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We study the inuene of many-partile interations on a metal-insulator transition. First, we

onsider the two-interating-partile problem for onsite interating partiles on a one-dimensional

quasiperiodi hain, the so-alled Aubry-Andr�e model. We show numerially by the deimation

method and �nite-size saling that the interation does not modify the ritial parameters suh as

the transition point and the loalization-length exponent. Seond, we employ the density-matrix

renormalization sheme to investigate the �nite density situation. We map out the entire phase

diagram and �nd that there is a Peierls-like transition into a metalli state for attrative interations.

Our results also show agreement with a reent analyti renormalization group approah.

71.30.+h,71.27.+a

I. INTRODUCTION

The metal-insulator transition (MIT) in disordered

eletroni systems has been the subjet of intense re-

searh ativities over the last two deades and still on-

tinues to attrat muh attention. For free eletrons in

disordered systems [1℄ the saling hypothesis of loaliza-

tion [2℄ an suessfully predit many of the universal

features of the MIT. However, the inuene of many-

partile interations on the MIT is not equally well un-

derstood [3℄ and reent investigations of an apparent MIT

in two-dimensional (2D) systems even question the main

assumptions of the saling hypothesis [4{9℄. A simple

theoretial approah to the interplay of interations and

disorder is based on the two-interating-partiles (TIP)

problem in 1D random [10{12℄ or quasiperiodi poten-

tials [13,14℄. Furthermore, numerial results for spin-

less fermions at �nite partile density have given addi-

tional insight [15,16℄. In general, these investigations

have shown that hanges in the wave funtion interfer-

enes due to many-partile interations [17,18℄ an lead

to a rather large enhanement of the loalization lengths

in 1D and 2D [16,19,20℄.

The standard approah for omputing loalization

lengths in disordered, non-interating systems is the

transfer-matrix method [21℄. It has been used for in-

vestigations of the enhanement of the TIP loalization

length in a 1D random potential [12,22℄ where there is no

MIT as all wave funtions are always loalized. Other nu-

merial approahes to the TIP problem have been based

on the time evolution of wave pakets [10,23℄, exat diag-

onalization [24℄ or Green funtion approahes [19,25,26℄.

In the single-partile ase, the 1D quasiperiodi Aubry-

Andr�e model is known rigorously to exhibit an MIT for

all states in the spetrum as a funtion of the quasiperi-

odi potential strength � [27℄. The ground state wave

funtion is extended for � < 1 and loalized for � > 1.

The system at �



= 1 is ritial: there the wave funtions

derease algebraially, not exponentially as in the loal-

ized ase. Reently, we examined this model for TIP

by means of the transfer-matrix method together with

a areful �nite-size-saling analysis [14℄ following earlier

analytial work of Refs. [28,29℄. We showed that the

model for TIP exhibits an MIT as a funtion of � at

�



= 1 as in the single-partile ase. Our �nite-size-

saling results for onsite (Hubbard) interation suggest

that the ritial behavior, i.e., the value for the ritial

exponent � of the orrelation length, is also not a�eted

by the interation [14℄. However, it has been demon-

strated [12,19℄ that a transfer-matrix-method approah

applied to the TIP problem without �nite-size saling

leads to unreliable loalization lengths, i.e., it system-

atially overestimates the TIP loalization length �

2

in

�nite-sized samples in the ase of vanishing interation

(U = 0). In addition, simple extrapolations to in�nite

sample size [22,12℄ may lead to an underestimation of �

2

[30℄. An alternative approah, whih does not su�er from

the above problem, is based on the deimation method

and has also been applied reently to TIP in a 1D random

potential [19℄. This enouraged us to reexamine the lo-

alization lengths for TIP in 1D quasiperiodi potentials

with Hubbard interation with the deimation method.

As we shall show in the following, we �nd that the gen-

eral onlusions of Ref. [14℄ remain valid, i.e., the MIT is

not a�eted by the interation.

As an independent extension of these low-density re-

sults, Chaves and Satija [31℄ have studied a model of

nearest-neighbor interating spinless fermions [32{34℄ at

�nite partile density in the same quasiperiodi potential

by means of Lanzos diagonalization for small systems up

to hain size M = 13. They �nd evidene for a ritial re-

gion in whih the behavior of the harge sti�ness [35{37℄

is di�erent from its behavior in the metalli and loalized

regimes. In order to reah muh larger system sizes for

1



interating systems, we employ the numerial density-

matrix renormalization group (DMRG) [38℄ whih has

been shown to be very useful [39℄. In partiular, the

ground state properties of interating many-partile sys-

tems in 1D an be obtained very aurately [40,41℄. In

the present paper, we shall study the quasiperiodi model

of Ref. [31℄ at various densities and interation strengths

V by DMRG and ompare our results to the TIP data.

Our results show that in the low-density TIP ase,

the ritial properties of the single-partile transition at

�



= 1 are not altered within the auray of our alula-

tion. One-parameter saling is obeyed for onsite intera-

tion strengths up to U = 10. For the interating many-

body system in a quasiperiodi potential we reover the

single-partile transition at �



= 1, provided we onsider

densities like � = 1=2 whih are inommensurate om-

pared to the wave vetor of the quasiperiodi potential

| an irrational multiple of �. On the other hand, for

ommensurate densities, we �nd that the system an be

ompletely loalized even for � � 1. Whereas for re-

pulsive interations the ground state remains loalized,

we �nd a region of extended states for attrative inter-

ation due to a Peierls resonane between eletroni and

quasiperiodi potential degrees of freedom. The behav-

ior may be desribed by a weak-oupling renormalization

group (RG) treatment [42℄.

The paper is organized as follows. In setion II we de-

sribe the Hamiltonian of our TIP system and explain

how to obtain the TIP loalization lengths via deima-

tion method. In setion III, we omment on the parti-

ular �nite-size-saling method employed and present the

estimated ritial parameters. The �nite-density many-

body system is introdued in setion IV and results are

presented in setion V. We summarize and onlude in

setion VI.

II. THE TIP SYSTEM AND THE NUMERICAL

APPROACH

The Hamiltonian for TIP in the 1D quasiperiodi po-

tential of the Aubry-Andr�e model is given as

H =

X

n;m

jn;mihn+ 1;mj+ jn;mihn;m+ 1j+ h: :

+ jn;mi [�

n

+ �

m

+ U (n;m)℄ hn;mj : (1)

Here �

m

� 2� os(�m + �) is the quasiperiodi poten-

tial of strength � with �=2� being an irrational num-

ber. � is an arbitrary phase shift and we hoose �=2� =

(

p

5 � 1)=2, i.e., the inverse of the golden mean. This

value of �=2� may be approximated by the ratio of su-

essive Fibonai numbers | F

n

= F

n�2

+ F

n�1

= 0, 1,

2, 3, 5, 8, 13, : : : | as is ustomary in the ontext of

quasiperiodi systems [43℄. The Hubbard onsite intera-

tion matrix U (n;m) is diagonal, i.e., U (n;m) = UÆ

nm

.

The indies n and m orrespond to the positions of eah

partile on a hain of length M . Now we use the dei-

mation method [19,44℄ to onstrut an e�etive Hamilto-

nian for the diagonal of the M �M lattie along whih

the igar-shaped TIP wave funtion has its largest extent

[24,30℄. The quantity of interest is the TIP loalization

length �

2

de�ned by the TIP Green funtion G

2

(E) [25℄:

1

�

2

= �

1

jM � 1j

ln jh1; 1jG

2

jM;M ij: (2)

For TIP in 1D and 2D random potentials, this approah

has led to high preision results supporting the proposed

inrease of the TIP loalization lengths due to the repul-

sive interation [19,20℄. We remark that similar data have

also been obtained for nearest-neighbor [25℄ and long-

ranged interations [23℄.

The orrelation length �

1

for the in�nite system may

be obtained from the loalization lengths �(M ) for �nite

system sizes by the using one-parameter saling hypoth-

esis �

M

= f(M=�

1

) [45℄ for the redued loalization

lengths �

M

= �(M )=M . The MIT is haraterized by a

divergent orrelation length �

1

(�) / j� � �



j

��

[1℄. In

order to reliably extrat the ritial parameters from the

alulated values of �

2

(M ) one may apply a �nite-size-

saling proedure [21℄ that numerially minimizes devia-

tions of the data from the ommon saling urve f . The

ritial exponent � an then be extrated by �tting the

�

1

obtained from �nite-size saling. This method was

used previously [14℄ for �nding the ritial parameters of

the present model.

Higher auray an be ahieved by a method applied

reently [46,47℄ to the MIT in the Anderson model of lo-

alization. We onstrut a family of �t funtions whih

inlude orretions to saling suh as (i) nonlinearities of

the dependene of the saling variable on the quasiperi-

odi potential strength and (ii) an irrelevant saling vari-

able whih aounts for a shift of the rossing point of

the �

M

(�) urves as a funtion of �, i.e.,

�

M

=

~

f (�

r

M

1=�

; �

i

M

y

) : (3)

where �

r

and �

i

are the relevant and irrelevant saling

variables, respetively.

~

f is then Taylor expanded up to

order n

i

in terms of the seond argument

�

M

=

n

i

X

n=0

�

n

i

M

ny

~

f

n

(�

r

M

1=�

) ; (4)

and eah

~

f

n

is Taylor expanded up to order n

r

:

~

f

n

=

n

r

X

i=0

a

ni

�

i

r

M

i=�

: (5)

Nonlinearities are taken into aount by expanding �

r

and �

i

in terms of u = (�



� �)=�



up to order m

r

and

m

i

, respetively,
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�

r

(u) =

m

r

X

n=1

b

n

u

n

; �

i

(u) =

m

i

X

n=0



n

u

n

; (6)

with b

1

= 

0

= 1. The �t funtion is being adjusted

to the data by hoosing the orders n

i

; n

r

;m

r

;m

i

up to

whih the expansions are arried out. Of ourse, the

orders have to be taken not too large to keep the number

of �t parameters a

ni

, b

n

, and 

n

reasonably small.

III. NUMERICAL RESULTS FOR TIP

We have alulated �

2

at energy E = 0 for 20 values of

the Hubbard interation, i.e., U = 0 (the non-interating

single-partile ase), 0:1, : : :, 0:9, 1, 2, : : :, 10 for 6 sys-

tem sizes M = 13, 21, 34, 55, 89, 144. For U = 0 and 1,

we also have data for M = 233 and 377. The quasiperi-

odi potential strengths � were hosen lose to the single-

partile transition at �



� 1 and ranged typially from

0:95 to 1:05. As in Ref. [14℄ we averaged the results over

di�erent randomly hosen phase shifts � in order to re-

due the utuations. The number of � values used in

this averaging ranged from 5000 for M = 13 to 1000 for

M = 377. In order to perform the non-linear �t neessary

for the �nite-size-saling proedure as outlined in setion

II, we used the Levenberg-Marquardt method [47,48℄. As

the deimation method data | like the transfer-matrix-

method results [14℄ | are still rather noisy we have to

suitably limit the ranges of the quasiperiodi potential

strength � and/or the system sizes M used for �tting

the data.

For U = 0 and 1, whih were examined by the transfer-

matrix method in detail [14℄, the best �t was obtained

for n

r

= 3, n

i

= 2, m

r

= 2 and m

i

= 1. For U = 0 we

used the data for � ranging from 0:96 to 1:01 and M =

55; 89; 144; 233, and 377; for U = 1 we used all system

sizes M = 13, : : :, 377 and 0:97 � � � 1:05. Figs. 1 and

2 show the resulting TIP loalization lengths for U = 0

and 1. Also shown are the �ts of the �nite-size-saling

urves to the data as given by Eq. (3) for U = 0 and 1,

respetively. We �nd that for both U values, there is an

apparent transition lose to �



= 1. For the ase U = 0,

we also observe a systemati shift of the rossing point

with inreasing system sizes neessitating the inlusion

of an irrelevant saling variable as disussed in setion

II. The transition point is not so learly distinguished

for U = 1, albeit the di�erent behavior for �

<

�

1 and

�

>

�

1, namely the inrease and derease, respetively, of

�

M

with inreasing M , is learly seen.

The orresponding plots of the saling urves are dis-

played in the insets of Figs. 1 and 2. The saling urves

are muh better than reported previously [14℄ for the

transfer-matrix-method data. The ritial parameters

an onsequently be estimated to be �



= 0:989� 0:001,

� = 1:00 � 0:15 for U = 0 and �



= 0:997 � 0:001,

� = 1:19 � 0:16 for U = 1. The irrelevant saling ex-

ponents are lose to y = 1:8 � 0:2 and y = 0:15 � 0:1

for U = 0 and 1, respetively. Note that the quoted

errors orrespond to the standard deviations estimated

from the non-linear �t proedure. In this way the a-

uray is signi�antly overestimated. Sine it is apriori

not lear, whih values n

i

; n

r

;m

r

;m

i

to use, we estimate

the true errors from a omparison of various �ts with dif-

ferent n

i

; n

r

;m

r

;m

i

. Even in the ase of extremely high

preision data lose to the MIT in the Anderson model

of loalization, this has been shown [47℄ to inrease the

error by one order of magnitude. Therefore we onlude

that the interation strength U for TIP does not inu-

ene the MIT in the quasiperiodi potential within the

auray of the present alulation.

Further results for larger U values are olleted in Ta-

ble I. The expansion orders n

i

; n

r

;m

r

;m

i

, the system

sizes and ranges of the quasiperiodi potential strength

have been hosen in order to minimize the �

2

statistis

and to get the most onvining saling �t. Fig. 3 shows

the values of the ritial quasiperiodi potential strength

�



and the ritial exponent �. For almost all ases

the ritial quasiperiodi potential strength �



remains

lose to 1, the only exeptions are U = 0 and 0:1, when

�



= 0:99 and 0:98, respetively. However, sine we know

that the transition in the single-partile ase is exatly at

�



= 1 [27℄, this observation an be used to estimate the

true error of the estimate for �



. Thus omparing with

the �



estimates for U 6= 0, we �nd that the errors alu-

lated within the non-linear �tting proedure are signi�-

antly underestimated as disussed above. We therefore

onlude that there is no hange of the ritial quasiperi-

odi potential strength within 0 � U � 10 within the

auray of our alulation. The same argument leads to

the onlusion that within the error bars the ritial ex-

ponent � does not hange with the Hubbard interation

strength and is lose to 1. This is an agreement with the

previous results obtained by the transfer-matrix method

and �nite-size saling [14℄. We stress that the ritial ex-

ponents an be obtained with muh less auray than

the transition point �



as shown in Table I.

IV. THE NEAREST-NEIGHBOR HAMILTONIAN

AT FINITE DENSITY AND THE DMRG

Let us now onsider N interating spinless fermions

on a 1D ring of irumferene M in the Aubry-Andr�e

potential suh that

H = �t

X

m

�



y

m+1



m

+ h: :

�

+

V

X

m

n

m+1

n

m

+ 2�

X

m

n

m

os (�m+ �): (7)

The operators 

y

m

, 

m

, and n

m

denote as usual Fermi

reation, annihilation and number operators; �, � and �

3



are de�ned as in the previous setions. In addition, we

set t = 1. The partile density is � = N=M . Again, we

hooseM = F

n

and �=(2�) = F

n�1

=F

n

in order to retain

the periodiity of the quasiperiodi potential on the ring.

The model has been studied extensively in two limits,

namely, V = 0 and � = 0. The �rst ase orresponds of

ourse to the non-interating model disussed briey in

setion I. In the seond ase, the model an be mapped

onto the anisotropi Heisenberg (XXZ) model for whih

a losed Bethe-ansatz solution exists [32{34℄. It shows

three distint phases at zero temperature. For half �ll-

ing (� = 1=2) and strong repulsive interation (V > 2)

the system is a harge-density-wave insulator. For weak

and intermediate interation strength and away from half

�lling it is a metal and an be desribed as a Luttinger

liquid with linear energy dispersion and gapless exita-

tions [35,49℄. The metal, at least, is separated for all

�llings by a �rst-order transition at V = �2 from an insu-

lator where the fermions form lusters (phase-separated

state), orresponding to the ferromagneti state of the

spin model [34℄.

In a previous analysis [31℄ of the interating quasiperi-

odi model (7), a large enhanement of the Drude weight

D (or Kohn sti�ness) [50℄ and the superonduting u-

tuations in the ground state was found near the �rst-

order transition at V � �2 using exat Lanzos diagonal-

ization. However, the system sizes attainable by the diag-

onalization were restrited toM � 13. Using the DMRG,

it is possible to extend the tratable system lengths to

aboutM � 100�200. We use the �nite lattie algorithm

for non-reetionsymmetri models as desribed in [52℄.

In our simulations we perform �ve lattie sweeps and

keep 300 (small systems) to 500 (larger systems, M =89

and 144) states per blok. As our observable of the phase

transition we hoose the phase sensitivity

M�E = M (�1)

N

[E(0)� E(�)℄ (8)

of the ground state [41℄, whih is onneted to D in the

lean ase (Luttinger phase) and equal to �

2

D for non-

interating fermions. Here E(�) measures the reation

of the system due to a twist in the boundary ondition,



M+1

= exp(i�)

1

[35,36℄. The prefator (�1)

N

anels

the odd-even e�ets [51℄. In addition, it is believed that

the phase sensitivity mathes the harater of the wave

funtion. It does not depend on system size if the wave

funtion is extended, e.g., for � = 0, and it dereases

exponentially for large systems if the wave funtion is lo-

alized [41℄. As argued in Ref. [31℄ this an be transferred

to the ritial ase. Therefore, we suppose that the phase

sensitivity dereases algebraially with inreasing system

size, if the wave funtion is ritial. Thus, we have to

ompare at the very least three di�erent hain lengths in

order to haraterize the length dependene of the wave

funtion.

In order to do so reliably, we should omputeM�E for

these di�erent hain lengths at the same partile density

�. However, inommensurate | ompared to the wave

vetor of the quasiperiodi potential | partile densi-

ties are diÆult to treat if we use M = F

n

as in the

previous setions. For example, half �lling an only be

realized for even system size, i.e., for M = 34, 144, and

610, one-third �lling for M = 21, 144, 987. In priniple,

suh large system sizes M > 500 an be treated within

the DMRG [52℄, but the required auray (10

�6

) is very

hard to obtain for periodi boundary onditions. In ad-

dition, if the phase sensitivity dereases with system size,

there is no possibility to deide whether the derease is

algebrai or exponential beause the obtained value of

M�E for suh large system sizes is already zero within

the omputational auray. For example, let us briey

omment on the non-interating ase with � = 1=2. Us-

ing a standard diagonalization routine, we investigate the

system sizesM = 34, 144, and 610. M = 8 is exluded

beause �=(2�) = 5=8 = 0:625 di�ers too muh from

the true value (

p

5 � 1)=2 � 0:618. As shown in Fig. 4,

the phase sensitivity at V = 0 is learly di�erent in the

loalized, ritial and extended regimes. Thus, for a sys-

tem of free fermions at �nite density, we reprodue the

expeted transition at �



= 1 in agreement with Refs.

[14,31℄. Although similar plots an be made for attra-

tive and repulsive interations at � = 1=2 as also shown

in Fig. 4, unfortunately, with only two system sizes avail-

able (M = 34 and 144) for the interating system, further

onlusions appear rather speulative. We remark that

our attempts to simulate inommensurate densities like

� = 1=4, 1=3, 1=2 at �xed �=2� = (

p

5� 1)=2 for system

lengths M 6= F

n

by averaging over the �'s failed. No sig-

ni�ant length dependene of the phase sensitivity ould

be deteted using these densities and system lengths.

V. NUMERICAL RESULTS FOR FINITE

PARTICLE DENSITY

For the reasons outlined in the last setion, we shall

study the behavior at the ommensurate densities �

i

�

lim

n!1

F

n�i

=F

n

� 0:618, 0:382, 0:236, and 0:146 orre-

sponding to i = 1; : : : ; 4 in the following, where � = 2��

1

.

We �rst note that the ase of �

1

is idential to �

2

due

to the partile-hole symmetry in Eq. (7). Averaging

over di�erent � values was not neessary sine the om-

puted ground-state energy of the �nite-density Hamilto-

nian does not depend on � forM = F

n

, i.e., if we inlude

a omplete period of the potential in the ring.

In Fig. 5, we summarize our results by showing two

phase diagrams of model (7) for varying quasiperiodi

potential strength � and nearest-neighbor interation V .

They were obtained by studying the system size behavior

of M�E up to M = 144 for �

3

= 0:236 and �

4

= 0:146.

As an example how well the transition point is de�ned

numerially onsider Fig. 6. The loalized regime extends

further on to larger interations, �1:4

<

�

V < 1, for �

3

4



and � > 0 as well as for �

4

and �

>

�

0:1. This part of the

phase diagram is not shown, beause it has no additional

struture. Thus, in the repulsive regime (V > 0), we �nd

that the ground state is loalized for � > 0. This is in

agreement with previous studies for disordered and pe-

riodially disturbed systems [15,41℄. We emphasize that

an inrease of the loalization lengths as predited by the

arguments for TIP [10℄ in setions II and III is most likely

too small [16℄ to be deteted by the present auray.

For attrative interations, the situation is more in-

teresting. For all densities �

i

and � ! 0, the system

shows Peierls-like behavior, i.e., a transition from insu-

lating to metalli phase at V � �1:4. An equivalent

ritial behavior is found in the periodi hopping model,

where the site-dependent hopping amplitude is given by

t

m

= 1 � Æ os qm instead of t. In this model, whih

is usually alled the Peierls [53℄ or Su-Shrie�er-Heeger

model [54℄, the MIT ours at V = �

p

2 and Æ ! 0, if

�lling fator � and wave vetor q of the periodi hopping

are ommensurate, i.e., � = q=(2�) or q = 2k

F

, [41℄. This

happens for � = 1=2 and dimerization, one-third �lling

and trimerization, and so on. The quasiperiodi model is

expeted to show this transition, at densities �

1

and �

2

,

beause � = 2k

F

in these ases. Even for the other om-

mensurate densities �

3

, �

4

, : : :, the ritial behavior is

similar to the periodi potential or Peierls (periodi hop-

ping) ase as shown in Ref. [42℄ although the resonane

ondition is not stritly valid. In our ase, the numerial

data obtained for �

3

and �

4

show the Peierls transition

at V � �1:4 and � ! 0 for �

3

and at V � �1:5 and

� > 0:1 for �

4

, f. Fig. 5. Hene, the transition ours

for dereasing partile density at inreasing �. This ob-

servation is on�rmed by an investigation of the energy

spetrum. In the non-interating ase it ontains no gap

at � = 0 but M � 1 gaps at � = 1 for the given � [55℄.

As seen in Ref. [56℄ most of the gaps open suessively

for inreasing �. Espeially, the �rst gap at �=2 opens

for � ! 0. Tuning the �lling fator, the Fermi points

fall into the additional gaps in the spetrum, leading to

insulating behavior.

In addition, the behavior seen numerially is in agree-

ment with the weak-oupling RG treatment [42℄ of spin-

less fermions on a Fibonai lattie. The RG equations

show the same ritial behavior as for the Peierls model,

namely

d�

d lnM

= (2�K)�; (9)

where K = �=2 aros (�V=2) is the Luttinger parameter

for half �lling. Sine the Luttinger parameter does not

depend strongly on the �lling, it is valid to use this an-

alytial expression for other �llings, too. In aordane

with this RG equation we expet, that the phase sensi-

tivity | as in a disordered system [15℄ | dereases in

the loalized regime suh that

M�E � e

�M=�

with �

�1

� �

2=(2�K)

; (10)

where it is assumed that the loalization length � is the

only relevant length sale. This behavior is learly found

in the numerial data for, e.g., �

3

and V = �0:6 as shown

in Fig. 7. Near the phase transition, it is numerially dif-

�ult to distinguish learly between loalized and ritial

phases. First, for small system sizes and small �, the

derease in the phase sensitivity is always algebrai, a-

ording to the RG equation. Seond, the exponential

derease with � sets in far from the transition points as

shown in Fig. 8. We all this intermediate region, where

no universal algebrai or exponential derease is found,

transition region. For �

4

, it is diÆult to detet and is

not separately marked in Fig. 5. There we an only dis-

tinguish whether the phase sensitivity dereases or not.

Furthermore, for small �

<

�

0:2, the �rst order phase

transition at V = �2 remains una�eted. However,

for larger � values, the metalli phase extends towards

smaller V values. In omparison to the features of the

models with periodi or random distortions, the phase

sensitivity shows an unexpeted sharp maximum | as

already observed in Ref. [31℄ | for �

>

�

0:8 at V

<

�

�2.

A similar maximum is also seen for � > 1 and small

system sizes (M = 34), nevertheless the system is insu-

lating. The exponential saling in the loalized region as

shown in Fig. 7 or Fig. 8 does not hange for V > �2 and

V < �2 in the ase of large �. Therefore, we onlude

that this regime belongs to the quasiperiodi potential

loalized regime. On the other hand, no saling behav-

ior is found for V < �2 and small � (lower left orner

in the phase diagram). Here, the loalization is due to

the formation of partile lusters in the phase-separated

state. In the rossover regime between these two loal-

ized phases a metalli state is reovered.

VI. CONCLUSIONS

In this work, we have studied and ompared the in-

terplay of disorder and interations for a quantum sys-

tem at very low (TIP) and �nite densities. For TIP, we

alulated the pair loalization lengths for a quasiperi-

odi potential and Hubbard interation by means of the

deimation method and obtained the ritial parameters

from the �t using the one-parameter saling hypothesis.

For non-interating partiles and the onsite interation

we get the value of the ritial quasiperiodi potential

strength �



= 1 and the ritial exponent � � 1 in agree-

ment with the results of transfer-matrix-method alula-

tions and �nite-size saling [14℄. The results for U > 1

show that this onlusion remains valid also for muh

stronger interations.

For densities �

3

and �

4

, we have dedued the phase dia-

grams of the nearest-neighbor interating system (7) for

varying quasiperiodi potential strength � and intera-

tion V by the DMRG. The numerially aessible �lling

fators whih are ommensurate with the quasiperiodi

5



potential yield a Peierls-like behavior of the system. The

transition at �



= 1 is only seen for inommensurate �ll-

ing or �xed partile number.

In summary, we have studied the inuene of intera-

tions on an MIT in a quasiperiodi model in 1D. Our

results suggest that the deloalization found previously

for low density TIP in the loalized phase annot simply

be extrapolated to the �nite-density situation. At �nite

densities, other e�ets suh as a Peierls-like ommensu-

rability beome important and dominate the transport

properties.
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TABLE I. Values of the ritial quasiperiodi disorder strength �



and the ritial exponent � obtained by the non-linear

�t for various U values. The �rst row for eah U gives values and the orders n

i

, m

i

, used in the expansion (4{6), for whih the

best �ts have been obtained. In all ases we �nd n

r

= 3 and m

r

= 2. For � and M the range of the values whih were used in

the �t is given. The seond row ontains values of the ritial parameters obtained from a weighted average of �ts for various

hoies of n

i

and m

i

.

U � M n

i

m

i

�



�

0 0:96 � 1:01 55 � 377 2 1 0:989�0:001 1:00�0:15

0:95 � 1:05 13 � 377 0� 2 0� 1 0:99 �0:02 1:3 �0:5

1 0:97 � 1:05 13 � 377 2 1 0:997�0:001 1:19�0:16

0:95 � 1:05 13 � 377 0� 2 0� 1 0:99 �0:01 1:3 �0:4

2 0:97 � 1:05 55 � 144 0 0 1:001�0:002 1:14�0:11

0:95 � 1:05 13 � 144 0� 2 0� 1 0:99 �0:02 1:5 �1

3 0:95 � 1:05 13 � 144 2 1 1:000�0:002 1:16�0:08

0:95 � 1:05 13 � 144 0� 2 0� 1 1:00 �0:02 1:8 �1

4 0:97 � 1:05 55 � 144 0 0 1:000�0:003 1:12�0:10

0:95 � 1:05 13 � 144 0� 2 0� 1 1:00 �0:01 1:5 �0:8

5 0:95 � 1:05 13 � 144 1 1 1:002�0:002 1:20�0:09

0:95 � 1:05 13 � 144 0� 2 0� 1 1:00 �0:01 1:2 �0:3

6 0:95 � 1:05 55 � 144 0 0 0:999�0:002 1:28�0:08

0:95 � 1:05 13 � 144 0� 2 0� 1 1:00 �0:02 1:3 �0:1

7 0:95 � 1:05 55 � 144 0 0 0:997�0:002 1:28�0:07

0:95 � 1:05 13 � 144 0� 2 0� 1 1:00 �0:01 1:5 �0:6

8 0:97 � 1:05 55 � 144 0 0 1:001�0:002 1:16�0:08

0:95 � 1:05 13 � 144 0� 2 0� 1 0:99 �0:02 1:4 �0:4

9 0:97 � 1:05 13 � 144 1 1 1:000�0:001 1:15�0:05

0:95 � 1:05 13 � 144 0� 2 0� 1 1:00 �0:01 1:4 �0:5

10 0:97 � 1:05 55 � 144 0 0 1:000�0:002 1:23�0:08

0:95 � 1:05 13 � 144 0� 2 0� 1 1:00 �0:01 1:4 �0:4
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FIG. 1. Redued loalization lengths �

M

versus quasiperi-

odi disorder strength � for U = 0. For larity, only error bars

for M = 55 and 377 are given. The lines are the �ts to the

data given by Eq. (3). Inset: Saling funtion (thik line) and

saled data points. Only every 4th data point is represented

by a symbol for larity.
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FIG. 2. Redued loalization lengths �

M

versus quasiperi-

odi disorder strength � for U = 1. For larity, only error bars

forM = 377 are given. The lines are the �ts to the data given

by Eq. (3). Inset: Saling funtion (thik line) and saled data

points. Only every 4th data point is represented by a symbol

for larity.
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FIG. 3. The ritial quasiperiodi potential strength �



(upper panel) and the ritial exponent � (lower panel) ver-

sus Hubbard interation strength U . Error bars mark the er-

rors resulting from the Levenberg-Marquardt method of the

non-linear �t.
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FIG. 4. Phase sensitivity versus system size for V = �1

(squares), 0 (irles), 1 (diamonds) at half �lling. The three

ases � = 0:9 (solid lines) , � = 1 (dashed lines), and � = 1:1

(dotted lines) are ompared.
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FIG. 5. Phase diagrams of the system desribed by Eq.

(7) in terms of quasiperiodi potential strength � and the

interation V for � = �

3

(left side) and � = �

4

(right side).

An extended ground state wave funtion is marked by �, a

loalized by �. In addition, the transition regime (see text)

is marked with a shaded 2 in the left �gure. The solid lines

indiate the �rst-order transition at V = �2.
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FIG. 6. Phase sensitivity versus interation for three dif-

ferent system sizes, density �

3

and � = 0:4. The lines for

M = 34 and 89 are guides to the eye, highlighting the di�er-

ent �nite-size-saling behaviors in the various regimes. The

dotted lines indiate the transition between the loalized and

the extended wave funtions.
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FIG. 7. Phase sensitivity versus saled system size

M�

2=(2�K)

, where M = 34, 55, and 89, for V = �0:6, �lling

� = �

3

, and various potential strengths. The line indiates a

plot of Eq. (10) with K = �=2 aros(0:3) � 1:24.
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FIG. 8. Phase sensitivity versus saled system size,

M = 34, 55, and 89, for V = �1:5 and �

3

. The straight

line is a �t to the data for � = 0:7 and 0:8.
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