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We study the in
uen
e of many-parti
le intera
tions on a metal-insulator transition. First, we


onsider the two-intera
ting-parti
le problem for onsite intera
ting parti
les on a one-dimensional

quasiperiodi
 
hain, the so-
alled Aubry-Andr�e model. We show numeri
ally by the de
imation

method and �nite-size s
aling that the intera
tion does not modify the 
riti
al parameters su
h as

the transition point and the lo
alization-length exponent. Se
ond, we employ the density-matrix

renormalization s
heme to investigate the �nite density situation. We map out the entire phase

diagram and �nd that there is a Peierls-like transition into a metalli
 state for attra
tive intera
tions.

Our results also show agreement with a re
ent analyti
 renormalization group approa
h.

71.30.+h,71.27.+a

I. INTRODUCTION

The metal-insulator transition (MIT) in disordered

ele
troni
 systems has been the subje
t of intense re-

sear
h a
tivities over the last two de
ades and still 
on-

tinues to attra
t mu
h attention. For free ele
trons in

disordered systems [1℄ the s
aling hypothesis of lo
aliza-

tion [2℄ 
an su

essfully predi
t many of the universal

features of the MIT. However, the in
uen
e of many-

parti
le intera
tions on the MIT is not equally well un-

derstood [3℄ and re
ent investigations of an apparent MIT

in two-dimensional (2D) systems even question the main

assumptions of the s
aling hypothesis [4{9℄. A simple

theoreti
al approa
h to the interplay of intera
tions and

disorder is based on the two-intera
ting-parti
les (TIP)

problem in 1D random [10{12℄ or quasiperiodi
 poten-

tials [13,14℄. Furthermore, numeri
al results for spin-

less fermions at �nite parti
le density have given addi-

tional insight [15,16℄. In general, these investigations

have shown that 
hanges in the wave fun
tion interfer-

en
es due to many-parti
le intera
tions [17,18℄ 
an lead

to a rather large enhan
ement of the lo
alization lengths

in 1D and 2D [16,19,20℄.

The standard approa
h for 
omputing lo
alization

lengths in disordered, non-intera
ting systems is the

transfer-matrix method [21℄. It has been used for in-

vestigations of the enhan
ement of the TIP lo
alization

length in a 1D random potential [12,22℄ where there is no

MIT as all wave fun
tions are always lo
alized. Other nu-

meri
al approa
hes to the TIP problem have been based

on the time evolution of wave pa
kets [10,23℄, exa
t diag-

onalization [24℄ or Green fun
tion approa
hes [19,25,26℄.

In the single-parti
le 
ase, the 1D quasiperiodi
 Aubry-

Andr�e model is known rigorously to exhibit an MIT for

all states in the spe
trum as a fun
tion of the quasiperi-

odi
 potential strength � [27℄. The ground state wave

fun
tion is extended for � < 1 and lo
alized for � > 1.

The system at �




= 1 is 
riti
al: there the wave fun
tions

de
rease algebrai
ally, not exponentially as in the lo
al-

ized 
ase. Re
ently, we examined this model for TIP

by means of the transfer-matrix method together with

a 
areful �nite-size-s
aling analysis [14℄ following earlier

analyti
al work of Refs. [28,29℄. We showed that the

model for TIP exhibits an MIT as a fun
tion of � at

�




= 1 as in the single-parti
le 
ase. Our �nite-size-

s
aling results for onsite (Hubbard) intera
tion suggest

that the 
riti
al behavior, i.e., the value for the 
riti
al

exponent � of the 
orrelation length, is also not a�e
ted

by the intera
tion [14℄. However, it has been demon-

strated [12,19℄ that a transfer-matrix-method approa
h

applied to the TIP problem without �nite-size s
aling

leads to unreliable lo
alization lengths, i.e., it system-

ati
ally overestimates the TIP lo
alization length �

2

in

�nite-sized samples in the 
ase of vanishing intera
tion

(U = 0). In addition, simple extrapolations to in�nite

sample size [22,12℄ may lead to an underestimation of �

2

[30℄. An alternative approa
h, whi
h does not su�er from

the above problem, is based on the de
imation method

and has also been applied re
ently to TIP in a 1D random

potential [19℄. This en
ouraged us to reexamine the lo-


alization lengths for TIP in 1D quasiperiodi
 potentials

with Hubbard intera
tion with the de
imation method.

As we shall show in the following, we �nd that the gen-

eral 
on
lusions of Ref. [14℄ remain valid, i.e., the MIT is

not a�e
ted by the intera
tion.

As an independent extension of these low-density re-

sults, Chaves and Satija [31℄ have studied a model of

nearest-neighbor intera
ting spinless fermions [32{34℄ at

�nite parti
le density in the same quasiperiodi
 potential

by means of Lan
zos diagonalization for small systems up

to 
hain size M = 13. They �nd eviden
e for a 
riti
al re-

gion in whi
h the behavior of the 
harge sti�ness [35{37℄

is di�erent from its behavior in the metalli
 and lo
alized

regimes. In order to rea
h mu
h larger system sizes for

1



intera
ting systems, we employ the numeri
al density-

matrix renormalization group (DMRG) [38℄ whi
h has

been shown to be very useful [39℄. In parti
ular, the

ground state properties of intera
ting many-parti
le sys-

tems in 1D 
an be obtained very a

urately [40,41℄. In

the present paper, we shall study the quasiperiodi
 model

of Ref. [31℄ at various densities and intera
tion strengths

V by DMRG and 
ompare our results to the TIP data.

Our results show that in the low-density TIP 
ase,

the 
riti
al properties of the single-parti
le transition at

�




= 1 are not altered within the a

ura
y of our 
al
ula-

tion. One-parameter s
aling is obeyed for onsite intera
-

tion strengths up to U = 10. For the intera
ting many-

body system in a quasiperiodi
 potential we re
over the

single-parti
le transition at �




= 1, provided we 
onsider

densities like � = 1=2 whi
h are in
ommensurate 
om-

pared to the wave ve
tor of the quasiperiodi
 potential

| an irrational multiple of �. On the other hand, for


ommensurate densities, we �nd that the system 
an be


ompletely lo
alized even for � � 1. Whereas for re-

pulsive intera
tions the ground state remains lo
alized,

we �nd a region of extended states for attra
tive inter-

a
tion due to a Peierls resonan
e between ele
troni
 and

quasiperiodi
 potential degrees of freedom. The behav-

ior may be des
ribed by a weak-
oupling renormalization

group (RG) treatment [42℄.

The paper is organized as follows. In se
tion II we de-

s
ribe the Hamiltonian of our TIP system and explain

how to obtain the TIP lo
alization lengths via de
ima-

tion method. In se
tion III, we 
omment on the parti
-

ular �nite-size-s
aling method employed and present the

estimated 
riti
al parameters. The �nite-density many-

body system is introdu
ed in se
tion IV and results are

presented in se
tion V. We summarize and 
on
lude in

se
tion VI.

II. THE TIP SYSTEM AND THE NUMERICAL

APPROACH

The Hamiltonian for TIP in the 1D quasiperiodi
 po-

tential of the Aubry-Andr�e model is given as

H =

X

n;m

jn;mihn+ 1;mj+ jn;mihn;m+ 1j+ h: 
:

+ jn;mi [�

n

+ �

m

+ U (n;m)℄ hn;mj : (1)

Here �

m

� 2� 
os(�m + �) is the quasiperiodi
 poten-

tial of strength � with �=2� being an irrational num-

ber. � is an arbitrary phase shift and we 
hoose �=2� =

(

p

5 � 1)=2, i.e., the inverse of the golden mean. This

value of �=2� may be approximated by the ratio of su
-


essive Fibona

i numbers | F

n

= F

n�2

+ F

n�1

= 0, 1,

2, 3, 5, 8, 13, : : : | as is 
ustomary in the 
ontext of

quasiperiodi
 systems [43℄. The Hubbard onsite intera
-

tion matrix U (n;m) is diagonal, i.e., U (n;m) = UÆ

nm

.

The indi
es n and m 
orrespond to the positions of ea
h

parti
le on a 
hain of length M . Now we use the de
i-

mation method [19,44℄ to 
onstru
t an e�e
tive Hamilto-

nian for the diagonal of the M �M latti
e along whi
h

the 
igar-shaped TIP wave fun
tion has its largest extent

[24,30℄. The quantity of interest is the TIP lo
alization

length �

2

de�ned by the TIP Green fun
tion G

2

(E) [25℄:

1

�

2

= �

1

jM � 1j

ln jh1; 1jG

2

jM;M ij: (2)

For TIP in 1D and 2D random potentials, this approa
h

has led to high pre
ision results supporting the proposed

in
rease of the TIP lo
alization lengths due to the repul-

sive intera
tion [19,20℄. We remark that similar data have

also been obtained for nearest-neighbor [25℄ and long-

ranged intera
tions [23℄.

The 
orrelation length �

1

for the in�nite system may

be obtained from the lo
alization lengths �(M ) for �nite

system sizes by the using one-parameter s
aling hypoth-

esis �

M

= f(M=�

1

) [45℄ for the redu
ed lo
alization

lengths �

M

= �(M )=M . The MIT is 
hara
terized by a

divergent 
orrelation length �

1

(�) / j� � �




j

��

[1℄. In

order to reliably extra
t the 
riti
al parameters from the


al
ulated values of �

2

(M ) one may apply a �nite-size-

s
aling pro
edure [21℄ that numeri
ally minimizes devia-

tions of the data from the 
ommon s
aling 
urve f . The


riti
al exponent � 
an then be extra
ted by �tting the

�

1

obtained from �nite-size s
aling. This method was

used previously [14℄ for �nding the 
riti
al parameters of

the present model.

Higher a

ura
y 
an be a
hieved by a method applied

re
ently [46,47℄ to the MIT in the Anderson model of lo-


alization. We 
onstru
t a family of �t fun
tions whi
h

in
lude 
orre
tions to s
aling su
h as (i) nonlinearities of

the dependen
e of the s
aling variable on the quasiperi-

odi
 potential strength and (ii) an irrelevant s
aling vari-

able whi
h a

ounts for a shift of the 
rossing point of

the �

M

(�) 
urves as a fun
tion of �, i.e.,

�

M

=

~

f (�

r

M

1=�

; �

i

M

y

) : (3)

where �

r

and �

i

are the relevant and irrelevant s
aling

variables, respe
tively.

~

f is then Taylor expanded up to

order n

i

in terms of the se
ond argument

�

M

=

n

i

X

n=0

�

n

i

M

ny

~

f

n

(�

r

M

1=�

) ; (4)

and ea
h

~

f

n

is Taylor expanded up to order n

r

:

~

f

n

=

n

r

X

i=0

a

ni

�

i

r

M

i=�

: (5)

Nonlinearities are taken into a

ount by expanding �

r

and �

i

in terms of u = (�




� �)=�




up to order m

r

and

m

i

, respe
tively,

2



�

r

(u) =

m

r

X

n=1

b

n

u

n

; �

i

(u) =

m

i

X

n=0




n

u

n

; (6)

with b

1

= 


0

= 1. The �t fun
tion is being adjusted

to the data by 
hoosing the orders n

i

; n

r

;m

r

;m

i

up to

whi
h the expansions are 
arried out. Of 
ourse, the

orders have to be taken not too large to keep the number

of �t parameters a

ni

, b

n

, and 


n

reasonably small.

III. NUMERICAL RESULTS FOR TIP

We have 
al
ulated �

2

at energy E = 0 for 20 values of

the Hubbard intera
tion, i.e., U = 0 (the non-intera
ting

single-parti
le 
ase), 0:1, : : :, 0:9, 1, 2, : : :, 10 for 6 sys-

tem sizes M = 13, 21, 34, 55, 89, 144. For U = 0 and 1,

we also have data for M = 233 and 377. The quasiperi-

odi
 potential strengths � were 
hosen 
lose to the single-

parti
le transition at �




� 1 and ranged typi
ally from

0:95 to 1:05. As in Ref. [14℄ we averaged the results over

di�erent randomly 
hosen phase shifts � in order to re-

du
e the 
u
tuations. The number of � values used in

this averaging ranged from 5000 for M = 13 to 1000 for

M = 377. In order to perform the non-linear �t ne
essary

for the �nite-size-s
aling pro
edure as outlined in se
tion

II, we used the Levenberg-Marquardt method [47,48℄. As

the de
imation method data | like the transfer-matrix-

method results [14℄ | are still rather noisy we have to

suitably limit the ranges of the quasiperiodi
 potential

strength � and/or the system sizes M used for �tting

the data.

For U = 0 and 1, whi
h were examined by the transfer-

matrix method in detail [14℄, the best �t was obtained

for n

r

= 3, n

i

= 2, m

r

= 2 and m

i

= 1. For U = 0 we

used the data for � ranging from 0:96 to 1:01 and M =

55; 89; 144; 233, and 377; for U = 1 we used all system

sizes M = 13, : : :, 377 and 0:97 � � � 1:05. Figs. 1 and

2 show the resulting TIP lo
alization lengths for U = 0

and 1. Also shown are the �ts of the �nite-size-s
aling


urves to the data as given by Eq. (3) for U = 0 and 1,

respe
tively. We �nd that for both U values, there is an

apparent transition 
lose to �




= 1. For the 
ase U = 0,

we also observe a systemati
 shift of the 
rossing point

with in
reasing system sizes ne
essitating the in
lusion

of an irrelevant s
aling variable as dis
ussed in se
tion

II. The transition point is not so 
learly distinguished

for U = 1, albeit the di�erent behavior for �

<

�

1 and

�

>

�

1, namely the in
rease and de
rease, respe
tively, of

�

M

with in
reasing M , is 
learly seen.

The 
orresponding plots of the s
aling 
urves are dis-

played in the insets of Figs. 1 and 2. The s
aling 
urves

are mu
h better than reported previously [14℄ for the

transfer-matrix-method data. The 
riti
al parameters


an 
onsequently be estimated to be �




= 0:989� 0:001,

� = 1:00 � 0:15 for U = 0 and �




= 0:997 � 0:001,

� = 1:19 � 0:16 for U = 1. The irrelevant s
aling ex-

ponents are 
lose to y = 1:8 � 0:2 and y = 0:15 � 0:1

for U = 0 and 1, respe
tively. Note that the quoted

errors 
orrespond to the standard deviations estimated

from the non-linear �t pro
edure. In this way the a
-


ura
y is signi�
antly overestimated. Sin
e it is apriori

not 
lear, whi
h values n

i

; n

r

;m

r

;m

i

to use, we estimate

the true errors from a 
omparison of various �ts with dif-

ferent n

i

; n

r

;m

r

;m

i

. Even in the 
ase of extremely high

pre
ision data 
lose to the MIT in the Anderson model

of lo
alization, this has been shown [47℄ to in
rease the

error by one order of magnitude. Therefore we 
on
lude

that the intera
tion strength U for TIP does not in
u-

en
e the MIT in the quasiperiodi
 potential within the

a

ura
y of the present 
al
ulation.

Further results for larger U values are 
olle
ted in Ta-

ble I. The expansion orders n

i

; n

r

;m

r

;m

i

, the system

sizes and ranges of the quasiperiodi
 potential strength

have been 
hosen in order to minimize the �

2

statisti
s

and to get the most 
onvin
ing s
aling �t. Fig. 3 shows

the values of the 
riti
al quasiperiodi
 potential strength

�




and the 
riti
al exponent �. For almost all 
ases

the 
riti
al quasiperiodi
 potential strength �




remains


lose to 1, the only ex
eptions are U = 0 and 0:1, when

�




= 0:99 and 0:98, respe
tively. However, sin
e we know

that the transition in the single-parti
le 
ase is exa
tly at

�




= 1 [27℄, this observation 
an be used to estimate the

true error of the estimate for �




. Thus 
omparing with

the �




estimates for U 6= 0, we �nd that the errors 
al
u-

lated within the non-linear �tting pro
edure are signi�-


antly underestimated as dis
ussed above. We therefore


on
lude that there is no 
hange of the 
riti
al quasiperi-

odi
 potential strength within 0 � U � 10 within the

a

ura
y of our 
al
ulation. The same argument leads to

the 
on
lusion that within the error bars the 
riti
al ex-

ponent � does not 
hange with the Hubbard intera
tion

strength and is 
lose to 1. This is an agreement with the

previous results obtained by the transfer-matrix method

and �nite-size s
aling [14℄. We stress that the 
riti
al ex-

ponents 
an be obtained with mu
h less a

ura
y than

the transition point �




as shown in Table I.

IV. THE NEAREST-NEIGHBOR HAMILTONIAN

AT FINITE DENSITY AND THE DMRG

Let us now 
onsider N intera
ting spinless fermions

on a 1D ring of 
ir
umferen
e M in the Aubry-Andr�e

potential su
h that

H = �t

X

m

�




y

m+1




m

+ h: 
:

�

+

V

X

m

n

m+1

n

m

+ 2�

X

m

n

m


os (�m+ �): (7)

The operators 


y

m

, 


m

, and n

m

denote as usual Fermi


reation, annihilation and number operators; �, � and �

3



are de�ned as in the previous se
tions. In addition, we

set t = 1. The parti
le density is � = N=M . Again, we


hooseM = F

n

and �=(2�) = F

n�1

=F

n

in order to retain

the periodi
ity of the quasiperiodi
 potential on the ring.

The model has been studied extensively in two limits,

namely, V = 0 and � = 0. The �rst 
ase 
orresponds of


ourse to the non-intera
ting model dis
ussed brie
y in

se
tion I. In the se
ond 
ase, the model 
an be mapped

onto the anisotropi
 Heisenberg (XXZ) model for whi
h

a 
losed Bethe-ansatz solution exists [32{34℄. It shows

three distin
t phases at zero temperature. For half �ll-

ing (� = 1=2) and strong repulsive intera
tion (V > 2)

the system is a 
harge-density-wave insulator. For weak

and intermediate intera
tion strength and away from half

�lling it is a metal and 
an be des
ribed as a Luttinger

liquid with linear energy dispersion and gapless ex
ita-

tions [35,49℄. The metal, at least, is separated for all

�llings by a �rst-order transition at V = �2 from an insu-

lator where the fermions form 
lusters (phase-separated

state), 
orresponding to the ferromagneti
 state of the

spin model [34℄.

In a previous analysis [31℄ of the intera
ting quasiperi-

odi
 model (7), a large enhan
ement of the Drude weight

D (or Kohn sti�ness) [50℄ and the super
ondu
ting 
u
-

tuations in the ground state was found near the �rst-

order transition at V � �2 using exa
t Lan
zos diagonal-

ization. However, the system sizes attainable by the diag-

onalization were restri
ted toM � 13. Using the DMRG,

it is possible to extend the tra
table system lengths to

aboutM � 100�200. We use the �nite latti
e algorithm

for non-re
e
tionsymmetri
 models as des
ribed in [52℄.

In our simulations we perform �ve latti
e sweeps and

keep 300 (small systems) to 500 (larger systems, M =89

and 144) states per blo
k. As our observable of the phase

transition we 
hoose the phase sensitivity

M�E = M (�1)

N

[E(0)� E(�)℄ (8)

of the ground state [41℄, whi
h is 
onne
ted to D in the


lean 
ase (Luttinger phase) and equal to �

2

D for non-

intera
ting fermions. Here E(�) measures the rea
tion

of the system due to a twist in the boundary 
ondition,




M+1

= exp(i�)


1

[35,36℄. The prefa
tor (�1)

N


an
els

the odd-even e�e
ts [51℄. In addition, it is believed that

the phase sensitivity mat
hes the 
hara
ter of the wave

fun
tion. It does not depend on system size if the wave

fun
tion is extended, e.g., for � = 0, and it de
reases

exponentially for large systems if the wave fun
tion is lo-


alized [41℄. As argued in Ref. [31℄ this 
an be transferred

to the 
riti
al 
ase. Therefore, we suppose that the phase

sensitivity de
reases algebrai
ally with in
reasing system

size, if the wave fun
tion is 
riti
al. Thus, we have to


ompare at the very least three di�erent 
hain lengths in

order to 
hara
terize the length dependen
e of the wave

fun
tion.

In order to do so reliably, we should 
omputeM�E for

these di�erent 
hain lengths at the same parti
le density

�. However, in
ommensurate | 
ompared to the wave

ve
tor of the quasiperiodi
 potential | parti
le densi-

ties are diÆ
ult to treat if we use M = F

n

as in the

previous se
tions. For example, half �lling 
an only be

realized for even system size, i.e., for M = 34, 144, and

610, one-third �lling for M = 21, 144, 987. In prin
iple,

su
h large system sizes M > 500 
an be treated within

the DMRG [52℄, but the required a

ura
y (10

�6

) is very

hard to obtain for periodi
 boundary 
onditions. In ad-

dition, if the phase sensitivity de
reases with system size,

there is no possibility to de
ide whether the de
rease is

algebrai
 or exponential be
ause the obtained value of

M�E for su
h large system sizes is already zero within

the 
omputational a

ura
y. For example, let us brie
y


omment on the non-intera
ting 
ase with � = 1=2. Us-

ing a standard diagonalization routine, we investigate the

system sizesM = 34, 144, and 610. M = 8 is ex
luded

be
ause �=(2�) = 5=8 = 0:625 di�ers too mu
h from

the true value (

p

5 � 1)=2 � 0:618. As shown in Fig. 4,

the phase sensitivity at V = 0 is 
learly di�erent in the

lo
alized, 
riti
al and extended regimes. Thus, for a sys-

tem of free fermions at �nite density, we reprodu
e the

expe
ted transition at �




= 1 in agreement with Refs.

[14,31℄. Although similar plots 
an be made for attra
-

tive and repulsive intera
tions at � = 1=2 as also shown

in Fig. 4, unfortunately, with only two system sizes avail-

able (M = 34 and 144) for the intera
ting system, further


on
lusions appear rather spe
ulative. We remark that

our attempts to simulate in
ommensurate densities like

� = 1=4, 1=3, 1=2 at �xed �=2� = (

p

5� 1)=2 for system

lengths M 6= F

n

by averaging over the �'s failed. No sig-

ni�
ant length dependen
e of the phase sensitivity 
ould

be dete
ted using these densities and system lengths.

V. NUMERICAL RESULTS FOR FINITE

PARTICLE DENSITY

For the reasons outlined in the last se
tion, we shall

study the behavior at the 
ommensurate densities �

i

�

lim

n!1

F

n�i

=F

n

� 0:618, 0:382, 0:236, and 0:146 
orre-

sponding to i = 1; : : : ; 4 in the following, where � = 2��

1

.

We �rst note that the 
ase of �

1

is identi
al to �

2

due

to the parti
le-hole symmetry in Eq. (7). Averaging

over di�erent � values was not ne
essary sin
e the 
om-

puted ground-state energy of the �nite-density Hamilto-

nian does not depend on � forM = F

n

, i.e., if we in
lude

a 
omplete period of the potential in the ring.

In Fig. 5, we summarize our results by showing two

phase diagrams of model (7) for varying quasiperiodi


potential strength � and nearest-neighbor intera
tion V .

They were obtained by studying the system size behavior

of M�E up to M = 144 for �

3

= 0:236 and �

4

= 0:146.

As an example how well the transition point is de�ned

numeri
ally 
onsider Fig. 6. The lo
alized regime extends

further on to larger intera
tions, �1:4

<

�

V < 1, for �

3

4



and � > 0 as well as for �

4

and �

>

�

0:1. This part of the

phase diagram is not shown, be
ause it has no additional

stru
ture. Thus, in the repulsive regime (V > 0), we �nd

that the ground state is lo
alized for � > 0. This is in

agreement with previous studies for disordered and pe-

riodi
ally disturbed systems [15,41℄. We emphasize that

an in
rease of the lo
alization lengths as predi
ted by the

arguments for TIP [10℄ in se
tions II and III is most likely

too small [16℄ to be dete
ted by the present a

ura
y.

For attra
tive intera
tions, the situation is more in-

teresting. For all densities �

i

and � ! 0, the system

shows Peierls-like behavior, i.e., a transition from insu-

lating to metalli
 phase at V � �1:4. An equivalent


riti
al behavior is found in the periodi
 hopping model,

where the site-dependent hopping amplitude is given by

t

m

= 1 � Æ 
os qm instead of t. In this model, whi
h

is usually 
alled the Peierls [53℄ or Su-S
hrie�er-Heeger

model [54℄, the MIT o

urs at V = �

p

2 and Æ ! 0, if

�lling fa
tor � and wave ve
tor q of the periodi
 hopping

are 
ommensurate, i.e., � = q=(2�) or q = 2k

F

, [41℄. This

happens for � = 1=2 and dimerization, one-third �lling

and trimerization, and so on. The quasiperiodi
 model is

expe
ted to show this transition, at densities �

1

and �

2

,

be
ause � = 2k

F

in these 
ases. Even for the other 
om-

mensurate densities �

3

, �

4

, : : :, the 
riti
al behavior is

similar to the periodi
 potential or Peierls (periodi
 hop-

ping) 
ase as shown in Ref. [42℄ although the resonan
e


ondition is not stri
tly valid. In our 
ase, the numeri
al

data obtained for �

3

and �

4

show the Peierls transition

at V � �1:4 and � ! 0 for �

3

and at V � �1:5 and

� > 0:1 for �

4

, 
f. Fig. 5. Hen
e, the transition o

urs

for de
reasing parti
le density at in
reasing �. This ob-

servation is 
on�rmed by an investigation of the energy

spe
trum. In the non-intera
ting 
ase it 
ontains no gap

at � = 0 but M � 1 gaps at � = 1 for the given � [55℄.

As seen in Ref. [56℄ most of the gaps open su

essively

for in
reasing �. Espe
ially, the �rst gap at �=2 opens

for � ! 0. Tuning the �lling fa
tor, the Fermi points

fall into the additional gaps in the spe
trum, leading to

insulating behavior.

In addition, the behavior seen numeri
ally is in agree-

ment with the weak-
oupling RG treatment [42℄ of spin-

less fermions on a Fibona

i latti
e. The RG equations

show the same 
riti
al behavior as for the Peierls model,

namely

d�

d lnM

= (2�K)�; (9)

where K = �=2 ar

os (�V=2) is the Luttinger parameter

for half �lling. Sin
e the Luttinger parameter does not

depend strongly on the �lling, it is valid to use this an-

alyti
al expression for other �llings, too. In a

ordan
e

with this RG equation we expe
t, that the phase sensi-

tivity | as in a disordered system [15℄ | de
reases in

the lo
alized regime su
h that

M�E � e

�M=�

with �

�1

� �

2=(2�K)

; (10)

where it is assumed that the lo
alization length � is the

only relevant length s
ale. This behavior is 
learly found

in the numeri
al data for, e.g., �

3

and V = �0:6 as shown

in Fig. 7. Near the phase transition, it is numeri
ally dif-

�
ult to distinguish 
learly between lo
alized and 
riti
al

phases. First, for small system sizes and small �, the

de
rease in the phase sensitivity is always algebrai
, a
-


ording to the RG equation. Se
ond, the exponential

de
rease with � sets in far from the transition points as

shown in Fig. 8. We 
all this intermediate region, where

no universal algebrai
 or exponential de
rease is found,

transition region. For �

4

, it is diÆ
ult to dete
t and is

not separately marked in Fig. 5. There we 
an only dis-

tinguish whether the phase sensitivity de
reases or not.

Furthermore, for small �

<

�

0:2, the �rst order phase

transition at V = �2 remains una�e
ted. However,

for larger � values, the metalli
 phase extends towards

smaller V values. In 
omparison to the features of the

models with periodi
 or random distortions, the phase

sensitivity shows an unexpe
ted sharp maximum | as

already observed in Ref. [31℄ | for �

>

�

0:8 at V

<

�

�2.

A similar maximum is also seen for � > 1 and small

system sizes (M = 34), nevertheless the system is insu-

lating. The exponential s
aling in the lo
alized region as

shown in Fig. 7 or Fig. 8 does not 
hange for V > �2 and

V < �2 in the 
ase of large �. Therefore, we 
on
lude

that this regime belongs to the quasiperiodi
 potential

lo
alized regime. On the other hand, no s
aling behav-

ior is found for V < �2 and small � (lower left 
orner

in the phase diagram). Here, the lo
alization is due to

the formation of parti
le 
lusters in the phase-separated

state. In the 
rossover regime between these two lo
al-

ized phases a metalli
 state is re
overed.

VI. CONCLUSIONS

In this work, we have studied and 
ompared the in-

terplay of disorder and intera
tions for a quantum sys-

tem at very low (TIP) and �nite densities. For TIP, we


al
ulated the pair lo
alization lengths for a quasiperi-

odi
 potential and Hubbard intera
tion by means of the

de
imation method and obtained the 
riti
al parameters

from the �t using the one-parameter s
aling hypothesis.

For non-intera
ting parti
les and the onsite intera
tion

we get the value of the 
riti
al quasiperiodi
 potential

strength �




= 1 and the 
riti
al exponent � � 1 in agree-

ment with the results of transfer-matrix-method 
al
ula-

tions and �nite-size s
aling [14℄. The results for U > 1

show that this 
on
lusion remains valid also for mu
h

stronger intera
tions.

For densities �

3

and �

4

, we have dedu
ed the phase dia-

grams of the nearest-neighbor intera
ting system (7) for

varying quasiperiodi
 potential strength � and intera
-

tion V by the DMRG. The numeri
ally a

essible �lling

fa
tors whi
h are 
ommensurate with the quasiperiodi


5



potential yield a Peierls-like behavior of the system. The

transition at �




= 1 is only seen for in
ommensurate �ll-

ing or �xed parti
le number.

In summary, we have studied the in
uen
e of intera
-

tions on an MIT in a quasiperiodi
 model in 1D. Our

results suggest that the delo
alization found previously

for low density TIP in the lo
alized phase 
annot simply

be extrapolated to the �nite-density situation. At �nite

densities, other e�e
ts su
h as a Peierls-like 
ommensu-

rability be
ome important and dominate the transport

properties.
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TABLE I. Values of the 
riti
al quasiperiodi
 disorder strength �




and the 
riti
al exponent � obtained by the non-linear

�t for various U values. The �rst row for ea
h U gives values and the orders n

i

, m

i

, used in the expansion (4{6), for whi
h the

best �ts have been obtained. In all 
ases we �nd n

r

= 3 and m

r

= 2. For � and M the range of the values whi
h were used in

the �t is given. The se
ond row 
ontains values of the 
riti
al parameters obtained from a weighted average of �ts for various


hoi
es of n

i

and m

i

.

U � M n

i

m

i

�




�

0 0:96 � 1:01 55 � 377 2 1 0:989�0:001 1:00�0:15

0:95 � 1:05 13 � 377 0� 2 0� 1 0:99 �0:02 1:3 �0:5

1 0:97 � 1:05 13 � 377 2 1 0:997�0:001 1:19�0:16

0:95 � 1:05 13 � 377 0� 2 0� 1 0:99 �0:01 1:3 �0:4

2 0:97 � 1:05 55 � 144 0 0 1:001�0:002 1:14�0:11

0:95 � 1:05 13 � 144 0� 2 0� 1 0:99 �0:02 1:5 �1

3 0:95 � 1:05 13 � 144 2 1 1:000�0:002 1:16�0:08

0:95 � 1:05 13 � 144 0� 2 0� 1 1:00 �0:02 1:8 �1

4 0:97 � 1:05 55 � 144 0 0 1:000�0:003 1:12�0:10

0:95 � 1:05 13 � 144 0� 2 0� 1 1:00 �0:01 1:5 �0:8

5 0:95 � 1:05 13 � 144 1 1 1:002�0:002 1:20�0:09

0:95 � 1:05 13 � 144 0� 2 0� 1 1:00 �0:01 1:2 �0:3

6 0:95 � 1:05 55 � 144 0 0 0:999�0:002 1:28�0:08

0:95 � 1:05 13 � 144 0� 2 0� 1 1:00 �0:02 1:3 �0:1

7 0:95 � 1:05 55 � 144 0 0 0:997�0:002 1:28�0:07

0:95 � 1:05 13 � 144 0� 2 0� 1 1:00 �0:01 1:5 �0:6

8 0:97 � 1:05 55 � 144 0 0 1:001�0:002 1:16�0:08

0:95 � 1:05 13 � 144 0� 2 0� 1 0:99 �0:02 1:4 �0:4

9 0:97 � 1:05 13 � 144 1 1 1:000�0:001 1:15�0:05

0:95 � 1:05 13 � 144 0� 2 0� 1 1:00 �0:01 1:4 �0:5

10 0:97 � 1:05 55 � 144 0 0 1:000�0:002 1:23�0:08

0:95 � 1:05 13 � 144 0� 2 0� 1 1:00 �0:01 1:4 �0:4

0.96 0.98 1.00

µ

0.1

0.2

0.3

0.4

Λ
Μ

M=55
M=89
M=144
M=233
M=377

0 2

log
10

(ξ/Μ)

-0.8  

-0.6  

-0.4  

lo
g 10

(Λ
Μ

)

FIG. 1. Redu
ed lo
alization lengths �

M

versus quasiperi-

odi
 disorder strength � for U = 0. For 
larity, only error bars

for M = 55 and 377 are given. The lines are the �ts to the

data given by Eq. (3). Inset: S
aling fun
tion (thi
k line) and

s
aled data points. Only every 4th data point is represented

by a symbol for 
larity.

0.98 0.99 1.00 1.01 1.02 1.03

µ

0.05

0.10

0.15

0.20

0.25

Λ
Μ

M=13
M=21
M=34
M=55
M=89
M=144
M=233
M=377

-1 0 1 2 3

log
10

(ξ/Μ)

-1.5

-1

-0.5

lo
g 10

(Λ
Μ

)

FIG. 2. Redu
ed lo
alization lengths �

M

versus quasiperi-

odi
 disorder strength � for U = 1. For 
larity, only error bars

forM = 377 are given. The lines are the �ts to the data given

by Eq. (3). Inset: S
aling fun
tion (thi
k line) and s
aled data

points. Only every 4th data point is represented by a symbol

for 
larity.
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U

0.9

1.0

1.1

1.2

1.3

ν

0.98

0.99

1.00

µ c

FIG. 3. The 
riti
al quasiperiodi
 potential strength �




(upper panel) and the 
riti
al exponent � (lower panel) ver-

sus Hubbard intera
tion strength U . Error bars mark the er-

rors resulting from the Levenberg-Marquardt method of the

non-linear �t.
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M
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-6
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-4

10
-2

10
0

M
 ∆

Ε

FIG. 4. Phase sensitivity versus system size for V = �1

(squares), 0 (
ir
les), 1 (diamonds) at half �lling. The three


ases � = 0:9 (solid lines) , � = 1 (dashed lines), and � = 1:1

(dotted lines) are 
ompared.
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V
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0.8

1.0

 µ

-2.5 -2 -1.5 -1
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 µ

FIG. 5. Phase diagrams of the system des
ribed by Eq.

(7) in terms of quasiperiodi
 potential strength � and the

intera
tion V for � = �

3

(left side) and � = �

4

(right side).

An extended ground state wave fun
tion is marked by �, a

lo
alized by �. In addition, the transition regime (see text)

is marked with a shaded 2 in the left �gure. The solid lines

indi
ate the �rst-order transition at V = �2.

-2.2 -2.0 -1.8 -1.6 -1.4

V
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1.0
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Μ
 ∆

Ε
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M=89

extended
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µ=0.4

FIG. 6. Phase sensitivity versus intera
tion for three dif-

ferent system sizes, density �

3

and � = 0:4. The lines for

M = 34 and 89 are guides to the eye, highlighting the di�er-

ent �nite-size-s
aling behaviors in the various regimes. The

dotted lines indi
ate the transition between the lo
alized and

the extended wave fun
tions.
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FIG. 7. Phase sensitivity versus s
aled system size

M�

2=(2�K)

, where M = 34, 55, and 89, for V = �0:6, �lling

� = �

3

, and various potential strengths. The line indi
ates a

plot of Eq. (10) with K = �=2 ar

os(0:3) � 1:24.
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FIG. 8. Phase sensitivity versus s
aled system size,

M = 34, 55, and 89, for V = �1:5 and �

3

. The straight

line is a �t to the data for � = 0:7 and 0:8.
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