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1 Introdution

Adaptive algorithms form nowadays an indispensable tool for most �nite element simu-

lations. They basially onsist of the ingredients Solve { Estimate error { Re�ne mesh

whih are repeated until the desired auray is ahieved, see also [2, 22℄. The present

work is part of a series of related endeavors in a partiular �eld of �nite element analy-

sis. While standard �nite element meshes employ isotropi (or shape regular) elements,

we investigate so{alled anisotropi (or strethed) elements. They are haraterized by a

large strething ratio (also alled aspet ratio). Equivalently, the ratio of the diameters of

the irumsribed and insribed spheres an be arbitrarily large. Suh anisotropi meshes

are partiularly useful when the di�erential equation gives rise to a solution with strong

diretional features, suh as boundary layers or interior layers. Appliation of anisotropi

meshes as well as theoretial investigations an be found for example in [4, 5, 18, 19, 24, 25℄

and [11, 13, 14, 17, 20℄.

It is a natural desire to inorporate anisotropi meshes into adaptive algorithms. Clearly,

additional ingredients are required then, namely anisotropi information extration (e.g.

�nd the (quasi) optimal strething diretion and strething ratio of the anisotropi ele-

ments), and anisotropi mesh re�nement. Less obvious but equally important is the error

estimation part. Unfortunately most of the onventional a posteriori error estimators for

isotropi meshes fail when applied on anisotropi meshes. Therefore the derivation and

analysis of estimators whih are suitable for anisotropi elements is of vital importane for

any adaptive anisotropi algorithm.

Fortunately this hallenging venture has seen some suess reently [20, 13, 14, 15, 17,

11℄. In ase studies of the Poisson model problem it has been shown that anisotropi error

estimation is possible, and the methodology and analytial tools have been developed,

proposed and re�ned. Now anisotropi error estimation has to prove its potential for more

realisti settings. Singularly perturbed problems o�er ideal test �elds sine they often

indue boundary layers where anisotropi elements an be employed favourably.

From now on let us onsider a singularly perturbed reation{di�usion model problem,

see (1) below, whih usually gives rise to boundary layers whenever a non{vanishing right

hand side meets homogeneous Dirihlet boundary data.

Although (1) forms a omparatively simple model problem, the knowledge of robust

error estimators has been unsatisfatory for a long time. The �rst estimators with error

bounds that are uniform in the small perturbation parameter " were due to Angermann [3℄,

Verf�urth [23℄ and Ainsworth/Babu�ska [1℄; all of them onsidered isotropi meshes. Anger-

mann measures the error in a somewhat strange norm (whih seems to be mainly of theo-

retial interest) whereas Verf�urth and Ainsworth/Babu�ska onentrate on the energy norm

(whih is the most natural norm). For anisotropi meshes Kunert [16℄ reently sueeded

in deriving a robust residual error estimator, also for the energy norm. A orollary of that

result has been inluded in [17℄.

In our present work we propose a new error estimator for the singularly perturbed

reation{di�usion problem (1) whih is suitable for anisotropi meshes, and that is based

on the solution of a loal problem. The roots of this loal problem error estimator are

1



2 1 INTRODUCTION

twofold. Firstly it relies on the anisotropi residual error estimator [16℄ whose results are

partly the foundation for the present analysis. Seondly we utilize the methodology of loal

problem error estimation. For the Poisson problem (on isotropi meshes) this is fairly well

understood, see e.g. the exposition in [22℄; hene the general framework of the proofs an

be derived relatively easily. The preise de�nition and analysis of our estimator, however,

are muh more diÆult and tehnial. This onerns for example the hoie of the loal

problem, the areful alibration of all ingredients, or ertain equivalene lemmas. Although

we ould exploit some experiene from anisotropi loal problem error estimation for the

Poisson problem [15℄, the `extension' to the singularly perturbed problem requires several

new ingredients and is by no means straight{forward. Note that in [1℄ also a loal problem

error estimator is derived (for isotropi meshes). However the loal problem there is in�nite

dimensional whereas our proposal here involves an (at most) �ve dimensional loal spae.

When omparing with the anisotropi residual error estimator, our newly proposed

loal problem error estimator is ertainly more expensive sine a loal problem has to be

omputed and solved. Nonetheless the disadvantage of any residual based estimator is that

the proof of the error bound is based on several intermediate steps, suh as interpolation

estimates and the Cauhy Shwarz inequality. In ontrast to this the loal problem error

estimator requires less auxiliary steps, and thus ontains less onstants (whih are unknown

in general). This an also be observed numerially: The qualitative behaviour of both error

estimators is omparable but the loal problem error estimation is muh loser to the true

error.

Finally note that all known anisotropi error estimators require that the anisotropy of

the mesh and the anisotropy of the solution orrespond suÆiently well. As in previous

work, this orrespondene is measured by a so{alled mathing funtion whih is explained

in our exposition.

The remainder of the paper is organized as follows. After presenting the model problem

in x2, we repeat in x3 some notation, basi tools and lemmas that have been applied su-

essfully in previous anisotropi investigations. The transformation tehnique and several

bubble funtions are of partiular importane. Furthermore the residual error estimator of

[16℄ is realled for self{ontainment. Next, x4 is devoted to the loal problem error estima-

tor and its analysis. Reliable upper and lower error bounds are proven and a stable basis

of the loal problem is presented. Additionally a further, fae oriented loal problem error

estimator is given. Computational aspets are disussed in x5, and the numerial experi-

ments of x6 on�rm the analysis. The summary in x7 and a tehnial proof in appendix A

onlude this work.
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2 The model problem and its disretization

Our fous is on a singularly perturbed reation{di�usion model problem with Dirihlet{

Neumann boundary onditions

�"�u + u = f in 


u = 0 on �

D

" � �u=�n = g on �

N

9

=

;

(1)

in a bounded, polyhedral domain 
 � R

d

, d = 2; 3, with boundary �
 = �

D

[ �

N

.

Assume f 2 L

2

(
), g 2 L

2

(�

N

) and meas

d�1

(�

D

) > 0. The Sobolev spae of funtions

that vanish on �

D

is denoted by H

1

o

(
) as usual. The orresponding variational formulation

for (1) beomes:

Find u 2 H

1

o

(
) : a(u; v) = hf; vi 8 v 2 H

1

o

(
)

with a(u; v) :=

Z




" � (ru)

>

rv + u v hf; vi :=

Z




fv +

Z

�

N

gv :

9

=

;

(2)

We utilize a family F = fT

h

g of triangulations T

h

of 
. Let V

o;h

� H

1

o

(
) be the spae of

ontinuous, pieewise linear funtions over T

h

that vanish on �

D

. Then the �nite element

solution u

h

2 V

o;h

is uniquely de�ned by

a(u

h

; v

h

) = hf; v

h

i 8 v

h

2 V

o;h

: (3)

Due to the Lax{Milgram Lemma both problems (2) and (3) admit unique solutions.

The main purpose of our analysis is to bound the error u� u

h

uniformly in the small

perturbation parameter ". Here we onentrate on the most natural norm related to (2),

namely the energy norm

jjjvjjj

2

:= a(v; v) = "krvk

2

+ kvk

2

whih has been used also by other authors [1, 23℄. This energy norm is well{suited to

produe appropriately re�ned meshes. This an be easily veri�ed on some 1D model

problem, e.g. for �"u

00

+ u = 0 in 
 = (0; 1) with u(0) = 1; u(1) = 0. Even the optimal

order of onvergene an be ahieved.

3 Notation, basi tools and lemmas

In order to analyse error estimators on anisotropi meshes we will now introdue ertain

notation as well as important tools, all of whih have proven to be advantageous in previous

work [13, 15, 16℄. All expositions are given for the more tehnial three dimensional ase.

The appliation to the simpler 2D ase is readily possible.

From now on, let P

k

(!) be the spae of polynomials of order k at most over some

domain ! � R

3

or ! � R

2

. Instead of x �  � y or 

1

x � y � 

2

x (with positive onstants
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independent of x; y and "; T

h

) we use the abbreviation x . y and x � y, respetively. By

k � k

!

we denote the L

2

norm of a funtion over some domain !. For ! = 
 the subsript

is omitted. Let j!j := meas (!) be the measure of a domain !. Finally for some vetor p

let jpj :=

p

p

>

p be its Eulidean norm (i.e. length).

3.1 Tetrahedron { Subdomains { Mesh requirements

Tetrahedron: Let a triangulation T

h

be given whih satis�es the usual admissibility

onditions (see Ciarlet [10℄, Chapter 2). The four verties of an arbitrary tetrahedron T 2

T

h

are denoted by P

0

; : : : ; P

3

suh that P

0

P

1

is the longest edge of T , meas

2

(4P

0

P

1

P

2

) �

meas

2

(4P

0

P

1

P

3

), and meas

1

(P

1

P

2

) � meas

1

(P

0

P

2

).

Additionally de�ne three pairwise orthogonal vetors p

i

with lengths h

i;T

:= jp

i

j, see

�gure 1. Observe h

1;T

> h

2;T

� h

3;T

and set h

min;T

:= h

3;T

. The irumsribed hexahedron

may failitate the visualization.

P

0

P

1

P

2

P

3

p

1

p

2

p

3

Figure 1: Notation of tetrahedron T

Tetrahedra are denoted by T; T

0

; T

00

or T

i

. Faes of a tetrahedron are denoted by E or

E

i

. Let h

E;T

:= 3jT j=jEj be the length of the height over a fae E.

Auxiliary subdomains: Let T 2 T

h

be an arbitrary tetrahedron. Let !

T

be that domain

that is formed by T and all tetrahedra that have a ommon fae with T . Note that !

T

onsists of less than �ve tetrahedra if T has a boundary fae.

Let E be an inner fae (triangle) of T

h

, i.e. there are two tetrahedra T

1

and T

2

having

the ommon fae E. Set the domain !

E

:= T

1

[ T

2

. If E is a boundary fae set !

E

:= T

with T � E.

Mesh requirements: In addition to the usual onformity onditions of the mesh (see

Ciarlet [10℄, Chapter 2) we demand the following two assumptions.

1. The number of tetrahedra ontaining a node x

j

is bounded uniformly.

2. The dimensions of adjaent tetrahedra must not hange rapidly, i.e.

h

i;T

0

� h

i;T

8T; T

0

with T \ T

0

6= ; ; i = 1 : : : d :
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Remark 1 In ertain situations we do not want to use element based quantities (suh

as h

min;T

) but utilize fae related terms instead. For example onsider an interior fae

E = T

1

\ T

2

, and de�ne the terms

h

E

:= (h

E;T

1

+ h

E;T

2

)=2 ; h

min;E

:= (h

min;T

1

+ h

min;T

2

)=2 :

Their advantage is that they are no longer related to T

1

or T

2

but to E. They learly

satisfy h

E

� h

E;T

i

and h

min;E

� h

min;T

i

. For a boundary fae E � �T \� de�ne similarly

h

E

:= h

E;T

and h

min;E

:= h

min;T

.

Transformations: The usual transformation tehnique between a tetrahedron T and

a standard tetrahedron plays a vital role in many proofs (f. [10℄). However, a re�ned

analysis has shown that two di�erent transformations failitate matters onsiderably, see

e.g. [13, 14℄. Hene de�ne the matries H

T

:= diag(h

1;T

; h

2;T

; h

3;T

) and A

T

; C

T

2 R

3�3

by

A

T

:= (

�!

P

0

P

1

;

�!

P

0

P

2

;

�!

P

0

P

3

) and C

T

:= (p

1

;p

2

;p

3

) ; (4)

and introdue aÆne linear mappings

F

A

(�) := A

T

� �+

!

P

0

and F

C

(�) := C

T

� �+

!

P

0

; � 2 R

3

:

These mappings impliitly de�ne the standard tetrahedron

�

T := F

�1

A

(T ) and the referene

tetrahedron

^

T := F

�1

C

(T ). Then

�

T the has verties

�

P

0

= (0; 0; 0)

>

and

�

P

i

= e

>

i

; i =

1 : : : 3, whereas

^

T has verties at

^

P

0

= (0; 0; 0)

>

,

^

P

1

= (1; 0; 0)

>

,

^

P

2

= (x̂

2

; 1; 0)

>

and

^

P

3

= (x̂

3

; ŷ

3

; 1)

>

. The onditions on the P

i

yield immediately 0 < x̂

2

� 1=2, 0 < x̂

3

< 1

and �1 < ŷ

3

< 1. Figures 1 and 2 illustrate this de�nition.

^

P

0

^

P

1

^

P

2

^

P

3

�

2

�

1

�

3

�

P

0

�

P

1

�

P

2

�

P

3

Figure 2: Standard tetrahedron

�

T and referene tetrahedron

^

T

Variables and operators that are related to the standard tetrahedron

�

T and the ref-

erene tetrahedron

^

T are referred to with a bar and a hat, respetively (e.g.

�

r, v̂). The
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determinants of both mappings are j det(A

T

)j = j det(C

T

)j = 6jT j, and the transformed

derivatives satisfy

�

r�v = A

>

T

rv and

^

rv̂ = C

>

T

rv.

Although C

T

is naturally assoiated with our analysis, it transforms

^

T into T . Inequal-

ity onstants would thus depend on

^

T . To overome this drawbak, the transformation

via A

T

is used in onjuntion with C

T

(f. the ompatness arguments in the proof of

Lemma 5).

Finally, H

�1

T

C

>

T

is orthogonal sine C

>

T

� C

T

= H

2

T

. Hene

kH

�1

T

C

>

T

rvk

T

= krvk

T

: (5)

Squeezed tetrahedron T

E;Æ

: The onept of the squeezed tetrahedron has been intro-

dued in [16℄ and originates from [23℄ (in a simpler, modi�ed form there). Here we repeat

the de�nition and only state the required results.

Beause of the singular perturbation harater of the di�erential equation we an

favourably employ a sub{tetrahedron T

E;Æ

� T whih depends on a fae E of T and a

real number Æ 2 (0; 1℄. In an attempt to use a vivid name we will refer to T

E;Æ

as a

squeezed tetrahedron. For its preise de�nition, let T be an arbitrary but �xed tetrahe-

dron, and enumerate temporarily its verties suh that E = Q

1

Q

2

Q

3

and T = OQ

1

Q

2

Q

3

,

f. Figure 3. Introdue baryentri oordinates suh that �

0

is related to O, and �

1

, �

2

, �

3

orrespond to Q

1

; Q

2

; Q

3

, respetively.

Let P be that point with baryentri oordinates

�

0

(P ) = Æ and �

1

(P ) = �

2

(P ) = �

3

(P ) =

1� Æ

3

:

Then let T

E;Æ

be the tetrahedron with verties P and Q

1

; Q

2

; Q

3

, i.e. T

E;Æ

has the same

fae E as T but the fourth vertex is moved towards E with the rate Æ.

An alternative desription is as follows. With S

E

being the midpoint (i.e. enter of

gravity) of fae E, point P lies on the line S

E

O suh that j

~

S

E

P j = Æ � j

~

S

E

Oj. Note that for

Æ = 1 one gets T

E;Æ

� T whereas in the limiting ase Æ ! 0 the tetrahedron T

E;Æ

ollapses

to the fae E.

Q

3

Q

2

P

S

E

Q

1

O

Figure 3: Tetrahedra T = OQ

1

Q

2

Q

3

and T

E;Æ

= PQ

1

Q

2

Q

3

In order to utilize T

E;Æ

eÆiently, we also require an aÆne linear transformation F

T;E;Æ

that maps the standard tetrahedron

�

T onto T

E;Æ

. This aÆne linear mapping is unique (up



3.2 Bubble funtions 7

to permutations of the enumeration of the verties of

�

T and T

E;Æ

). In [16℄ the following

relations has been proven.

Lemma 1 The radius %(T

E;Æ

) of the largest insribed sphere of T

E;Æ

is equivalent to

%(T

E;Æ

) � minfÆ � h

E;T

; h

min;T

g � h

min;T

E;Æ

: (6)

The norm of the transformation matrix F

�1

T;E;Æ

is bounded by

kF

�1

T;E;Æ

k

R

3�3

. minfÆ � h

E;T

; h

min;T

g

�1

:

3.2 Bubble funtions

Another useful and important tool are so-alled bubble funtions whih are applied, for

example, for de�ning the loal problem and its ansatz spae but also for the analysis. The

bubble funtions were already partially introdued in [22℄ and [16℄.

Denote by �

T;1

; � � � ; �

T;4

the baryentri oordinates of an arbitrary tetrahedron T . The

element bubble funtion b

T

is de�ned by

b

T

:= 4

4

� �

T;1

� �

T;2

� �

T;3

� �

T;4

2 P

4

(T ) on T : (7)

For simpliity assume that b

T

is extended by zero outside its original domain of de�nition.

Further we require fae bubble funtions. To this end let E = T

1

\ T

2

be an inner

fae (triangle) of T

h

. Enumerate the verties of T

1

and T

2

suh that the verties of E are

numbered �rst, and introdue the funtions

b

E;T

i

:= 3

3

� �

T

i

;1

� �

T

i

;2

� �

T

i

;3

on T

i

; i = 1; 2 :

The standard fae bubble funtion b

E

2 C

0

(!

E

) is now de�ned in a pieewise fashion (with

support !

E

= T

1

[ T

2

) by

b

E

:=

8

<

:

b

E;T

1

on T

1

b

E;T

2

on T

2

0 otherwise

;

see also the middle of Figure 4. Note that 0 � b

T

(x); b

E

(x) � 1 and kb

T

k

1

= kb

E

k

1

= 1.

For larity of notation we also introdue a trivial extension operator F

ext

: P

0

(E) !

P

0

(!

E

) that maps a onstant funtion over some fae E to the same onstant funtion

ating on !

E

. If E is a boundary fae then b

E

and F

ext

are obviously de�ned only on the

single tetrahedron T � E.

The following anisotropi equivalenes/inverse inequalities an be derived easily, f. [13℄.

Lemma 2 (Inverse inequalities I) Assume that '

T

2 P

0

(T ) and '

E

2 P

0

(E). Then

kb

T

k

T

� jT j

1=2

(8)

kb

1=2

T

� '

T

k

T

� k'

T

k

T

(9)

kr(b

T

� '

T

)k

T

. h

�1

min;T

� k'

T

k

T

(10)

kb

1=2

E

� '

E

k

E

� k'

E

k

E

(11)
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The bubble funtions above suÆe to analyse the error estimator for the Poisson equa-

tion, f. [22, 15℄. However, for the singularly perturbed problem onsidered here we have to

introdue modi�ed fae bubble funtions, f. also [13, 23℄.

Start with some fae E and let T

1

; T

2

be its two neighbouring tetrahedra, i.e. !

E

= T

1

[

T

2

. For an arbitrary real number Æ 2 (0; 1℄ onsider both squeezed tetrahedra T

1;E;Æ

� T

1

and T

2;E;Æ

� T

2

, f. Figures 3 and 4. Now we are ready to present the so{alled squeezed

fae bubble funtion b

E;Æ

whih ats only on T

1;E;Æ

[ T

2;E;Æ

� !

E

. Its pieewise de�nition is

b

E;Æ

:=

8

>

>

<

>

>

:

b

�

E

Æ F

�1

T

1

;E;Æ

on T

1;E;Æ

b

�

E

Æ F

�1

T

2

;E;Æ

on T

2;E;Æ

0 on !

E

n (T

1;E;Æ

[ T

2;E;Æ

) ;

(12)

with b

�

E

being the standard fae bubble funtion for the fae

�

E = F

�1

T

i

;E;Æ

(E) of the tetrahe-

dron

�

T = F

�1

T

i

;E;Æ

(T

i;E;Æ

). Note that the squeezed fae bubble funtion on T

i

an equivalently

be viewed as the standard fae bubble funtion on the squeezed tetrahedron T

i;E;Æ

, i.e.

b

E;Æ

j

T

i

� b

E;T

i;E;Æ

:

Figure 4 may failitate the understanding of the standard/squeezed fae bubble funtion for

the two{dimensional ase. For boundary faes one restrits b

E;Æ

to the unique tetrahedron

with �T � E.

Standard saling arguments for the transformation F

T

i

;E;Æ

:

�

T ! T

i;E;Æ

, together with

the essential Lemma 1 yield now the inverse inequalities for the squeezed fae bubble

funtion.

Lemma 3 (Inverse equivalenes II) Let E be an arbitrary fae of T , assume '

E

2

P

0

(E), and let Æ 2 (0; 1℄ be arbitrary. Then one has

kb

E;Æ

� F

ext

('

E

)k

T

� Æ

1=2

� h

1=2

E;T

� k'

E

k

E

(13)

kr(b

E;Æ

� F

ext

('

E

))k

T

� Æ

1=2

� h

1=2

E;T

�minfÆ � h

E;T

; h

min;T

g

�1

� k'

E

k

E

: (14)

Proof: Standard saling arguments for the transformation F

T;E;Æ

:

�

T ! T

E;Æ

readily imply

(13).

For (14) we start with the equivalene

krb

E

k

T

� h

�1

min;T

� jT j

1=2

whih has been proven (in a slightly di�erent form) in [13, Lemma 3.5℄ and [15, Lemma 5℄.

Above we have realized that the squeezed fae bubble funtion an also be viewed as

the standard fae bubble funtion on the squeezed tetrahedron. Thus one an utilize

the previous equivalene with the funtion b

E;Æ

on the tetrahedron T

E;Æ

. Together with

Lemma 1 and jT

E;Æ

j = Æ � jT j this results in

krb

E;Æ

k

T

� h

�1

min;T

E;Æ

� jT

E;Æ

j

1=2

(6)

� minfÆ � h

E;T

; h

min;T

g

�1

� Æ

1=2

� (h

E;T

jEj)

1=2

whih ompletes the proof.
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T

1;E;Æ

T

2;E;Æ

T

1

T

2

Figure 4: Top: !

E

and squeezed triangles T

i;E;Æ

(2D ase)

Middle: standard fae bubble funtion b

E

Bottom: squeezed fae bubble funtion b

E;Æ

3.3 Mathing funtion and residual error estimator

Parts of the analysis of the loal problem error estimator rely on results for the anisotropi

residual error estimator of [16℄ whih are thus repeated now for self{ontainment. Note that

both estimators have been developed in lose ollaboration to enable ertain equivalene

properties (f. Theorem 6 below). Related aspets are disussed here as well.

Ley us start with an important di�erene between error estimation on isotropi and

anisotropi meshes. For isotropi meshes the error bounds hold unonditionally, whereas

this is no longer the ase for anisotropi meshes. For suh meshes apparently all estimators

require the anisotropy of the mesh to be aligned with the anisotropy of the solution.

Heuristially this means that anisotropi elements (e.g. tetrahedra) are strethed in that

diretion where the solution shows little variation.

In order to investigate this matter mathematially, let us reall the proposals from

known (analytially based) anisotropi error estimators. Siebert [20℄ restrits the set of

treatable anisotropi funtions. Kunert [13, 14, 16℄ introdues a so{alled mathing fun-

tion m

1

(v; T

h

) that measures the alignment of an anisotropi funtion v and an anisotropi



10 3 NOTATION, BASIC TOOLS AND LEMMAS

mesh T

h

. Lastly, in Dobrowolski/Gr�af/Paum [11℄ a saturation assumption is neessary

that implies a similar orrespondene.

For a rigorous analysis it is advantageous to measure the alignment of mesh and fun-

tion. To this end the mathing funtion has been proposed by Kunert [13, 14℄:

De�nition 1 (Mathing funtion) Let v 2 H

1

(
), and T

h

2 F be a triangulation of


. De�ne the mathing funtion m

1

: H

1

(
)� F 7! R by

m

1

(v; T

h

) :=

�

X

T2T

h

h

�2

min;T

� kC

>

T

rvk

2

T

�

1=2

.

krvk : (15)

Note that the entries of the vetor C

>

T

rv � (p

>

1

rv;p

>

2

rv;p

>

3

rv)

>

an also be viewed as

saled diretional derivatives along the orthogonal diretions p

i

(reall jp

i

j = h

i;T

).

To deepen the understanding of the mathing funtion let us briey disuss its behaviour

and inuene. More details and a omprehensive disussion an be found in [13, 14℄.

By de�ning temporarily h

max;T

:= h

1;T

, one obtains

1 � m

1

(v; T

h

) . max

T2T

h

h

max;T

h

min;T

:

Although this rude upper bound is useless for pratial purposes it implies m

1

� 1 on

isotropi meshes. Then m

1

merges with other onstants and beomes invisible; in this sense

(15) is an extension of the theory for isotropi meshes. If an anisotropi mesh T

h

is well

aligned with an anisotropi funtion v then one also obtains m

1

(v; T

h

) � 1. If, however,

the anisotropi meshes are not aligned with the funtion then the mathing funtion an

be arbitrarily large, m

1

(v; T

h

)� 1.

The inuene of the mathing funtion m

1

an be seen in the error bound (19) of

Lemma 4 and in the disussion afterwards.

Next the residual error estimator will be presented. The methodology to obtain a lower

error bound requires a modi�ation of f and g [22, 13℄. Hene we replae f by a funtion

f

h

whih is pieewise onstant over the elements. Analogously g is replaed by g

h

whih is

pieewise onstant over the Neumann faes. Then the de�nitions are as follows.

Element and fae residual: De�ne the element residual over an element T by

r

T

:= f

h

� (�"�u

h

+ u

h

) on T:

For x 2 E de�ne the fae residual r

E

by

r

E

(x) :=

8

>

>

>

<

>

>

>

:

" � lim

t!+0

�

�u

h

�n

E

(x + tn

E

)�

�u

h

�n

E

(x� tn

E

)

�

if E � 
 n �

g

h

� " � �u

h

=�n if E � �

N

0 if E � �

D

:
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Here n

E

? E is any of the two unitary normal vetors whereas n ? E � �

N

denotes the

outer unitary normal vetor.

Residual saling fator: The residuals are often aompanied by the fator

�

T

:= minf1; "

�1=2

� h

min;T

g : (16)

For some interior fae E = T

1

\ T

2

we de�ne the orresponding fae related term by

�

E

:= (�

T

1

+ �

T

2

)=2 : (17)

For boundary faes E set similarly �

E

:= �

T

for E � �T . Note that the mesh requirements

imply �

E

� �

T

1

� �

T

2

, f. also remark 1.

Loal residual error estimator: For a tetrahedron T , de�ne it by

�

";R;T

:=

�

�

2

T

� kr

T

k

2

T

+ "

�1=2

� �

T

�

X

E��Tn�

D

kr

E

k

2

E

�

1=2

: (18)

Loal approximation term: To shorten the notation, introdue

�

";T

:=

�

�

2

T

� kf � f

h

k

2

!

T

+ "

�1=2

� �

T

�

X

E��T\�

N

kg � g

h

k

2

E

�

1=2

:

Finally, de�ne the global terms

�

2

";R

:=

X

T2T

h

�

2

";R;T

and �

2

"

:=

X

T2T

h

�

2

";T

:

The following residual error estimation essentially has been proven by Kunert [16℄. Here

we have inluded the treatment of Neumann boundary onditions.

Lemma 4 The error is bounded loally from below for all T 2 T

h

by

�

";R;T

. jjju� u

h

jjj

!

T

+ �

";T

:

The error is bounded globally from above by

jjju� u

h

jjj . m

1

(u� u

h

; T

h

) �

�

�

2

";R

+ �

2

"

�

1=2

: (19)

Both error bounds are uniform in ".

We remark that only the upper error bound ontains the mathing funtion m

1

. Hene

only (19) is inuened by the degree of the alignment of mesh and funtion, i.e. the global

error estimator �

";R

is emphasized by the fator m

1

(u� u

h

; T

h

). When m

1

� 1 the lower

and upper error bound possess the same quality. Obviously, the smaller m

1

the better the

upper error bound. In the ase of m

1

� 1 however both error bounds di�er by a large

fator, thus rendering the error estimation useless.
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Remark 2 Note that the upper error bound of (19) an not be omputed exatly as it

ontains m

1

(u � u

h

; T

h

) and thus the (unknown) error u � u

h

. As a remedy m

1

an be

approximated, e.g. by means of a reovered gradient r

R

u

h

� ru:

m

1

(u� u

h

; T

h

) �

�

X

T2T

h

h

�2

min;T

� kC

>

T

r(u� u

h

)k

2

T

�

1=2

.

kr(u� u

h

)k

�

�

X

T2T

h

h

�2

min;T

� kC

>

T

(r

R

u

h

�ru

h

)k

2

T

�

1=2

.

kr

R

u

h

�ru

h

k

=: m

R

1

(u

h

; T

h

) ; (20)

f. [14℄ for a more omprehensive disussion. All numerial experiments so far indiate

that m

R

1

is a robust approximation to m

1

, see also the numerial experiments below.

4 Loal problem error estimators

4.1 De�nition of the error estimator �

";D

The main ideas behind loal problem error estimation have been known for a long time

[2, 6, 8, 21, 22℄. Basially the problem is solved loally but with higher auray, and the

di�erene between the new solution and the original �nite element solution serves as error

estimator.

In eah one of the aforementioned soures an isotropi mesh is assumed. In ontrast to

this the author has shown in [15℄ that reliable loal problem error estimation is possible

on anisotropi meshes as well. There a Poisson model problem has been investigated, the

methodology of the analysis has been presented, and some important new tools and results

have been developed.

In our work here we demonstrate that anisotropi loal problem error estimation is not

restrited to the Poisson problem but that it an be extended to the singularly perturbed

reation{di�usion problem (1). We propose a new error estimator for the latter problem.

Note that the only other loal problem error estimator for a singularly perturbed reation{

di�usion problem is due to [1℄ where an isotropi mesh is assumed, and where the loal

problem is in�nite dimensional.

While the general struture of the proofs here is similar to the ones for the loal prob-

lem error estimator for the Poisson problem [15℄, the atual ingredients di�er. This mainly

onerns the squeezed tetrahedron and its properties as well as the squeezed fae bubble

funtions whih play a vital role in almost all analysis. The de�nitions of the error esti-

mators �

";D;T

and �

";R;T

require a very areful balaning of all saling fators (e.g. �

T

from

(16)) and of the `squeezing' parameter Æ

E

from (21). Consequently the proof of the vital

Lemma 5 is even more tehnial than in [15℄, see also Appendix A. The derivation of a

stable basis for the loal problem is di�erent from [15℄. Furthermore speial are has to be

taken to obtain a feasible implementation of the estimator. Hene omputational aspets

and diÆulties are addressed.
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The remainder of this setion is devoted to the de�nition of the loal problem and the

error estimator. Then Lemma 5 gives two entral inequalities for the loal spae. Next,

Theorem 6 states the equivalene of the loal problem error estimator �

";D;T

and the residual

error estimator �

";R;T

. The main results, namely lower and upper bounds of the error, are

given in Theorem 7. In Theorem 8 it is shown that a ertain basis of the loal spae V

T

is stable (i.e. the loal Dirihlet problem is well{onditioned). Finally other hoies of

loal problem error estimators are feasible as well. This is demonstrated exemplarily in

Setion 4.4 for a fae based estimator.

When deriving the error estimator, the orresponding loal problem should be heap

to solve but simultaneously be rih enough to extrat information on the error e := u�u

h

.

Here the subdomain of the loal problem is hosen to be !

T

. Let

H

1

o

(!

T

) := fv 2 H

1

(
) : supp v � !

T

; v = 0 on �!

T

n �

N

g :

For an arbitrary funtion v 2 H

1

o

(!

T

) the error then satis�es

a(u� u

h

; v) =

Z

!

T

f � v +

Z

�!

T

\�

N

g � v �

Z

!

T

"(ru

h

)

>

rv �

Z

!

T

u

h

v :

The loal problem is obtained by approximating the spae H

1

o

(!

T

) by some loal, �nite

dimensional spae V

T

� H

1

o

(!

T

) whih is spanned by an element bubble funtion and some

squeezed fae bubble funtions. Their `squeezing' parameters Æ

E

(f. 12) are now spei�ed

to be

Æ

E

:= min

�

1;

h

min;E

h

E

;

p

"

h

E

�

: (21)

Note that Æ

E

�

p

"h

�1

E

�

E

. The loal spae V

T

now beomes

V

T

:= spanfb

T

; b

E;Æ

E

: E � �T n �

D

g : (22)

Analogously to the residual error estimator one replaes f and g by f

h

and g

h

, respe-

tively.

De�nition 2 (Loal Dirihlet problem error estimator)

Find a solution e

T

2 V

T

of the loal variational problem:

a(e

T

; v

T

) �

Z

!

T

"(re

T

)

>

rv

T

+ e

T

v

T

!

=

Z

!

T

f

h

� v

T

+

Z

�!

T

\�

N

g

h

� v

T

�

Z

!

T

"(ru

h

)

>

rv

T

�

Z

!

T

u

h

v

T

(23)

for all v

T

2 V

T

. The loal and global error estimators then beome

�

";D;T

:= jjje

T

jjj

!

T

and �

2

";D

:=

X

T2T

h

�

2

";D;T

: (24)
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Note that the partiular hoie of the loal ansatz spae V

T

(namely v

T

= 0 on �!

T

n �T )

redues ertain boundary integrals and norms. Equivalent formulations of the loal problem

are derived by partial integration.

Alternative 1: Find e

T

2 V

T

suh that

a(e

T

; v

T

) =

X

T

0

2!

T

Z

T

0

r

T

0

� v

T

+

X

E��Tn�

D

Z

E

r

E

� v

T

8 v

T

2 V

T

: (25)

Alternative 2: Find e

T

2 V

T

suh that

a(e

T

; v

T

) = a(u� u

h

; v

T

)�

Z

!

T

(f � f

h

) v

T

�

Z

�T\�

N

(g � g

h

) v

T

8 v

T

2 V

T

: (26)

4.2 Equivalene and bounds of the loal problem estimator

The methodology of the error estimator partly utilizes ideas that have already been intro-

dued for the anisotropi loal problem estimator for the Poisson problem [15℄, and for the

anisotropi residual estimator for a singularly perturbed reation{di�usion equation [16℄.

All the details however are original and new. The �rst lemma plays a entral role in the

analysis of the estimator.

Lemma 5 The following relations below hold for all v

T

2 V

T

.

kv

T

k

!

T

. h

min;T

� krv

T

k

!

T

(27)

kv

T

k

E

. h

�1=2

E

Æ

�1=2

E

�minfh

min;T

; Æ

E

h

E

g � krv

T

k

!

T

8E � �T ; (28)

with Æ

E

from (21). The inequalities are uniform in Æ

E

.

If T has at least two Neumann boundary faes then the onstants an depend on the

angles of the orners and edges of 
 (but do not depend on the triangulation T

h

nor on T ).

Proof: The tehnial proof is postponed to the appendix.

Theorem 6 (Equivalene with residual error estimator) The loal problem error

estimator �

";D;T

is equivalent to the residual error estimator �

";R;T

in the following sense:

�

2

";D;T

.

X

T

0

�!

T

�

2

";R;T

0

(29)

�

2

";R;T

.

X

T

0

�!

T

�

2

";D;T

0

: (30)

Both inequalities are uniform in ".

If T has at least two Neumann boundary faes then the onstant in (29) an depend on

the angles of the orners and edges of 
 (but do not depend on the triangulation T

h

nor

on T ).
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Proof: Reall the de�nition (24) of �

";D;T

, observe that e

T

= 0 on �!

T

n �T , and take into

aount the modi�ations for boundary faes. By integration by parts one obtains

�

2

";D;T

= jjje

T

jjj

2

!

T

= a(e

T

; e

T

)

(25)

=

X

T

0

2!

T

Z

T

0

r

T

0

� e

T

+

X

E��Tn�

D

Z

E

r

E

� e

T

�

 

X

T

0

�!

T

kr

T

0

k

2

T

0

!

1=2

� ke

T

k

!

T

+

X

E��Tn�

D

kr

E

k

E

� ke

T

k

E

:

Now ke

T

k

!

T

and ke

T

k

E

; E � �T , are to be bounded. Reall the de�nition of �

T

and Æ

E

and apply Lemma 5 to obtain

ke

T

k

!

T

� jjje

T

jjj

!

T

ke

T

k

!

T

(27)

. h

min;T

� kre

T

k

!

T

� h

min;T

� "

�1=2

jjje

T

jjj

!

T

) ke

T

k

!

T

. minf1; "

�1=2

� h

min;T

g � jjje

T

jjj

!

T

� �

T

� jjje

T

jjj

!

T

(31)

and ke

T

k

E

(28)

. h

�1=2

E

Æ

�1=2

E

�minfh

min;T

; Æ

E

h

E

g � kre

T

k

!

T

� "

1=4

�

1=2

E

kre

T

k

!

T

. "

�1=4

�

1=2

T

jjje

T

jjj

!

T

: (32)

Inserting these inequalities and utilizing �

T

� �

T

0

for neighboring tetrahedra results in

�

2

";D;T

.

�

X

T

0

�!

T

�

2

T

0

� kr

T

0

k

2

T

0

+ "

�1=2

�

T

�

X

E��Tn�

D

kr

E

k

E

�

1=2

� jjje

T

jjj

!

T

whih, together with jjje

T

jjj

!

T

= �

";D;T

, proves (29).

For the proof of (30) we require bounds of �

";R;T

, and thus of kr

T

k

T

and kr

E

k

E

. The

struture of the proof is similar to our analysis for the Poisson equation [15℄.

We �rst bound the term kr

T

0

k

T

0

, with T

0

� !

T

being an arbitrary tetrahedron. Reall

de�nition (7) of the bubble funtion b

T

0

and set v

T

0

:= b

T

0

� r

T

0

. Then b

T

0

and v

T

0

belong

to the �nite element spae V

T

0

. Hene the loal problem related to T

0

has to be invoked.

The loal problem (25) and equivalene (9) imply

kr

T

0

k

2

T

0

(9)

� kb

1=2

T

0

� r

T

0

k

2

T

0

=

Z

T

0

r

T

0

� v

T

0

sine v

T

0

2 H

1

o

(T

0

)

(25)

= a(e

T

0

; v

T

0

) � jjje

T

0

jjj

T

0

� jjjv

T

0

jjj

T

0

;

where e

T

0

2 V

T

0

denotes the solution of the loal problem over !

T

0

. Inequality (10) results

in

jjjv

T

0

jjj

2

T

0

= " kr(b

T

0

� r

T

0

)k

2

T

0

+ kb

T

0

� r

T

0

k

2

T

0

(10)

� " h

�2

min;T

0

� kr

T

0

k

2

T

0

+ kr

T

0

k

2

T

0

� �

�2

T

0

kr

T

0

k

2

T

0

:
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Combining both inequalities yields

kr

T

0

k

T

0

. �

�1

T

� jjje

T

0

jjj

T

0

� �

�1

T

� �

";D;T

0

8T

0

2 !

T

(33)

sine �

T

0

does not hange rapidly aross adjaent tetrahedra T

0

.

The norm of r

E

2 P

0

(E) for an interior fae E � �T n � is bounded similarly. Reall

the de�nition (12) of the squeezed fae bubble funtion b

E;Æ

, and set v

E

:= b

E;Æ

�F

ext

(r

E

) 2

V

T

\H

1

o

(!

E

). Integration by parts and v

E

= 0 on �T \ � imply

kr

E

k

2

E

(11)

� kb

1=2

E

� r

E

k

2

E

=

Z

E

r

E

� v

E

(25)

= a(e

T

; v

E

) �

X

T

0

�!

E

Z

T

0

r

T

0

v

E

� jjje

T

jjj

!

E

� jjjv

E

jjj

!

E

+

X

T

0

�!

E

kr

T

0

k

T

0

� kv

E

k

T

0

:

Now the norms of v

E

are bounded by means of inverse inequalities, and by using the spei�

value of Æ

E

from (21). This leads to

kv

E

k

T

0

= kb

E;Æ

� F

ext

(r

E

)k

T

0

(13)

. Æ

1=2

E

� h

1=2

E;T

0

� kr

E

k

E

(21)

� "

1=4

�

1=2

T

� kr

E

k

E

krv

E

k

T

0

= kr(b

E;Æ

� F

ext

(r

E

))k

T

0

(14)

. Æ

1=2

E

� h

1=2

E;T

0

�minfÆ

E

� h

E;T

0

; h

min;T

0

g

�1

� kr

E

k

E

(21)

� "

�1=4

�

�1=2

T

� kr

E

k

E

) jjjv

E

jjj

!

E

= ("kr(v

E

)k

2

!

E

+ kv

E

k

2

!

E

)

1=2

� "

1=4

�

�1=2

T

� kr

E

k

E

:

Next one utilizes the previous bound (33) of kr

T

0

k

T

0

for both tetrahedra T

0

� !

E

. Com-

bining all estimates yields

kr

E

k

E

. "

1=4

�

�1=2

T

�

X

T

0

�!

E

�

";D;T

0

8E � �T n � : (34)

The norm of r

E

2 P

0

(E) for a Neumann boundary fae E � �T \ �

N

is bounded

similarly (f. [15℄) and gives analogously

kr

E

k

E

. "

1=4

�

�1=2

T

� �

";D;T

8E � �T \ �

N

:

Colleting all the results for kr

T

k

T

and kr

E

k

E

and inserting them into the de�nition of

�

";R;T

gives (30).

With the help of Theorem 6 we easily derive the main result, namely upper and lower

error bounds by means of the loal problem error estimator.



4.3 A stable basis for the loal problem 17

Theorem 7 (Loal problem error estimation)

The error is bounded loally from below by

�

";D;T

� jjju� u

h

jjj

!

T

+  � �

";T

8T 2 T

h

: (35)

The error is bounded globally from above by

jjju� u

h

jjj . m

1

(u� u

h

; T

h

) �

h

�

2

";D

+ �

2

"

i

1=2

: (36)

Both inequalities are uniform in ".

If T has at least two Neumann boundary faes then the onstant in (35) an depend on

the angles of the orners and edges of 
 (but do not depend on the triangulation T

h

nor on

T ).

Note that in analogy to Lemma 4 only the upper error bound is inuened by the mathing

funtion m

1

(u� u

h

; T

h

).

Proof: For (35), apply formulation (26) of the loal problem, reall how !

T

and V

T

are

modi�ed if T has a boundary fae, and observe in partiular that e

T

= 0 on �!

T

n �T .

Then one obtains

�

2

";D;T

= jjje

T

jjj

2

!

T

= a(e

T

; e

T

)

(26)

= a(u� u

h

; e

T

)�

Z

!

T

(f � f

h

) � e

T

�

Z

�

N

\�T

(g � g

h

) � e

T

� jjju� u

h

jjj

!

T

� jjje

T

jjj

!

T

+ kf � f

h

k

!

T

� ke

T

k

!

T

+ kg � g

h

k

�

N

\�T

� ke

T

k

�

N

\�T

:

With the previous bounds (31) and (32) one readily obtains the desired estimate (35).

Finally inequality (36) follows immediately from the error bound (19) of the residual error

estimator, and from relation (30) between �

";R;T

and �

";D;T

.

4.3 A stable basis for the loal problem

Here we will present a stable basis for the loal problem under onsideration. An equiv-

alent desription of this aim is that the variational problem is well-onditioned, i.e. the

ondition number of the orresponding �nite element matrix is bounded independently of

the perturbation parameter " and of aspet ratio of the elements.

Reall that the loal ansatz spae is V

T

:= spanfb

T

; b

E;Æ

E

: E � �T n �

D

g . As a basis

of V

T

we hoose

� := (b

T

; Æ

�1=2

E

� b

E;Æ

: E � �T n �

D

) : (37)

For simpliity of notation enumerate the faes of T suh that interior and Neumann faes

ome �rst, and denote them by E

i

, i = 1; : : : ; m, m � 4. Denote the parameter of the
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squeezed fae bubble funtions temporarily by Æ

i

:= Æ

E

i

. Hene any funtion v

T

2 V

T

an

be expressed as

v

T

= �

0

b

T

+

m

X

i=1

�

i

� Æ

�1=2

i

� b

E

i

;Æ

i

= � � v

with v := (�

0

; �

1

: : : �

m

)

>

:

The sti�ness matrix K

T

2 R

(1+m)�(1+m)

of the loal problem is given by means of the �nite

element isomorphism a(v

T

; w

T

) = (K

T

v;w) for all w

T

= � �w 2 V

T

.

Theorem 8 (Stable basis) The basis (37) of V

T

is stable, i.e. the ondition number

�(K

T

) of the loal problem sti�ness matrix K

T

is bounded uniformly in " and T :

�(K

T

) � 1 8T 2 T

h

:

Proof: The ondition number is given by

�(K

T

) =

h

max

v 6=0

(K

T

v;v)=(v;v)

i.h

min

w 6=0

(K

T

w;w)=(w;w)

i

:

Thus investigate the salar produt (K

T

v;v) whih equals

(K

T

v;v) = a(v

T

; v

T

) = jjjv

T

jjj

2

!

T

= "krv

T

k

2

!

T

+ kv

T

k

2

!

T

:

We start by bounding jjjv

T

jjj

!

T

from above. The triangle inequality readily implies

jjjv

T

jjj

!

T

� j�

0

j � jjjb

T

jjj

!

T

+

m

X

i=1

j�

i

j � Æ

�1=2

i

jjjb

E

i

;Æ

i

jjj

!

T

:

Using inverse inequalities (8) and (10) one derives

jjjb

T

jjj

2

!

T

= "krb

T

k

2

T

+ kb

T

k

2

T

. "h

�2

min;T

jT j+ jT j

(16)

� �

�2

T

� jT j :

The seond inverse equivalenes (13) and (14) and the partiular hoie of Æ

i

� Æ

E

i

from

(21) yield

jjjb

E

i

;Æ

i

jjj

2

!

T

= "krb

E

i

;Æ

i

k

2

!

E

+ kb

E

i

;Æ

i

k

2

!

E

� Æ

i

� jT j �

�

"minfÆ

i

� h

E;T

; h

min;T

g

�2

+ 1

�

(21)

� Æ

i

� jT j � (1 + �

�2

T

) � Æ

i

� jT j � �

�2

T

:

Altogether one obtains

jjjv

T

jjj

!

T

. j�

0

j � �

�1

T

jT j

1=2

+

m

X

i=1

j�

i

j � �

�1

T

jT j

1=2

� �

�1

T

jT j

1=2

� kvk

R

1+m

:
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To bound jjjv

T

jjj

!

T

from below, apply Lemma 5 giving

krv

T

k

!

T

(27)

& h

�1

min;T

� kv

T

k

!

T

and jjjv

T

jjj

2

!

T

& (" h

�2

min;T

+ 1) � kv

T

k

2

!

T

� �

�2

T

� kv

T

k

2

!

T

:

In the proof of Lemma 5 in Appendix A it is shown that

kv

T

k

2

!

T

(40)

� jT j �

m

X

i=0

�

2

i

� jT j � kvk

2

R

1+m

whih ompletes the lower bound of jjjv

T

jjj

!

T

.

Summarizing all results, one ends up with

(K

T

v;v) = jjjv

T

jjj

2

!

T

� �

�2

T

jT j � kvk

2

R

1+m

whih immediately yields �

min

(K

T

) � �

max

(K

T

) � �

�2

T

jT j and the desired assertion

�(K

T

) � 1.

4.4 A further, fae based loal problem error estimator

With the methodology presented so far one an derive further loal problem error estima-

tors. This will be demonstrated here for a fae based loal problem error estimator. Suh

an estimator an be advantageous when other ingredients of an adaptive algorithm are fae

based too (e.g. the re�nement proedure).

We start again with a orresponding residual error estimator. For an arbitrary but

�xed fae E de�ne the fae based residual error estimator and the approximation term by

�

";R;E

:=

�

�

2

E

�

X

T�!

E

kr

T

k

2

T

+ "

�1=2

�

E

� kr

E

k

2

E

�

1=2

(38)

�

";E

:= �

E

� kf � f

h

k

!

E

+ "

�1=4

�

1=2

E

� kg � g

h

k

E\�

N

; (39)

respetively (the norm k � k

E\�

N

here is to be evaluated only when E � �

N

).

Utilizing the tehniques and most of the results of [16℄ one an omparatively easily

prove the following residual error estimation.

Lemma 9 The error is bounded loally from below for all faes E of T

h

by

�

";R;E

. jjju� u

h

jjj

!

E

+ �

";E

:

The error is bounded globally from above by

jjju� u

h

jjj . m

1

(u� u

h

; T

h

) �

 

X

E2T

h

�

2

";R;E

+ �

2

";E

!

1=2

;

where the sum over E 2 T

h

inludes interior and boundary faes of the triangulation. Both

error bounds are uniform in ".
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Note that the residual error estimator an be modi�ed suh that it ontains only the fae

residual but not the element residuals. Then a very similar result is ahieved, f. [17℄. Sine

this modi�ation is not suitable for our subsequent analysis, we omit a detailed desription.

The loal spae assoiated to a fae E is now set to

V

E

:= spanfb

E;Æ

E

if E 6� �

D

; b

T

8T � !

E

g ;

i.e. V

E

is three dimensional for interior faes E. The loal problem is: Find e

E

2 V

E

suh

that

a(e

E

; v

E

)

!

=

Z

!

E

f

h

� v

E

+

Z

E\�

N

g

h

� v

E

�

Z

!

E

"(ru

h

)

>

rv

E

�

Z

!

E

u

h

v

E

for all v

E

2 V

E

. The loal fae error estimator then beomes

�

";D;E

:= jjje

E

jjj

!

E

:

Again two alternative, equivalent desriptions of the loal problem are possible and advan-

tageous. Find e

E

2 V

E

suh that

Alternative 1: a(e

E

; v

E

) =

X

T2!

E

Z

T

r

T

� v

E

+

Z

E

r

E

� v

E

Alternative 2: a(e

E

; v

E

) = a(u� u

h

; v

E

)�

Z

!

E

(f � f

h

) v

E

�

Z

E\�

N

(g � g

h

) v

E

holds for all v

E

2 V

E

.

Using the tehniques and even some results of the previous analysis of the element

based loal problem error estimator the following theorem an be shown. Beause of the

similarities of the proofs we only state the result.

Theorem 10 (Fae based loal problem error estimator)

The fae based residual error estimator and loal problem error estimator are equivalent:

�

";D;E

� �

";R;E

8E 2 T

h

:

The error is bounded loally from below for all faes E of T

h

by

�

";D;E

� jjju� u

h

jjj

!

E

+  � �

";E

:

The error is bounded globally from above by

jjju� u

h

jjj . m

1

(u� u

h

; T

h

) �

 

X

E2T

h

�

2

";D;E

+ �

2

";E

!

1=2

:

All relations are uniform in ".
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5 Computational implementation

5.1 DiÆulties and their solution

It is a major demand that the loal problem an be onstruted and solved as fast as

possible sine usually the error estimation is as expensive as the assembly of the global

�nite element sti�ness matrix and the solution proess for u

h

. Therefore one enounters

two main problems when applying our error estimator. Both diÆulties are related to the

omputation of the loal sti�ness matrix K

T

whih arises from the bilinear form a(�; �), see

also Setion 4.3.

Problem 1: The support of the squeezed fae bubble funtion b

E;Æ

is not !

E

but some

(Æ{dependent) part of it. For example the omputation of a(b

E;Æ

; �) implies a omparatively

ompliated domain of integration. In partiular when evaluating a(b

E

1

;Æ

E

1

; b

E

2

;Æ

E

2

) for two

di�erent squeezed fae bubble funtions, the domain of integration beomes

supp(b

E

1

;Æ

E

1

) \ supp(b

E

2

;Æ

E

2

)

whih might be empty, or a single tetrahedron, or the union of two tetrahedra, depending

on Æ

E

1

and Æ

E

2

(f. also Figures 3 and 4). Even to determine and desribe the domain of

integration is not trivial, save the atual integration.

Remedy: We modify the parameter for the squeezed fae bubble funtion to be

~

Æ

E

:= min

�

1

4

;

h

min;E

h

E

;

p

"

h

E

�

� min

�

1

4

; Æ

E

�

� Æ

E

:

Then all results remain valid, only the inequality onstants may be slightly worse (but they

are still uniform in "). The main advantage now is that

supp(b

E

1

;

~

Æ

E

1

) \ supp(b

E

2

;

~

Æ

E

2

) = ; :

Hene the omputation of the modi�ed loal matrix

~

K

T

is less expensive, as the matrix

now ontains several zero entries. Even more, the sparsity pattern

~

K

T

=

~

K

>

T

=

2

4

� � � � �

� � 0 0 0

� 0 � 0 0

� 0 0 � 0

� 0 0 0 �

3

5

allows a partiularly fast and simple solution of the loal problem.

Problem 2: The basis funtions of V

T

are polynomials of a relatively high degree.

Hene numerial integration rules to ompute a(�; �) are far too expensive and thus unsuit-

able.
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Remedy: Instead we propose a diret omputation of the integrals involved. The

proedure is explained exemplarily for a(b

T

; b

T

). Using the transformation tehnique via

F

A

:

�

T ! T , one obtains

a(b

T

; b

T

) = "

Z

T

(rb

T

)

>

� rb

T

+

Z

T

b

2

T

= 6jT j "

Z

�

T

(

�

rb

�

T

)

>

� A

�1

T

A

�>

T

�

�

rb

�

T

+ 6jT j

Z

�

T

b

2

�

T

:

with b

�

T

being the element bubble funtion for the standard tetrahedron

�

T . A straight{

forward omputation yields

Z

�

T

b

2

�

T

=

4096

155 925

:

In order to obtain the remaining integral, de�ne the matries

M := (m

ij

)

3

i;j=1

= A

�1

T

A

�>

T

and N := (n

ij

)

3

i;j=1

=

Z

�

T

�

rb

�

T

� (

�

rb

�

T

)

>

; i.e. n

ij

=

Z

�

T

�

�

�x

1

b

�

T

�

�

�

�x

i

b

�

T

and observe that

Z

�

T

(

�

rb

�

T

)

>

� A

�1

T

A

�>

T

�

�

rb

�

T

= N :M =

3

X

i;j=1

n

ij

�m

ij

:

The matries A

T

andM are determined by the geometry of T whereas N an be omputed

diretly giving

N =

2048

2835

�

"

2 1 1

1 2 1

1 1 2

#

:

Hene one only has to determine A

T

and jT j and perform the aforementioned operations

to obtain a(b

T

; b

T

).

The remaining values a(�; �) are omputed similarly, thus a brief desription of the result

should suÆe.

a(b

T

; b

E;Æ

): Use an aÆne linear transformation F

~

A

:

�

T ! T suh that

�

E = F

�1

~

A

(E) lies

in the �x

1

�x

2

plane. The parameter Æ 2 (0; 1℄ of the squeezed fae bubble funtion an be

arbitrary here. Then

Z

�

T

b

�

T

� b

�

E;Æ

=

4

4725

Æ

2

(�2Æ

3

+ 15Æ

2

� 42Æ + 47)

Z

�

T

�

rb

�

T

� (

�

rb

�

E;Æ

)

>

=

"

2  

 2 

  d

#

with  := �

4

35

Æ

2

(Æ � 4) and d :=

8

105

(Æ � 1)(Æ

2

� 7Æ + 18) :
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a(b

E;Æ

; b

E;Æ

): Utilize the same transformation F

~

A

as before whih implies for arbitrary

Æ 2 (0; 1℄

Z

�

T

b

2

�

E;Æ

=

9

560

Æ

Z

�

T

�

rb

�

E;Æ

� (

�

rb

�

E;Æ

)

>

=

"

2  

 2 

  d

#

with  :=

81

280

Æ and d :=

27

140

(Æ + 2=Æ) :

a(b

E

1

;Æ

1

; b

E

2

;Æ

2

): Sine we propose to use Æ

i

:=

~

Æ

E

i

� 1=4, the supports of both squeezed

fae bubble funtions are distint, thus a(b

E

1

;Æ

1

; b

E

2

;Æ

2

) = 0.

Colleting all the previous results, the loal sti�ness matrix K

T

an now be assembled.

The right{hand side is omputed similarly (atually, the proedure is even simpler sine

the integrals do not involve derivatives). In the next paragraphs we show that this diret

omputation of the loal problem is indeed muh heaper than the numerial integration

rules.

5.2 Computational e�ort

The omparison will not investigate every detail and every possible optimization, as the

di�erene between both approahes will turn out to be overwhelming. Even more, a preise

operation ount would be omputer dependent. For example present proessors may be

able to ombine one multipliation and one addition to a single operation.

Computational e�ort for diret omputation

The suggested approah utilizes four di�erent transformations F

~

A

on the element T and four

transformations on eah neighbouring tetrahedron (i.e. to ompute b

E;Æ

on this neighbour).

Hene jdet

~

Aj has to be omputed �ve times, and

~

A

�1

and

~

A

�1

�

~

A

�>

are to be omputed

eight times. The operation ount is roughly

Operation Operation ount Total

det

~

A 5� ( 9* 5+) = ( 45* 25+)

~

A

�1

8� (19* 9+) = (152* 72+)

~

A

�1

�

~

A

�>

(symmetri) 8� (18* 12+) = (144* 96+)

� :

(341* 193+)

where 5 � (9* 5+) stands for 9 multipliations and 5 additions whih are performed �ve

times.
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Next, the values of

R

�

T

b

2

�

T

,

R

�

T

�

rb

�

T

� (

�

rb

�

T

)

>

et are determined. Some of these values

(whih ontain b

E;Æ

) depend on Æ. The omputational e�ort is roughly

R

�

T

b

2

�

T

( 0* 0+)

R

�

T

b

�

T

� b

�

E;Æ

4� (8* 3+) = (32* 12+)

R

�

T

b

2

�

E;Æ

4� (1* 0+) = ( 4* 0+)

R

�

T

�

rb

�

T

� (

�

rb

�

T

)

>

( 0* 0+)

R

�

T

�

rb

�

T

� (

�

rb

�

E;Æ

)

>

4� (6* 4+) = (24* 16+)

R

�

T

�

rb

�

E;Æ

� (

�

rb

�

E;Æ

)

>

4� (1* 1+) = (16* 4+)

� :

(76* 32+)

Subsequently N : M is to be determined, with N , M being symmetri matries. The

omputational e�ort is approximately (7* 5+) whih has to be repeated 9 times (i.e. one

for eah matrix entry of K

T

). The �nal value of a(�; �) is obtained by adding both sub{

integrals and multiplying it by jdet

~

Aj. This adds 9� (1* 1+).

Summarizing all results, the total e�ort required to assemble the loal sti�ness matrix

is approximately

(341* 193+) + (76* 32+) + (63* 45+) + (9* 9+) = (489 � 279+) :

Computational e�ort for numerial integration

Here we will exemplarily investigate a(b

T

; b

T

) =

R

T

b

2

T

+ "

R

T

(rb

T

)

2

. Computation by

means of numerial integration is based on

Z

T

b

2

T

= 6jT j

Z

�

T

b

2

�

T

� 6jT j �

X

i

!

i

� b

2

�

T

(�x

i

)

Z

T

(rb

T

)

2

= 6jT j

Z

�

T

(

�

rb

�

T

)

>

� A

�1

T

A

�>

T

�

�

rb

�

T

� 6jT j �

X

i

!

i

�

�

(

�

rb

�

T

)

>

� A

�1

T

A

�>

T

�

�

rb

�

T

�

(�x

i

)

where (!

i

; �x

i

)

i

denotes some numerial integration rule for the standard tetrahedron

�

T

with weights !

i

and evaluation points �x

i

. Exatly as for the diret omputation above,

one requires the matries A

T

and A

�1

T

(omputational e�ort is (19* 9+)) as well as

6jT j = jdetA

T

j (whih leads to (9* 5+)).

Consider

R

�

Tb

2

�

T

next. Sine b

�

T

2 P

4

(

�

T ) one requires an integration rule whih is exat

for P

8

(

�

T ). The simplest rule that we know of involves 43 evaluation points [9℄. The

evaluation of

!

i

� b

2

�

T

(�x

i

) = !

i

� (256 � �

1

�

2

�

3

�

4

)

2

(�x

i

)

at a single point �x

i

requires (6* 3+). Hene the total amount for

R

T

b

2

T

is about 43 �

(6* 4+) = (258* 172+). Similarly

R

T

(rb

T

)

2

is investigated where an integration rule
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with 24 evaluation points suÆes [12℄. After some onsideration one ends up with an e�ort

of roughly (480* 384+). Thus the total e�ort to ompute a(b

T

; b

T

) amounts approximately

to (750* 550+). We expet the other eight salar produts a(�; �) to be heaper beause

of the smaller polynomial degree. Then, however, the omputational domain involves T

E;Æ

whih requires more onsiderations. Altogether the e�ort to ompute the whole matrix of

the loal problem is likely to be of order

(O(5000) � O(4000)+) .

Even without a preise alulation of the omputational e�ort for the numerial inte-

gration it is absolutely lear that this approah is far too expensive. Equivalently, if the

omputational e�ort should be of the same size (O(500) � O(300)+) as for the diret om-

putation then only one tenth of the required evaluation points an be used. This would

render the integrals and, subsequently, the matrix to be very inaurate and thus useless.

Hene diret omputation of the loal problem is a must.

Furthermore we note that our proedure for the diret omputation is very similar to

the omputation of the loal problem for the Poisson equation, f. [15℄. The omputational

e�ort is roughly the same, i.e. the singularly perturbed harater of our di�erential equation

here is no disadvantage.

6 Numerial experiments

Here we investigate the performane of the loal problem error estimator �

";D;T

of (24)

by means of numerial experiments. We utilize a model problem whih has already been

applied in [16℄ to analyse the element based residual error estimator �

";R;T

, and whih has

been employed in [17℄ to investigate a fae based residual error estimator. Thus even the

interesting omparison between di�erent types of error estimators is possible.

Let us onsider the 3D model problem

�"�u+ u = 0 in 
 := (0; 1)

3

; u = u

0

on �

D

:= �


where the perturbation parameter is set to " = 10

�4

. Presribe the exat solution

u = e

�x=

p

"

+ e

�y=

p

"

+ e

�z=

p

"

:

whih displays typial boundary layers along the planes x = 0, y = 0, and z = 0. The

Dirihlet boundary data u

0

are hosen aordingly.

We apply the �nite element method with a sequene of meshes, eah of whih is the

tensor produt of three one{dimensional Bakhvalov{like meshes [7℄ with 2

k

intervals in [0,1℄,

k = 1 : : : 6. To desribe the 1D nodal distribution properly, denote the transition point of

the boundary layer by � :=

p

"j ln

p

"j. Then 2

k�1

nodes are exponentially distributed in

the boundary layer interval [0; � ℄ whereas the remaining interval [�; 1℄ is divided into 2

k�1

equidistant intervals, f. Figure 5. More preisely, the (1D) nodal oordinate of the m-th
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node is

x

m

:=

8

>

<

>

:

��

p

" ln

h

1�

m

2

k�1

(1� e

��=�=

p

"

)

i

for m = 0 : : : 2

k�1

; � = 3=2

� + (1� �) �

�

m

2

k�1

� 1

�

for m = 2

k�1

+ 1 : : : 2

k

:

Note that the original (1D) Bakhvalov mesh utilizes a slightly di�erent transition point � .

Furthermore we do not know whether these tensor produt type meshes are optimal (whih,

of ourse, also depends on the optimality riterion).

Figure 5: Mesh 2 { Mesh 3

The �rst table below presents some information about the meshes and their maximum

aspet ratio. The last two olumns give the exat value of the mathing funtion m

1

(u�

u

h

; T

h

) as well as its approximation m

R

1

(u

h

; T

h

) from (20).

Mesh k # Elements Aspet ratio m

1

(u� u

h

; T

h

) m

R

1

(u

h

; T

h

)

1 48 29.4 1.55 1.68

2 384 69.5 1.62 1.52

3 3 072 82.6 1.69 1.69

4 24 576 88.6 1.88 1.86

5 196 608 91.5 2.37 2.03

6 1 572 864 92.9 3.04 2.29

Sine the size of m

1

is omparatively small and grows only mildly, the hosen meshes

disretize the problem suÆiently well. Additionally the approximationm

R

1

is satisfatorily

lose to the exat value. Hene the mathing funtion and its approximation are useful

tools for the theoretial analysis as well as for assessing the mesh quality in numerial

omputations. This topi has already been disussed for the Poisson equation in [14℄.

Next our main analytial results are to be on�rmed numerially, namely the error

bounds of Theorem 7. Therefore we present the ratios of left{hand side and right{hand
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side of (36) and (35), respetively, in the table below. Note that the approximation terms

�

";T

and �

"

vanish here.

Mesh k jjju� u

h

jjj

jjju� u

h

jjj

m

1

� �

";D

max

T2T

h

�

";D;T

jjju� u

h

jjj

!

T

1 0:154E + 0 1:102 0:411

2 0:536E � 1 0:810 0:568

3 0:229E � 1 0:705 0:611

4 0:110E � 1 0:605 0:607

5 0:553E � 2 0:474 0:597

6 0:282E � 2 0:371 0:582

Start with the seond olumn whih yields a onvergene rate of the error jjju� u

h

jjj of

approximately N

�0:324

, with N being the number of elements. This is almost the optimal

rate of N

�1=3

whih indiates that the meshes under onsideration disretize the singular

problem well. Next, the ratios of the third and fourth olumn are related to the upper and

lower error bound, respetively. These ratios are bounded from above and thus on�rm

the preditions of Theorem 7. Note that from a pratial point of view the moderately de-

reasing values of the upper error bound (third olumn) imply that the error is inreasingly

overestimated.

In the last table we examine the equivalene of the loal problem error estimator and the

residual error estimator, as desribed in Theorem 6. Again we ompute the ratios related

to (29) and (30). Sine all values are bounded from above, this impressively underpins our

analytial results.

Mesh k max

T2T

h

�

";D;T

�

P

T

0

�!

T

�

2

";R;T

0

�

1=2

max

T2T

h

�

";R;T

�

P

T

0

�!

T

�

2

";D;T

0

�

1=2

1 0:266 1:102

2 0:280 4:977

3 0:338 4:889

4 0:293 4:819

5 0:203 4:731

6 0:178 4:743

Sine the same numerial example has been onsidered for the residual error estimator of

[16℄ we an easily ompare both estimator. Qualitatively both estimators behave similarly

whereas from a quantitative viewpoint one observes roughly �

";R

� 4 � �

";D

. Furthermore

the residual error estimator �

";R

overestimates the true error more than the loal problem

error estimator �

";D

does. This indeed an be expeted sine the derivation of �

";R

requires

more intermediate steps (suh as interpolation estimates and Cauhy Shwarz inequalities).
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7 Summary

We have onsidered a singularly perturbed reation{di�usion problem and proposed a new

error estimator that an be applied to anisotropi �nite element meshes. The rigorous

analysis on�rms that the error estimation is uniform in the small perturbation parame-

ter. Furthermore tight error bounds are obtained provided the anisotropi mesh is hosen

aording to the anisotropy of the solution. Thus reliable and eÆient error estimation is

possible on anisotropi meshes.

Then a stable basis of the loal problem has been derived and an additional, fae ori-

ented loal problem error estimator has been proposed. Finally implementational aspets

have been disussed and analysed. A numerial experiment omplements the theory.

A Proof of Lemma 5

First we state Lemma 5 again.

Lemma 5 The following relations below hold for all v 2 V

T

.

kvk

!

T

. h

min;T

� krvk

!

T

(27)

kvk

E

. h

�1=2

E

Æ

�1=2

E

�minfh

min;T

; Æ

E

h

E

g � krvk

!

T

8E � �T ; (28)

with Æ

E

from (21).

If T has at least two Neumann boundary faes then the onstants an depend on the

angles of the orners and edges of 
 (but do not depend on the triangulation T

h

nor on T ).

Proof: The proof here utilizes some key ideas that were already applied in [13, Lemma 3.5℄

and [15℄. Our exposition here requires several non{trivial extensions whih are due to the

singularly perturbed problem, and the use of squeezed fae bubble funtions in partiular.

In order to failitate the understanding of the proof, eah major step will be given a

distintive name.

Set T

0

:= T and enumerate the remaining tetrahedra of !

T

n T by T

1

: : : T

k

. If T has

boundary faes then k < 4. The faes of T are denoted aordingly by E

i

:= T

i

\ T .

Transformation: In order to prove (27) onsider the tetrahedron T

i

and rewrite kvk

T

i

by

means of the transformation A

T

i

, and krvk

T

i

via the transformations C

T

i

; H

T

i

. Utilizing

jT j � jT

i

j, and with ertain abbreviations given below this yields

kvk

2

T

i

= 6jT

i

j � k�vk

2

�

T

i

� jT j � r

i

and kvk

2

!

T

� jT j �

k

X

i=0

r

i

= jT j � r

where we have introdued

r

i

:= k�vk

2

�

T

i

� 0 and r :=

k

X

i=0

r

i

� 0 :
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Similarly the term krvk

!

T

is transformed to give

krvk

2

T

i

(5)

= kH

�1

T

i

C

>

T

i

rvk

2

T

i

= 6jT

i

j � kH

�1

T

i

�

^

rv̂k

2

^

T

i

whih implies krvk

2

!

T

=

k

X

i=0

krvk

2

T

i

=

k

X

i=0

6jT

i

j � kH

�1

T

i

�

^

rv̂k

2

^

T

i

= 6 �

k

X

i=0

jT

i

j � h

�2

min;T

i

� kdiag(

1;i

; 

2;i

; 1) �

^

rv̂k

2

^

T

i

� h

�2

min;T

� jT j �

k

X

i=0

s

i

= h

�2

min;T

� jT j � s

with 

1;i

:= h

min;T

i

=h

1;T

i

and 

2;i

:= h

min;T

i

=h

2;T

i

s

i

:= kdiag(

1;i

; 

2;i

; 1) �

^

rv̂k

2

^

T

i

� 0 and s :=

k

X

i=0

s

i

� 0 :

A rough outline of the proof is as follows. Realize �rst that r and s depend on various

variables (e.g. on the geometry of T , the parameters Æ

i

:= Æ

E

i

et). Then onsider r; s

over some ompat set of variables. Sine both terms turn out to be ontinuous, one an

investigate their maxima and minima whih eventually provide the assertion.

Extend domain of de�nition to a ompat set: Let us start with the ase where T

has no Neumann boundary fae. Assume further that T has m interior faes and 4 � m

Dirihlet faes. The loal spae V

T

is spanned by b

T

and b

E

i

;Æ

i

, i = 1 : : :m. For our purpose

we utilize an expansion of v 2 V

T

where the squeezed fae bubble funtions are additionally

saled by Æ

�1=2

i

, namely

v = �

0

� b

T

+

m

X

i=1

�

i

� Æ

�1=2

i

b

E

i

;Æ

i

�

i

2 R :

Without loss of generality assume v 6� 0 and

P

m

i=0

�

2

i

= 1. After transformation via A

T

i

the representation of �v beomes

�vj

�

T

i

= vj

T

i

Æ A

T

i

=

8

<

:

�

0

� b

�

T

+

m

P

i=1

�

i

� Æ

�1=2

i

b

�

E

i

;Æ

i

for i = 0 (i.e. on

�

T )

�

i

� Æ

�1=2

i

b

�

E

i

;Æ

i

for i = 1 : : :m (i.e. on

�

T

i

) :

Hene �v depends on �

0

: : : �

m

and Æ

1

: : : Æ

m

, Æ

i

2 (0; 1℄. Note further that Æ

i

inuenes

r

0

= k�vk

2

�

T

and r

i

= k�vk

2

�

T

i

but not the other values r

j

.

Next �v is to be onsidered over a ompat set. Thus introdue

B :=

n

(�

0

; : : : ; �

m

) :

m

X

i=0

�

2

i

= 1

o

and D :=

n

(Æ

1

; : : : ; Æ

m

) : Æ

i

2 [0; 1℄ 8 i

o

:
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The ase Æ

i

= 0 requires additional onsideration. While the funtion Æ

�1=2

i

b

E

i

;Æ

i

has a well{

de�ned meaning for Æ

i

2 (0; 1℄, this is no longer true for Æ

i

! 0. Then supp (b

E

i

;Æ

i

j

T

i

) =

T

i;E

i

;Æ

i

degenerates, and Æ

�1=2

i

!1. Therefore the value of r

j

= k�vk

2

�

T

j

for Æ

i

= 0 is de�ned

as the limit for Æ

i

! 0:

r

j

(Æ

i

= 0) := lim

Æ

i

!0

r

j

(Æ

i

) :

This limit is well{de�ned sine the vanishing support T

i;E

i

;Æ

i

of the squeezed fae bubble

funtion and its saling fator Æ

�1=2

i

are exatly balaned. For the outer tetrahedra this

an be easily seen by utilizing two transformations, namely via A

T

i

:

�

T ! T

i

and via

F

�1

T

i

;E

i

;Æ

i

: T

i;E

i

;Æ

i

!

�

T

i

. By using jdet(A

T

i

)j = 6jT j and jdet(F

T

i

;E

i

;Æ

i

)j = 6Æ

i

jT j one obtains

r

i

= �

2

i

kÆ

�1=2

i

b

�

E

i

;Æ

i

k

2

�

T

i

A

T

i

= �

2

i

Æ

�1

i

� (6jT j)

�1

kb

E

i

;Æ

i

k

2

T

i

= �

2

i

Æ

�1

i

� (6jT j)

�1

kb

E

i

;Æ

i

k

2

T

i;E

i

;Æ

i

F

�1

T

i

;E

i

;Æ

i

= �

2

i

Æ

�1

i

� (6jT j)

�1

� 6Æ

i

jT j � kb

�

E

i

k

2

�

T

i

=

9

560

�

2

i

� �

2

i

and lim

Æ

i

!0

r

i

=

9

560

�

2

i

:

Hene lim

Æ

i

!0

r

i

exists. For r

0

proeed similarly.

Consider Maximum and Minimum: As a onsequene we an onsider r

i

and r on

B�D, and r

i

; r vary ontinuously over that ompat set. Therefore r attains its maximum

and minimum. To show that this minimum is positive, assume the ontrary whih implies

r

i

= 0 for all i = 0 : : :m. On the outer tetrahedra T

i

, i = 1 : : :m, proeed exatly as in the

last paragraph to obtain

0 = r

i

=

9

560

�

2

i

whih implies �

i

= 0, i = 1 : : :m. On the main tetrahedron T then �v is redued to �v = �

0

b

�

T

giving

0 = r

0

= k�vk

2

�

T

=

4096

155 925

�

2

0

� �

2

0

and �

0

= 0 too. This ontradits

P

m

i=0

�

2

i

= 1, hene

min

B�D

r > 0 :

Together with max

B�D

r � 1 we obtain

r � 1

or, equivalently,

kvk

2

!

T

� jT j �

m

X

i=0

�

2

i

: (40)
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Investigation of s: The investigation of s and s

i

relies on the same basi ideas as before.

The details however are muh more tehnial beause derivatives are involved (i.e. rv)

and the transformation C

T

i

is applied.

Consider s

i

= kdiag(

1;i

; 

2;i

; 1) �

^

rv̂k

2

^

T

i

� 0 whih depends on

^

T

i

, 

j;i

and v̂. The

restritions on

^

T

i

and T

i

imply 0 < 

1;i

; 

2;i

� 1 and, for the nodal oordinates of

^

T

i

,

0 < x̂

2;T

i

� 1=2; 0 < x̂

3;T

i

< 1; �1 < ŷ

3;T

i

< 1. Similar as before we omit the atual

meaning that stands behind s

i

, and view it instead as a purely analytial term that depends

on x̂

j;T

i

, ŷ

3;T

i

, 

j;i

, Æ

j

and �

j

. Next onsider s

i

over the ompat set X

i

�G

i

�D�B, with

X

i

:=

n

(x̂

2;T

i

; x̂

3;T

i

; ŷ

3;T

i

) : 0 � x̂

2;T

i

�

1

2

; 0 � x̂

3;T

i

� 1 ; �1 � ŷ

3;T

i

� 1

o

;

G

i

:=

n

(

1;i

; 

2;i

) : 0 � 

1;i

; 

2;i

� 1

o

:

It is obvious that s

i

is ontinuous on X

i

; G

i

; B and for Æ

i

2 (0; 1℄. Note again that Æ

i

inuenes only s

0

and s

i

. The only ause for disontinuity of s

i

is Æ

i

! 0 whih may

lead to s

i

! 1 (beause Æ

�1=2

i

! 1 and j

^

r

^

b

E

i

;Æ

i

j ! 1, see below). Nevertheless suh a

disontinuity does not disturb our analysis sine we want to bound s

i

from below. For a

preise investigation we de�ne again

s

j

(Æ

i

= 0) := lim

Æ

i

!0

s

j

(Æ

i

)

and onsider then the term minf1; s

i

g whih is ontinuous for Æ

i

2 [0; 1℄.

Sine s =

P

m

i=0

s

i

, this term is ontinuous as well, and it attains its minimum over the

ompat set

K :=

m

�

i=0

X

i

�

m

�

i=0

G

i

� D � B :

In order to show that this minimum is positive assume the ontrary, namely s = s

i

= 0 for

all i = 0 : : :m. Start with any of the outer tetrahedra T

i

; i = 1 : : :m. The representation

of v̂ there is v̂j

^

T

i

= �

i

Æ

�1=2

i

�

^

b

E

i

;Æ

i

j

^

T

i

. Then

0 = s

i

= kdiag(

1;i

; 

2;i

; 1) �

^

rv̂k

2

^

T

i

� ke

>

3

�

^

rv̂k

2

^

T

i

= �

2

i

Æ

�1

i

ke

>

3

�

^

r

^

b

E

i

;Æ

i

k

2

^

T

i

;

with e

3

:= (0; 0; 1)

>

. The latter norm is analysed similarly as for r

i

by using two trans-

formations via C

T

i

:

^

T ! T

i

and via F

�1

T

i

;E

i

;Æ

i

: T

i;E

i

;Æ

i

!

�

T

i

. In ontrast to r

i

, how-

ever, we annot evaluate s

i

exatly but bound it instead. From jdet(C

T

i

)j = 6jT j and

jdet(F

T

i

;E

i

;Æ

i

)j = 6Æ

i

jT j one derives

Æ

�1

i

ke

>

3

�

^

r

^

b

E

i

;Æ

i

k

2

^

T

i

C

T

i

= Æ

�1

i

� (6jT j)

�1

ke

>

3

� C

>

T

i

rb

E

i

;Æ

i

k

2

T

i

= Æ

�1

i

� (6jT j)

�1

ke

>

3

� C

>

T

i

rb

E

i

;Æ

i

k

2

T

i;E

i

;Æ

i

F

�1

T

i

;E

i

;Æ

i

= Æ

�1

i

� (6jT j)

�1

� 6Æ

i

jT j � ke

>

3

� C

>

T

i

F

�>

T

i

;E

i

;Æ

i

�

rb

�

E

i

k

2

�

T

i

= k(F

�1

T

i

;E

i

;Æ

i

C

T

i

� e

3

)

>

�

�

rb

�

E

i

k

2

�

T

i

:
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Realling the de�nition of C

T

i

from (4) yields C

T

i

e

3

= p

3;T

i

whih is a vetor from a vertie

to the opposite fae in the tetrahedron T

i

, see Figure 1. Hene F

�1

T

i

;E

i

;Æ

i

C

T

i

� e

3

is a vetor

from a vertie to the opposite fae in the tetrahedron F

�1

T

i

;E

i

;Æ

i

T

i

. Using T

i

� T

i;E

i

;Æ

i

one

obtains F

�1

T

i

;E

i

;Æ

i

T

i

� F

�1

T

i

;E

i

;Æ

i

T

i;E

i

;Æ

i

�

�

T

i

and thus

jF

�1

T

i

;E

i

;Æ

i

C

T

i

� e

3

j

R

3

� %(

�

T

i

) =

1

3 +

p

3

� 1

where %(

�

T

i

) denotes the diameter of the insribed ball of

�

T

i

. Then

k(F

�1

T

i

;E

i

;Æ

i

C

T

i

� e

3

)

>

�

�

rb

�

E

i

k

2

�

T

i

& min

jqj

R

3

=1

kq

>

�

�

rb

�

E

i

k

2

�

T

i

= 81=280 � 1 :

Summarizing the previous results, we end up with

0 = s

i

� �

2

i

Æ

�1

i

ke

>

3

�

^

r

^

b

E

i

;Æ

i

k

2

^

T

i

& �

2

i

:

This holds for Æ

i

2 (0; 1℄ and therefore also for the limit Æ

i

= 0. Hene one onludes

�

i

= 0 8i = 1 : : :m :

Next onsider the main tetrahedron T where v is now redued to v = �

0

� b

T

. Then

0 = s

0

� �

2

0

ke

>

3

�

^

rb

^

T

k

2

^

T

immediately implies �

0

= 0 whih ontradits the assumption

P

m

i=1

�

2

i

= 1. Therefore the

minimum of s is positive giving

s & 1 � r

whih provides the assertion.

T has Neumann faes: In this ase !

T

onsists of less than �ve tetrahedra, and dimV

T

<

5. Although the representation of v hanges as well, the main ideas from above an still

be applied to show the assertion. Thus we omit the proof.

It is noteworthy that the ase of two or more Neumann boundary faes of T gives rise

to a partiular phenomenon. If one an guarantee Æ

i

� Æ

�

< 1 8 i (with some parameter

Æ

�

whih is the same for all elements) then the resulting inequality is as before. Otherwise

the inequality onstant in (27) may depend on the angles of the orners and edges of 


but do not depend on the triangulation T

h

nor on T , f. also [13, Lemma 3.5℄.

Proof of (28): Assume �rst that E

i

is an interior fae, and onsider the orresponding

outer tetrahedron T

i

. Apply (14) with '

E

� 1 to obtain

krb

E

i

;Æ

i

k

T

i

� Æ

1=2

i

� h

1=2

E

i

;T

i

�minfÆ

i

h

E

i

;T

i

; h

min;T

i

g

�1

� jE

i

j

1=2

:

Together with kb

E

i

;Æ

i

k

E

i

= kb

E

i

k

E

i

� jE

i

j

1=2

this yields immediately

kb

E

i

;Æ

i

k

E

i

� Æ

�1=2

i

� h

�1=2

E

i

;T

i

�minfÆ

i

h

E

i

;T

i

; h

min;T

i

g � krb

E

i

;Æ

i

k

T

i

:
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From vj

T

i

= �

i

� b

E

i

;Æ

i

j

T

i

and h

E

i

;T

i

� h

E

i

, h

min;T

i

� h

min;T

one onludes

kvk

E

i

� Æ

�1=2

i

� h

�1=2

E

i

;T

i

�minfÆ

i

h

E

i

;T

i

; h

min;T

i

g � krvk

T

i

. Æ

�1=2

i

� h

�1=2

E

i

�minfÆ

i

h

E

i

; h

min;T

g � krvk

!

T

whih proves the assertion.

If E

i

is a Dirihlet fae then vj

E

i

� 0, and (28) holds trivially. Finally, if E

i

is a

Neumann fae then the proof beomes more tehnial sine no outer tetrahedron T

i

exists.

Then one has to utilize similar ideas as for proving (27). The details are omitted here.
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