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Abstra
t. In this arti
le, I give a pedagogi
al introdu
tion and overview of per
olation

theory. Spe
ial emphasis will be put on the review of some of the most prominent of the

algorithms that have been devised to study per
olation numeri
ally. At the 
entral stage

shall be the real-spa
e renormalization group treatment of the per
olation problem. As

a rather novel appli
ation of this approa
h to per
olation, I will review re
ent results

using similar real-spa
e renormalization ideas that have been applied to the quantum

Hall transition.

1 Introdu
tion

Imagine a large 
hessboard, su
h as o

asionally found in a park. It is fall, and

all the master players have 
ed the 
old a long time ago. You are taking a walk

and enjoy the beautiful sunny afternoon, all the 
olors of the Indian summer in

the trees and in the falling leaves around you. Looking at the 
hessboard, you

see that some squares are already full of leaves, while others are still empty [1℄.

The pattern of the squares whi
h are 
overed by leaves seems rather random. As

you try to 
ross the 
hessboard, you see that there is a way to get from one side

of the board to the opposite side by walking on leaf-
overed squares only. This

is per
olation | nearly.

Before 
ontinuing and explaining in detail what per
olation is about, let me

outline the 
ontent of this paper. In Se
t. 2, I will review some of the most

prominent and interesting results on 
lassi
al per
olation. Per
olation theory is

at the heart of many phenomena in statisti
al physi
s that are also topi
s in this

book. Beyond the exa
t solutions of per
olation in d = 1 and d =1 dimensions,

further exa
t solutions in 2 � d < 1 only rarely exist. Thus 
omputational

methods, using high-performan
e 
omputers and algorithms are needed for fur-

ther progress and in Se
ts. 2.2 { 2.4, I explain in detail some of these algorithms.

Se
tion 3 is devoted to the real-spa
e renormalization group (RG) approa
h to

per
olation. This provides an independent and very suggestive method of an-

alyti
ally 
omputing results for the per
olation problem as well as a further

numeri
al algorithm.

While many appli
ations of per
olation theory are mainly 
on
erned with

problems of 
lassi
al statisti
al physi
s, I will show in Se
t. 4 that the per
olation

approa
h 
an give useful information also at the quantum s
ale. In parti
ular,

I will show that aspe
ts of the quantum Hall (QH) e�e
t 
an be understood by

a suitably generalized renormalization pro
edure of bond per
olation in d = 2.
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This appli
ation allows the 
omputation of 
riti
al exponents and 
ondu
tan
e

distributions at the QH transition and also opens the way for studies of s
ale-

invariant, experimentally relevant ma
ros
opi
 inhomogeneities. I summarize in

Se
t. 5.

2 Per
olation

2.1 The Physi
s of Conne
tivity

From the 
hessboard example given above, we realize that the per
olation prob-

lem deals with the spatial 
onne
tivity of o

upied squares instead of simply


ounting whether the number of su
h squares has the majority of all squares.

Then the obvious question to ask is: How many leaves are usually needed in

order to allow passage a
ross the board? Sin
e leaves normally do not intera
t

with ea
h other, and fri
tion-related for
es 
an be assumed small 
ompared to

wind for
es, we 
an model the situation by assuming that the leaves are ran-

domly distributed on the board. Then we 
an de�ne an o

upation probability

p as being the probability that a site is o

upied (by at least one leaf). Thus our

question 
an be rephrased in modern physi
s terminology as: Is there a threshold

value p




at whi
h there is a spanning 
luster of o

upied sites a
ross an in�nite

latti
e?

The �rst time this question was asked and the term per
olation used was in

the year 1957 in publi
ations of Broadbent and Hammersley [2{4℄. Sin
e then a

multitude of resear
h arti
les, reviews and books have appeared on this subje
t.

Certainly among the most readable su
h publi
ations is the 1995 book by Stau�er

and Aharony [5℄, where alsomost of the relevant resear
h arti
les have been 
ited.

Let me here brie
y summarize some of the highlights that have been dis
overed

in the nearly 50 years of resear
h on per
olation.

The per
olation problem in d = 1 
an be solved exa
tly. Sin
e the number of

empty sites in a 
hain of length L is (1� p)L, there is always a �nite probability

for �nding su
h an empty site in the in�nite 
luster at L ! 1 and thus the

per
olation threshold is p




= 1. De�ning a 
orrelation fun
tion g(r) / exp(�r=�)

whi
h measures the probability that a site at distan
e r from an o

upied site at

0 belongs to the same 
luster, we easily �nd g(r) = p

r

and thus � = �1= lnp �

(p




� p)

�1

. Thus 
lose to the per
olation threshold, the 
orrelation length �

diverges with an exponent � = 1.

In d = 2, the per
olation problem provides perhaps the simplest example of

a se
ond-order phase transition. The order parameter of this transition is the

probability P (p) that an arbitrary site in the in�nite latti
e is part of an in�nite


luster [6℄, i.e.,

P (p) =

�

0; p � p




;

(p� p




)

�

; p > p




(1)

and � is a 
riti
al exponent similar to the exponent � of the 
orrelation length.

The distribution of the sites in an in�nite 
luster at the per
olation threshold


an be des
ribed as a fra
tal [7℄, i.e., its average size M in boxes of length N
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in
reases as hM(N)i / N

D

, where D is the fra
tal dimension of the 
luster. As

in any se
ond-order phase transition, mu
h insight 
an be gained by a �nite-size

s
aling analysis [7,8℄. In parti
ular, the exponents introdu
ed above are related

a

ording to the s
aling relation � = (d�D)� [5℄. Furthermore, it has been shown

to an astonishing degree of a

ura
y, that the values of the exponents and the

relations between them are independent of the type of latti
e 
onsidered, i.e.,

square, triangular, honey
omb, et
., and also whether the per
olation problem is

de�ned for sites or bonds (see Fig. 1). This independen
e is 
alled universality. In

the following, we will see that the universality does not apply for the per
olation

threshold p




. Thus it is of importan
e to note that p




for site per
olation on the

triangular latti
e and bond per
olation on the square latti
e is known exa
tly:

p




= 1=2. Espe
ially the bond per
olation problem has re
eived mu
h attention

also by mathemati
ians [9℄.

Fig. 1. Site (left) and bond (right) per
olation on a square latti
e. In site per
ola-

tion, the sites of a latti
e are o

upied randomly and per
olation is de�ned via, say,

nearest-neighbor sites. In bond per
olation, the bonds 
onne
ting the sites are used

for per
olation. The thin outlines de�ne the 3 
lusters in ea
h panel. The solid outline

indi
ates the per
olating 
luster

For higher dimensions, mu
h of this pi
ture remains un
hanged, although

the values of p




and the 
riti
al exponents 
hange. The upper 
riti
al dimension


orresponds to d = 6 su
h that mean �eld theory is valid for d � 6 with exponents

as given in Table 1.

Appli
ations of per
olation theory are numerous [10℄. It is intimately 
on-

ne
ted to the theory of phase transitions as dis
ussed in [8,11℄. The 
onne
tivity

problem is also relevant for di�usion in disordered media [7,12℄ and networks [13℄.

A simple model of forest �res is based on per
olation ideas [14℄ and even models

of sto
k market 
u
tuations [15℄ have been devised using ideas of per
olation

[16℄. Per
olation is therefore a well-established �eld of statisti
al physi
s and it
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Table 1. Criti
al exponents � and � and fra
tal dimension D for di�erent spatial

dimensions. For a more 
omplete list see [5℄.

Exponent d = 2 d = 3 d = 4 d = 5 d = 6� �

� 4=3 0:88 0:68 0:57 1=2 + 5�=84

� 5=36 0:41 0:64 0:84 1� �=7

D(p = p




) 91=48 2:53 3:06 3:54 4� 10�=21

D(p < p




) 1:56 2 12=5 2:8 �

D(p > p




) 2 3 4 5 �


ontinues its vital progress with more than 230 publi
ations in the 
ond-mat

ar
hives [17℄ alone.

2.2 The Coloring Algorithm

As stated above, there are only few exa
t results available in per
olation in d � 2.

Thus in order to pro
eed further, one has to use 
omputational methods.

The standard numeri
al algorithm of per
olation theory is due to Hoshen

and Kopelman [18℄. Its advantage is due to the fa
t that it allows to analyze

whi
h site belongs to whi
h 
luster without having to store the 
omplete latti
e.

Furthermore, this is being done in one sweep a
ross the latti
e, thus redu
ing


omputer time.

At the heart of the Hoshen-Kopelman algorithm is a bookkeeping me
hanism

[5℄. Look at the site per
olation 
luster in Fig. 1. Going from left to right and

top to bottom through the 
luster, we give ea
h site a label (or 
olor) as shown

in Fig. 2. If its top or left neighbor is already o

upied, then the new site belongs

to the same 
luster and gets the same label. Otherwise we 
hoose a new label. In

this way we 
an pro
eed through the 
luster until we rea
h a problem in line 3

as shown in the left 
olumn of Fig. 2. A

ording to our above rule the new site,

indi
ated by the bold question mark, 
an be either 2 or 4. This indi
ates that

all sites previously labelled by 2 and 4 a
tually belong to the same 
luster. Thus

we now introdu
e an index Id(�) for ea
h 
luster label and de�ne it su
h that

the index of a super
uous label, say 4, points to the right label, viz. Id(4) = 2.

Pro
eeding with our analysis into the 4th row of the latti
e, we see in the 
enter


olumn of Fig. 2 that we again have to adjust our index at the position indi
ated

in bold. Instead of labeling this site as 4, we 
hoose 2 � Id(4). And 
onsequently,

Id(3) = 2. In this way, we 
an easily 
he
k whether a 
luster per
olates from top

to bottom of the latti
e by simply 
he
king whether the label of any o

upied

site in the bottom row of the latti
e has an index equal to any of the labels

in the top row. Furthermore, in addition to the top row, we only need to store

the row presently under 
onsideration and its prede
essor. Thus the storage

requirement is linear in latti
e size L and not L

2

as it would be if we were to
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store the full latti
e. Last, the algorithm 
an also give information about all


lusters, say, if needed for a fra
tal analysis of the non-per
olating 
lusters. A

Java implementation of su
h a 
oloring algorithm 
an be found in Ref. [19℄.

1 1 2

1 2 2

3 4 ?

� � �

� � �

1 1 2

1 2 2

3 4 4

3 3 ?

� � �

1 1 2

1 2 2

3 4 4

3 3 2

2 5 5

Id(1) = 1

Id(2) = 2

Id(3) = 3

Id(4) = 2

Id(1) = 1

Id(2) = 2

Id(3) = 2

Id(4) = 2

Id(1) = 1

Id(2) = 2

Id(3) = 2

Id(4) = 2

Id(5) = 5

Fig. 2. S
hemati
 des
ription of the Hoshen-Kopelman 
oloring algorithm of the site

per
olation problem on a square latti
e as shown in Fig. 1. � denotes an o

upied site,

the numbers denote the 
luster labels. The horizontal lines bra
ket the 
urrent and the

previous row

2.3 The Growth Algorithm

When we want to study primarily the geometri
al properties of per
olation 
lus-

ters, another algorithm is more suitable whi
h allows to generate the desired


luster stru
ture dire
tly. This algorithm is due to Leath [20℄ and works by a


luster-growth strategy. The idea of the algorithm is that we put an o

upied

site in the 
enter of an otherwise empty latti
e. Then we identify its nearest-

neighbor sites as shown in Fig. 3. Next we o

upy these sites a

ording to the

desired per
olation probability p. We identify the new, yet unde
ided nearest-

neighbor sites, o

upy these again with probability p and repeat the pro
edure.

The 
luster 
ontinues to grow until either all sites at the boundary are uno
-


upied or the 
luster has rea
hed the boundary of the latti
e. For p < p




, the

growth usually stops after a few iterations, while for p > p




, per
olating 
lusters

are generated almost always. Thus besides giving information about the fra
tal

stru
ture of the per
olating 
lusters, the Leath algorithm 
an also be used to

estimate the value of p




. A Java implementation of the Leath algorithm 
an be

found in Refs. [21,22℄.
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� � � � �

� � � � �

� � � � �

� � � � �

� � � � �

� � � � �

� � Æ � �

� Æ � � �

� � � � �

� � � � �

� � � � �

� � Æ � �

� Æ � � Æ

� � � Æ �

� � Æ � �

Fig. 3. S
hemati
 des
ription of the �rst three steps in the Leath growth algorithm

of the site per
olation 
luster of Fig. 1. �, Æ, and � denote an o

upied, empty, and

unde
ided site

2.4 The Frontier Algorithm

As we have seen in the last se
tion, the outer frontier of the per
olation 
luster

is well de�ned. The fra
tal properties of this hull 
an be measured [23,24℄ and

shown to yield D

h

= 1:74 � 0:02. This suggests yet another algorithm for the

determination of p




[25,26℄: Generate a latti
e with a 
onstant gradientrp of the

o

upation probability p as shown in Fig. 4. By an algorithm similar to the one
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Fig. 4. An example for gradient per
olation. All sites at p = 1 (p = 0) are o

upied

(empty). The 15 large 
ir
les 
orrespond to o

upied sites. The 8 light shaded sites

belong to the frontier, whereas the 7 dark shaded sites are part of the interior of the


luster or belong to other 
lusters. The 5 small 
ir
les 
orrespond to sites in the empty

frontier. The dashed line indi
ates the frontier generating walk. Note that only the 14

sites with solid 
ir
les have a
tually been visited. The 6 other 
ir
les are shown here

just for 
larity and need not be generated. A

ording to (2), we have p




= (8 � 0:4375+

5 � 0:75)=13 = 0:55769

used in 
omputing the hull of the per
olating 
luster, one traverses the frontier
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Table 2. Various 
urrent estimates of p




for site and bond per
olation on di�erent

latti
es in d = 2 [28{33℄. Exa
tly known values are emphasized. The latti
es are 
lassi-

�ed a

ording to their number of �rst, se
ond and more nearest-neighbors. The upper

index gives the 
orresponding number in the dual latti
e

latti
e site p




bond p




3; 12

2

0.807 904

4; 6; 12 0:747 806

4; 8

2

0:729 724

6

3

honey
omb 0:697 043 0.652 703

3; 6; 3; 6 Kagom�e 0.652 703 0:524 4

4

4

di
e 0:584 8 0:475 4

3; 4; 6; 4 0:621 819

4

4

square 0:592 746 0 0.500 000

3

4

; 6 0:579 498

3

2

; 4; 3; 4 0:550 806

3

3

; 4

2

0:550 213

3

6

triangular 0.500 000 0.347 296

of the o

upied 
luster and determines whi
h sites belong to it and whi
h belong

to the empty 
luster [24{26℄. Then a very reliable estimate for the per
olation

threshold 
an be 
omputed as

p




=

N

o

p


o

+N

e

p


e

N

o

+N

e

; (2)

whereN

o;e

denotes the number of sites in the o

upied (empty) frontier and p


o;
e

is the mean height of the asso
iated frontiers, respe
tively. Note that instead of

a
tually generating the per
olation latti
e, the algorithm instead pro
eeds by just

generating the sites needed for the 
onstru
tion of the frontier. Thus instead of

dealing with, say, O(L

2

) sites as in the Hoshen-Kopelman and Leath algorithms

for a latti
e in d = 2, one only needs O(L) sites in the present algorithm [27℄.

This redu
es 
omputer time and estimates for p




in a large variety of latti
es


an be obtained with high a

ura
y [28{33℄ as shown in Table 2.

3 Real-Spa
e Renormalization

3.1 Making Use of Self-Similarity

As mentioned in Se
t. 2, the transition at p





orresponds to a se
ond-order phase

transition and the 
orrelation length � is in�nite. There is no parti
ular length
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s
ale in the system and all 
lusters are statisti
ally similar to ea
h other. This

self-similarity [7℄ is at the bottom of the renormalization des
ription just as for

the fra
tal analysis of the per
olation 
lusters.

We may use the self-similarity in the following way. Let us repla
e a suitable


olle
tion of sites by super-sites and then study per
olation of the super-latti
e

[34{38℄. In general, the o

upation probability p

0

of the super-latti
e will be

di�erent from the original p. Furthermore, if the extent of the 
olle
tion of sites

in the latti
e was b, then the super-latti
e will have a latti
e 
onstant b. Thus

� = b�

0

and with � / jp� p




j

��

, we �nd

bjp

0

� p




j

��

� jp� p




j

��

(3)

and 
onsequently,

� =

log b

log

dp

0

dp

: (4)

As an example, let us 
onsider the bond per
olation problem on a square latti
e

[35{37℄. Here we repla
e 5 bonds by a super-bond in the horizontal dire
tion as

shown in Fig. 5. Summing all probabilities for a 
onne
ted, horizontal super-bond

4p  (1-p)4
p  (1-p)

3 2
2p  (1-p)

3 2
4p  (1-p)

2 3
2p  (1-p)

p
5

3 2
2p  (1-p)

4

,
p

Fig. 5. The possible 
ombinations of bonds (thin lines) that lead to a super-bond (thi
k

line) together with their respe
tive probabilities for bond per
olation on a square latti
e

as shown in Fig. 5, we �nd that

p

0

= p

5

+ 5p

4

(1� p) + 8p

3

(1� p)

2

+ 2p

2

(1� p)

3

: (5)

At the transition, we have p

0

= p and thus (5) has the solutions p = 0, 0:5, and 1.

The �rst and last solution 
orrespond to a 
ompletely empty or o

upied latti
e

and are trivial. The se
ond solution reprodu
es the exa
t result of Table 2. From

4), we 
ompute � = 1:4274 whi
h is already within 8% of the exa
t result 4=3.
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Thus the real-spa
e RG s
heme gives very good approximations to the known

results. But beware, it may not always be that simple: the reader is en
ouraged

to devise a similar RG s
heme for site per
olation on a square latti
e.

3.2 Monte-Carlo RG

The s
heme of the last se
tion is approximate sin
e it 
annot 
orre
tly handle

situations like the one in Fig. 6. In order to improve, we 
an 
onstru
t an RG

s
heme that uses a larger 
olle
tion of bonds. The total number of (
onne
ted

and un
onne
ted) 
on�gurations in su
h a 
olle
tion of n bonds is 2

n

, putting

severe bounds on the pra
ti
ability of the approa
h for analyti
 
al
ulations.

However, the task is ideally suited for 
omputers. On the CD a

ompanying this

book, I in
lude a set of Mathemati
a routines that 
ompute the real-spa
e RG

for a d = 2 triangular latti
e.

Fig. 6. Although the original bonds (thin lines) are not 
onne
ted, the RG pro
edure

outlined in the text nevertheless leads to two 
onne
ted horizontal super-bonds (thi
k

lines)

4 The Quantum-Hall E�e
t

In 1980, von Klitzing et al. [39℄ found that the Hall resistan
e R

H

of MOSFETs

at strong magneti
 �eld B exhibits a step-like behavior whi
h is a

ompanied

with a simultaneously vanishing longitudinal resistan
e R. This is in 
ontrast to

the 
lassi
al Hall e�e
t whi
h gives a linear dependen
e of R

H

on B. Even more

surprising, the values of R

H

at the transitions are given by universal 
onstants,

i.e.,

1

i

h

e

2

, where i is an integer.

Sin
e its dis
overy this so-
alled integer quantum Hall e�e
t (IQHE) was

studied extensively [40,41℄. Besides semi-phenomenologi
al models simply as-

suming a lo
alization-delo
alization transition more general theories 
onsidered,

e.g., gauge invarian
e [42℄, topologi
al quantization [43℄, s
attering [44℄ and �eld

theoreti
al approa
hes [45℄.

4.1 Basi
s of the IQHE

A simple understanding of the IQHE 
an be gained by 
onsidering the Hamilto-

nian of a single ele
tron in a magneti
 �eld,

H

0

=

1

2m

�

p+

e




A

�

2

=

�h!




2l

2

B

�

�

2

+ �

2

�

: (6)
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where A denotes the ve
tor potential and the Hamiltonian has been rewritten in

guiding 
enter 
oordinatesX = x��, Y = y�� and relative 
oordinates �, � [46℄.

Here, !




=

eB

m

is the frequen
y of the 
lassi
al 
y
lotron motion and l

B

= (

�h

eB

)

1=2

is the radius of the 
y
lotron motion. The spe
trum of this Hamiltonian is simply

the harmoni
 os
illator with E

n

=

�

n+

1

2

�

�h!




; n = 0, 1, : : :. These Landau

levels are in�nitely degenerate sin
e the Hamiltonian no longer 
ontainsX and Y .

Thus the spe
trum 
onsists of Æ-fun
tion peaks as indi
ated in Fig. 7. Introdu
ing

disorder into the model by adding a smooth random potential V (r) in (6) results

in drift motion of the guiding 
enter

_

X =

i

�h

[H;X ℄ =

l

2

B

�h

�V

�y

;

_

Y =

i

�h

[H;Y ℄ = �

l

2

B

�h

�V

�x

: (7)

perpendi
ular to the gradient of V (r) (see Fig. 8). Furthermore, the degenera
y

of the Landau levels is lifted, the Æ-fun
tion density of states broadens [40℄, giving

rise to a band-like stru
ture as shown in Fig. 7. If the sample is penetrated by a

strong magneti
 �eld, the 
y
lotron motion is mu
h smaller than the potential


u
tuations. Consequently, the ele
tron motion 
an be separated into 
y
lotron

motion and motion of the guiding 
enter along equipotential lines of the energy

lands
ape.
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e
h

2

0 1

D
O

S

νf

Fig. 7. Density of states (DOS), transversal and longitudinal 
ondu
tivity as a fun
tion

of E

F

or, equivalently, �lling fa
tor �

f

or B

�1

[41℄. The peak in the middle of the band

represents one Æ-fun
tion peak of the 
lean Landau model. Dark shaded regions of the

density of states 
orrespond to lo
alized states. The thin dashed line (with non-zero

slope) for �

xy

indi
ates the 
lassi
al Hall result

The IQHE 
an then be understood as follows: assume that the 
enter of the

broadened Landau levels 
ontain extended states that 
an support transport,

whereas the other states are spatially lo
alized and 
annot. This is similar to

the standard pi
ture in the theory of Anderson lo
alization [7,12℄. Changing the
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Fermi energy E

F

or the �lling fa
tor �

f

= 2�l

2

B

�

e

= 2��h�

e

=eB / E

F

, where �

e

denotes the ele
tron density, we �rst have E

F

in the region of lo
alized states

and both �

xx

and �

xy

are 0. When E

F

rea
hes the region of extended states,

there is transport, �

xx

is �nite and �

xy

= e

2

=h. Next, E

F

again rea
hes a region

of lo
alized states and �

xx

drops ba
k to 0 until we rea
h the extended states in

the next Landau level.

This pi
ture suggests the following e�e
tive 
lassi
al high-�eld model [47℄ of

the IQHE: Negle
ting the 
y
lotron motion (i.e., large B) and quantum e�e
ts

(i.e., only one extended state) the 
lassi
al ele
tron transport with energy E

F

through the sample only depends on the \height" of the saddle points in the

potential energy lands
ape V (r). One obtains a 
lassi
al bond-per
olation prob-

lem [5℄, in whi
h saddle points are mapped onto bonds. A bond is 
onne
ting

only when the potential of the 
orresponding saddle point equals the energy of

the ele
tron E

F

. From per
olation theory follows [5℄ that an in�nite system is


ondu
ting only when E

F

= hV i. Using this model one 
ould already des
ribe

the lo
alization-delo
alization transition and thus the quantized plateaus in re-

sistivity observed in IQHE [40℄. But for bond per
olation the 
orrelation length

diverges at the transition with an exponent of � = 4=3 whi
h is in 
ontrast to

the value found in the QH experiments.

4.2 RG for the Chalker-Coddington Network Model

The Chalker-Coddington (CC) network model improved the high-�eld model

by introdu
ing quantum 
orre
tions [48℄, namely tunneling and interferen
e.

Tunneling o

urs, in a semi
lassi
al view, when ele
tron orbits 
ome 
lose enough

to ea
h other and the ele
tron 
y
lotron motions overlap. This happens at the

saddle points, whi
h now a
t as quantum s
atterers 
onne
ting two in
oming

with two outgoing 
hannels by a s
attering matrix as shown in Fig. 8. Similar

to bond per
olation a network 
an be 
onstru
ted su
h that the saddle points

are mapped onto bonds. While moving along an equipotential line an ele
tron

a

umulates a random phase whi
h re
e
ts the disorder of V (r). Results for

this quantum per
olation also show one extended state in the middle of the

Landau band. The 
riti
al properties at the transition, espe
ially the value of

the exponent � � 2:4 [49℄, agree with experiments [50,51℄.

As explained for the bond per
olation problem we now apply the RG method

to the CC model. The RG stru
ture whi
h builds the new super-saddle points is

displayed in Fig. 9. It 
onsists of 5 saddle points drawn as bonds. The links (and

phase fa
tors) 
onne
ting the saddle points are indi
ated by arrows pointing in

the dire
tion of the ele
tron motion due to the magneti
 �eld. Ea
h saddle point

a
ts as a s
atterer 
onne
ting the 2 in
oming I

1;2

with the 2 outgoing 
hannels

O

1;2

�

O

1

O

2

�

=

�

t

i

r

i

r

i

�t

i

��

I

1

I

2

�

(8)

with re
e
tion 
oeÆ
ients r

i

and transmission 
oeÆ
ients t

i

, whi
h are assumed

to be real numbers. The 
omplex phase fa
tors enter later via the links between
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Fig. 8. Left: S
hemati
 plot of a smooth random potential V (r) with equipotential

lines at E = hV i indi
ated in bla
k. Right: Equipotential lines of the same potential

for E = hV i�E

max

=2, hV i, and hV i+E

max

=2 
orresponding to long dashed, solid and

short dashed lines. Note the solid line per
olating the system from top to bottom as

indi
ated by the arrows

O1

I 1
r

r

t

O2

I 2

−t φ

φ

φ

φ

Fig. 9. Left: A single saddle point (
ir
le) 
onne
ted to in
oming and outgoing 
ur-

rents I

i

, O

i

via transmission and re
e
tion amplitudes t and r. Right: A network of 5

saddle points 
an be renormalized into a single super-saddle point by an RG approa
h

very similar to the bond per
olation problem of Se
t. 3. The phases are s
hemati
ally

denoted by the �'s

the saddle points. By this de�nition { in
luding the minus sign { the unitarity


onstraint t

2

i

+ r

2

i

= 1 is ful�lled a priori. The amplitude of transmission of the

in
oming ele
tron to another equipotential line and the amplitude of re
e
tion

and thus staying on the same equipotential line add up to unity { ele
trons do

not get lost.

In order to obtain the s
attering equation of the super-saddle point we now

need to 
onne
t the 5 s
attering equations a

ording to Fig. 9. For ea
h link the
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amplitude of the in
oming 
hannels is de�ned by the amplitude of the outgoing


hannel of the previous saddle point multiplied by the 
orresponding 
omplex

phase fa
tor e

i�

k

. This results in a system of 5 matrix equations, whi
h has to

be solved. One obtains an RG equation for the transmission 
oeÆ
ient t

0

of the

super-saddle point [52℄ analogously to Eq. (5),

t

0

=

t

15

(r

234

e

i�

2

� 1) + t

24

e

i(�

3

+�

4

)

(r

135

e

�i�

1

� 1) + t

3

(t

25

e

i�

3

+ t

14

e

i�

4

)

(r

3

� r

24

e

i�

2

)(r

3

� r

15

e

i�

1

) + (t

3

� t

45

e

i�

4

)(t

3

� t

12

e

i�

3

)

(9)

depending on the produ
ts t

i:::j

= t

i

� : : : �t

j

, r

i:::j

= r

i

� : : : �r

j

of transmission and

re
e
tion 
oeÆ
ients t

i

and r

i

of the i = 1; : : : ; 5 saddle points and the 4 random

phases �

k

a

umulated along equipotentials in the original latti
e. For further

algebrai
 simpli�
ation one 
an apply a useful transformation of the amplitudes

t

i

= (e

z

i

+1)

�1=2

and r

i

= (e

�z

i

+1)

�1=2

to heights z

i

relative to heights V

i

of the

saddle points. The 
ondu
tan
e G is 
onne
ted to the transmission 
oeÆ
ient t

by G = jtj

2

e

2

=h [53℄.

4.3 Condu
tan
e Distributions at the QH Transition

For the numeri
al determination of the 
ondu
tan
e distribution, we �rst 
hoose

an initial probability distribution P

0

of transmission 
oeÆ
ients t. The distribu-

tion is dis
retized in at least 1000 bins. Thus the bin width is typi
ally 0:001e=

p

h

for the interval t 2 [0; e=

p

h℄.

Using the initial distribution P

0

(t), we now randomly sele
t many di�erent

transmission 
oeÆ
ients and insert them into the RG equation (9). Further-

more, the phases �

j

, j = 1; : : : 4 are also 
hosen randomly, but a

ording to a

uniform distribution �

j

2 [0; 2�℄. By this method at least 10

7

super-transmission


oeÆ
ients t

0

are 
al
ulated and their distribution P

1

(t

0

) is stored. Next, P

1

is

averaged using a Savitzky-Golay smoothing �lter [54℄ in order to de
rease sta-

tisti
al 
u
tuations. This pro
ess is then repeated using P

1

as the new initial

distribution.

The iteration pro
ess is stopped when the distribution P

i

is no longer distin-

guishable from its prede
essor P

i�1

and we have rea
hed the desired �xed-point

(FP) distribution P




(t). However, due to numeri
al instabilities, small deviations

from symmetry add up su
h that typi
ally after 15{20 iterations the distributions

be
ome unstable and 
onverge towards the 
lassi
al FPs of no transmission or


omplete transmission similar to the 
lassi
al per
olation 
ase. Figure 10 shows

this behavior for one of the RG iterations. The FP distribution P




(G) shows a


at minimum around G = 0:5e

2

=h and sharp peaks at G = 0 and G = e

2

=h.

It is symmetri
 with hGi = 0:498e

2

=h. This is in agreement with previous the-

oreti
al [56,57℄ and experimental [58℄ results whereas our results 
ontain mu
h

less statisti
al 
u
tuations. Furthermore we determine moments h(G�hGi)

m

i of

the FP distribution P




(G). As shown in Fig. 10 for small moments up to m = 6

our results agree with the work of Wang et al. [55℄, who 
omputed moments

m � 8:5. But more interesting is the fa
t that the obtained moments of the FP

distribution 
an hardly be distinguished from the moments of a simple 
onstant
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<
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−
<

G
>

)m
>

Fig. 10. Condu
tan
e distribution at a QH plateau-to-plateau transition. The squares


orrespond to the �xed-point distribution, dashed and dot-dashed lines to the initial

distribution and an unstable distribution, respe
tively. The solid line indi
ates a �t of

the FP distribution P




(t) by three Gaussians. Inset: Moments of the FP distribution

P




(G). The dashed lines indi
ate various predi
tions based on extrapolations of results

for small m [55℄. The dotted line denotes the moments of a 
onstant distribution

distribution thus indi
ating the in
uen
e of the broad 
at minimum of the FP

distribution around G = 0:5e

2

=h.

For the determination of the 
riti
al exponent, we next perturb the FP dis-

tribution slightly, i.e., we 
onstru
t a distribution with shifted average G

0

. Then

we perform an RG iteration and 
ompute the new average G

1

of P

1

(G). Tra
ing

the shift of the perturbed average G

n

for several initial shifts G

0

, we expe
t to

�nd a linear dependen
e of G

n

on G

0

for ea
h iteration step n. The 
riti
al ex-

ponent is then related to the slope dG

n

=dG

0

[59℄. Figure 11 shows the resulting

� in dependen
e on the iteration step and thus system size. The 
urve 
onverges


lose to � � 2:4, i.e. the value obtained by Lee et al. [49℄. Note that the \sys-

tem size" is more properly 
alled a system magni�
ation, sin
e we start the RG

iteration with an FP distribution valid for an in�nite system and then magnify

the system in the 
ourse of the iteration by a fa
tor 2

n

.

5 Summary and Con
lusions

The per
olation model represents the perhaps simplest example of a system

exhibiting 
omplex behavior although its 
onstituents { the sites and bonds {

are 
hosen 
ompletely un
orrelated. Of 
ourse, the 
omplexity enters through the
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G
n

Fig. 11. Criti
al exponent � as a fun
tion of magni�
ation fa
tor 2

n

for RG step n.

The dashed line shows the expe
ted result � = 2:39. Inset: The shift of the average G

n

of P (G) is linear in G

0

. The dashed lines indi
ate linear �ts to the data


onne
tivity requirement for per
olating 
lusters. I have reviewed several numer-

i
al algorithms for quantitatively measuring various aspe
ts of the per
olation

problem. The spe
i�
 
hoi
e re
e
ts purely my personal preferen
es and I am

happy to note that other algorithms su
h as breadth- and depth-�rst algorithms

[60℄ have been introdu
ed by P. Grassberger in his 
ontribution [61℄.

The real-spa
e RG provides an instru
tive use of the underlying self-similarity

of the per
olation model at the transition. Furthermore, it 
an be used to study

very large e�e
tive system sizes. This is needed in many appli
ations. As an

example, I brie
y reviewed and studied the QH transition and 
omputed 
on-

du
tan
e distributions, moments and the 
riti
al exponent. These results 
an be


ompared to experimental measurements and shown to be in quite good agree-

ment.
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