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Abstrat. In this artile, I give a pedagogial introdution and overview of perolation

theory. Speial emphasis will be put on the review of some of the most prominent of the

algorithms that have been devised to study perolation numerially. At the entral stage

shall be the real-spae renormalization group treatment of the perolation problem. As

a rather novel appliation of this approah to perolation, I will review reent results

using similar real-spae renormalization ideas that have been applied to the quantum

Hall transition.

1 Introdution

Imagine a large hessboard, suh as oasionally found in a park. It is fall, and

all the master players have ed the old a long time ago. You are taking a walk

and enjoy the beautiful sunny afternoon, all the olors of the Indian summer in

the trees and in the falling leaves around you. Looking at the hessboard, you

see that some squares are already full of leaves, while others are still empty [1℄.

The pattern of the squares whih are overed by leaves seems rather random. As

you try to ross the hessboard, you see that there is a way to get from one side

of the board to the opposite side by walking on leaf-overed squares only. This

is perolation | nearly.

Before ontinuing and explaining in detail what perolation is about, let me

outline the ontent of this paper. In Set. 2, I will review some of the most

prominent and interesting results on lassial perolation. Perolation theory is

at the heart of many phenomena in statistial physis that are also topis in this

book. Beyond the exat solutions of perolation in d = 1 and d =1 dimensions,

further exat solutions in 2 � d < 1 only rarely exist. Thus omputational

methods, using high-performane omputers and algorithms are needed for fur-

ther progress and in Sets. 2.2 { 2.4, I explain in detail some of these algorithms.

Setion 3 is devoted to the real-spae renormalization group (RG) approah to

perolation. This provides an independent and very suggestive method of an-

alytially omputing results for the perolation problem as well as a further

numerial algorithm.

While many appliations of perolation theory are mainly onerned with

problems of lassial statistial physis, I will show in Set. 4 that the perolation

approah an give useful information also at the quantum sale. In partiular,

I will show that aspets of the quantum Hall (QH) e�et an be understood by

a suitably generalized renormalization proedure of bond perolation in d = 2.
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This appliation allows the omputation of ritial exponents and ondutane

distributions at the QH transition and also opens the way for studies of sale-

invariant, experimentally relevant marosopi inhomogeneities. I summarize in

Set. 5.

2 Perolation

2.1 The Physis of Connetivity

From the hessboard example given above, we realize that the perolation prob-

lem deals with the spatial onnetivity of oupied squares instead of simply

ounting whether the number of suh squares has the majority of all squares.

Then the obvious question to ask is: How many leaves are usually needed in

order to allow passage aross the board? Sine leaves normally do not interat

with eah other, and frition-related fores an be assumed small ompared to

wind fores, we an model the situation by assuming that the leaves are ran-

domly distributed on the board. Then we an de�ne an oupation probability

p as being the probability that a site is oupied (by at least one leaf). Thus our

question an be rephrased in modern physis terminology as: Is there a threshold

value p



at whih there is a spanning luster of oupied sites aross an in�nite

lattie?

The �rst time this question was asked and the term perolation used was in

the year 1957 in publiations of Broadbent and Hammersley [2{4℄. Sine then a

multitude of researh artiles, reviews and books have appeared on this subjet.

Certainly among the most readable suh publiations is the 1995 book by Stau�er

and Aharony [5℄, where alsomost of the relevant researh artiles have been ited.

Let me here briey summarize some of the highlights that have been disovered

in the nearly 50 years of researh on perolation.

The perolation problem in d = 1 an be solved exatly. Sine the number of

empty sites in a hain of length L is (1� p)L, there is always a �nite probability

for �nding suh an empty site in the in�nite luster at L ! 1 and thus the

perolation threshold is p



= 1. De�ning a orrelation funtion g(r) / exp(�r=�)

whih measures the probability that a site at distane r from an oupied site at

0 belongs to the same luster, we easily �nd g(r) = p

r

and thus � = �1= lnp �

(p



� p)

�1

. Thus lose to the perolation threshold, the orrelation length �

diverges with an exponent � = 1.

In d = 2, the perolation problem provides perhaps the simplest example of

a seond-order phase transition. The order parameter of this transition is the

probability P (p) that an arbitrary site in the in�nite lattie is part of an in�nite

luster [6℄, i.e.,

P (p) =

�

0; p � p



;

(p� p



)

�

; p > p



(1)

and � is a ritial exponent similar to the exponent � of the orrelation length.

The distribution of the sites in an in�nite luster at the perolation threshold

an be desribed as a fratal [7℄, i.e., its average size M in boxes of length N



Perolation and Quantum-Hall Transition 3

inreases as hM(N)i / N

D

, where D is the fratal dimension of the luster. As

in any seond-order phase transition, muh insight an be gained by a �nite-size

saling analysis [7,8℄. In partiular, the exponents introdued above are related

aording to the saling relation � = (d�D)� [5℄. Furthermore, it has been shown

to an astonishing degree of auray, that the values of the exponents and the

relations between them are independent of the type of lattie onsidered, i.e.,

square, triangular, honeyomb, et., and also whether the perolation problem is

de�ned for sites or bonds (see Fig. 1). This independene is alled universality. In

the following, we will see that the universality does not apply for the perolation

threshold p



. Thus it is of importane to note that p



for site perolation on the

triangular lattie and bond perolation on the square lattie is known exatly:

p



= 1=2. Espeially the bond perolation problem has reeived muh attention

also by mathematiians [9℄.

Fig. 1. Site (left) and bond (right) perolation on a square lattie. In site perola-

tion, the sites of a lattie are oupied randomly and perolation is de�ned via, say,

nearest-neighbor sites. In bond perolation, the bonds onneting the sites are used

for perolation. The thin outlines de�ne the 3 lusters in eah panel. The solid outline

indiates the perolating luster

For higher dimensions, muh of this piture remains unhanged, although

the values of p



and the ritial exponents hange. The upper ritial dimension

orresponds to d = 6 suh that mean �eld theory is valid for d � 6 with exponents

as given in Table 1.

Appliations of perolation theory are numerous [10℄. It is intimately on-

neted to the theory of phase transitions as disussed in [8,11℄. The onnetivity

problem is also relevant for di�usion in disordered media [7,12℄ and networks [13℄.

A simple model of forest �res is based on perolation ideas [14℄ and even models

of stok market utuations [15℄ have been devised using ideas of perolation

[16℄. Perolation is therefore a well-established �eld of statistial physis and it
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Table 1. Critial exponents � and � and fratal dimension D for di�erent spatial

dimensions. For a more omplete list see [5℄.

Exponent d = 2 d = 3 d = 4 d = 5 d = 6� �

� 4=3 0:88 0:68 0:57 1=2 + 5�=84

� 5=36 0:41 0:64 0:84 1� �=7

D(p = p



) 91=48 2:53 3:06 3:54 4� 10�=21

D(p < p



) 1:56 2 12=5 2:8 �

D(p > p



) 2 3 4 5 �

ontinues its vital progress with more than 230 publiations in the ond-mat

arhives [17℄ alone.

2.2 The Coloring Algorithm

As stated above, there are only few exat results available in perolation in d � 2.

Thus in order to proeed further, one has to use omputational methods.

The standard numerial algorithm of perolation theory is due to Hoshen

and Kopelman [18℄. Its advantage is due to the fat that it allows to analyze

whih site belongs to whih luster without having to store the omplete lattie.

Furthermore, this is being done in one sweep aross the lattie, thus reduing

omputer time.

At the heart of the Hoshen-Kopelman algorithm is a bookkeeping mehanism

[5℄. Look at the site perolation luster in Fig. 1. Going from left to right and

top to bottom through the luster, we give eah site a label (or olor) as shown

in Fig. 2. If its top or left neighbor is already oupied, then the new site belongs

to the same luster and gets the same label. Otherwise we hoose a new label. In

this way we an proeed through the luster until we reah a problem in line 3

as shown in the left olumn of Fig. 2. Aording to our above rule the new site,

indiated by the bold question mark, an be either 2 or 4. This indiates that

all sites previously labelled by 2 and 4 atually belong to the same luster. Thus

we now introdue an index Id(�) for eah luster label and de�ne it suh that

the index of a superuous label, say 4, points to the right label, viz. Id(4) = 2.

Proeeding with our analysis into the 4th row of the lattie, we see in the enter

olumn of Fig. 2 that we again have to adjust our index at the position indiated

in bold. Instead of labeling this site as 4, we hoose 2 � Id(4). And onsequently,

Id(3) = 2. In this way, we an easily hek whether a luster perolates from top

to bottom of the lattie by simply heking whether the label of any oupied

site in the bottom row of the lattie has an index equal to any of the labels

in the top row. Furthermore, in addition to the top row, we only need to store

the row presently under onsideration and its predeessor. Thus the storage

requirement is linear in lattie size L and not L

2

as it would be if we were to
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store the full lattie. Last, the algorithm an also give information about all

lusters, say, if needed for a fratal analysis of the non-perolating lusters. A

Java implementation of suh a oloring algorithm an be found in Ref. [19℄.

1 1 2

1 2 2

3 4 ?

� � �

� � �

1 1 2

1 2 2

3 4 4

3 3 ?

� � �

1 1 2

1 2 2

3 4 4

3 3 2

2 5 5

Id(1) = 1

Id(2) = 2

Id(3) = 3

Id(4) = 2

Id(1) = 1

Id(2) = 2

Id(3) = 2

Id(4) = 2

Id(1) = 1

Id(2) = 2

Id(3) = 2

Id(4) = 2

Id(5) = 5

Fig. 2. Shemati desription of the Hoshen-Kopelman oloring algorithm of the site

perolation problem on a square lattie as shown in Fig. 1. � denotes an oupied site,

the numbers denote the luster labels. The horizontal lines braket the urrent and the

previous row

2.3 The Growth Algorithm

When we want to study primarily the geometrial properties of perolation lus-

ters, another algorithm is more suitable whih allows to generate the desired

luster struture diretly. This algorithm is due to Leath [20℄ and works by a

luster-growth strategy. The idea of the algorithm is that we put an oupied

site in the enter of an otherwise empty lattie. Then we identify its nearest-

neighbor sites as shown in Fig. 3. Next we oupy these sites aording to the

desired perolation probability p. We identify the new, yet undeided nearest-

neighbor sites, oupy these again with probability p and repeat the proedure.

The luster ontinues to grow until either all sites at the boundary are uno-

upied or the luster has reahed the boundary of the lattie. For p < p



, the

growth usually stops after a few iterations, while for p > p



, perolating lusters

are generated almost always. Thus besides giving information about the fratal

struture of the perolating lusters, the Leath algorithm an also be used to

estimate the value of p



. A Java implementation of the Leath algorithm an be

found in Refs. [21,22℄.
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� � � � �

� � � � �

� � � � �

� � � � �

� � � � �

� � � � �

� � Æ � �

� Æ � � �

� � � � �

� � � � �

� � � � �

� � Æ � �

� Æ � � Æ

� � � Æ �

� � Æ � �

Fig. 3. Shemati desription of the �rst three steps in the Leath growth algorithm

of the site perolation luster of Fig. 1. �, Æ, and � denote an oupied, empty, and

undeided site

2.4 The Frontier Algorithm

As we have seen in the last setion, the outer frontier of the perolation luster

is well de�ned. The fratal properties of this hull an be measured [23,24℄ and

shown to yield D

h

= 1:74 � 0:02. This suggests yet another algorithm for the

determination of p



[25,26℄: Generate a lattie with a onstant gradientrp of the

oupation probability p as shown in Fig. 4. By an algorithm similar to the one
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p=0

p=1

Fig. 4. An example for gradient perolation. All sites at p = 1 (p = 0) are oupied

(empty). The 15 large irles orrespond to oupied sites. The 8 light shaded sites

belong to the frontier, whereas the 7 dark shaded sites are part of the interior of the

luster or belong to other lusters. The 5 small irles orrespond to sites in the empty

frontier. The dashed line indiates the frontier generating walk. Note that only the 14

sites with solid irles have atually been visited. The 6 other irles are shown here

just for larity and need not be generated. Aording to (2), we have p



= (8 � 0:4375+

5 � 0:75)=13 = 0:55769

used in omputing the hull of the perolating luster, one traverses the frontier
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Table 2. Various urrent estimates of p



for site and bond perolation on di�erent

latties in d = 2 [28{33℄. Exatly known values are emphasized. The latties are lassi-

�ed aording to their number of �rst, seond and more nearest-neighbors. The upper

index gives the orresponding number in the dual lattie

lattie site p



bond p



3; 12

2

0.807 904

4; 6; 12 0:747 806

4; 8

2

0:729 724

6

3

honeyomb 0:697 043 0.652 703

3; 6; 3; 6 Kagom�e 0.652 703 0:524 4

4

4

die 0:584 8 0:475 4

3; 4; 6; 4 0:621 819

4

4

square 0:592 746 0 0.500 000

3

4

; 6 0:579 498

3

2

; 4; 3; 4 0:550 806

3

3

; 4

2

0:550 213

3

6

triangular 0.500 000 0.347 296

of the oupied luster and determines whih sites belong to it and whih belong

to the empty luster [24{26℄. Then a very reliable estimate for the perolation

threshold an be omputed as

p



=

N

o

p

o

+N

e

p

e

N

o

+N

e

; (2)

whereN

o;e

denotes the number of sites in the oupied (empty) frontier and p

o;e

is the mean height of the assoiated frontiers, respetively. Note that instead of

atually generating the perolation lattie, the algorithm instead proeeds by just

generating the sites needed for the onstrution of the frontier. Thus instead of

dealing with, say, O(L

2

) sites as in the Hoshen-Kopelman and Leath algorithms

for a lattie in d = 2, one only needs O(L) sites in the present algorithm [27℄.

This redues omputer time and estimates for p



in a large variety of latties

an be obtained with high auray [28{33℄ as shown in Table 2.

3 Real-Spae Renormalization

3.1 Making Use of Self-Similarity

As mentioned in Set. 2, the transition at p



orresponds to a seond-order phase

transition and the orrelation length � is in�nite. There is no partiular length
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sale in the system and all lusters are statistially similar to eah other. This

self-similarity [7℄ is at the bottom of the renormalization desription just as for

the fratal analysis of the perolation lusters.

We may use the self-similarity in the following way. Let us replae a suitable

olletion of sites by super-sites and then study perolation of the super-lattie

[34{38℄. In general, the oupation probability p

0

of the super-lattie will be

di�erent from the original p. Furthermore, if the extent of the olletion of sites

in the lattie was b, then the super-lattie will have a lattie onstant b. Thus

� = b�

0

and with � / jp� p



j

��

, we �nd

bjp

0

� p



j

��

� jp� p



j

��

(3)

and onsequently,

� =

log b

log

dp

0

dp

: (4)

As an example, let us onsider the bond perolation problem on a square lattie

[35{37℄. Here we replae 5 bonds by a super-bond in the horizontal diretion as

shown in Fig. 5. Summing all probabilities for a onneted, horizontal super-bond

4p  (1-p)4
p  (1-p)

3 2
2p  (1-p)

3 2
4p  (1-p)

2 3
2p  (1-p)

p
5

3 2
2p  (1-p)

4

,
p

Fig. 5. The possible ombinations of bonds (thin lines) that lead to a super-bond (thik

line) together with their respetive probabilities for bond perolation on a square lattie

as shown in Fig. 5, we �nd that

p

0

= p

5

+ 5p

4

(1� p) + 8p

3

(1� p)

2

+ 2p

2

(1� p)

3

: (5)

At the transition, we have p

0

= p and thus (5) has the solutions p = 0, 0:5, and 1.

The �rst and last solution orrespond to a ompletely empty or oupied lattie

and are trivial. The seond solution reprodues the exat result of Table 2. From

4), we ompute � = 1:4274 whih is already within 8% of the exat result 4=3.
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Thus the real-spae RG sheme gives very good approximations to the known

results. But beware, it may not always be that simple: the reader is enouraged

to devise a similar RG sheme for site perolation on a square lattie.

3.2 Monte-Carlo RG

The sheme of the last setion is approximate sine it annot orretly handle

situations like the one in Fig. 6. In order to improve, we an onstrut an RG

sheme that uses a larger olletion of bonds. The total number of (onneted

and unonneted) on�gurations in suh a olletion of n bonds is 2

n

, putting

severe bounds on the pratiability of the approah for analyti alulations.

However, the task is ideally suited for omputers. On the CD aompanying this

book, I inlude a set of Mathematia routines that ompute the real-spae RG

for a d = 2 triangular lattie.

Fig. 6. Although the original bonds (thin lines) are not onneted, the RG proedure

outlined in the text nevertheless leads to two onneted horizontal super-bonds (thik

lines)

4 The Quantum-Hall E�et

In 1980, von Klitzing et al. [39℄ found that the Hall resistane R

H

of MOSFETs

at strong magneti �eld B exhibits a step-like behavior whih is aompanied

with a simultaneously vanishing longitudinal resistane R. This is in ontrast to

the lassial Hall e�et whih gives a linear dependene of R

H

on B. Even more

surprising, the values of R

H

at the transitions are given by universal onstants,

i.e.,

1

i

h

e

2

, where i is an integer.

Sine its disovery this so-alled integer quantum Hall e�et (IQHE) was

studied extensively [40,41℄. Besides semi-phenomenologial models simply as-

suming a loalization-deloalization transition more general theories onsidered,

e.g., gauge invariane [42℄, topologial quantization [43℄, sattering [44℄ and �eld

theoretial approahes [45℄.

4.1 Basis of the IQHE

A simple understanding of the IQHE an be gained by onsidering the Hamilto-

nian of a single eletron in a magneti �eld,

H

0

=

1

2m

�

p+

e



A

�

2

=

�h!



2l

2

B

�

�

2

+ �

2

�

: (6)
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where A denotes the vetor potential and the Hamiltonian has been rewritten in

guiding enter oordinatesX = x��, Y = y�� and relative oordinates �, � [46℄.

Here, !



=

eB

m

is the frequeny of the lassial ylotron motion and l

B

= (

�h

eB

)

1=2

is the radius of the ylotron motion. The spetrum of this Hamiltonian is simply

the harmoni osillator with E

n

=

�

n+

1

2

�

�h!



; n = 0, 1, : : :. These Landau

levels are in�nitely degenerate sine the Hamiltonian no longer ontainsX and Y .

Thus the spetrum onsists of Æ-funtion peaks as indiated in Fig. 7. Introduing

disorder into the model by adding a smooth random potential V (r) in (6) results

in drift motion of the guiding enter

_

X =

i

�h

[H;X ℄ =

l

2

B

�h

�V

�y

;

_

Y =

i

�h

[H;Y ℄ = �

l

2

B

�h

�V

�x

: (7)

perpendiular to the gradient of V (r) (see Fig. 8). Furthermore, the degeneray

of the Landau levels is lifted, the Æ-funtion density of states broadens [40℄, giving

rise to a band-like struture as shown in Fig. 7. If the sample is penetrated by a

strong magneti �eld, the ylotron motion is muh smaller than the potential

utuations. Consequently, the eletron motion an be separated into ylotron

motion and motion of the guiding enter along equipotential lines of the energy

landsape.
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�������������
�������������
�������������
�������������
�������������
�������������
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�������������
�������������
�������������
�������������
�������������
�������������
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�������������

σxx

σxy

������

e
h

2

0 1

D
O

S

νf

Fig. 7. Density of states (DOS), transversal and longitudinal ondutivity as a funtion

of E

F

or, equivalently, �lling fator �

f

or B

�1

[41℄. The peak in the middle of the band

represents one Æ-funtion peak of the lean Landau model. Dark shaded regions of the

density of states orrespond to loalized states. The thin dashed line (with non-zero

slope) for �

xy

indiates the lassial Hall result

The IQHE an then be understood as follows: assume that the enter of the

broadened Landau levels ontain extended states that an support transport,

whereas the other states are spatially loalized and annot. This is similar to

the standard piture in the theory of Anderson loalization [7,12℄. Changing the
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Fermi energy E

F

or the �lling fator �

f

= 2�l

2

B

�

e

= 2��h�

e

=eB / E

F

, where �

e

denotes the eletron density, we �rst have E

F

in the region of loalized states

and both �

xx

and �

xy

are 0. When E

F

reahes the region of extended states,

there is transport, �

xx

is �nite and �

xy

= e

2

=h. Next, E

F

again reahes a region

of loalized states and �

xx

drops bak to 0 until we reah the extended states in

the next Landau level.

This piture suggests the following e�etive lassial high-�eld model [47℄ of

the IQHE: Negleting the ylotron motion (i.e., large B) and quantum e�ets

(i.e., only one extended state) the lassial eletron transport with energy E

F

through the sample only depends on the \height" of the saddle points in the

potential energy landsape V (r). One obtains a lassial bond-perolation prob-

lem [5℄, in whih saddle points are mapped onto bonds. A bond is onneting

only when the potential of the orresponding saddle point equals the energy of

the eletron E

F

. From perolation theory follows [5℄ that an in�nite system is

onduting only when E

F

= hV i. Using this model one ould already desribe

the loalization-deloalization transition and thus the quantized plateaus in re-

sistivity observed in IQHE [40℄. But for bond perolation the orrelation length

diverges at the transition with an exponent of � = 4=3 whih is in ontrast to

the value found in the QH experiments.

4.2 RG for the Chalker-Coddington Network Model

The Chalker-Coddington (CC) network model improved the high-�eld model

by introduing quantum orretions [48℄, namely tunneling and interferene.

Tunneling ours, in a semilassial view, when eletron orbits ome lose enough

to eah other and the eletron ylotron motions overlap. This happens at the

saddle points, whih now at as quantum satterers onneting two inoming

with two outgoing hannels by a sattering matrix as shown in Fig. 8. Similar

to bond perolation a network an be onstruted suh that the saddle points

are mapped onto bonds. While moving along an equipotential line an eletron

aumulates a random phase whih reets the disorder of V (r). Results for

this quantum perolation also show one extended state in the middle of the

Landau band. The ritial properties at the transition, espeially the value of

the exponent � � 2:4 [49℄, agree with experiments [50,51℄.

As explained for the bond perolation problem we now apply the RG method

to the CC model. The RG struture whih builds the new super-saddle points is

displayed in Fig. 9. It onsists of 5 saddle points drawn as bonds. The links (and

phase fators) onneting the saddle points are indiated by arrows pointing in

the diretion of the eletron motion due to the magneti �eld. Eah saddle point

ats as a satterer onneting the 2 inoming I

1;2

with the 2 outgoing hannels

O

1;2

�

O

1

O

2

�

=

�

t

i

r

i

r

i

�t

i

��

I

1

I

2

�

(8)

with reetion oeÆients r

i

and transmission oeÆients t

i

, whih are assumed

to be real numbers. The omplex phase fators enter later via the links between
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Fig. 8. Left: Shemati plot of a smooth random potential V (r) with equipotential

lines at E = hV i indiated in blak. Right: Equipotential lines of the same potential

for E = hV i�E

max

=2, hV i, and hV i+E

max

=2 orresponding to long dashed, solid and

short dashed lines. Note the solid line perolating the system from top to bottom as

indiated by the arrows

O1

I 1
r

r

t

O2

I 2

−t φ

φ

φ

φ

Fig. 9. Left: A single saddle point (irle) onneted to inoming and outgoing ur-

rents I

i

, O

i

via transmission and reetion amplitudes t and r. Right: A network of 5

saddle points an be renormalized into a single super-saddle point by an RG approah

very similar to the bond perolation problem of Set. 3. The phases are shematially

denoted by the �'s

the saddle points. By this de�nition { inluding the minus sign { the unitarity

onstraint t

2

i

+ r

2

i

= 1 is ful�lled a priori. The amplitude of transmission of the

inoming eletron to another equipotential line and the amplitude of reetion

and thus staying on the same equipotential line add up to unity { eletrons do

not get lost.

In order to obtain the sattering equation of the super-saddle point we now

need to onnet the 5 sattering equations aording to Fig. 9. For eah link the
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amplitude of the inoming hannels is de�ned by the amplitude of the outgoing

hannel of the previous saddle point multiplied by the orresponding omplex

phase fator e

i�

k

. This results in a system of 5 matrix equations, whih has to

be solved. One obtains an RG equation for the transmission oeÆient t

0

of the

super-saddle point [52℄ analogously to Eq. (5),

t

0

=

t

15

(r

234

e

i�

2

� 1) + t

24

e

i(�

3

+�

4

)

(r

135

e

�i�

1

� 1) + t

3

(t

25

e

i�

3

+ t

14

e

i�

4

)

(r

3

� r

24

e

i�

2

)(r

3

� r

15

e

i�

1

) + (t

3

� t

45

e

i�

4

)(t

3

� t

12

e

i�

3

)

(9)

depending on the produts t

i:::j

= t

i

� : : : �t

j

, r

i:::j

= r

i

� : : : �r

j

of transmission and

reetion oeÆients t

i

and r

i

of the i = 1; : : : ; 5 saddle points and the 4 random

phases �

k

aumulated along equipotentials in the original lattie. For further

algebrai simpli�ation one an apply a useful transformation of the amplitudes

t

i

= (e

z

i

+1)

�1=2

and r

i

= (e

�z

i

+1)

�1=2

to heights z

i

relative to heights V

i

of the

saddle points. The ondutane G is onneted to the transmission oeÆient t

by G = jtj

2

e

2

=h [53℄.

4.3 Condutane Distributions at the QH Transition

For the numerial determination of the ondutane distribution, we �rst hoose

an initial probability distribution P

0

of transmission oeÆients t. The distribu-

tion is disretized in at least 1000 bins. Thus the bin width is typially 0:001e=

p

h

for the interval t 2 [0; e=

p

h℄.

Using the initial distribution P

0

(t), we now randomly selet many di�erent

transmission oeÆients and insert them into the RG equation (9). Further-

more, the phases �

j

, j = 1; : : : 4 are also hosen randomly, but aording to a

uniform distribution �

j

2 [0; 2�℄. By this method at least 10

7

super-transmission

oeÆients t

0

are alulated and their distribution P

1

(t

0

) is stored. Next, P

1

is

averaged using a Savitzky-Golay smoothing �lter [54℄ in order to derease sta-

tistial utuations. This proess is then repeated using P

1

as the new initial

distribution.

The iteration proess is stopped when the distribution P

i

is no longer distin-

guishable from its predeessor P

i�1

and we have reahed the desired �xed-point

(FP) distribution P



(t). However, due to numerial instabilities, small deviations

from symmetry add up suh that typially after 15{20 iterations the distributions

beome unstable and onverge towards the lassial FPs of no transmission or

omplete transmission similar to the lassial perolation ase. Figure 10 shows

this behavior for one of the RG iterations. The FP distribution P



(G) shows a

at minimum around G = 0:5e

2

=h and sharp peaks at G = 0 and G = e

2

=h.

It is symmetri with hGi = 0:498e

2

=h. This is in agreement with previous the-

oretial [56,57℄ and experimental [58℄ results whereas our results ontain muh

less statistial utuations. Furthermore we determine moments h(G�hGi)

m

i of

the FP distribution P



(G). As shown in Fig. 10 for small moments up to m = 6

our results agree with the work of Wang et al. [55℄, who omputed moments

m � 8:5. But more interesting is the fat that the obtained moments of the FP

distribution an hardly be distinguished from the moments of a simple onstant
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<

G
>

)m
>

Fig. 10. Condutane distribution at a QH plateau-to-plateau transition. The squares

orrespond to the �xed-point distribution, dashed and dot-dashed lines to the initial

distribution and an unstable distribution, respetively. The solid line indiates a �t of

the FP distribution P



(t) by three Gaussians. Inset: Moments of the FP distribution

P



(G). The dashed lines indiate various preditions based on extrapolations of results

for small m [55℄. The dotted line denotes the moments of a onstant distribution

distribution thus indiating the inuene of the broad at minimum of the FP

distribution around G = 0:5e

2

=h.

For the determination of the ritial exponent, we next perturb the FP dis-

tribution slightly, i.e., we onstrut a distribution with shifted average G

0

. Then

we perform an RG iteration and ompute the new average G

1

of P

1

(G). Traing

the shift of the perturbed average G

n

for several initial shifts G

0

, we expet to

�nd a linear dependene of G

n

on G

0

for eah iteration step n. The ritial ex-

ponent is then related to the slope dG

n

=dG

0

[59℄. Figure 11 shows the resulting

� in dependene on the iteration step and thus system size. The urve onverges

lose to � � 2:4, i.e. the value obtained by Lee et al. [49℄. Note that the \sys-

tem size" is more properly alled a system magni�ation, sine we start the RG

iteration with an FP distribution valid for an in�nite system and then magnify

the system in the ourse of the iteration by a fator 2

n

.

5 Summary and Conlusions

The perolation model represents the perhaps simplest example of a system

exhibiting omplex behavior although its onstituents { the sites and bonds {

are hosen ompletely unorrelated. Of ourse, the omplexity enters through the
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4 16 32 64 128 256
2

n
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2.8

3.0

3.2

ν

0 0.05 0.1

<G>−G0

0.00 
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0.20 

<G
>−

G
n

Fig. 11. Critial exponent � as a funtion of magni�ation fator 2

n

for RG step n.

The dashed line shows the expeted result � = 2:39. Inset: The shift of the average G

n

of P (G) is linear in G

0

. The dashed lines indiate linear �ts to the data

onnetivity requirement for perolating lusters. I have reviewed several numer-

ial algorithms for quantitatively measuring various aspets of the perolation

problem. The spei� hoie reets purely my personal preferenes and I am

happy to note that other algorithms suh as breadth- and depth-�rst algorithms

[60℄ have been introdued by P. Grassberger in his ontribution [61℄.

The real-spae RG provides an instrutive use of the underlying self-similarity

of the perolation model at the transition. Furthermore, it an be used to study

very large e�etive system sizes. This is needed in many appliations. As an

example, I briey reviewed and studied the QH transition and omputed on-

dutane distributions, moments and the ritial exponent. These results an be

ompared to experimental measurements and shown to be in quite good agree-

ment.
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