2 2 2
2 Ugryy + Y Uprry + X Uyyzz = 9,
U |(9(~21 = 07
ou | 0
an o :

in O = (0,1)® using finite differences and an equidistant grid. Let u’/*
be the approximation of u in (4,2, %), These fourth order derivatives are

n’n’n
discretized by the stencil of Figure 6,
2 L 2( g ik ij—1,k ij+1k i—1,jk i+1,jk
P Uy (=, =, =) & E(4u" = 20T — 20T — 20" — 2"
nnn

+uz—1,j—1,k +uz+1,j—1,k + uz—l,]-i—l,k: + uz—l—l,]-i—l,k:)‘

For Cg, we have to consider

2 2 2
2 Ugzyy + Y Uppzr + T Uyyzz

2 2 2 2 2 2
Y z T z T Y
_ﬂ;+?wm—ﬂ§+ﬁww—%?+;mm
56'2 y2 22
+4(y2z2 + 72,2 + xzyz)u =9



A Remarks to the estimate of the strength-

ened Cauchy-inequality

We give here the exact values for the paramters p (5.22) and ¢ (5.23). We

set

r = 1—1,

s = j73—1.

Then, we obtain the following results for p and gq.

p:

1
m(5857266360 5+ 4407665790 r 4+ 1508755050 + 146252736 s°

+ 1111426560 s° + 27808704 r® 4+ 302620032 r° + 9324984713 52
+ 5434977449 r% 4 3923127840 s* + 7936810608 s°

+ 3647255568 r* + 1415409600 r* 4+ 9269249088 s r

+ 8601027360 s* r* + 20130620928 s 1 4+ 20920075392 5° 12

+ 17559686400 s > + 6376566048 5% r* + 12919365888 s 12

+ 4918733952 s r* + 124830720 5% r® + 1326974976 s> r°

+ 3982219776 s* > 4 3786647040 s r* + 11609339904 s° r*

+ 277115904 s° 12 4 328872960 s° r + 2493112320 s°

+ 999364608 s* r* + 2094465024 s° r* + 151621632 s* r°

+ 735657984 5% 1> 4 69672960 5° r® 4+ 108158976 5°

+ 779452416 s° r® + 14432256 s 16 + 14432256 6 14

+ 103514112 s°r® 4+ 1047619584 5 1° 4+ 97625088 s 7

+ 28493849120 5% 2 4 25194885712 5 1 4+ 19809599216 s 12

+ 16586949280 5 7) /(20  + 17 4 6 72) (82016 5 + 76846

+ 65589 5% + 58245 1% 4 47232 5% % 4 93456 52 + 93168 s 1>

+ 139936 s r + 4896 s* + 26112 s® + 21120 7> + 3168 r*

+ 5760 s*r 4+ 1728 s* 2 + 30720 s® r + 9216 s> 2 + 11520 52 13
+ 1728 5% r* + 30720 5 1° 4 4608 s 7% + 39930)(6 5% + 16 5 + 11))
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q = m(3175524000 s + 10752404850 r + 925888320 s°
+ 3527193600 s° 4+ 153679680 r° 4 2180787840 r°
+ 6123829635 5% + 25829259555 12 + 5339341800 s*
+ 5845588560 s° 4 24034055760 7 + 10651944600 r*
+ 18162835680 s*r + 24937019664 s* r? 4+ 42653867520 % r
+ 81996584832 5% 12 + 120359893824 52 13 + 52045531152 % 1t
+ 90435290880 s > + 39407913600 s r* + 742404096 5% r°
+ 10535067648 s 1> + 17602460928 s* 3 4 29858095872 5% 4
+ 70165140480 s° 1 + 1735243776 s° r* 4+ 2071802880 s°
+ 7892582400 s° 4 6669527040 s* * + 6610452480 5° >
+ 1260582912 s* 5 + 5998067712 5% r® + 422682624 5% °
+ 338411520 s° r* + 2450718720 s° > + 88833024 s* r®
+ 88833024 s° r* + 643313664 s° % + 8005662720 s 1-°
+ 564157440 s % + 136254292064 s* r? + 65646211760 s> r
+ 100770474640 s 7% 4 46577704800 5 7) /((20 7 + 17 + 6 1) (
82016 s 4 76846 r + 65589 5% + 58245 12 + 47232 52 12
+ 93456 s> r + 93168 572 + 139936 5 7 + 4896 s* + 26112 §*
+ 2112072 + 3168 r* + 5760 s* r + 1728 s* 2 + 30720 s°
+ 9216 53 1% + 11520 52 1% + 1728 s? 4 + 30720 s > 4 4608 s 7
+39930)(6 5* + 16 5 + 11))

Obviously, p > 0 and ¢ > 0 for 7, 5 > 1. But, we can conclude
q=0<—=1=1A7=1

Hence, the estimate of Lemma 5.17 is sharp.

References
[1] O. Axelsson and A. Padiy. On the additive version of the algebraic mul-

tilevel iteration for anisotropic elliptic problems. STAM J. Sci. Comp.,
20(5):1807-1830, 1999.

95



[2] O. Axelsson and P.S. Vassilevski. Algebraic multilevel preconditioning

3]

[4]

[5]

[10]

[11]

[12]

methods i. Numer. Math., 56:157-177, 1989.

O. Axelsson and P.S. Vassilevski. Algebraic multilevel preconditioning
methods ii. STAM J. Numer. Anal., 27(6):1569-1590, 1990.

S. Beuchler. Losungsmethoden bei der p-version der fem. Diplomarbeit,
TU Chemnitz, December 1999.

S. Beuchler. A preconditioner for solving the inner problem of the p-
version of the fem. Technical Report SFB393 00-25, Technische Univer-
sitat Chemnitz, May 2000.

D. Braess. The convergence rate of multigrid with gauss-seidel relaxation
for the poisson equation. In W. Hackbusch and U. Trottenberg, editors,
Multigrid methods, Proceedings of the Conference held at Koln-Porz,
November 23-27, 1981, number 960 in Lecture notes in mathematics,
pages 368-386, Berlin-Heidelberg-New York, 1982. Springer Verlag.

J. Bramble, J. Pasciak, and J. Xu. Parallel multilevel preconditioners.
Math. Comp., 55(191):1-22, 1991.

G. Haase and U. Langer. Multigrid methoden, 1998. Script zur Vor-
lesung, Johannes-Kepler-Universitat Linz.

G. Haase, U. Langer, and A. Meyer. The approximate dirichlet do-
main decomposion method. part i: An algebraic approach. Computing,
47:137-151, 1991.

S.A. Ivanov and V.G. Korneev. On the preconditioning in the domain
decomposition technique for the p-version finite element method. part i.
Technical Report SPC 95-35, Technische Universitat Chemnitz-Zwickau,
December 1995.

S.A. Ivanov and V.G. Korneev. On the preconditioning in the domain
decomposition technique for the p-version finite element method. part ii.
Technical Report SPC 95-36, Technische Universitat Chemnitz-Zwickau,
December 1995.

S. Jensen and V.G. Korneev. On domain decomposition preconditioning
in the hierarchical p—version of the finite element method. Comput.
Methods. Appl. Mech. Eng., 150(1-4):215-238, 1997.

o6



[13]

[14]

[17]

18]

[19]

[20]

M. Jung. Einige klassen paraller iterativer auflosungsverfahren. Habili-
tationsschrift, Technische Universitat Chemnitz, 1999.

J.F. Maitre and F. Musy. The contraction number of a class of two-
level methods, and exact evaluation for some finie element subspaces
and model problems. In W. Hackbusch and U. Trottenberg, editors,
Multigrid methods, Proceedings of the Conference held at Koln-Porz,
November 23-27, 1981, number 960 in Lecture notes in mathematics,
pages 535544, Berlin-Heidelberg-New York, 1982. Springer Verlag.

Ch. Pflaum. Fast and robust multilevel algorithms. Habilitationsschrift,
Universitat Wiirzburg, 1998.

N. Schieweck. A multigrid convergence proof by a strengthened
cauchy-inequality for symmetric elliptic boundary value problems. In
G. Telschow, editor, Second multigrid seminar, Garzau 1985, number
08-86 in Report R-Math, pages 49-62, Berlin, 1986. Karl-Weierstraf-
Insitut fiir Mathematik.

G. Telschow, editor. Second multigrid seminar, Garzau 1985, number
08-86 in Report R-Math, Berlin, 1986. Karl-Weierstraf3-Insitut fiir Math-
ematik.

C.A. Thole. Beitrage zur fourieranalyse von mehrgittermethoden: V-
cycle, ilu-glattung, anisotrope operatoren. Diplomarbeit, Universitat
Bonn, 1983.

F.G. Tricomi. Vorlesungen tber Orthogonalreihen. Springer. Berlin-
Gottingen-Heidelberg, 1955.

H. Yserentant. On the multi-level-splitting of the finite element spaces.
Numer. Math., 49:379-412, 1986.

57



Other titles in the SFB393 series:

00-01

00-02

00-03

00-04

00-05

00-06

00-07

00-08

00-09

00-10

00-11

00-12

00-13

G. Kunert. Anisotropic mesh construction and error estimation in the finite
element method. January 2000.

V. Mehrmann, D. Watkins. Structure-preserving methods for computing
eigenpairs of large sparse skew-Hamiltonian/Hamiltonian pencils. January
2000.

X. W. Guan, U. Grimm, R. A. Rémer, M. Schreiber. Integrable impurities
for an open fermion chain. January 2000.

R. A. Romer, M. Schreiber, T. Vojta. Disorder and two-particle interaction
in low-dimensional quantum systems. January 2000.

P. Benner, R. Byers, V. Mehrmann, H. Xu. A unified deflating subspace
approach for classes of polynomial and rational matrix equations. January
2000.

M. Jung, S. Nicaise, J. Tabka. Some multilevel methods on graded meshes.
February 2000.

H. Harbrecht, F. Paiva, C. Perez, R. Schneider. Multiscale Preconditioning
for the Coupling of FEM-BEM. February 2000.

P. Kunkel, V. Mehrmann. Analysis of over- and underdetermined nonlinear
differential-algebraic systems with application to nonlinear control problems.
February 2000.

U.-J. Gorke, A. Bucher, R. Kreiflig, D. Michael. Ein Beitrag zur Losung
von Anfangs-Randwert-Problemen einschlieBlich der Materialmodellierung
bei finiten elastisch-plastischen Verzerrungen mit Hilfe der FEM. Marz 2000.

M. J. Martins, X.-W. Guan. Integrability of the D2 vertex models with
open boundary. March 2000.

T. Apel, S. Nicaise, J. Schoberl. A non-conforming finite element method
with anisotropic mesh grading for the Stokes problem in domains with edges.
March 2000.

B. Lins, P. Meade, C. Mehl, L. Rodman. Normal Matrices and Polar De-
compositions in Indefinite Inner Products. March 2000.

C. Bourgeois. Two boundary element methods for the clamped plate. March
2000.

o8



00-14 C. Bourgeois, R. Schneider. Biorthogonal wavelets for the direct integral
formulation of the heat equation. March 2000.

00-15 A. Rathsfeld, R. Schneider. On a quadrature algorithm for the piecewise
linear collocation applied to boundary integral equations. March 2000.

00-16 S. Meinel. Untersuchungen zu Druckiterationsverfahren fiir dichteverdnderliche
Stromungen mit niedriger Machzahl. Marz 2000.

00-17 M. Konstantinov, V. Mehrmann, P. Petkov. On Fractional Exponents in
Perturbed Matrix Spectra of Defective Matrices. April 2000.

00-18 J. Xue. On the blockwise perturbation of nearly uncoupled Markov chains.
April 2000.

00-19 N. Arada, J.-P. Raymond, F. Troltzsch. On an Augmented Lagrangian SQP
Method for a Class of Optimal Control Problems in Banach Spaces. April
2000.

00-20 H. Harbrecht, R. Schneider. Wavelet Galerkin Schemes for 2D-BEM. April
2000.

00-21 V. Uski, B. Mehlig, R. A. Romer, M. Schreiber. An exact-diagonalization
study of rare events in disordered conductors. April 2000.

00-22 V. Uski, B. Mehlig, R. A. Romer, M. Schreiber. Numerical study of eigen-
vector statistics for random banded matrices. May 2000.

00-23 R. A. Romer, M. Raikh. Aharonov-Bohm oscillations in the exciton lumi-
nescence from a semiconductor nanoring. May 2000.

00-24 R. A. Romer, P. Ziesche. Hellmann-Feynman theorem and fluctuation-
correlation analysis of i the Calogero-Sutherland model. May 2000.

00-25 S. Beuchler. A preconditioner for solving the inner problem of the p-version
of the FEM. May 2000.

00-26 C. Villagonzalo, R.A. Romer, M. Schreiber, A. MacKinnon. Behavior of
the thermopower in amorphous materials at the metal-insulator transition.
June 2000.

00-27 C. Mehl, V. Mehrmann, H. Xu. Canonical forms for doubly structured
matrices and pencils. June 2000. S. I. Solov’ev. Preconditioned gradient
iterative methods for nonlinear eigenvalue problems. June 2000.

99



00-29

00-30

00-31

00-32

00-33
00-34

00-35

00-36

00-37

00-38

00-39

01-01

01-02

01-03

01-04

A. Eilmes, R. A. Romer, M. Schreiber. Exponents of the localization lengths
in the bipartite Anderson model with off-diagonal disorder. June 2000.

T. Grund, A. Rosch. Optimal control of a linear elliptic equation with a
supremum-norm functional. July 2000.

M. Bollhofer. A Robust ILU Based on Monitoring the Growth of the Inverse
Factors. July 2000.

N. Arada, E. Casas, F. Troltzsch. Error estimates for a semilinear elliptic
control problem. July 2000.

T. Penzl. LYAPACK Users Guide. August 2000.

B. Heinrich, K. Pietsch. Nitsche type mortaring for some elliptic problem
with corner singularities. September 2000.

P. Benner, R. Byers, H. Faflbender, V. Mehrmann, D. Watkins. Cholesky-
like Factorizations of Skew-Symmetric Matrices. September 2000.

C. Villagonzalo, R. A. Romer, M. Schreiber, A. MacKinnon. Critical Be-
havior of the Thermoelectric Transport Properties in Amorphous Systems
near the Metal-Insulator Transition. September 2000.

F. Milde, R. A. Romer, M. Schreiber. Metal-insulator transition in anisotropic
systems. October 2000.

T. Stykel. Generalized Lyapunov Equations for Descriptor Systems: Stabil-
ity and Inertia Theorems. October 2000.

G. Kunert. Robust a posteriori error estimation for a singularly perturbed
reaction-diffusion equation on anisotropic tetrahedral meshes. November
2000.

G. Kunert. Robust local problem error estimation for a singularly perturbed
problem on anisotropic finite element meshes. January 2001.

G. Kunert. A note on the energy norm for a singularly perturbed model
problem. January 2001.

U.-J. Gorke, A. Bucher, R. Kreiflig. Ein Beitrag zur Materialparameteri-
dentifikation bei finiten elastisch-plastischen Verzerrungen durch Analyse
inhomogener Verschiebungsfelder mit Hilfe der FEM. Februar 2001.

R. A. Romer. Percolation, Renormalization and the Quantum-Hall Transi-
tion. February 2001.

60



01-05 A. Eilmes, R. A. Rémer, C. Schuster, M. Schreiber. Two and more inter-
acting particles at a metal-insulator transition. February 2001.

01-06 D. Michael. Kontinuumstheoretische Grundlagen und algorithmische Be-
handlung von ausgewahlten Problemen der assoziierten Flietheorie. Marz
2001.

61



