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We study the influence of many-particle interactions on a metal-insulator transition.

First, we

consider the two-interacting-particle problem for onsite interacting particles on a one-dimensional

quasiperiodic chain, the so-called Aubry-André model.

We show numerically by the decimation

method and finite-size scaling that the interaction does not modify the critical parameters such as
the transition point and the localization-length exponent. Second, we employ the density-matrix
renormalization scheme to investigate the finite density situation. We map out the entire phase
diagram and find that there is a Peierls-like transition into a metallic state for attractive interactions.
Our results also show agreement with a recent analytic renormalization group approach.

71.30.4+h,71.27.+a

I. INTRODUCTION

The metal-insulator transition (MIT) in disordered
electronic systems has been the subject of intense re-
search activities over the last two decades and still con-
tinues to attract much attention. For free electrons in
disordered systems [m] the scaling hypothesis of localiza-
tion [E] can successfully predict many of the universal
features of the MIT. However, the influence of many-
particle interactions on the MIT is not equally well un-
derstood [B] and recent investigations of an apparent MIT
in two-dimensional (2D) systems even question the main
assumptions of the scaling hypothesis [Hﬂ] A simple
theoretical approach to the interplay of interactions and
disorder is based on the two-interacting-particles (TIP)
problem in 1D random @ﬂ] or quasiperiodic poten-
tials @,@] Furthermore, numerical results for spin-
less fermions at finite particle density have given addi-
tional insight [@,E] In general, these investigations
have shown that changes in the wave function interfer-
ences due to many-particle interactions [E, can lead
to a rather large enhancement of the localization lengths
in 1D and 2D [[[6,[[9,p0).

The standard approach for computing localization
lengths in disordered, non-interacting systems is the
transfer-matrix method [@] It has been used for in-
vestigations of the enhancement of the TIP localization
length in a 1D random potential [@,@] where there is no
MIT as all wave functions are always localized. Other nu-
merical approaches to the TIP problem have been based
on the time evolution of wave packets [E,, exact diag-
onalization [@] or Green function approaches [[L4,R3,R4].

In the single-particle case, the 1D quasiperiodic Aubry-
André model is known rigorously to exhibit an MIT for
all states in the spectrum as a function of the quasiperi-
odic potential strength p @] The ground state wave
function is extended for g < 1 and localized for p > 1.

The system at p. = 1 is critical: there the wave functions
decrease algebraically, not exponentially as in the local-
ized case. Recently, we examined this model for TIP
by means of the transfer-matrix method together with
a careful finite-size-scaling analysis ] following earlier
analytical work of Refs. [@,E] We showed that the
model for TIP exhibits an MIT as a function of p at
e = 1 as in the single-particle case. Our finite-size-
scaling results for onsite (Hubbard) interaction suggest
that the critical behavior, i.e., the value for the critical
exponent v of the correlation length, is also not affected
by the interaction [[14]. However, it has been demon-
strated [@,E] that a transfer-matrix-method approach
applied to the TIP problem without finite-size scaling
leads to unreliable localization lengths, i.e., it system-
atically overestimates the TIP localization length A, in
finite-sized samples in the case of vanishing interaction
(U = 0). In addition, simple extrapolations to infinite
sample size [, may lead to an underestimation of A,
[BA]. An alternative approach, which does not suffer from
the above problem, is based on the decimation method
and has also been applied recently to TIP in a 1D random
potential ] This encouraged us to reexamine the lo-
calization lengths for TIP in 1D quasiperiodic potentials
with Hubbard interaction with the decimation method.
As we shall show in the following, we find that the gen-
eral conclusions of Ref. [B] remain valid, i.e., the MIT is
not affected by the interaction.

As an independent extension of these low-density re-
sults, Chaves and Satija [ have studied a model of
nearest-neighbor interacting spinless fermions [@«@] at
finite particle density in the same quasiperiodic potential
by means of Lanczos diagonalization for small systems up
to chain size M = 13. They find evidence for a critical re-
gion in which the behavior of the charge stiffness [@—@]
is different from its behavior in the metallic and localized
regimes. In order to reach much larger system sizes for



interacting systems, we employ the numerical density-
matrix renormalization group (DMRG) [B] which has
been shown to be very useful @] In particular, the
ground state properties of interacting many-particle sys-
tems in 1D can be obtained very accurately [@, In
the present paper, we shall study the quasiperiodic model
of Ref. [B1] at various densities and interaction strengths
V by DMRG and compare our results to the TIP data.

Our results show that in the low-density TIP case,
the critical properties of the single-particle transition at
tte = 1 are not altered within the accuracy of our calcula-
tion. One-parameter scaling is obeyed for onsite interac-
tion strengths up to U = 10. For the interacting many-
body system in a quasiperiodic potential we recover the
single-particle transition at . = 1, provided we consider
densities like p = 1/2 which are incommensurate com-
pared to the wave vector of the quasiperiodic potential
— an irrational multiple of . On the other hand, for
commensurate densities, we find that the system can be
completely localized even for ¢ <« 1. Whereas for re-
pulsive interactions the ground state remains localized,
we find a region of extended states for attractive inter-
action due to a Peierls resonance between electronic and
quasiperiodic potential degrees of freedom. The behav-
ior may be described by a weak-coupling renormalization
group (RG) treatment [

The paper is organized as follows. In section ﬂ we de-
scribe the Hamiltonian of our TIP system and explain
how to obtain the TIP localization lengths via decima-
tion method. In section , we comment on the partic-
ular finite-size-scaling method employed and present the
estimated critical parameters. The finite-density many-
body system is introduced in section m and results are
presented in section [Vl We summarize and conclude in
section m

II. THE TIP SYSTEM AND THE NUMERICAL
APPROACH

The Hamiltonian for TIP in the 1D quasiperiodic po-
tential of the Aubry-André model is given as

= n,myn+1,ml+|n,mn m+1+h. c
H=3[|n,m)(n+1,m|+|n,m) Il +h

n,m

 lmom) [+ o+ Ulnem)] (oma] . (1)

Here g, = 2pcos(am + ) is the quasiperiodic poten-
tial of strength pu with «/27 being an irrational num-
ber. § is an arbitrary phase shift and we choose o /27 =
(V5 — 1)/2, i.e., the inverse of the golden mean. This
value of a/27 may be approximated by the ratio of suc-
cessive Fibonacci numbers — F, = Fj,_o+ F,_1 =0, 1,
2, 3,5, 8, 13, ... — as is customary in the context of
quasiperiodic systems [¢3]. The Hubbard onsite interac-
tion matrix U(n,m) is diagonal, i.e., U(n,m) = Udpm.

The indices n and m correspond to the positions of each
particle on a chain of length A/. Now we use the deci-
mation method [[Ll,f4] to construct an effective Hamilto-
nian for the diagonal of the M x M lattice along which
the cigar-shaped TIP wave function has its largest extent
[@,. The quantity of interest 1s the TIP localization
length As defined by the TTP Green function Gz(FE) [@]

1 1

— = ——In[{1,1|Gz| M, M)|. 2
5 = oy L Gl )] @)

For TIP in 1D and 2D random potentials, this approach
has led to high precision results supporting the proposed
increase of the TIP localization lengths due to the repul-
sive interaction ,@] We remark that similar data have
also been obtained for nearest-neighbor [@] and long-
ranged interactions [R3].

The correlation length &, for the infinite system may
be obtained from the localization lengths A(M) for finite
system sizes by the using one-parameter scaling hypoth-
esis Ay = f(M/és) [BF) for the reduced localization
lengths Ayr = A(M)/M. The MIT is characterized by a
divergent correlation length &, (p) o | — pe|™ [l]. In
order to reliably extract the critical parameters from the
calculated values of A2(M) one may apply a finite-size-
scaling procedure [ that numerically minimizes devia-
tions of the data from the common scaling curve f. The
critical exponent v can then be extracted by fitting the
& obtained from finite-size scaling. This method was
used previously [@] for finding the critical parameters of
the present model.

Higher accuracy can be achieved by a method applied
recently [@,@] to the MIT in the Anderson model of lo-
calization. We construct a family of fit functions which
include corrections to scaling such as (i) nonlinearities of
the dependence of the scaling variable on the quasiperi-
odic potential strength and (ii) an irrelevant scaling vari-
able which accounts for a shift of the crossing point of
the Apr(p) curves as a function of y, i.e.,

Apr = FOMYY oMYy (3)

where x; and x; are the relevant and irrelevant scaling
variables, respectively. f i1s then Taylor expanded up to
order nj in terms of the second argument

Ay = ZXinMny.fn(Xer/y) ) (4)

n=0

and each fn 1s Taylor expanded up to order n.:

n,
fo= anaM (5)

i=0
Nonlinearities are taken into account by expanding x;

and y; in terms of u = (pe — p)/ptc up to order m; and
m;, respectively,



mi

xr(u) = Zr: bou”,  xi(u) = Z epu” (6)

n=0

with by = ¢ = 1. The fit function is being adjusted
to the data by choosing the orders ni, n., m,, m; up to
which the expansions are carried out. Of course, the
orders have to be taken not too large to keep the number
of fit parameters a,;, b,, and ¢, reasonably small.

III. NUMERICAL RESULTS FOR TIP

We have calculated Ay at energy F = 0 for 20 values of
the Hubbard interaction, i.e., U = 0 (the non-interacting
single-particle case), 0.1, ..., 0.9, 1, 2, ..., 10 for 6 sys-
tem sizes M = 13, 21, 34, 55, 89, 144. For U = 0 and 1,
we also have data for M = 233 and 377. The quasiperi-
odic potential strengths p were chosen close to the single-
particle transition at p. & 1 and ranged typically from
0.95 to 1.05. As in Ref. ] we averaged the results over
different randomly chosen phase shifts 8 in order to re-
duce the fluctuations. The number of 8 values used in
this averaging ranged from 5000 for M = 13 to 1000 for
M = 377. In order to perform the non-linear fit necessary
for the finite-size-scaling procedure as outlined in section
E, we used the Levenberg-Marquardt method [@,@] As
the decimation method data — like the transfer-matrix-
method results [E] — are still rather noisy we have to
suitably limit the ranges of the quasiperiodic potential
strength g and/or the system sizes M used for fitting
the data.

For U = 0 and 1, which were examined by the transfer-
matrix method in detail [I4], the best fit was obtained
forn, =3, n;, =2, my =2 and m; = 1. For U = 0 we
used the data for p ranging from 0.96 to 1.01 and M =
55,89,144,233, and 377; for U = 1 we used all system
sizes M =13, ..., 377 and 0.97 < p < 1.05. Figs. Eland
E show the resulting TIP localization lengths for U = 0
and 1. Also shown are the fits of the finite-size-scaling
curves to the data as given by Eq. () for U = 0 and 1,
respectively. We find that for both U values, there is an
apparent transition close to p. = 1. For the case U =0,
we also observe a systematic shift of the crossing point
with increasing system sizes necessitating the inclusion
of an irrelevant scaling variable as discussed in section
E. The transition point is not so clearly distinguished
for U = 1, albeit the different behavior for p < 1 and
it 2 1, namely the increase and decrease, respectively, of
Ajps with increasing M, is clearly seen.

The corresponding plots of the scaling curves are dis-
played in the insets of Figs. [I| and E The scaling curves
are much better than reported previously [@] for the
transfer-matrix-method data. The critical parameters
can consequently be estimated to be p. = 0.989 4 0.001,
v = 1.00 £ 0.15 for U = 0 and p. = 0.997 £ 0.001,

v = 1.194+ 0.16 for U = 1. The irrelevant scaling ex-
ponents are close to y = 1.8 £ 0.2 and y = 0.15+ 0.1
for U = 0 and 1, respectively. Note that the quoted
errors correspond to the standard deviations estimated
from the non-linear fit procedure. In this way the ac-
curacy is significantly overestimated. Since it i1s apriori
not clear, which values nj, n., m;, m; to use, we estimate
the true errors from a comparison of various fits with dif-
ferent ny, ny, my, m;. Even in the case of extremely high
precision data close to the MIT in the Anderson model
of localization, this has been shown [@] to increase the
error by one order of magnitude. Therefore we conclude
that the interaction strength U for TIP does not influ-
ence the MIT in the quasiperiodic potential within the
accuracy of the present calculation.

Further results for larger U values are collected in Ta-
ble ﬂ The expansion orders nji, n., m;, m;, the system
sizes and ranges of the quasiperiodic potential strength
have been chosen in order to minimize the y? statistics
and to get the most convincing scaling fit. Fig. B| shows
the values of the critical quasiperiodic potential strength
te and the critical exponent v. For almost all cases
the critical quasiperiodic potential strength p. remains
close to 1, the only exceptions are U = 0 and 0.1, when
e = 0.99 and 0.98, respectively. However, since we know
that the transition in the single-particle case is exactly at
e =1 [@], this observation can be used to estimate the
true error of the estimate for p.. Thus comparing with
the p. estimates for U # 0, we find that the errors calcu-
lated within the non-linear fitting procedure are signifi-
cantly underestimated as discussed above. We therefore
conclude that there is no change of the critical quasiperi-
odic potential strength within 0 < U < 10 within the
accuracy of our calculation. The same argument leads to
the conclusion that within the error bars the critical ex-
ponent v does not change with the Hubbard interaction
strength and is close to 1. This is an agreement with the
previous results obtained by the transfer-matrix method
and finite-size scaling [@] We stress that the critical ex-
ponents can be obtained with much less accuracy than
the transition point p. as shown in Table m

IV. THE NEAREST-NEIGHBOR HAMILTONIAN
AT FINITE DENSITY AND THE DMRG

Let us now consider N interacting spinless fermions

on a 1D ring of circumference M in the Aubry-André
potential such that

H = —tZ (c;rn_l_lcm + h. c.) +
Van_Hnm + Quan cos (am + 3). (7)

The operators ¢! | ¢, and n, denote as usual Fermi
creation, annihilation and number operators; «,  and pu



are defined as in the previous sections. In addition, we
set t = 1. The particle density is p = N/M. Again, we
choose M = F,, and o/ (27) = Fj,_1/F), in order to retain
the periodicity of the quasiperiodic potential on the ring.
The model has been studied extensively in two limits,
namely, V = 0 and g = 0. The first case corresponds of
course to the non-interacting model discussed briefly in
section m In the second case, the model can be mapped
onto the anisotropic Heisenberg (XXZ) model for which
a closed Bethe-ansatz solution exists @@] It shows
three distinct phases at zero temperature. For half fill-
ing (p = 1/2) and strong repulsive interaction (V' > 2)
the system is a charge-density-wave insulator. For weak
and intermediate interaction strength and away from half
filling it i1s a metal and can be described as a Luttinger
liquid with linear energy dispersion and gapless excita-
tions [@,@] The metal, at least, 1s separated for all
fillings by a first-order transition at V = —2 from an insu-
lator where the fermions form clusters (phase-separated
state), corresponding to the ferromagnetic state of the
spin model [B4].

In a previous analysis [@] of the interacting quasiperi-
odic model ([), a large enhancement of the Drude weight
D (or Kohn stiffness) [pd] and the superconducting fluc-
tuations in the ground state was found near the first-
order transition at V & —2 using exact Lanczos diagonal-
ization. However, the system sizes attainable by the diag-
onalization were restricted to M < 13. Using the DMRG,
it is possible to extend the tractable system lengths to
about M & 100—200. We use the finite lattice algorithm
for non-reflectionsymmetric models as described in [@]
In our simulations we perform five lattice sweeps and
keep 300 (small systems) to 500 (larger systems, M =89
and 144) states per block. As our observable of the phase
transition we choose the phase sensitivity

MAE = M(=1)N[E(0) — E(r)] (8)

of the ground state [{1]], which is connected to D in the
clean case (Luttinger phase) and equal to 72D for non-
interacting fermions. Here E(®) measures the reaction
of the system due to a twist in the boundary condition,
emy1 = exp(id)ey %] The prefactor (—1)Y cancels
the odd-even effects [Blf]. In addition, it is believed that
the phase sensitivity matches the character of the wave
function. It does not depend on system size if the wave
function is extended, e.g., for g = 0, and it decreases
exponentially for large systems if the wave function is lo-
calized [[H]]. As argued in Ref. [BI] this can be transferred
to the critical case. Therefore, we suppose that the phase
sensitivity decreases algebraically with increasing system
size, if the wave function is critical. Thus, we have to
compare at the very least three different chain lengths in
order to characterize the length dependence of the wave
function.

In order to do so reliably, we should compute M AFE for
these different chain lengths at the same particle density

p. However, incommensurate — compared to the wave
vector of the quasiperiodic potential — particle densi-
ties are difficult to treat if we use M = F,, as in the
previous sections. For example, half filling can only be
realized for even system size, i.e., for M = 34, 144, and
610, one-third filling for M = 21, 144, 987. In principle,
such large system sizes M > 500 can be treated within
the DMRG [@], but the required accuracy (107°) is very
hard to obtain for periodic boundary conditions. In ad-
dition, if the phase sensitivity decreases with system size,
there is no possibility to decide whether the decrease is
algebraic or exponential because the obtained value of
MAFE for such large system sizes is already zero within
the computational accuracy. For example, let us briefly
comment on the non-interacting case with p = 1/2. Us-
ing a standard diagonalization routine, we investigate the
system sizesM = 34, 144, and 610. M = 8 1s excluded
because a/(27) = 5/8 = 0.625 differs too much from
the true value (v/5 — 1)/2 & 0.618. As shown in Fig. |,
the phase sensitivity at V = 0 is clearly different in the
localized, critical and extended regimes. Thus, for a sys-
tem of free fermions at finite density, we reproduce the
expected transition at g = 1 in agreement with Refs.
[@,@] Although similar plots can be made for attrac-
tive and repulsive interactions at p = 1/2 as also shown
in Fig. E, unfortunately, with only two system sizes avail-
able (M = 34 and 144) for the interacting system, further
conclusions appear rather speculative. We remark that
our attempts to simulate incommensurate densities like
p=1/4,1/3,1/2 at fixed a/21 = (/5 — 1)/2 for system
lengths M # F,, by averaging over the ’s failed. No sig-
nificant length dependence of the phase sensitivity could
be detected using these densities and system lengths.

V. NUMERICAL RESULTS FOR FINITE
PARTICLE DENSITY

For the reasons outlined in the last section, we shall
study the behavior at the commensurate densities p; &
lim,, oo Fruei/Fp &2 0.618, 0.382, 0.236, and 0.146 corre-
sponding to i = 1,...,41n the following, where o = 27p; .
We first note that the case of py is identical to py due
to the particle-hole symmetry in Eq. (ﬂ) Averaging
over different 3 values was not necessary since the com-
puted ground-state energy of the finite-density Hamilto-
nian does not depend on 3 for M = Fj,, i.e., if we include
a complete period of the potential in the ring.

In Fig. E, we summarize our results by showing two
phase diagrams of model (ﬂ) for varying quasiperiodic
potential strength p and nearest-neighbor interaction V.
They were obtained by studying the system size behavior
of MAE up to M = 144 for ps = 0.236 and ps = 0.146.
As an example how well the transition point is defined
numerically consider Fig. E The localized regime extends
further on to larger interactions, —1.4 <V < oo, for p3



and p > 0 as well as for pg and p 2 0.1. This part of the
phase diagram is not shown, because it has no additional
structure. Thus, in the repulsive regime (V' > 0), we find
that the ground state is localized for g > 0. This is in
agreement with previous studies for disordered and pe-
riodically disturbed systems [B, We emphasize that
an increase of the localization lengths as predicted by the
arguments for TTP [@] in sections E and [11) is most likely
too small ] to be detected by the present accuracy.

For attractive interactions, the situation is more in-
teresting. For all densities p; and g — 0, the system
shows Peierls-like behavior, i.e., a transition from insu-
lating to metallic phase at V & —1.4. An equivalent
critical behavior is found in the periodic hopping model,
where the site-dependent hopping amplitude is given by
t;m, = 1 — §cosgm instead of . In this model, which
is usually called the Peierls [p3] or Su-Schrieffer-Heeger
model [@], the MIT occurs at V = —/2 and § — 0, if
filling factor p and wave vector ¢ of the periodic hopping
are commensurate, i.e., p = ¢/(27) or ¢ = 2kp, [@] This
happens for p = 1/2 and dimerization, one-third filling
and trimerization, and so on. The quasiperiodic model is
expected to show this transition, at densities p; and p2,
because o = 2kg 1n these cases. Even for the other com-
mensurate densities ps, pa, ..., the critical behavior is
similar to the periodic potential or Peierls (periodic hop-
ping) case as shown in Ref. [@] although the resonance
condition is not strictly valid. In our case, the numerical
data obtained for ps and ps show the Peierls transition
at V& —1.4 and g — 0 for p3 and at V =~ —1.5 and
u > 0.1 for pa, cf. Fig. E Hence, the transition occurs
for decreasing particle density at increasing p. This ob-
servation is confirmed by an investigation of the energy
spectrum. In the non-interacting case 1t contains no gap
at 4 = 0 but M — 1 gaps at g = 1 for the given « [%]
As seen in Ref. [@] most of the gaps open successively
for increasing p. Especially, the first gap at «/2 opens
for ¢ — 0. Tuning the filling factor, the Fermi points
fall into the additional gaps in the spectrum, leading to
insulating behavior.

In addition, the behavior seen numerically is in agree-
ment with the weak-coupling RG treatment [@] of spin-
less fermions on a Fibonacci lattice. The RG equations
show the same critical behavior as for the Peierls model,
namely

d

= (2 K, (9)
where K = m/2 arccos (—V/2) is the Luttinger parameter
for half filling. Since the Luttinger parameter does not
depend strongly on the filling, it is valid to use this an-
alytical expression for other fillings, too. In accordance
with this RG equation we expect, that the phase sensi-
tivity — as in a disordered system [@] — decreases in
the localized regime such that

MAE ~ e~ M& with ¢! ~ p?/(=K)

: (10)

where 1t is assumed that the localization length & is the
only relevant length scale. This behavior is clearly found
in the numerical data for, e.g., p3 and V' = —0.6 as shown
in Fig. ﬂ Near the phase transition, it is numerically dif-
ficult to distinguish clearly between localized and critical
phases. First, for small system sizes and small g, the
decrease in the phase sensitivity is always algebraic, ac-
cording to the RG equation. Second, the exponential
decrease with £ sets in far from the transition points as
shown in Fig. E We call this intermediate region, where
no universal algebraic or exponential decrease is found,
transition region. For pa, it is difficult to detect and is
not separately marked in Fig. E There we can only dis-
tinguish whether the phase sensitivity decreases or not.

Furthermore, for small g < 0.2, the first order phase
transition at V = —2 remains unaffected. However,
for larger p values, the metallic phase extends towards
smaller V' values. In comparison to the features of the
models with periodic or random distortions, the phase
sensitivity shows an unexpected sharp maximum — as
already observed in Ref. [@] —forp 2 08at V< -2
A similar maximum is also seen for g > 1 and small
system sizes (M = 34), nevertheless the system is insu-
lating. The exponential scaling in the localized region as
shown in Fig. ﬁ or Fig. E does not change for V > —2 and
V' < =2 in the case of large p. Therefore, we conclude
that this regime belongs to the quasiperiodic potential
localized regime. On the other hand, no scaling behav-
ior is found for V < —2 and small g (lower left corner
in the phase diagram). Here, the localization is due to
the formation of particle clusters in the phase-separated
state. In the crossover regime between these two local-
1zed phases a metallic state is recovered.

VI. CONCLUSIONS

In this work, we have studied and compared the in-
terplay of disorder and interactions for a quantum sys-
tem at very low (TIP) and finite densities. For TIP, we
calculated the pair localization lengths for a quasiperi-
odic potential and Hubbard interaction by means of the
decimation method and obtained the critical parameters
from the fit using the one-parameter scaling hypothesis.
For non-interacting particles and the onsite interaction
we get the value of the critical quasiperiodic potential
strength p. = 1 and the critical exponent v & 1 in agree-
ment with the results of transfer-matrix-method calcula-
tions and finite-size scaling [[[4]. The results for U > 1
show that this conclusion remains valid also for much
stronger interactions.

For densities p3 and p4, we have deduced the phase dia-
grams of the nearest-neighbor interacting system (ﬂ) for
varying quasiperiodic potential strength p and interac-
tion V' by the DMRG. The numerically accessible filling
factors which are commensurate with the quasiperiodic



potential yield a Peierls-like behavior of the system. The
transition at g, = 1 is only seen for incommensurate fill-
ing or fixed particle number.

In summary, we have studied the influence of interac-
tions on an MIT in a quasiperiodic model in 1D. Our
results suggest that the delocalization found previously
for low density TIP in the localized phase cannot simply
be extrapolated to the finite-density situation. At finite
densities, other effects such as a Peierls-like commensu-
rability become important and dominate the transport
properties.
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TABLE [. Values of the critical quasiperiodic disorder strength p. and the critical exponent v obtained by the non-linear
fit for various U values. The first row for each U gives values and the orders n;, mi, used in the expansion (E—E,), for which the
best fits have been obtained. In all cases we find n, = 3 and m, = 2. For y and M the range of the values which were used in
the fit is given. The second row contains values of the critical parameters obtained from a weighted average of fits for various
choices of n; and m;.

U 7] M ni mi He v
0 0.96 — 1.01 55 — 377 2 1 0.98940.001 1.0040.15
0.95 — 1.05 13 — 377 0—-2 0-1 0.99 £0.02 1.3 £0.5
1 0.97 — 1.05 13 — 377 2 1 0.99740.001 1.1940.16
0.95 — 1.05 13 — 377 0—-2 0-1 0.99 £+0.01 1.3 £0.4
2 0.97 — 1.05 55 — 144 0 0 1.001+0.002 1.1440.11
0.95 — 1.05 13 — 144 0—-2 0-1 0.99 £0.02 1.5 +1
3 0.95 — 1.05 13 — 144 2 1 1.000+0.002 1.16£0.08
0.95 — 1.05 13 — 144 0—-2 0-1 1.00 +0.02 1.8 +1
4 0.97 — 1.05 55 — 144 0 0 1.000+0.003 1.1240.10
0.95 — 1.05 13 — 144 0—-2 0-1 1.00 +0.01 1.5 £0.8
5 0.95 — 1.05 13 — 144 1 1 1.002+0.002 1.20£0.09
0.95 — 1.05 13 — 144 0—-2 0-1 1.00 +0.01 1.2 £0.3
6 0.95 — 1.05 55 — 144 0 0 0.99940.002 1.2840.08
0.95 — 1.05 13 — 144 0—-2 0-1 1.00 +0.02 1.3 £0.1
7 0.95 — 1.05 55 — 144 0 0 0.99740.002 1.2840.07
0.95 — 1.05 13 — 144 0—-2 0-1 1.00 +0.01 1.5 +£0.6
8 0.97 — 1.05 55 — 144 0 0 1.001+0.002 1.16£0.08
0.95 — 1.05 13 — 144 0—-2 0-1 0.99 £0.02 1.4 £0.4
9 0.97 — 1.05 13 — 144 1 1 1.000+0.001 1.1540.05
0.95 — 1.05 13 — 144 0—-2 0-1 1.00 +0.01 1.4 £0.5
10 0.97 — 1.05 55 — 144 0 0 1.000+0.002 1.2340.08
0.95 — 1.05 13 — 144 0—-2 0-1 1.00 +0.01 1.4 £0.4
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FIG. 2. Reduced localization lengths A s versus quasiperi-
odic disorder strength p for U = 1. For clarity, only error bars
for M = 377 are given. The lines are the fits to the data given
by Eq. (E) Inset: Scaling function (thick line) and scaled data
points. Only every 4th data point is represented by a symbol
for clarity.

log,(&/M)

FIG. 1. Reduced localization lengths A s versus quasiperi-
odic disorder strength p for U = 0. For clarity, only error bars
for M = 55 and 377 are given. The lines are the fits to the
data given by Eq. (E) Inset: Scaling function (thick line) and

scaled data points. Only every 4th data point is represented
by a symbol for clarity.
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The critical quasiperiodic potential strength pic

FIG. 3.
(upper panel) and the critical exponent v (lower panel) ver-
sus Hubbard interaction strength U. Error bars mark the er-

rors resulting from the Levenberg-Marquardt method of the
non-linear fit.
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FIG. 4. Phase sensitivity versus system size for V = —1

(squares), O (circles), 1 (diamonds) at half filling. The three
cases p = 0.9 (solid lines) , p =1 (dashed lines), and p = 1.1
(dotted lines) are compared.
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FIG. 5. Ph\;se diagrams of the syste¥ described by Eq.
() in terms of quasiperiodic potential strength g and the
interaction V' for p = ps (left side) and p = ps (right side).
An extended ground state wave function is marked by e, a
localized by ¢. In addition, the transition regime (see text)
is marked with a shaded O in the left figure. The solid lines
indicate the first-order transition at V = —2.
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FIG. 6. Phase sensitivity versus interaction for three dif-

ferent system sizes, density ps and g = 0.4. The lines for
M = 34 and 89 are guides to the eye, highlighting the differ-
ent finite-size-scaling behaviors in the various regimes. The
dotted lines indicate the transition between the localized and
the extended wave functions.
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FIG. 7. Phase sensitivity versus scaled system size
Mu2/(2_K), where M = 34, 55, and 89, for V = —0.6, filling
p = ps, and various potential strengths. The line indicates a
plot of Ea. (E) with K = m/2 arccos(0.3) & 1.24.
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FIG. 8. Phase sensitivity versus scaled system size,
M = 34, 55, and 89, for V = —1.5 and p3. The straight

line 1s a fit to the data for 4 = 0.7 and 0.8.
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