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1 Motivation and model problem

Singularly perturbed problems have attrated muh interest from both sientists and

engineers. They inlude, for example, di�usion{onvetion{reation problems (with a

singular parameter) or plate and shell problems (where the singular harater is intro-

dued via the geometry). A omprehensive overview of singularly perturbed problems

as well as their theoretial and numerial treatment an be found in the textbooks by

[MNP01, RST96, MOS96, Mor96℄ and the itations ontained therein.

In this note we onsider a singularly perturbed reation{di�usion problem whih serves

as a omparatively simple model problem. The most ommon norms to measure the

disretization error of some numerial approximation are the (disrete) L

1

or maximum

norm and the energy norm. Beside those, other speialized norms have been proposed

as well. The atual hoie of the norm depends, for example, on the numerial method

(e.g. �nite element/�nite di�erent sheme) and the tools to analyse it.

Here we will promote the energy norm. More preisely, our aim is twofold:

� Oasionally it is laimed that the energy norm is unsuitable. The orresponding

argument is investigated and disproved.

� For our seond and more important argument we apply an energy norm error esti-

mator within an adaptive algorithm. This algorithm produes optimal meshes whih

underlines the suitability of the energy norm.

For larity we may stress that we do not laim or suggest that other norms are inappropri-

ate; we simply examine the energy norm and onlude its usefulness. In this way we hope

to stimulate the disussion about several norms and their �elds of appliation.

In order to eliminate unwanted side e�ets we examine the following simple model

problem of a singularly perturbed reation{di�usion equation:

�"�u + u = f in 


u = g on �

D

� �


�

(1)

with a small perturbation parameter 0 < " � 1. The orresponding energy norm (for

some domain !) then is

jjjvjjj

!

:=

�

"krvk

2

L

2

(!)

+ kvk

2

L

2

(!)

�

1=2

; (2)

and it is problem dependent via ". The singular harater of problem (1) usually gives rise

to boundary layers [RST96, MOS96℄. The smaller " is the more distinguished these layers

will be. Hene standard tehniques to solve (1) beome very vulnerable for small ".

Robust numerial methods for (1) and for more general di�usion{onvetion{reation

problems have been proposed by many authors; the textbooks [RST96℄ and [MOS96℄ supply

an overview of many suh tehniques and may serve as a guide. It has turned out that two

main approahes are partiularly suessful:
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2 2 THE ENERGY NORM { PRO AND CONTRA

� operator �tted methods (e.g. adapted �nite element/�nite di�erene methods on stan-

dard meshes),

� mesh �tted methods (e.g. standard �nite element/�nite di�erene methods on adapted

meshes).

For example, uniformly onvergent methods and stabilization tehniques are disussed in

[RST96℄. In [MOS96℄, operator �tted methods and mesh �tted methods are investigated,

mostly using the L

1

norm. In the onept of adaptive algorithms, error estimators play a

entral role. Robust estimators for (1) have been developed within the last deade, e.g. in

[Ang95, Ver98, AB99, Kun00, Kun01℄.

2 The energy norm { Pro and Contra

Our main fous is on the hoie of the norm in whih to measure the disretization error.

In partiular we investigate the energy norm and onlude that it is both well{suited

and appropriate (despite oasional laims to the ontrary). Additionally an important

argument is given in favour of the energy norm, and some prejudies are dismissed.

As already mentioned the maximum norm and the energy norm are among the most

widely used norms; thus we start with a brief reolletion. The L

1

norm is applied

e.g. throughout [MOS96℄ and partly in [RST96℄. As a rough guideline, this maximum

norm is partiularly suessful for analysing �nite di�erene methods. The energy norm

is employed e.g. in [Ver98, AB99, Kun00, Kun01℄ and also partly in [RST96℄. This energy

norm seems to be better suited to deal with �nite element tehniques.

After this brief overview let us now examine the energy norm more losely, and in

partiular the arguments for and against it. To start with, the energy norm is problem

dependent, whih indeed ould be seen as a minor disadvantage. However, in our opinion

this slight drawbak is made up for, or even outweighed, by the fat that the energy norm

is the natural norm assoiated with the variational formulation of problem (1).

The main argument invoked against the energy norm is that it allegedly annot distin-

guish between layer funtions and the zero funtion. Consider, for example, a typial layer

funtion v(x) := e

�x=

p

"

in 
 = (0; 1), as in [MOS96, pages 12f℄. Then

jjjv � 0jjj




= O("

1=4

) and kv � 0k

L

1

= 1 :

Truly, the energy norm of the di�erene of this layer funtion v and the zero funtion

vanishes in the limiting ase " ! 0. We laim, however, that no further onlusions an

be drawn. Firstly, any atual numerial simulation is performed for some �xed value of ".

Then the energy norm jjjv � 0jjj is small indeed but only on an absolute sale. Nevertheless

jjjv � 0jjj an be large in relative terms, e.g. ompared with the disretization error (f. also

example 2 below). Hene any onlusions at this stage seem to be premature.

Seondly, the layer funtion v and the zero funtion annot be ompared as they are

sine they obey di�erent boundary onditions.
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Our main argument in favour of the energy norm states that an adaptive �nite element

algorithm an derease the error (in the energy norm) with an optimal rate. Suh an

adaptive algorithm naturally inorporates an energy norm error estimator. This estimator

should also be robust with respet to the small perturbation parameter ", whih has been

ahieved reently in [Ver98, AB99, Kun00, Kun01℄.

Surprisingly, extensive literature searh has revealed that apparently none of these

estimators has been applied yet in adaptive algorithms (at least no results have been

published). Only [Pap98, PV00℄ arried out some investigations whih are lose to our

intentions. Their examinations are for two{dimensional domains, and the problems there

are more general than (1). The numerial examples show that boundary and interior

layers an be resolved appropriately by an adaptive algorithm, even if the results are not

optimal yet. This mainly seems to be due to the more ompliated problem where several

theoretial questions are unsolved.

In the next setion we want to bridge the gap between the analytially known energy

norm error estimator and numerial reality. Hene on two examples we demonstrate the

potential of the energy norm to ontrol an adaptive �nite element algorithm towards useful

or even optimal meshes. The riterion to judge an adaptive algorithm is the error derease

(in the hosen norm) with respet to the number of unknowns N . Applying for example

linear �nite elements and the energy norm, the asymptotially optimal error derease is

O(N

�1=d

) for 
 � R

d

.

3 The adaptive algorithm and numerial experiments

In order to onentrate on the role of the energy norm and to eliminate unwanted inuenes

we retreat to the omparatively simple model problem whih is a speial ase of (1). Our

atual example enjoys several favourite properties, namely

� it is a one{dimensional problem,

� the analytial solution u and thus the disretization error u� u

h

are known,

� the omputational implementation is easily aomplished, e.g. in MATLAB.

The lassial formulation of our model problem is a speial ase of (1) and reads

�" u

00

+ u = f in 
 = (0; 1) ;

u(0) = 1; u(1) = 0 ;

with f 2 P

2

(
). The disretization with linear �nite elements utilizes a mesh with nodal

points fx

i

g

N

i=0

. The �nite element solution is denoted by u

h

. The adaptive algorithm

onsists of the steps Solve system of equations { Estimate error { Re�ne mesh. The last

two ingredients are desribed now.
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Error estimation: The energy norm error estimator is the one{dimensional ounterpart

of [Ver98℄. For a proper desription, de�ne the following data.

Mesh size h

i

:= x

i

� x

i�1

i = 1 : : :N

Finite element T

i

:= (x

i�1

; x

i

) i = 1 : : :N

Maro element !

i

:= (x

i�2

; x

i+1

) i = 2 : : :N � 1

!

0

:= (x

0

; x

2

) !

N

:= (x

N�2

; x

N

)

Element residual R

i

:= f � (�" u

00

h

+ u

h

) i = 1 : : :N

Jump residual J

i

:= " � [u

0

h

(x

i

+ 0)� u

0

h

(x

i

� 0)℄ i = 1 : : :N � 1

J

0

= J

N

:= 0

Saling fator �

i

:= minf1 ; "

�1=2

h

i

g i = 1 : : :N

Loal error estimator �

2

i

:= �

2

i

kR

i

k

2

L

2

(T

i

)

+ "

�1=2

�

i

� (J

2

i�1

+ J

2

i

) i = 1 : : :N

Note that x

i

and J

i

are node related data whereas h

i

, T

i

, R

i

, �

i

, �

i

are element related

data. Verf�urth [Ver98℄ has proven that the energy norm of the error is bounded loally

from below and globally from above:

�

i

� 

L

jjju� u

h

jjj

!

i

8 i = 1 : : :N

jjju� u

h

jjj




� 

U

 

N

X

i=1

�

2

i

!

1=2

:

The onstants 

L

; 

U

are independent of ", i.e. the error estimation is robust.

Mesh re�nement: Here it suÆes to hoose a simple strategy. Start with an equidis-

tributed mesh of 10 elements. One the error estimators are omputed, an element T

i

is

biseted i�

�

i

�  � max

k=1:::N

�

k

;

where the re�nement parameter is set to  := 0:1. More sophistiated re�nement strategies

are possible of ourse.
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Example 1: Single boundary layer

This experiment features a single boundary layer. Thus it is best suited to illustrate the

prinipal behaviour of the adaptive algorithm whilst eliminating perturbing inuenes at

the same time. With the hoie f � 0 of the right hand side one obtains a sharp boundary

layer of the type e

�x=

p

"

at x = 0, see Figure 1.
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Figure 1: Analyti solution u for example 1, " = 10

�3

In Figure 2 we present the results of our adaptive algorithm for di�erent values of ".

The �gure depits the error derease in the energy norm with respet to the number of

unknowns N . It turns out that in all ases the onvergene rate is very lose to the optimal

rate of O(N

�1

) as soon as the boundary layer is resolved. As desired, the onvergene rate

is independent of ". Hene the hosen algorithm is optimal (with respet to the energy

error derease), i.e. optimal meshes are obtained.

For ompleteness we also present the orresponding error derease in the (nodal) L

1

norm in Figure 3. Again, as soon as the boundary layer is resolved, the maximum norm of

the error drops as well. The onvergene rate here is approximately O(N

�1:4

) whih is sub{

optimal. (The nodal error ku�Iuk

L

1

of the linear interpolant Iu is at most O(N

�2

ln

2

N),

see [RST96, Setion 2.4.2℄. Analytial investigations of the approximation error ku�u

h

k

L

1

on Shishkin meshes result in the bound O(N

�1

lnN), f. [MOS96, RST96℄. Numerial

experiments however give a onvergene rate of approximately O(N

�2:0

) on Shishkin like

meshes for our problem.) Note that little onlusions an be drawn from this information

sine the underlying adaptive algorithm has been designed to be optimal for the energy

norm.
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Figure 2: Example 1: Error derease in the energy norm
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Figure 3: Example 1: Error derease in the nodal maximum norm
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Example 2: Boundary layer + quadrati funtion

In this experiment the same boundary layer as before is superposed on a quadrati fun-

tion. In the ontext of asymptoti expansions, the layer funtion an be seen as the inner

expansion whereas the quadrati funtion represents (exemplarily) the outer expansion.

Here we hoose f = 2"+ x(1� x) whih yields the analyti solution u = e

�x=

p

"

+ x(1� x)

for small "� 1, see Figure 4.
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Figure 4: Analyti solution u for example 2, " = 10

�3

In Figure 5 the error derease in the energy norm is depited. Again a onvergene

rate is observed whih is lose to the optimal rate of O(N

�1

). It is remarkable that this

optimal rate is ahieved although the energy norm of the layer funtion is O("

1=4

), and

thus muh smaller than the energy norm of the quadrati superposition (whih is O(1)).

For ompleteness the results for the disrete maximum norm are given as well, f. Fig-

ure 6. Similar onlusions an be drawn as for example 1.
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Figure 5: Example 2: Error derease in the energy norm
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4 Conlusions

We have seen that the hoie of an appropriate norm for a singularly perturbed reation{

di�usion problem is, to some extend, a philosophial question. The answer depends on

several aspets, for example the approximation method and the hoie of the tools to

analyse it.

We have shown that there are good reasons to opt for the energy norm. Firstly ertain

prejudies against this norm have analysed and disproved. Seondly, a onvining adaptive

algorithm for a simple model problem enourages to employ the energy norm. Simultane-

ously we hope to stimulate the disussion about the di�erent hoies of the norm.

A Program listing

The following MATLAB program implements the aforementioned adaptive algorithm for ex-

ample 1 and displays several interesting piees of information as well as �gures. The ode

is also available at

http://arhiv.tu-hemnitz.de/pub/2001/0006/data/readiff.m

When you run the program in MATLAB, you are �rst prompted for the value of " (the

default value is 10

�6

). After that only the Return key has to be hit repeatedly.
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% Solve a singularly perturbed reation diffusion model problem in 1D.

% An adaptive program with the residual error estimator of Verfuerth.

%

% - eps*u'' + u = 0 in Omega = (0,1)

% u(0)=1 u(1)=0

%

% Analytial solution: Set eps2 := sqrt(eps)

% u = ( exp(-x/eps2) - exp((x-2)/eps2) ) / (1-exp(-2/eps2))

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

% Initialize.

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

n0 = 10; % number of initial intervals (equidistant mesh)

n = n0; % present number of intervals

x = 0:1/n:1; % the initial mesh

gamma = 0.1; % Refinement ours if eta_T > gamma*eta_max

% eta_T := error estimator, eta_max := max_T {eta_T}

eps=input('Please enter epsilon: ');

if isempty(eps) == 1

eps = 1e-6;

fprintf('Use default value for epsilon: %4.1e\n',eps);

end

eps2 = sqrt(eps);

eps32 = eps2^3;

fprintf('Number of initial intervals: %2d\n',n0);

fprintf('Refinement parameter gamma: %5.2f\n\n',gamma);

fprintf(' Upper Bd Lower Bd\n');

fprintf('Elemente: |||Err||| Err/Est Est/Err C-Err Konv-rate\n');

fprintf('------------------------------------------------------------\n');

fid = fopen('result-Enorm','w');

fprintf(fid,'# Energienorm, Epsilon = %4.1e\n\n',eps);

flose(fid);

fid = fopen('result-Cnorm','w');

fprintf(fid,'# Maximum Norm, Epsilon = %4.1e\n\n',eps);

flose(fid);

while 1 % Adaptive infinite loop
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%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

% Compute the Finite Element Solution.

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

h = x(2:n+1) - x(1:n); % mesh sizes

D = [1 , eps*( 1./h(1:n-1) + 1./h(2:n) ) , 1℄' + ( [h 0℄ + [0 h℄)'/3;

NDu = [-eps*1./h + h/6 , 0℄';

NDo = [0 , -eps*1./h + h/6 ℄';

A = spdiags([NDu D NDo℄ , -1:1 , n+1,n+1); % stiffness matrix

A(1,1) = 1;

A(1,2) = 0;

A(n+1,n) = 0;

A(n+1,n+1) = 1;

b = [1; zeros(n,1) ℄; % right hand side

uh = A\b; % FEM solution

% Exat solution: Numerially stable for small eps

u = ( exp(-x'/eps2) - exp((x'-2)/eps2) ) / (1-exp(-2/eps2));

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

% Compute the error estimator.

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

% The loal error estimator eta_T is for an interval T with two

% nodes E_i.

% The fae residual r_E is the anonial hoie, i.e. eps*Gradient jump.

%

% eta_T^2 := alpha_T^2 * || r_T ||_T^2 +

% + eps^{-1/2}*alpha_T * Summe_E_i | r_E |^2

% with alpha_T := min(1,h_T/sqrt(eps))

al = min( 1 , h / sqrt(eps))';

% Element residual:

norm_rT2 = h'/3 .* ( uh(1:n).^2 + uh(2:n+1).^2 + uh(1:n).*uh(2:n+1) );

% "Fae" residual = gradient jump * eps. Zero at x=0 and x=1.

rE = eps*[ 0 ;( uh(3:n+1) -uh(2:n)) ./h(2:n)' - ( uh(2:n) -uh(1:n-1))...

./h(1:n-1)' ; 0℄ ;
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% Error estimator (squared)

Est = al.^2 .* norm_rT2 + eps^(-1/2) * al .* (rE(1:n).^2 + rE(2:n+1).^2);

Est_glob = sqrt(sum(Est)); % global error estimator

max_err = max(abs(uh - u)); % L_{infinity} error

Est_max = max(Est); % Maximum loal error estimator

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

% Compute the (analytial) error in the energy norm.

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

x1 = x(2:n+1)'; % Auxiliary (olumn) vetor x_{i+1}

x0 = x(1:n)';

% Error ft = [ e^{-x/eps2} - e^((x-2)/eps2) ℄ / (1-e^{-2/eps2}) - *x-d

% ||| error |||_T gives a formula of about one page length (obtained via

% MAPLE).

% For small eps this formula in unstable (gives NaN). Then one has

% approximately u ~ e^{-x/eps2}, and the error is (approximately and

% very aurately) as below.

 = ( uh(2:n+1) - uh(1:n) ) ./ h';

d = uh(1:n) - .*x0;

if eps >= 0.001 % analytial formula by MAPLE

H0 = -1/6*(-12.*.*x0.^2.*d.*exp(2/eps2)-6.*.*x1.^2.*d.*exp(4/eps2)+6.*

.*x0.^2.*d.*exp(4/eps2)+4.*.^2.*x1.^3.*exp(2/eps2)+2.*.^2.*x0.^3.*exp

(4/eps2)-4.*.^2.*x0.^3.*exp(2/eps2)+12**eps.*exp(-(x0-4)/eps2)-12.**e

ps.*exp(-(x0-2)/eps2)+6.*d.^2.*x0.*exp(4/eps2)-12.*d.^2.*x0.*exp(2/eps2)

-12.**eps.*exp((x0+2)/eps2)+12.**eps2.*x0.*exp((x0+2)/eps2)+2.*.^2.*x

0.^3+6.*d.^2.*x0+3*eps2.*exp(-2*(x1-2)/eps2)+12.*x1.*exp(2/eps2)+3*eps2.

*exp(2.*x0/eps2)-12.*x0.*exp(2/eps2)-3*eps2.*exp(2.*x1/eps2)+12.*d*eps2.

*exp((x0+2)/eps2)-2.*.^2.*x1.^3.*exp(4/eps2)-12.*d*eps2.*exp(-(x0-2)/ep

s2)+12.**eps.*exp(x0/eps2)+12.*d*eps2.*exp(-(x0-4)/eps2)-3*eps2.*exp(-2

*(x0-2)/eps2)+6.*.*x0.^2.*d-6.*.*x1.^2.*d+12.*.*x1.^2.*d.*exp(2/eps2)

-2.*.^2.*x1.^3-6.*d.^2.*x1-12.**eps2.*x1.*exp(-(x1-4)/eps2)+12.**eps2

.*x1.*exp(-(x1-2)/eps2)+12.**eps2.*x0.*exp(-(x0-4)/eps2)-12.**eps2.*x0

.*exp(-(x0-2)/eps2)-12.**eps2.*x0.*exp(x0/eps2)+12.**eps2.*x1.*exp(x1/

eps2)-12.**eps2.*x1.*exp((x1+2)/eps2)-12.*d*eps2.*exp(x0/eps2)+12.**ep

s.*exp(-(x1-2)/eps2)+12.**eps.*exp((x1+2)/eps2)-12.*d*eps2.*exp((x1+2)/
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eps2)-12.*d*eps2.*exp(-(x1-4)/eps2)-6.*d.^2.*x1.*exp(4/eps2)+12.*d.^2.*x

1.*exp(2/eps2)+12.*d*eps2.*exp(-(x1-2)/eps2)+12.*d*eps2.*exp(x1/eps2)-12

.**eps.*exp(-(x1-4)/eps2)-12.**eps.*exp(x1/eps2))/(exp(2/eps2)-1).^2;

H1 = 1/2*(-eps.*exp(-2*(x1-2)/eps2)+4.*x1.*exp(2/eps2)*eps2-4**eps32.*

exp(-(x1-4)/eps2)+4**eps32.*exp(-(x1-2)/eps2)+exp(2.*x1/eps2)*eps+4**e

ps32.*exp((x1+2)/eps2)-4**eps32.*exp(x1/eps2)+2*.^2.*x1*eps32.*exp(4/e

ps2)-4*.^2.*x1*eps32.*exp(2/eps2)+2*.^2.*x1*eps32+eps.*exp(-2*(x0-2)/e

ps2)-4.*x0.*exp(2/eps2)*eps2+4**eps32.*exp(-(x0-4)/eps2)-4**eps32.*exp

(-(x0-2)/eps2)-exp(2.*x0/eps2)*eps-4**eps32.*exp((x0+2)/eps2)+4**eps32

.*exp(x0/eps2)-2*.^2.*x0*eps32.*exp(4/eps2)+4*.^2.*x0*eps32.*exp(2/eps

2)-2*.^2.*x0*eps32)/eps32/(exp(2/eps2)-1).^2;

else % approximate formula for small epsilon

% First Int (err')^2

H1 = ( exp(-x1/eps2)-exp(-x0/eps2) ) .* ...

( ( exp(-x1/eps2)+exp(-x0/eps2) )/(-2)/eps2 - 2*) ...

+ .^2.*h';

% Now Int (err)^2

H0_a = - eps2/2 * ( exp(-2*x1/eps2)-exp(-2*x0/eps2) );

H0_b = 2*eps2* exp(-x1/eps2) .* (.*x1 + *eps2 + d) - ...

(2*eps2* exp(-x0/eps2) .* (.*x0 + *eps2 + d) );

H0_ = .^2/3.*(x1.^3-x0.^3) + .*d.*(x1.^2-x0.^2) + d.^2 .*h';

H0 = H0_a + H0_b + H0_;

end % end if

% The element error (squared) in the energy norm. Verified with MAPLE.

Err = eps*H1 + H0;

Err_glob = sqrt(sum(Err)); % global error

Err_max = max(Err); % Maximum loal error, squared

% The ratio of the lower error bound. Has to be bounded from above.

low_bd = Est ./ ( Err + [0 ;Err(1:n-1)℄ + [Err(2:n) ;0℄ );
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%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

% The onvergene rate (energy norm) between two suessive steps.

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

err_new = Err_glob;

n_new = n;

if n > n0

konv = -log(err_new/err_old) / log(n_new/n_old);

else

konv = 0;

end;

n_old=n_new;

err_old=err_new;

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

% The result and some nie plots:

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

subplot(2,2,1); plot(x,[uh u℄);

title('u and u_h')

subplot(2,2,2); plot(x,uh - u);

title('u - u_h');

subplot(2,2,3); plot(x,log10([h 0.1001℄));

axis([0 1 log10(h(1))-1 0℄)

title('logarithmi mesh density');

subplot(2,2,4); plot(x,[sqrt(low_bd); sqrt(low_bd(n))℄);

title('loal Ratio Lower Bound: Est/Err');

fprintf(' %5d %7.2e %7.4f %7.4f %8.3e %6.2f\n',...

n, Err_glob,Err_glob/Est_glob,max(sqrt(low_bd)),max_err,konv);

% Write to some file "result-...".

fid = fopen('result-Enorm','a');

fprintf(fid,' %5d %10.4e \n',n, Err_glob);

flose(fid);

fid = fopen('result-Cnorm','a');

fprintf(fid,' %5d %10.4e \n',n, max_err);

flose(fid);

pause
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%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

% Refinement:

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

% Loop over all elements:

% When Eta_T > gamma * Eta_max then insert new node.

m = 1;

lear y

for i=1:n

y(m) = x(i);

if Est(i) > gamma^2*Est_max % mesh ontrol via Estimator

% if Err(i) > gamma^2*Err_max % mesh ontrol via true error

y(m+1) = (x(i)+x(i+1))/2;

m = m+2;

else

m = m+1;

end;

end;

y(m) = 1;

x = y;

n = m-1;

end % End while
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