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Abstra
t

Singularly perturbed problems often yield solutions with strong dire
tional fea-

tures, e.g. with boundary layers. Su
h anisotropi
 solutions lend themselves to

adapted, anisotropi
 dis
retizations. The quality of the 
orresponding numeri
al

solution is a key issue in any 
omputational simulation.

To this end we present a new robust error estimator for a singularly perturbed

rea
tion{di�usion problem. In 
ontrast to 
onventional estimators, our proposal is

suitable for anisotropi
 �nite element meshes. The estimator is based on the solution

of a lo
al problem, and yields error bounds uniformly in the small perturbation

parameter. The error estimation is eÆ
ient, i.e. a lower error bound holds. The

error estimator is also reliable, i.e. an upper error bound holds, provided that the

anisotropi
 mesh dis
retizes the problem suÆ
iently well.
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1 Introdu
tion

Adaptive algorithms form nowadays an indispensable tool for most �nite element simu-

lations. They basi
ally 
onsist of the ingredients Solve { Estimate error { Re�ne mesh

whi
h are repeated until the desired a

ura
y is a
hieved, see also [2, 22℄. The present

work is part of a series of related endeavors in a parti
ular �eld of �nite element analy-

sis. While standard �nite element meshes employ isotropi
 (or shape regular) elements,

we investigate so{
alled anisotropi
 (or stret
hed) elements. They are 
hara
terized by a

large stret
hing ratio (also 
alled aspe
t ratio). Equivalently, the ratio of the diameters of

the 
ir
ums
ribed and ins
ribed spheres 
an be arbitrarily large. Su
h anisotropi
 meshes

are parti
ularly useful when the di�erential equation gives rise to a solution with strong

dire
tional features, su
h as boundary layers or interior layers. Appli
ation of anisotropi


meshes as well as theoreti
al investigations 
an be found for example in [4, 5, 18, 19, 24, 25℄

and [11, 13, 14, 17, 20℄.

It is a natural desire to in
orporate anisotropi
 meshes into adaptive algorithms. Clearly,

additional ingredients are required then, namely anisotropi
 information extra
tion (e.g.

�nd the (quasi) optimal stret
hing dire
tion and stret
hing ratio of the anisotropi
 ele-

ments), and anisotropi
 mesh re�nement. Less obvious but equally important is the error

estimation part. Unfortunately most of the 
onventional a posteriori error estimators for

isotropi
 meshes fail when applied on anisotropi
 meshes. Therefore the derivation and

analysis of estimators whi
h are suitable for anisotropi
 elements is of vital importan
e for

any adaptive anisotropi
 algorithm.

Fortunately this 
hallenging venture has seen some su

ess re
ently [20, 13, 14, 15, 17,

11℄. In 
ase studies of the Poisson model problem it has been shown that anisotropi
 error

estimation is possible, and the methodology and analyti
al tools have been developed,

proposed and re�ned. Now anisotropi
 error estimation has to prove its potential for more

realisti
 settings. Singularly perturbed problems o�er ideal test �elds sin
e they often

indu
e boundary layers where anisotropi
 elements 
an be employed favourably.

From now on let us 
onsider a singularly perturbed rea
tion{di�usion model problem,

see (1) below, whi
h usually gives rise to boundary layers whenever a non{vanishing right

hand side meets homogeneous Diri
hlet boundary data.

Although (1) forms a 
omparatively simple model problem, the knowledge of robust

error estimators has been unsatisfa
tory for a long time. The �rst estimators with error

bounds that are uniform in the small perturbation parameter " were due to Angermann [3℄,

Verf�urth [23℄ and Ainsworth/Babu�ska [1℄; all of them 
onsidered isotropi
 meshes. Anger-

mann measures the error in a somewhat strange norm (whi
h seems to be mainly of theo-

reti
al interest) whereas Verf�urth and Ainsworth/Babu�ska 
on
entrate on the energy norm

(whi
h is the most natural norm). For anisotropi
 meshes Kunert [16℄ re
ently su

eeded

in deriving a robust residual error estimator, also for the energy norm. A 
orollary of that

result has been in
luded in [17℄.

In our present work we propose a new error estimator for the singularly perturbed

rea
tion{di�usion problem (1) whi
h is suitable for anisotropi
 meshes, and that is based

on the solution of a lo
al problem. The roots of this lo
al problem error estimator are

1



2 1 INTRODUCTION

twofold. Firstly it relies on the anisotropi
 residual error estimator [16℄ whose results are

partly the foundation for the present analysis. Se
ondly we utilize the methodology of lo
al

problem error estimation. For the Poisson problem (on isotropi
 meshes) this is fairly well

understood, see e.g. the exposition in [22℄; hen
e the general framework of the proofs 
an

be derived relatively easily. The pre
ise de�nition and analysis of our estimator, however,

are mu
h more diÆ
ult and te
hni
al. This 
on
erns for example the 
hoi
e of the lo
al

problem, the 
areful 
alibration of all ingredients, or 
ertain equivalen
e lemmas. Although

we 
ould exploit some experien
e from anisotropi
 lo
al problem error estimation for the

Poisson problem [15℄, the `extension' to the singularly perturbed problem requires several

new ingredients and is by no means straight{forward. Note that in [1℄ also a lo
al problem

error estimator is derived (for isotropi
 meshes). However the lo
al problem there is in�nite

dimensional whereas our proposal here involves an (at most) �ve dimensional lo
al spa
e.

When 
omparing with the anisotropi
 residual error estimator, our newly proposed

lo
al problem error estimator is 
ertainly more expensive sin
e a lo
al problem has to be


omputed and solved. Nonetheless the disadvantage of any residual based estimator is that

the proof of the error bound is based on several intermediate steps, su
h as interpolation

estimates and the Cau
hy S
hwarz inequality. In 
ontrast to this the lo
al problem error

estimator requires less auxiliary steps, and thus 
ontains less 
onstants (whi
h are unknown

in general). This 
an also be observed numeri
ally: The qualitative behaviour of both error

estimators is 
omparable but the lo
al problem error estimation is mu
h 
loser to the true

error.

Finally note that all known anisotropi
 error estimators require that the anisotropy of

the mesh and the anisotropy of the solution 
orrespond suÆ
iently well. As in previous

work, this 
orresponden
e is measured by a so{
alled mat
hing fun
tion whi
h is explained

in our exposition.

The remainder of the paper is organized as follows. After presenting the model problem

in x2, we repeat in x3 some notation, basi
 tools and lemmas that have been applied su
-


essfully in previous anisotropi
 investigations. The transformation te
hnique and several

bubble fun
tions are of parti
ular importan
e. Furthermore the residual error estimator of

[16℄ is re
alled for self{
ontainment. Next, x4 is devoted to the lo
al problem error estima-

tor and its analysis. Reliable upper and lower error bounds are proven and a stable basis

of the lo
al problem is presented. Additionally a further, fa
e oriented lo
al problem error

estimator is given. Computational aspe
ts are dis
ussed in x5, and the numeri
al experi-

ments of x6 
on�rm the analysis. The summary in x7 and a te
hni
al proof in appendix A


on
lude this work.



3

2 The model problem and its dis
retization

Our fo
us is on a singularly perturbed rea
tion{di�usion model problem with Diri
hlet{

Neumann boundary 
onditions

�"�u + u = f in 


u = 0 on �

D

" � �u=�n = g on �

N

9

=

;

(1)

in a bounded, polyhedral domain 
 � R

d

, d = 2; 3, with boundary �
 = �

D

[ �

N

.

Assume f 2 L

2

(
), g 2 L

2

(�

N

) and meas

d�1

(�

D

) > 0. The Sobolev spa
e of fun
tions

that vanish on �

D

is denoted by H

1

o

(
) as usual. The 
orresponding variational formulation

for (1) be
omes:

Find u 2 H

1

o

(
) : a(u; v) = hf; vi 8 v 2 H

1

o

(
)

with a(u; v) :=

Z




" � (ru)

>

rv + u v hf; vi :=

Z




fv +

Z

�

N

gv :

9

=

;

(2)

We utilize a family F = fT

h

g of triangulations T

h

of 
. Let V

o;h

� H

1

o

(
) be the spa
e of


ontinuous, pie
ewise linear fun
tions over T

h

that vanish on �

D

. Then the �nite element

solution u

h

2 V

o;h

is uniquely de�ned by

a(u

h

; v

h

) = hf; v

h

i 8 v

h

2 V

o;h

: (3)

Due to the Lax{Milgram Lemma both problems (2) and (3) admit unique solutions.

The main purpose of our analysis is to bound the error u� u

h

uniformly in the small

perturbation parameter ". Here we 
on
entrate on the most natural norm related to (2),

namely the energy norm

jjjvjjj

2

:= a(v; v) = "krvk

2

+ kvk

2

whi
h has been used also by other authors [1, 23℄. This energy norm is well{suited to

produ
e appropriately re�ned meshes. This 
an be easily veri�ed on some 1D model

problem, e.g. for �"u

00

+ u = 0 in 
 = (0; 1) with u(0) = 1; u(1) = 0. Even the optimal

order of 
onvergen
e 
an be a
hieved.

3 Notation, basi
 tools and lemmas

In order to analyse error estimators on anisotropi
 meshes we will now introdu
e 
ertain

notation as well as important tools, all of whi
h have proven to be advantageous in previous

work [13, 15, 16℄. All expositions are given for the more te
hni
al three dimensional 
ase.

The appli
ation to the simpler 2D 
ase is readily possible.

From now on, let P

k

(!) be the spa
e of polynomials of order k at most over some

domain ! � R

3

or ! � R

2

. Instead of x � 
 � y or 


1

x � y � 


2

x (with positive 
onstants
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independent of x; y and "; T

h

) we use the abbreviation x . y and x � y, respe
tively. By

k � k

!

we denote the L

2

norm of a fun
tion over some domain !. For ! = 
 the subs
ript

is omitted. Let j!j := meas (!) be the measure of a domain !. Finally for some ve
tor p

let jpj :=

p

p

>

p be its Eu
lidean norm (i.e. length).

3.1 Tetrahedron { Subdomains { Mesh requirements

Tetrahedron: Let a triangulation T

h

be given whi
h satis�es the usual admissibility


onditions (see Ciarlet [10℄, Chapter 2). The four verti
es of an arbitrary tetrahedron T 2

T

h

are denoted by P

0

; : : : ; P

3

su
h that P

0

P

1

is the longest edge of T , meas

2

(4P

0

P

1

P

2

) �

meas

2

(4P

0

P

1

P

3

), and meas

1

(P

1

P

2

) � meas

1

(P

0

P

2

).

Additionally de�ne three pairwise orthogonal ve
tors p

i

with lengths h

i;T

:= jp

i

j, see

�gure 1. Observe h

1;T

> h

2;T

� h

3;T

and set h

min;T

:= h

3;T

. The 
ir
ums
ribed hexahedron

may fa
ilitate the visualization.

P

0

P

1

P

2

P

3

p

1

p

2

p

3

Figure 1: Notation of tetrahedron T

Tetrahedra are denoted by T; T

0

; T

00

or T

i

. Fa
es of a tetrahedron are denoted by E or

E

i

. Let h

E;T

:= 3jT j=jEj be the length of the height over a fa
e E.

Auxiliary subdomains: Let T 2 T

h

be an arbitrary tetrahedron. Let !

T

be that domain

that is formed by T and all tetrahedra that have a 
ommon fa
e with T . Note that !

T


onsists of less than �ve tetrahedra if T has a boundary fa
e.

Let E be an inner fa
e (triangle) of T

h

, i.e. there are two tetrahedra T

1

and T

2

having

the 
ommon fa
e E. Set the domain !

E

:= T

1

[ T

2

. If E is a boundary fa
e set !

E

:= T

with T � E.

Mesh requirements: In addition to the usual 
onformity 
onditions of the mesh (see

Ciarlet [10℄, Chapter 2) we demand the following two assumptions.

1. The number of tetrahedra 
ontaining a node x

j

is bounded uniformly.

2. The dimensions of adja
ent tetrahedra must not 
hange rapidly, i.e.

h

i;T

0

� h

i;T

8T; T

0

with T \ T

0

6= ; ; i = 1 : : : d :
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Remark 1 In 
ertain situations we do not want to use element based quantities (su
h

as h

min;T

) but utilize fa
e related terms instead. For example 
onsider an interior fa
e

E = T

1

\ T

2

, and de�ne the terms

h

E

:= (h

E;T

1

+ h

E;T

2

)=2 ; h

min;E

:= (h

min;T

1

+ h

min;T

2

)=2 :

Their advantage is that they are no longer related to T

1

or T

2

but to E. They 
learly

satisfy h

E

� h

E;T

i

and h

min;E

� h

min;T

i

. For a boundary fa
e E � �T \� de�ne similarly

h

E

:= h

E;T

and h

min;E

:= h

min;T

.

Transformations: The usual transformation te
hnique between a tetrahedron T and

a standard tetrahedron plays a vital role in many proofs (
f. [10℄). However, a re�ned

analysis has shown that two di�erent transformations fa
ilitate matters 
onsiderably, see

e.g. [13, 14℄. Hen
e de�ne the matri
es H

T

:= diag(h

1;T

; h

2;T

; h

3;T

) and A

T

; C

T

2 R

3�3

by

A

T

:= (

�!

P

0

P

1

;

�!

P

0

P

2

;

�!

P

0

P

3

) and C

T

:= (p

1

;p

2

;p

3

) ; (4)

and introdu
e aÆne linear mappings

F

A

(�) := A

T

� �+

!

P

0

and F

C

(�) := C

T

� �+

!

P

0

; � 2 R

3

:

These mappings impli
itly de�ne the standard tetrahedron

�

T := F

�1

A

(T ) and the referen
e

tetrahedron

^

T := F

�1

C

(T ). Then

�

T the has verti
es

�

P

0

= (0; 0; 0)

>

and

�

P

i

= e

>

i

; i =

1 : : : 3, whereas

^

T has verti
es at

^

P

0

= (0; 0; 0)

>

,

^

P

1

= (1; 0; 0)

>

,

^

P

2

= (x̂

2

; 1; 0)

>

and

^

P

3

= (x̂

3

; ŷ

3

; 1)

>

. The 
onditions on the P

i

yield immediately 0 < x̂

2

� 1=2, 0 < x̂

3

< 1

and �1 < ŷ

3

< 1. Figures 1 and 2 illustrate this de�nition.

^

P

0

^

P

1

^

P

2

^

P

3

�

2

�

1

�

3

�

P

0

�

P

1

�

P

2

�

P

3

Figure 2: Standard tetrahedron

�

T and referen
e tetrahedron

^

T

Variables and operators that are related to the standard tetrahedron

�

T and the ref-

eren
e tetrahedron

^

T are referred to with a bar and a hat, respe
tively (e.g.

�

r, v̂). The
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determinants of both mappings are j det(A

T

)j = j det(C

T

)j = 6jT j, and the transformed

derivatives satisfy

�

r�v = A

>

T

rv and

^

rv̂ = C

>

T

rv.

Although C

T

is naturally asso
iated with our analysis, it transforms

^

T into T . Inequal-

ity 
onstants would thus depend on

^

T . To over
ome this drawba
k, the transformation

via A

T

is used in 
onjun
tion with C

T

(
f. the 
ompa
tness arguments in the proof of

Lemma 5).

Finally, H

�1

T

C

>

T

is orthogonal sin
e C

>

T

� C

T

= H

2

T

. Hen
e

kH

�1

T

C

>

T

rvk

T

= krvk

T

: (5)

Squeezed tetrahedron T

E;Æ

: The 
on
ept of the squeezed tetrahedron has been intro-

du
ed in [16℄ and originates from [23℄ (in a simpler, modi�ed form there). Here we repeat

the de�nition and only state the required results.

Be
ause of the singular perturbation 
hara
ter of the di�erential equation we 
an

favourably employ a sub{tetrahedron T

E;Æ

� T whi
h depends on a fa
e E of T and a

real number Æ 2 (0; 1℄. In an attempt to use a vivid name we will refer to T

E;Æ

as a

squeezed tetrahedron. For its pre
ise de�nition, let T be an arbitrary but �xed tetrahe-

dron, and enumerate temporarily its verti
es su
h that E = Q

1

Q

2

Q

3

and T = OQ

1

Q

2

Q

3

,


f. Figure 3. Introdu
e bary
entri
 
oordinates su
h that �

0

is related to O, and �

1

, �

2

, �

3


orrespond to Q

1

; Q

2

; Q

3

, respe
tively.

Let P be that point with bary
entri
 
oordinates

�

0

(P ) = Æ and �

1

(P ) = �

2

(P ) = �

3

(P ) =

1� Æ

3

:

Then let T

E;Æ

be the tetrahedron with verti
es P and Q

1

; Q

2

; Q

3

, i.e. T

E;Æ

has the same

fa
e E as T but the fourth vertex is moved towards E with the rate Æ.

An alternative des
ription is as follows. With S

E

being the midpoint (i.e. 
enter of

gravity) of fa
e E, point P lies on the line S

E

O su
h that j

~

S

E

P j = Æ � j

~

S

E

Oj. Note that for

Æ = 1 one gets T

E;Æ

� T whereas in the limiting 
ase Æ ! 0 the tetrahedron T

E;Æ


ollapses

to the fa
e E.

Q

3

Q

2

P

S

E

Q

1

O

Figure 3: Tetrahedra T = OQ

1

Q

2

Q

3

and T

E;Æ

= PQ

1

Q

2

Q

3

In order to utilize T

E;Æ

eÆ
iently, we also require an aÆne linear transformation F

T;E;Æ

that maps the standard tetrahedron

�

T onto T

E;Æ

. This aÆne linear mapping is unique (up
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tions 7

to permutations of the enumeration of the verti
es of

�

T and T

E;Æ

). In [16℄ the following

relations has been proven.

Lemma 1 The radius %(T

E;Æ

) of the largest ins
ribed sphere of T

E;Æ

is equivalent to

%(T

E;Æ

) � minfÆ � h

E;T

; h

min;T

g � h

min;T

E;Æ

: (6)

The norm of the transformation matrix F

�1

T;E;Æ

is bounded by

kF

�1

T;E;Æ

k

R

3�3

. minfÆ � h

E;T

; h

min;T

g

�1

:

3.2 Bubble fun
tions

Another useful and important tool are so-
alled bubble fun
tions whi
h are applied, for

example, for de�ning the lo
al problem and its ansatz spa
e but also for the analysis. The

bubble fun
tions were already partially introdu
ed in [22℄ and [16℄.

Denote by �

T;1

; � � � ; �

T;4

the bary
entri
 
oordinates of an arbitrary tetrahedron T . The

element bubble fun
tion b

T

is de�ned by

b

T

:= 4

4

� �

T;1

� �

T;2

� �

T;3

� �

T;4

2 P

4

(T ) on T : (7)

For simpli
ity assume that b

T

is extended by zero outside its original domain of de�nition.

Further we require fa
e bubble fun
tions. To this end let E = T

1

\ T

2

be an inner

fa
e (triangle) of T

h

. Enumerate the verti
es of T

1

and T

2

su
h that the verti
es of E are

numbered �rst, and introdu
e the fun
tions

b

E;T

i

:= 3

3

� �

T

i

;1

� �

T

i

;2

� �

T

i

;3

on T

i

; i = 1; 2 :

The standard fa
e bubble fun
tion b

E

2 C

0

(!

E

) is now de�ned in a pie
ewise fashion (with

support !

E

= T

1

[ T

2

) by

b

E

:=

8

<

:

b

E;T

1

on T

1

b

E;T

2

on T

2

0 otherwise

;

see also the middle of Figure 4. Note that 0 � b

T

(x); b

E

(x) � 1 and kb

T

k

1

= kb

E

k

1

= 1.

For 
larity of notation we also introdu
e a trivial extension operator F

ext

: P

0

(E) !

P

0

(!

E

) that maps a 
onstant fun
tion over some fa
e E to the same 
onstant fun
tion

a
ting on !

E

. If E is a boundary fa
e then b

E

and F

ext

are obviously de�ned only on the

single tetrahedron T � E.

The following anisotropi
 equivalen
es/inverse inequalities 
an be derived easily, 
f. [13℄.

Lemma 2 (Inverse inequalities I) Assume that '

T

2 P

0

(T ) and '

E

2 P

0

(E). Then

kb

T

k

T

� jT j

1=2

(8)

kb

1=2

T

� '

T

k

T

� k'

T

k

T

(9)

kr(b

T

� '

T

)k

T

. h

�1

min;T

� k'

T

k

T

(10)

kb

1=2

E

� '

E

k

E

� k'

E

k

E

(11)
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The bubble fun
tions above suÆ
e to analyse the error estimator for the Poisson equa-

tion, 
f. [22, 15℄. However, for the singularly perturbed problem 
onsidered here we have to

introdu
e modi�ed fa
e bubble fun
tions, 
f. also [13, 23℄.

Start with some fa
e E and let T

1

; T

2

be its two neighbouring tetrahedra, i.e. !

E

= T

1

[

T

2

. For an arbitrary real number Æ 2 (0; 1℄ 
onsider both squeezed tetrahedra T

1;E;Æ

� T

1

and T

2;E;Æ

� T

2

, 
f. Figures 3 and 4. Now we are ready to present the so{
alled squeezed

fa
e bubble fun
tion b

E;Æ

whi
h a
ts only on T

1;E;Æ

[ T

2;E;Æ

� !

E

. Its pie
ewise de�nition is

b

E;Æ

:=

8

>

>

<

>

>

:

b

�

E

Æ F

�1

T

1

;E;Æ

on T

1;E;Æ

b

�

E

Æ F

�1

T

2

;E;Æ

on T

2;E;Æ

0 on !

E

n (T

1;E;Æ

[ T

2;E;Æ

) ;

(12)

with b

�

E

being the standard fa
e bubble fun
tion for the fa
e

�

E = F

�1

T

i

;E;Æ

(E) of the tetrahe-

dron

�

T = F

�1

T

i

;E;Æ

(T

i;E;Æ

). Note that the squeezed fa
e bubble fun
tion on T

i


an equivalently

be viewed as the standard fa
e bubble fun
tion on the squeezed tetrahedron T

i;E;Æ

, i.e.

b

E;Æ

j

T

i

� b

E;T

i;E;Æ

:

Figure 4 may fa
ilitate the understanding of the standard/squeezed fa
e bubble fun
tion for

the two{dimensional 
ase. For boundary fa
es one restri
ts b

E;Æ

to the unique tetrahedron

with �T � E.

Standard s
aling arguments for the transformation F

T

i

;E;Æ

:

�

T ! T

i;E;Æ

, together with

the essential Lemma 1 yield now the inverse inequalities for the squeezed fa
e bubble

fun
tion.

Lemma 3 (Inverse equivalen
es II) Let E be an arbitrary fa
e of T , assume '

E

2

P

0

(E), and let Æ 2 (0; 1℄ be arbitrary. Then one has

kb

E;Æ

� F

ext

('

E

)k

T

� Æ

1=2

� h

1=2

E;T

� k'

E

k

E

(13)

kr(b

E;Æ

� F

ext

('

E

))k

T

� Æ

1=2

� h

1=2

E;T

�minfÆ � h

E;T

; h

min;T

g

�1

� k'

E

k

E

: (14)

Proof: Standard s
aling arguments for the transformation F

T;E;Æ

:

�

T ! T

E;Æ

readily imply

(13).

For (14) we start with the equivalen
e

krb

E

k

T

� h

�1

min;T

� jT j

1=2

whi
h has been proven (in a slightly di�erent form) in [13, Lemma 3.5℄ and [15, Lemma 5℄.

Above we have realized that the squeezed fa
e bubble fun
tion 
an also be viewed as

the standard fa
e bubble fun
tion on the squeezed tetrahedron. Thus one 
an utilize

the previous equivalen
e with the fun
tion b

E;Æ

on the tetrahedron T

E;Æ

. Together with

Lemma 1 and jT

E;Æ

j = Æ � jT j this results in

krb

E;Æ

k

T

� h

�1

min;T

E;Æ

� jT

E;Æ

j

1=2

(6)

� minfÆ � h

E;T

; h

min;T

g

�1

� Æ

1=2

� (h

E;T

jEj)

1=2

whi
h 
ompletes the proof.
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T

1;E;Æ

T

2;E;Æ

T

1

T

2

Figure 4: Top: !

E

and squeezed triangles T

i;E;Æ

(2D 
ase)

Middle: standard fa
e bubble fun
tion b

E

Bottom: squeezed fa
e bubble fun
tion b

E;Æ

3.3 Mat
hing fun
tion and residual error estimator

Parts of the analysis of the lo
al problem error estimator rely on results for the anisotropi


residual error estimator of [16℄ whi
h are thus repeated now for self{
ontainment. Note that

both estimators have been developed in 
lose 
ollaboration to enable 
ertain equivalen
e

properties (
f. Theorem 6 below). Related aspe
ts are dis
ussed here as well.

Ley us start with an important di�eren
e between error estimation on isotropi
 and

anisotropi
 meshes. For isotropi
 meshes the error bounds hold un
onditionally, whereas

this is no longer the 
ase for anisotropi
 meshes. For su
h meshes apparently all estimators

require the anisotropy of the mesh to be aligned with the anisotropy of the solution.

Heuristi
ally this means that anisotropi
 elements (e.g. tetrahedra) are stret
hed in that

dire
tion where the solution shows little variation.

In order to investigate this matter mathemati
ally, let us re
all the proposals from

known (analyti
ally based) anisotropi
 error estimators. Siebert [20℄ restri
ts the set of

treatable anisotropi
 fun
tions. Kunert [13, 14, 16℄ introdu
es a so{
alled mat
hing fun
-

tion m

1

(v; T

h

) that measures the alignment of an anisotropi
 fun
tion v and an anisotropi
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mesh T

h

. Lastly, in Dobrowolski/Gr�af/P
aum [11℄ a saturation assumption is ne
essary

that implies a similar 
orresponden
e.

For a rigorous analysis it is advantageous to measure the alignment of mesh and fun
-

tion. To this end the mat
hing fun
tion has been proposed by Kunert [13, 14℄:

De�nition 1 (Mat
hing fun
tion) Let v 2 H

1

(
), and T

h

2 F be a triangulation of


. De�ne the mat
hing fun
tion m

1

: H

1

(
)� F 7! R by

m

1

(v; T

h

) :=

�

X

T2T

h

h

�2

min;T

� kC

>

T

rvk

2

T

�

1=2

.

krvk : (15)

Note that the entries of the ve
tor C

>

T

rv � (p

>

1

rv;p

>

2

rv;p

>

3

rv)

>


an also be viewed as

s
aled dire
tional derivatives along the orthogonal dire
tions p

i

(re
all jp

i

j = h

i;T

).

To deepen the understanding of the mat
hing fun
tion let us brie
y dis
uss its behaviour

and in
uen
e. More details and a 
omprehensive dis
ussion 
an be found in [13, 14℄.

By de�ning temporarily h

max;T

:= h

1;T

, one obtains

1 � m

1

(v; T

h

) . max

T2T

h

h

max;T

h

min;T

:

Although this 
rude upper bound is useless for pra
ti
al purposes it implies m

1

� 1 on

isotropi
 meshes. Then m

1

merges with other 
onstants and be
omes invisible; in this sense

(15) is an extension of the theory for isotropi
 meshes. If an anisotropi
 mesh T

h

is well

aligned with an anisotropi
 fun
tion v then one also obtains m

1

(v; T

h

) � 1. If, however,

the anisotropi
 meshes are not aligned with the fun
tion then the mat
hing fun
tion 
an

be arbitrarily large, m

1

(v; T

h

)� 1.

The in
uen
e of the mat
hing fun
tion m

1


an be seen in the error bound (19) of

Lemma 4 and in the dis
ussion afterwards.

Next the residual error estimator will be presented. The methodology to obtain a lower

error bound requires a modi�
ation of f and g [22, 13℄. Hen
e we repla
e f by a fun
tion

f

h

whi
h is pie
ewise 
onstant over the elements. Analogously g is repla
ed by g

h

whi
h is

pie
ewise 
onstant over the Neumann fa
es. Then the de�nitions are as follows.

Element and fa
e residual: De�ne the element residual over an element T by

r

T

:= f

h

� (�"�u

h

+ u

h

) on T:

For x 2 E de�ne the fa
e residual r

E

by

r

E

(x) :=

8

>

>

>

<

>

>

>

:

" � lim

t!+0

�

�u

h

�n

E

(x + tn

E

)�

�u

h

�n

E

(x� tn

E

)

�

if E � 
 n �

g

h

� " � �u

h

=�n if E � �

N

0 if E � �

D

:
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Here n

E

? E is any of the two unitary normal ve
tors whereas n ? E � �

N

denotes the

outer unitary normal ve
tor.

Residual s
aling fa
tor: The residuals are often a

ompanied by the fa
tor

�

T

:= minf1; "

�1=2

� h

min;T

g : (16)

For some interior fa
e E = T

1

\ T

2

we de�ne the 
orresponding fa
e related term by

�

E

:= (�

T

1

+ �

T

2

)=2 : (17)

For boundary fa
es E set similarly �

E

:= �

T

for E � �T . Note that the mesh requirements

imply �

E

� �

T

1

� �

T

2

, 
f. also remark 1.

Lo
al residual error estimator: For a tetrahedron T , de�ne it by

�

";R;T

:=

�

�

2

T

� kr

T

k

2

T

+ "

�1=2

� �

T

�

X

E��Tn�

D

kr

E

k

2

E

�

1=2

: (18)

Lo
al approximation term: To shorten the notation, introdu
e

�

";T

:=

�

�

2

T

� kf � f

h

k

2

!

T

+ "

�1=2

� �

T

�

X

E��T\�

N

kg � g

h

k

2

E

�

1=2

:

Finally, de�ne the global terms

�

2

";R

:=

X

T2T

h

�

2

";R;T

and �

2

"

:=

X

T2T

h

�

2

";T

:

The following residual error estimation essentially has been proven by Kunert [16℄. Here

we have in
luded the treatment of Neumann boundary 
onditions.

Lemma 4 The error is bounded lo
ally from below for all T 2 T

h

by

�

";R;T

. jjju� u

h

jjj

!

T

+ �

";T

:

The error is bounded globally from above by

jjju� u

h

jjj . m

1

(u� u

h

; T

h

) �

�

�

2

";R

+ �

2

"

�

1=2

: (19)

Both error bounds are uniform in ".

We remark that only the upper error bound 
ontains the mat
hing fun
tion m

1

. Hen
e

only (19) is in
uen
ed by the degree of the alignment of mesh and fun
tion, i.e. the global

error estimator �

";R

is emphasized by the fa
tor m

1

(u� u

h

; T

h

). When m

1

� 1 the lower

and upper error bound possess the same quality. Obviously, the smaller m

1

the better the

upper error bound. In the 
ase of m

1

� 1 however both error bounds di�er by a large

fa
tor, thus rendering the error estimation useless.
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Remark 2 Note that the upper error bound of (19) 
an not be 
omputed exa
tly as it


ontains m

1

(u � u

h

; T

h

) and thus the (unknown) error u � u

h

. As a remedy m

1


an be

approximated, e.g. by means of a re
overed gradient r

R

u

h

� ru:

m

1

(u� u

h

; T

h

) �

�

X

T2T

h

h

�2

min;T

� kC

>

T

r(u� u

h

)k

2

T

�

1=2

.

kr(u� u

h

)k

�

�

X

T2T

h

h

�2

min;T

� kC

>

T

(r

R

u

h

�ru

h

)k

2

T

�

1=2

.

kr

R

u

h

�ru

h

k

=: m

R

1

(u

h

; T

h

) ; (20)


f. [14℄ for a more 
omprehensive dis
ussion. All numeri
al experiments so far indi
ate

that m

R

1

is a robust approximation to m

1

, see also the numeri
al experiments below.

4 Lo
al problem error estimators

4.1 De�nition of the error estimator �

";D

The main ideas behind lo
al problem error estimation have been known for a long time

[2, 6, 8, 21, 22℄. Basi
ally the problem is solved lo
ally but with higher a

ura
y, and the

di�eren
e between the new solution and the original �nite element solution serves as error

estimator.

In ea
h one of the aforementioned sour
es an isotropi
 mesh is assumed. In 
ontrast to

this the author has shown in [15℄ that reliable lo
al problem error estimation is possible

on anisotropi
 meshes as well. There a Poisson model problem has been investigated, the

methodology of the analysis has been presented, and some important new tools and results

have been developed.

In our work here we demonstrate that anisotropi
 lo
al problem error estimation is not

restri
ted to the Poisson problem but that it 
an be extended to the singularly perturbed

rea
tion{di�usion problem (1). We propose a new error estimator for the latter problem.

Note that the only other lo
al problem error estimator for a singularly perturbed rea
tion{

di�usion problem is due to [1℄ where an isotropi
 mesh is assumed, and where the lo
al

problem is in�nite dimensional.

While the general stru
ture of the proofs here is similar to the ones for the lo
al prob-

lem error estimator for the Poisson problem [15℄, the a
tual ingredients di�er. This mainly


on
erns the squeezed tetrahedron and its properties as well as the squeezed fa
e bubble

fun
tions whi
h play a vital role in almost all analysis. The de�nitions of the error esti-

mators �

";D;T

and �

";R;T

require a very 
areful balan
ing of all s
aling fa
tors (e.g. �

T

from

(16)) and of the `squeezing' parameter Æ

E

from (21). Consequently the proof of the vital

Lemma 5 is even more te
hni
al than in [15℄, see also Appendix A. The derivation of a

stable basis for the lo
al problem is di�erent from [15℄. Furthermore spe
ial 
are has to be

taken to obtain a feasible implementation of the estimator. Hen
e 
omputational aspe
ts

and diÆ
ulties are addressed.
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The remainder of this se
tion is devoted to the de�nition of the lo
al problem and the

error estimator. Then Lemma 5 gives two 
entral inequalities for the lo
al spa
e. Next,

Theorem 6 states the equivalen
e of the lo
al problem error estimator �

";D;T

and the residual

error estimator �

";R;T

. The main results, namely lower and upper bounds of the error, are

given in Theorem 7. In Theorem 8 it is shown that a 
ertain basis of the lo
al spa
e V

T

is stable (i.e. the lo
al Diri
hlet problem is well{
onditioned). Finally other 
hoi
es of

lo
al problem error estimators are feasible as well. This is demonstrated exemplarily in

Se
tion 4.4 for a fa
e based estimator.

When deriving the error estimator, the 
orresponding lo
al problem should be 
heap

to solve but simultaneously be ri
h enough to extra
t information on the error e := u�u

h

.

Here the subdomain of the lo
al problem is 
hosen to be !

T

. Let

H

1

o

(!

T

) := fv 2 H

1

(
) : supp v � !

T

; v = 0 on �!

T

n �

N

g :

For an arbitrary fun
tion v 2 H

1

o

(!

T

) the error then satis�es

a(u� u

h

; v) =

Z

!

T

f � v +

Z

�!

T

\�

N

g � v �

Z

!

T

"(ru

h

)

>

rv �

Z

!

T

u

h

v :

The lo
al problem is obtained by approximating the spa
e H

1

o

(!

T

) by some lo
al, �nite

dimensional spa
e V

T

� H

1

o

(!

T

) whi
h is spanned by an element bubble fun
tion and some

squeezed fa
e bubble fun
tions. Their `squeezing' parameters Æ

E

(
f. 12) are now spe
i�ed

to be

Æ

E

:= min

�

1;

h

min;E

h

E

;

p

"

h

E

�

: (21)

Note that Æ

E

�

p

"h

�1

E

�

E

. The lo
al spa
e V

T

now be
omes

V

T

:= spanfb

T

; b

E;Æ

E

: E � �T n �

D

g : (22)

Analogously to the residual error estimator one repla
es f and g by f

h

and g

h

, respe
-

tively.

De�nition 2 (Lo
al Diri
hlet problem error estimator)

Find a solution e

T

2 V

T

of the lo
al variational problem:

a(e

T

; v

T

) �

Z

!

T

"(re

T

)

>

rv

T

+ e

T

v

T

!

=

Z

!

T

f

h

� v

T

+

Z

�!

T

\�

N

g

h

� v

T

�

Z

!

T

"(ru

h

)

>

rv

T

�

Z

!

T

u

h

v

T

(23)

for all v

T

2 V

T

. The lo
al and global error estimators then be
ome

�

";D;T

:= jjje

T

jjj

!

T

and �

2

";D

:=

X

T2T

h

�

2

";D;T

: (24)
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Note that the parti
ular 
hoi
e of the lo
al ansatz spa
e V

T

(namely v

T

= 0 on �!

T

n �T )

redu
es 
ertain boundary integrals and norms. Equivalent formulations of the lo
al problem

are derived by partial integration.

Alternative 1: Find e

T

2 V

T

su
h that

a(e

T

; v

T

) =

X

T

0

2!

T

Z

T

0

r

T

0

� v

T

+

X

E��Tn�

D

Z

E

r

E

� v

T

8 v

T

2 V

T

: (25)

Alternative 2: Find e

T

2 V

T

su
h that

a(e

T

; v

T

) = a(u� u

h

; v

T

)�

Z

!

T

(f � f

h

) v

T

�

Z

�T\�

N

(g � g

h

) v

T

8 v

T

2 V

T

: (26)

4.2 Equivalen
e and bounds of the lo
al problem estimator

The methodology of the error estimator partly utilizes ideas that have already been intro-

du
ed for the anisotropi
 lo
al problem estimator for the Poisson problem [15℄, and for the

anisotropi
 residual estimator for a singularly perturbed rea
tion{di�usion equation [16℄.

All the details however are original and new. The �rst lemma plays a 
entral role in the

analysis of the estimator.

Lemma 5 The following relations below hold for all v

T

2 V

T

.

kv

T

k

!

T

. h

min;T

� krv

T

k

!

T

(27)

kv

T

k

E

. h

�1=2

E

Æ

�1=2

E

�minfh

min;T

; Æ

E

h

E

g � krv

T

k

!

T

8E � �T ; (28)

with Æ

E

from (21). The inequalities are uniform in Æ

E

.

If T has at least two Neumann boundary fa
es then the 
onstants 
an depend on the

angles of the 
orners and edges of 
 (but do not depend on the triangulation T

h

nor on T ).

Proof: The te
hni
al proof is postponed to the appendix.

Theorem 6 (Equivalen
e with residual error estimator) The lo
al problem error

estimator �

";D;T

is equivalent to the residual error estimator �

";R;T

in the following sense:

�

2

";D;T

.

X

T

0

�!

T

�

2

";R;T

0

(29)

�

2

";R;T

.

X

T

0

�!

T

�

2

";D;T

0

: (30)

Both inequalities are uniform in ".

If T has at least two Neumann boundary fa
es then the 
onstant in (29) 
an depend on

the angles of the 
orners and edges of 
 (but do not depend on the triangulation T

h

nor

on T ).
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Proof: Re
all the de�nition (24) of �

";D;T

, observe that e

T

= 0 on �!

T

n �T , and take into

a

ount the modi�
ations for boundary fa
es. By integration by parts one obtains

�

2

";D;T

= jjje

T

jjj

2

!

T

= a(e

T

; e

T

)

(25)

=

X

T

0

2!

T

Z

T

0

r

T

0

� e

T

+

X

E��Tn�

D

Z

E

r

E

� e

T

�

 

X

T

0

�!

T

kr

T

0

k

2

T

0

!

1=2

� ke

T

k

!

T

+

X

E��Tn�

D

kr

E

k

E

� ke

T

k

E

:

Now ke

T

k

!

T

and ke

T

k

E

; E � �T , are to be bounded. Re
all the de�nition of �

T

and Æ

E

and apply Lemma 5 to obtain

ke

T

k

!

T

� jjje

T

jjj

!

T

ke

T

k

!

T

(27)

. h

min;T

� kre

T

k

!

T

� h

min;T

� "

�1=2

jjje

T

jjj

!

T

) ke

T

k

!

T

. minf1; "

�1=2

� h

min;T

g � jjje

T

jjj

!

T

� �

T

� jjje

T

jjj

!

T

(31)

and ke

T

k

E

(28)

. h

�1=2

E

Æ

�1=2

E

�minfh

min;T

; Æ

E

h

E

g � kre

T

k

!

T

� "

1=4

�

1=2

E

kre

T

k

!

T

. "

�1=4

�

1=2

T

jjje

T

jjj

!

T

: (32)

Inserting these inequalities and utilizing �

T

� �

T

0

for neighboring tetrahedra results in

�

2

";D;T

.

�

X

T

0

�!

T

�

2

T

0

� kr

T

0

k

2

T

0

+ "

�1=2

�

T

�

X

E��Tn�

D

kr

E

k

E

�

1=2

� jjje

T

jjj

!

T

whi
h, together with jjje

T

jjj

!

T

= �

";D;T

, proves (29).

For the proof of (30) we require bounds of �

";R;T

, and thus of kr

T

k

T

and kr

E

k

E

. The

stru
ture of the proof is similar to our analysis for the Poisson equation [15℄.

We �rst bound the term kr

T

0

k

T

0

, with T

0

� !

T

being an arbitrary tetrahedron. Re
all

de�nition (7) of the bubble fun
tion b

T

0

and set v

T

0

:= b

T

0

� r

T

0

. Then b

T

0

and v

T

0

belong

to the �nite element spa
e V

T

0

. Hen
e the lo
al problem related to T

0

has to be invoked.

The lo
al problem (25) and equivalen
e (9) imply

kr

T

0

k

2

T

0

(9)

� kb

1=2

T

0

� r

T

0

k

2

T

0

=

Z

T

0

r

T

0

� v

T

0

sin
e v

T

0

2 H

1

o

(T

0

)

(25)

= a(e

T

0

; v

T

0

) � jjje

T

0

jjj

T

0

� jjjv

T

0

jjj

T

0

;

where e

T

0

2 V

T

0

denotes the solution of the lo
al problem over !

T

0

. Inequality (10) results

in

jjjv

T

0

jjj

2

T

0

= " kr(b

T

0

� r

T

0

)k

2

T

0

+ kb

T

0

� r

T

0

k

2

T

0

(10)

� " h

�2

min;T

0

� kr

T

0

k

2

T

0

+ kr

T

0

k

2

T

0

� �

�2

T

0

kr

T

0

k

2

T

0

:
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Combining both inequalities yields

kr

T

0

k

T

0

. �

�1

T

� jjje

T

0

jjj

T

0

� �

�1

T

� �

";D;T

0

8T

0

2 !

T

(33)

sin
e �

T

0

does not 
hange rapidly a
ross adja
ent tetrahedra T

0

.

The norm of r

E

2 P

0

(E) for an interior fa
e E � �T n � is bounded similarly. Re
all

the de�nition (12) of the squeezed fa
e bubble fun
tion b

E;Æ

, and set v

E

:= b

E;Æ

�F

ext

(r

E

) 2

V

T

\H

1

o

(!

E

). Integration by parts and v

E

= 0 on �T \ � imply

kr

E

k

2

E

(11)

� kb

1=2

E

� r

E

k

2

E

=

Z

E

r

E

� v

E

(25)

= a(e

T

; v

E

) �

X

T

0

�!

E

Z

T

0

r

T

0

v

E

� jjje

T

jjj

!

E

� jjjv

E

jjj

!

E

+

X

T

0

�!

E

kr

T

0

k

T

0

� kv

E

k

T

0

:

Now the norms of v

E

are bounded by means of inverse inequalities, and by using the spe
i�


value of Æ

E

from (21). This leads to

kv

E

k

T

0

= kb

E;Æ

� F

ext

(r

E

)k

T

0

(13)

. Æ

1=2

E

� h

1=2

E;T

0

� kr

E

k

E

(21)

� "

1=4

�

1=2

T

� kr

E

k

E

krv

E

k

T

0

= kr(b

E;Æ

� F

ext

(r

E

))k

T

0

(14)

. Æ

1=2

E

� h

1=2

E;T

0

�minfÆ

E

� h

E;T

0

; h

min;T

0

g

�1

� kr

E

k

E

(21)

� "

�1=4

�

�1=2

T

� kr

E

k

E

) jjjv

E

jjj

!

E

= ("kr(v

E

)k

2

!

E

+ kv

E

k

2

!

E

)

1=2

� "

1=4

�

�1=2

T

� kr

E

k

E

:

Next one utilizes the previous bound (33) of kr

T

0

k

T

0

for both tetrahedra T

0

� !

E

. Com-

bining all estimates yields

kr

E

k

E

. "

1=4

�

�1=2

T

�

X

T

0

�!

E

�

";D;T

0

8E � �T n � : (34)

The norm of r

E

2 P

0

(E) for a Neumann boundary fa
e E � �T \ �

N

is bounded

similarly (
f. [15℄) and gives analogously

kr

E

k

E

. "

1=4

�

�1=2

T

� �

";D;T

8E � �T \ �

N

:

Colle
ting all the results for kr

T

k

T

and kr

E

k

E

and inserting them into the de�nition of

�

";R;T

gives (30).

With the help of Theorem 6 we easily derive the main result, namely upper and lower

error bounds by means of the lo
al problem error estimator.
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Theorem 7 (Lo
al problem error estimation)

The error is bounded lo
ally from below by

�

";D;T

� jjju� u

h

jjj

!

T

+ 
 � �

";T

8T 2 T

h

: (35)

The error is bounded globally from above by

jjju� u

h

jjj . m

1

(u� u

h

; T

h

) �

h

�

2

";D

+ �

2

"

i

1=2

: (36)

Both inequalities are uniform in ".

If T has at least two Neumann boundary fa
es then the 
onstant in (35) 
an depend on

the angles of the 
orners and edges of 
 (but do not depend on the triangulation T

h

nor on

T ).

Note that in analogy to Lemma 4 only the upper error bound is in
uen
ed by the mat
hing

fun
tion m

1

(u� u

h

; T

h

).

Proof: For (35), apply formulation (26) of the lo
al problem, re
all how !

T

and V

T

are

modi�ed if T has a boundary fa
e, and observe in parti
ular that e

T

= 0 on �!

T

n �T .

Then one obtains

�

2

";D;T

= jjje

T

jjj

2

!

T

= a(e

T

; e

T

)

(26)

= a(u� u

h

; e

T

)�

Z

!

T

(f � f

h

) � e

T

�

Z

�

N

\�T

(g � g

h

) � e

T

� jjju� u

h

jjj

!

T

� jjje

T

jjj

!

T

+ kf � f

h

k

!

T

� ke

T

k

!

T

+ kg � g

h

k

�

N

\�T

� ke

T

k

�

N

\�T

:

With the previous bounds (31) and (32) one readily obtains the desired estimate (35).

Finally inequality (36) follows immediately from the error bound (19) of the residual error

estimator, and from relation (30) between �

";R;T

and �

";D;T

.

4.3 A stable basis for the lo
al problem

Here we will present a stable basis for the lo
al problem under 
onsideration. An equiv-

alent des
ription of this aim is that the variational problem is well-
onditioned, i.e. the


ondition number of the 
orresponding �nite element matrix is bounded independently of

the perturbation parameter " and of aspe
t ratio of the elements.

Re
all that the lo
al ansatz spa
e is V

T

:= spanfb

T

; b

E;Æ

E

: E � �T n �

D

g . As a basis

of V

T

we 
hoose

� := (b

T

; Æ

�1=2

E

� b

E;Æ

: E � �T n �

D

) : (37)

For simpli
ity of notation enumerate the fa
es of T su
h that interior and Neumann fa
es


ome �rst, and denote them by E

i

, i = 1; : : : ; m, m � 4. Denote the parameter of the
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squeezed fa
e bubble fun
tions temporarily by Æ

i

:= Æ

E

i

. Hen
e any fun
tion v

T

2 V

T


an

be expressed as

v

T

= �

0

b

T

+

m

X

i=1

�

i

� Æ

�1=2

i

� b

E

i

;Æ

i

= � � v

with v := (�

0

; �

1

: : : �

m

)

>

:

The sti�ness matrix K

T

2 R

(1+m)�(1+m)

of the lo
al problem is given by means of the �nite

element isomorphism a(v

T

; w

T

) = (K

T

v;w) for all w

T

= � �w 2 V

T

.

Theorem 8 (Stable basis) The basis (37) of V

T

is stable, i.e. the 
ondition number

�(K

T

) of the lo
al problem sti�ness matrix K

T

is bounded uniformly in " and T :

�(K

T

) � 1 8T 2 T

h

:

Proof: The 
ondition number is given by

�(K

T

) =

h

max

v 6=0

(K

T

v;v)=(v;v)

i.h

min

w 6=0

(K

T

w;w)=(w;w)

i

:

Thus investigate the s
alar produ
t (K

T

v;v) whi
h equals

(K

T

v;v) = a(v

T

; v

T

) = jjjv

T

jjj

2

!

T

= "krv

T

k

2

!

T

+ kv

T

k

2

!

T

:

We start by bounding jjjv

T

jjj

!

T

from above. The triangle inequality readily implies

jjjv

T

jjj

!

T

� j�

0

j � jjjb

T

jjj

!

T

+

m

X

i=1

j�

i

j � Æ

�1=2

i

jjjb

E

i

;Æ

i

jjj

!

T

:

Using inverse inequalities (8) and (10) one derives

jjjb

T

jjj

2

!

T

= "krb

T

k

2

T

+ kb

T

k

2

T

. "h

�2

min;T

jT j+ jT j

(16)

� �

�2

T

� jT j :

The se
ond inverse equivalen
es (13) and (14) and the parti
ular 
hoi
e of Æ

i

� Æ

E

i

from

(21) yield

jjjb

E

i

;Æ

i

jjj

2

!

T

= "krb

E

i

;Æ

i

k

2

!

E

+ kb

E

i

;Æ

i

k

2

!

E

� Æ

i

� jT j �

�

"minfÆ

i

� h

E;T

; h

min;T

g

�2

+ 1

�

(21)

� Æ

i

� jT j � (1 + �

�2

T

) � Æ

i

� jT j � �

�2

T

:

Altogether one obtains

jjjv

T

jjj

!

T

. j�

0

j � �

�1

T

jT j

1=2

+

m

X

i=1

j�

i

j � �

�1

T

jT j

1=2

� �

�1

T

jT j

1=2

� kvk

R

1+m

:
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To bound jjjv

T

jjj

!

T

from below, apply Lemma 5 giving

krv

T

k

!

T

(27)

& h

�1

min;T

� kv

T

k

!

T

and jjjv

T

jjj

2

!

T

& (" h

�2

min;T

+ 1) � kv

T

k

2

!

T

� �

�2

T

� kv

T

k

2

!

T

:

In the proof of Lemma 5 in Appendix A it is shown that

kv

T

k

2

!

T

(40)

� jT j �

m

X

i=0

�

2

i

� jT j � kvk

2

R

1+m

whi
h 
ompletes the lower bound of jjjv

T

jjj

!

T

.

Summarizing all results, one ends up with

(K

T

v;v) = jjjv

T

jjj

2

!

T

� �

�2

T

jT j � kvk

2

R

1+m

whi
h immediately yields �

min

(K

T

) � �

max

(K

T

) � �

�2

T

jT j and the desired assertion

�(K

T

) � 1.

4.4 A further, fa
e based lo
al problem error estimator

With the methodology presented so far one 
an derive further lo
al problem error estima-

tors. This will be demonstrated here for a fa
e based lo
al problem error estimator. Su
h

an estimator 
an be advantageous when other ingredients of an adaptive algorithm are fa
e

based too (e.g. the re�nement pro
edure).

We start again with a 
orresponding residual error estimator. For an arbitrary but

�xed fa
e E de�ne the fa
e based residual error estimator and the approximation term by

�

";R;E

:=

�

�

2

E

�

X

T�!

E

kr

T

k

2

T

+ "

�1=2

�

E

� kr

E

k

2

E

�

1=2

(38)

�

";E

:= �

E

� kf � f

h

k

!

E

+ "

�1=4

�

1=2

E

� kg � g

h

k

E\�

N

; (39)

respe
tively (the norm k � k

E\�

N

here is to be evaluated only when E � �

N

).

Utilizing the te
hniques and most of the results of [16℄ one 
an 
omparatively easily

prove the following residual error estimation.

Lemma 9 The error is bounded lo
ally from below for all fa
es E of T

h

by

�

";R;E

. jjju� u

h

jjj

!

E

+ �

";E

:

The error is bounded globally from above by

jjju� u

h

jjj . m

1

(u� u

h

; T

h

) �

 

X

E2T

h

�

2

";R;E

+ �

2

";E

!

1=2

;

where the sum over E 2 T

h

in
ludes interior and boundary fa
es of the triangulation. Both

error bounds are uniform in ".
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Note that the residual error estimator 
an be modi�ed su
h that it 
ontains only the fa
e

residual but not the element residuals. Then a very similar result is a
hieved, 
f. [17℄. Sin
e

this modi�
ation is not suitable for our subsequent analysis, we omit a detailed des
ription.

The lo
al spa
e asso
iated to a fa
e E is now set to

V

E

:= spanfb

E;Æ

E

if E 6� �

D

; b

T

8T � !

E

g ;

i.e. V

E

is three dimensional for interior fa
es E. The lo
al problem is: Find e

E

2 V

E

su
h

that

a(e

E

; v

E

)

!

=

Z

!

E

f

h

� v

E

+

Z

E\�

N

g

h

� v

E

�

Z

!

E

"(ru

h

)

>

rv

E

�

Z

!

E

u

h

v

E

for all v

E

2 V

E

. The lo
al fa
e error estimator then be
omes

�

";D;E

:= jjje

E

jjj

!

E

:

Again two alternative, equivalent des
riptions of the lo
al problem are possible and advan-

tageous. Find e

E

2 V

E

su
h that

Alternative 1: a(e

E

; v

E

) =

X

T2!

E

Z

T

r

T

� v

E

+

Z

E

r

E

� v

E

Alternative 2: a(e

E

; v

E

) = a(u� u

h

; v

E

)�

Z

!

E

(f � f

h

) v

E

�

Z

E\�

N

(g � g

h

) v

E

holds for all v

E

2 V

E

.

Using the te
hniques and even some results of the previous analysis of the element

based lo
al problem error estimator the following theorem 
an be shown. Be
ause of the

similarities of the proofs we only state the result.

Theorem 10 (Fa
e based lo
al problem error estimator)

The fa
e based residual error estimator and lo
al problem error estimator are equivalent:

�

";D;E

� �

";R;E

8E 2 T

h

:

The error is bounded lo
ally from below for all fa
es E of T

h

by

�

";D;E

� jjju� u

h

jjj

!

E

+ 
 � �

";E

:

The error is bounded globally from above by

jjju� u

h

jjj . m

1

(u� u

h

; T

h

) �

 

X

E2T

h

�

2

";D;E

+ �

2

";E

!

1=2

:

All relations are uniform in ".
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5 Computational implementation

5.1 DiÆ
ulties and their solution

It is a major demand that the lo
al problem 
an be 
onstru
ted and solved as fast as

possible sin
e usually the error estimation is as expensive as the assembly of the global

�nite element sti�ness matrix and the solution pro
ess for u

h

. Therefore one en
ounters

two main problems when applying our error estimator. Both diÆ
ulties are related to the


omputation of the lo
al sti�ness matrix K

T

whi
h arises from the bilinear form a(�; �), see

also Se
tion 4.3.

Problem 1: The support of the squeezed fa
e bubble fun
tion b

E;Æ

is not !

E

but some

(Æ{dependent) part of it. For example the 
omputation of a(b

E;Æ

; �) implies a 
omparatively


ompli
ated domain of integration. In parti
ular when evaluating a(b

E

1

;Æ

E

1

; b

E

2

;Æ

E

2

) for two

di�erent squeezed fa
e bubble fun
tions, the domain of integration be
omes

supp(b

E

1

;Æ

E

1

) \ supp(b

E

2

;Æ

E

2

)

whi
h might be empty, or a single tetrahedron, or the union of two tetrahedra, depending

on Æ

E

1

and Æ

E

2

(
f. also Figures 3 and 4). Even to determine and des
ribe the domain of

integration is not trivial, save the a
tual integration.

Remedy: We modify the parameter for the squeezed fa
e bubble fun
tion to be

~

Æ

E

:= min

�

1

4

;

h

min;E

h

E

;

p

"

h

E

�

� min

�

1

4

; Æ

E

�

� Æ

E

:

Then all results remain valid, only the inequality 
onstants may be slightly worse (but they

are still uniform in "). The main advantage now is that

supp(b

E

1

;

~

Æ

E

1

) \ supp(b

E

2

;

~

Æ

E

2

) = ; :

Hen
e the 
omputation of the modi�ed lo
al matrix

~

K

T

is less expensive, as the matrix

now 
ontains several zero entries. Even more, the sparsity pattern

~

K

T

=

~

K

>

T

=

2

4

� � � � �

� � 0 0 0

� 0 � 0 0

� 0 0 � 0

� 0 0 0 �

3

5

allows a parti
ularly fast and simple solution of the lo
al problem.

Problem 2: The basis fun
tions of V

T

are polynomials of a relatively high degree.

Hen
e numeri
al integration rules to 
ompute a(�; �) are far too expensive and thus unsuit-

able.
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Remedy: Instead we propose a dire
t 
omputation of the integrals involved. The

pro
edure is explained exemplarily for a(b

T

; b

T

). Using the transformation te
hnique via

F

A

:

�

T ! T , one obtains

a(b

T

; b

T

) = "

Z

T

(rb

T

)

>

� rb

T

+

Z

T

b

2

T

= 6jT j "

Z

�

T

(

�

rb

�

T

)

>

� A

�1

T

A

�>

T

�

�

rb

�

T

+ 6jT j

Z

�

T

b

2

�

T

:

with b

�

T

being the element bubble fun
tion for the standard tetrahedron

�

T . A straight{

forward 
omputation yields

Z

�

T

b

2

�

T

=

4096

155 925

:

In order to obtain the remaining integral, de�ne the matri
es

M := (m

ij

)

3

i;j=1

= A

�1

T

A

�>

T

and N := (n

ij

)

3

i;j=1

=

Z

�

T

�

rb

�

T

� (

�

rb

�

T

)

>

; i.e. n

ij

=

Z

�

T

�

�

�x

1

b

�

T

�

�

�

�x

i

b

�

T

and observe that

Z

�

T

(

�

rb

�

T

)

>

� A

�1

T

A

�>

T

�

�

rb

�

T

= N :M =

3

X

i;j=1

n

ij

�m

ij

:

The matri
es A

T

andM are determined by the geometry of T whereas N 
an be 
omputed

dire
tly giving

N =

2048

2835

�

"

2 1 1

1 2 1

1 1 2

#

:

Hen
e one only has to determine A

T

and jT j and perform the aforementioned operations

to obtain a(b

T

; b

T

).

The remaining values a(�; �) are 
omputed similarly, thus a brief des
ription of the result

should suÆ
e.

a(b

T

; b

E;Æ

): Use an aÆne linear transformation F

~

A

:

�

T ! T su
h that

�

E = F

�1

~

A

(E) lies

in the �x

1

�x

2

plane. The parameter Æ 2 (0; 1℄ of the squeezed fa
e bubble fun
tion 
an be

arbitrary here. Then

Z

�

T

b

�

T

� b

�

E;Æ

=

4

4725

Æ

2

(�2Æ

3

+ 15Æ

2

� 42Æ + 47)

Z

�

T

�

rb

�

T

� (

�

rb

�

E;Æ

)

>

=

"

2
 
 



 2
 



 
 d

#

with 
 := �

4

35

Æ

2

(Æ � 4) and d :=

8

105

(Æ � 1)(Æ

2

� 7Æ + 18) :
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a(b

E;Æ

; b

E;Æ

): Utilize the same transformation F

~

A

as before whi
h implies for arbitrary

Æ 2 (0; 1℄

Z

�

T

b

2

�

E;Æ

=

9

560

Æ

Z

�

T

�

rb

�

E;Æ

� (

�

rb

�

E;Æ

)

>

=

"

2
 
 



 2
 



 
 d

#

with 
 :=

81

280

Æ and d :=

27

140

(Æ + 2=Æ) :

a(b

E

1

;Æ

1

; b

E

2

;Æ

2

): Sin
e we propose to use Æ

i

:=

~

Æ

E

i

� 1=4, the supports of both squeezed

fa
e bubble fun
tions are distin
t, thus a(b

E

1

;Æ

1

; b

E

2

;Æ

2

) = 0.

Colle
ting all the previous results, the lo
al sti�ness matrix K

T


an now be assembled.

The right{hand side is 
omputed similarly (a
tually, the pro
edure is even simpler sin
e

the integrals do not involve derivatives). In the next paragraphs we show that this dire
t


omputation of the lo
al problem is indeed mu
h 
heaper than the numeri
al integration

rules.

5.2 Computational e�ort

The 
omparison will not investigate every detail and every possible optimization, as the

di�eren
e between both approa
hes will turn out to be overwhelming. Even more, a pre
ise

operation 
ount would be 
omputer dependent. For example present pro
essors may be

able to 
ombine one multipli
ation and one addition to a single operation.

Computational e�ort for dire
t 
omputation

The suggested approa
h utilizes four di�erent transformations F

~

A

on the element T and four

transformations on ea
h neighbouring tetrahedron (i.e. to 
ompute b

E;Æ

on this neighbour).

Hen
e jdet

~

Aj has to be 
omputed �ve times, and

~

A

�1

and

~

A

�1

�

~

A

�>

are to be 
omputed

eight times. The operation 
ount is roughly

Operation Operation 
ount Total

det

~

A 5� ( 9* 5+) = ( 45* 25+)

~

A

�1

8� (19* 9+) = (152* 72+)

~

A

�1

�

~

A

�>

(symmetri
) 8� (18* 12+) = (144* 96+)

� :

(341* 193+)

where 5 � (9* 5+) stands for 9 multipli
ations and 5 additions whi
h are performed �ve

times.
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Next, the values of

R

�

T

b

2

�

T

,

R

�

T

�

rb

�

T

� (

�

rb

�

T

)

>

et
 are determined. Some of these values

(whi
h 
ontain b

E;Æ

) depend on Æ. The 
omputational e�ort is roughly

R

�

T

b

2

�

T

( 0* 0+)

R

�

T

b

�

T

� b

�

E;Æ

4� (8* 3+) = (32* 12+)

R

�

T

b

2

�

E;Æ

4� (1* 0+) = ( 4* 0+)

R

�

T

�

rb

�

T

� (

�

rb

�

T

)

>

( 0* 0+)

R

�

T

�

rb

�

T

� (

�

rb

�

E;Æ

)

>

4� (6* 4+) = (24* 16+)

R

�

T

�

rb

�

E;Æ

� (

�

rb

�

E;Æ

)

>

4� (1* 1+) = (16* 4+)

� :

(76* 32+)

Subsequently N : M is to be determined, with N , M being symmetri
 matri
es. The


omputational e�ort is approximately (7* 5+) whi
h has to be repeated 9 times (i.e. on
e

for ea
h matrix entry of K

T

). The �nal value of a(�; �) is obtained by adding both sub{

integrals and multiplying it by jdet

~

Aj. This adds 9� (1* 1+).

Summarizing all results, the total e�ort required to assemble the lo
al sti�ness matrix

is approximately

(341* 193+) + (76* 32+) + (63* 45+) + (9* 9+) = (489 � 279+) :

Computational e�ort for numeri
al integration

Here we will exemplarily investigate a(b

T

; b

T

) =

R

T

b

2

T

+ "

R

T

(rb

T

)

2

. Computation by

means of numeri
al integration is based on

Z

T

b

2

T

= 6jT j

Z

�

T

b

2

�

T

� 6jT j �

X

i

!

i

� b

2

�

T

(�x

i

)

Z

T

(rb

T

)

2

= 6jT j

Z

�

T

(

�

rb

�

T

)

>

� A

�1

T

A

�>

T

�

�

rb

�

T

� 6jT j �

X

i

!

i

�

�

(

�

rb

�

T

)

>

� A

�1

T

A

�>

T

�

�

rb

�

T

�

(�x

i

)

where (!

i

; �x

i

)

i

denotes some numeri
al integration rule for the standard tetrahedron

�

T

with weights !

i

and evaluation points �x

i

. Exa
tly as for the dire
t 
omputation above,

one requires the matri
es A

T

and A

�1

T

(
omputational e�ort is (19* 9+)) as well as

6jT j = jdetA

T

j (whi
h leads to (9* 5+)).

Consider

R

�

Tb

2

�

T

next. Sin
e b

�

T

2 P

4

(

�

T ) one requires an integration rule whi
h is exa
t

for P

8

(

�

T ). The simplest rule that we know of involves 43 evaluation points [9℄. The

evaluation of

!

i

� b

2

�

T

(�x

i

) = !

i

� (256 � �

1

�

2

�

3

�

4

)

2

(�x

i

)

at a single point �x

i

requires (6* 3+). Hen
e the total amount for

R

T

b

2

T

is about 43 �

(6* 4+) = (258* 172+). Similarly

R

T

(rb

T

)

2

is investigated where an integration rule
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with 24 evaluation points suÆ
es [12℄. After some 
onsideration one ends up with an e�ort

of roughly (480* 384+). Thus the total e�ort to 
ompute a(b

T

; b

T

) amounts approximately

to (750* 550+). We expe
t the other eight s
alar produ
ts a(�; �) to be 
heaper be
ause

of the smaller polynomial degree. Then, however, the 
omputational domain involves T

E;Æ

whi
h requires more 
onsiderations. Altogether the e�ort to 
ompute the whole matrix of

the lo
al problem is likely to be of order

(O(5000) � O(4000)+) .

Even without a pre
ise 
al
ulation of the 
omputational e�ort for the numeri
al inte-

gration it is absolutely 
lear that this approa
h is far too expensive. Equivalently, if the


omputational e�ort should be of the same size (O(500) � O(300)+) as for the dire
t 
om-

putation then only one tenth of the required evaluation points 
an be used. This would

render the integrals and, subsequently, the matrix to be very ina

urate and thus useless.

Hen
e dire
t 
omputation of the lo
al problem is a must.

Furthermore we note that our pro
edure for the dire
t 
omputation is very similar to

the 
omputation of the lo
al problem for the Poisson equation, 
f. [15℄. The 
omputational

e�ort is roughly the same, i.e. the singularly perturbed 
hara
ter of our di�erential equation

here is no disadvantage.

6 Numeri
al experiments

Here we investigate the performan
e of the lo
al problem error estimator �

";D;T

of (24)

by means of numeri
al experiments. We utilize a model problem whi
h has already been

applied in [16℄ to analyse the element based residual error estimator �

";R;T

, and whi
h has

been employed in [17℄ to investigate a fa
e based residual error estimator. Thus even the

interesting 
omparison between di�erent types of error estimators is possible.

Let us 
onsider the 3D model problem

�"�u+ u = 0 in 
 := (0; 1)

3

; u = u

0

on �

D

:= �


where the perturbation parameter is set to " = 10

�4

. Pres
ribe the exa
t solution

u = e

�x=

p

"

+ e

�y=

p

"

+ e

�z=

p

"

:

whi
h displays typi
al boundary layers along the planes x = 0, y = 0, and z = 0. The

Diri
hlet boundary data u

0

are 
hosen a

ordingly.

We apply the �nite element method with a sequen
e of meshes, ea
h of whi
h is the

tensor produ
t of three one{dimensional Bakhvalov{like meshes [7℄ with 2

k

intervals in [0,1℄,

k = 1 : : : 6. To des
ribe the 1D nodal distribution properly, denote the transition point of

the boundary layer by � :=

p

"j ln

p

"j. Then 2

k�1

nodes are exponentially distributed in

the boundary layer interval [0; � ℄ whereas the remaining interval [�; 1℄ is divided into 2

k�1

equidistant intervals, 
f. Figure 5. More pre
isely, the (1D) nodal 
oordinate of the m-th
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node is

x

m

:=

8

>

<

>

:

��

p

" ln

h

1�

m

2

k�1

(1� e

��=�=

p

"

)

i

for m = 0 : : : 2

k�1

; � = 3=2

� + (1� �) �

�

m

2

k�1

� 1

�

for m = 2

k�1

+ 1 : : : 2

k

:

Note that the original (1D) Bakhvalov mesh utilizes a slightly di�erent transition point � .

Furthermore we do not know whether these tensor produ
t type meshes are optimal (whi
h,

of 
ourse, also depends on the optimality 
riterion).

Figure 5: Mesh 2 { Mesh 3

The �rst table below presents some information about the meshes and their maximum

aspe
t ratio. The last two 
olumns give the exa
t value of the mat
hing fun
tion m

1

(u�

u

h

; T

h

) as well as its approximation m

R

1

(u

h

; T

h

) from (20).

Mesh k # Elements Aspe
t ratio m

1

(u� u

h

; T

h

) m

R

1

(u

h

; T

h

)

1 48 29.4 1.55 1.68

2 384 69.5 1.62 1.52

3 3 072 82.6 1.69 1.69

4 24 576 88.6 1.88 1.86

5 196 608 91.5 2.37 2.03

6 1 572 864 92.9 3.04 2.29

Sin
e the size of m

1

is 
omparatively small and grows only mildly, the 
hosen meshes

dis
retize the problem suÆ
iently well. Additionally the approximationm

R

1

is satisfa
torily


lose to the exa
t value. Hen
e the mat
hing fun
tion and its approximation are useful

tools for the theoreti
al analysis as well as for assessing the mesh quality in numeri
al


omputations. This topi
 has already been dis
ussed for the Poisson equation in [14℄.

Next our main analyti
al results are to be 
on�rmed numeri
ally, namely the error

bounds of Theorem 7. Therefore we present the ratios of left{hand side and right{hand
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side of (36) and (35), respe
tively, in the table below. Note that the approximation terms

�

";T

and �

"

vanish here.

Mesh k jjju� u

h

jjj

jjju� u

h

jjj

m

1

� �

";D

max

T2T

h

�

";D;T

jjju� u

h

jjj

!

T

1 0:154E + 0 1:102 0:411

2 0:536E � 1 0:810 0:568

3 0:229E � 1 0:705 0:611

4 0:110E � 1 0:605 0:607

5 0:553E � 2 0:474 0:597

6 0:282E � 2 0:371 0:582

Start with the se
ond 
olumn whi
h yields a 
onvergen
e rate of the error jjju� u

h

jjj of

approximately N

�0:324

, with N being the number of elements. This is almost the optimal

rate of N

�1=3

whi
h indi
ates that the meshes under 
onsideration dis
retize the singular

problem well. Next, the ratios of the third and fourth 
olumn are related to the upper and

lower error bound, respe
tively. These ratios are bounded from above and thus 
on�rm

the predi
tions of Theorem 7. Note that from a pra
ti
al point of view the moderately de-


reasing values of the upper error bound (third 
olumn) imply that the error is in
reasingly

overestimated.

In the last table we examine the equivalen
e of the lo
al problem error estimator and the

residual error estimator, as des
ribed in Theorem 6. Again we 
ompute the ratios related

to (29) and (30). Sin
e all values are bounded from above, this impressively underpins our

analyti
al results.

Mesh k max

T2T

h

�

";D;T

�

P

T

0

�!

T

�

2

";R;T

0

�

1=2

max

T2T

h

�

";R;T

�

P

T

0

�!

T

�

2

";D;T

0

�

1=2

1 0:266 1:102

2 0:280 4:977

3 0:338 4:889

4 0:293 4:819

5 0:203 4:731

6 0:178 4:743

Sin
e the same numeri
al example has been 
onsidered for the residual error estimator of

[16℄ we 
an easily 
ompare both estimator. Qualitatively both estimators behave similarly

whereas from a quantitative viewpoint one observes roughly �

";R

� 4 � �

";D

. Furthermore

the residual error estimator �

";R

overestimates the true error more than the lo
al problem

error estimator �

";D

does. This indeed 
an be expe
ted sin
e the derivation of �

";R

requires

more intermediate steps (su
h as interpolation estimates and Cau
hy S
hwarz inequalities).
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7 Summary

We have 
onsidered a singularly perturbed rea
tion{di�usion problem and proposed a new

error estimator that 
an be applied to anisotropi
 �nite element meshes. The rigorous

analysis 
on�rms that the error estimation is uniform in the small perturbation parame-

ter. Furthermore tight error bounds are obtained provided the anisotropi
 mesh is 
hosen

a

ording to the anisotropy of the solution. Thus reliable and eÆ
ient error estimation is

possible on anisotropi
 meshes.

Then a stable basis of the lo
al problem has been derived and an additional, fa
e ori-

ented lo
al problem error estimator has been proposed. Finally implementational aspe
ts

have been dis
ussed and analysed. A numeri
al experiment 
omplements the theory.

A Proof of Lemma 5

First we state Lemma 5 again.

Lemma 5 The following relations below hold for all v 2 V

T

.

kvk

!

T

. h

min;T

� krvk

!

T

(27)

kvk

E

. h

�1=2

E

Æ

�1=2

E

�minfh

min;T

; Æ

E

h

E

g � krvk

!

T

8E � �T ; (28)

with Æ

E

from (21).

If T has at least two Neumann boundary fa
es then the 
onstants 
an depend on the

angles of the 
orners and edges of 
 (but do not depend on the triangulation T

h

nor on T ).

Proof: The proof here utilizes some key ideas that were already applied in [13, Lemma 3.5℄

and [15℄. Our exposition here requires several non{trivial extensions whi
h are due to the

singularly perturbed problem, and the use of squeezed fa
e bubble fun
tions in parti
ular.

In order to fa
ilitate the understanding of the proof, ea
h major step will be given a

distin
tive name.

Set T

0

:= T and enumerate the remaining tetrahedra of !

T

n T by T

1

: : : T

k

. If T has

boundary fa
es then k < 4. The fa
es of T are denoted a

ordingly by E

i

:= T

i

\ T .

Transformation: In order to prove (27) 
onsider the tetrahedron T

i

and rewrite kvk

T

i

by

means of the transformation A

T

i

, and krvk

T

i

via the transformations C

T

i

; H

T

i

. Utilizing

jT j � jT

i

j, and with 
ertain abbreviations given below this yields

kvk

2

T

i

= 6jT

i

j � k�vk

2

�

T

i

� jT j � r

i

and kvk

2

!

T

� jT j �

k

X

i=0

r

i

= jT j � r

where we have introdu
ed

r

i

:= k�vk

2

�

T

i

� 0 and r :=

k

X

i=0

r

i

� 0 :
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Similarly the term krvk

!

T

is transformed to give

krvk

2

T

i

(5)

= kH

�1

T

i

C

>

T

i

rvk

2

T

i

= 6jT

i

j � kH

�1

T

i

�

^

rv̂k

2

^

T

i

whi
h implies krvk

2

!

T

=

k

X

i=0

krvk

2

T

i

=

k

X

i=0

6jT

i

j � kH

�1

T

i

�

^

rv̂k

2

^

T

i

= 6 �

k

X

i=0

jT

i

j � h

�2

min;T

i

� kdiag(


1;i

; 


2;i

; 1) �

^

rv̂k

2

^

T

i

� h

�2

min;T

� jT j �

k

X

i=0

s

i

= h

�2

min;T

� jT j � s

with 


1;i

:= h

min;T

i

=h

1;T

i

and 


2;i

:= h

min;T

i

=h

2;T

i

s

i

:= kdiag(


1;i

; 


2;i

; 1) �

^

rv̂k

2

^

T

i

� 0 and s :=

k

X

i=0

s

i

� 0 :

A rough outline of the proof is as follows. Realize �rst that r and s depend on various

variables (e.g. on the geometry of T , the parameters Æ

i

:= Æ

E

i

et
). Then 
onsider r; s

over some 
ompa
t set of variables. Sin
e both terms turn out to be 
ontinuous, one 
an

investigate their maxima and minima whi
h eventually provide the assertion.

Extend domain of de�nition to a 
ompa
t set: Let us start with the 
ase where T

has no Neumann boundary fa
e. Assume further that T has m interior fa
es and 4 � m

Diri
hlet fa
es. The lo
al spa
e V

T

is spanned by b

T

and b

E

i

;Æ

i

, i = 1 : : :m. For our purpose

we utilize an expansion of v 2 V

T

where the squeezed fa
e bubble fun
tions are additionally

s
aled by Æ

�1=2

i

, namely

v = �

0

� b

T

+

m

X

i=1

�

i

� Æ

�1=2

i

b

E

i

;Æ

i

�

i

2 R :

Without loss of generality assume v 6� 0 and

P

m

i=0

�

2

i

= 1. After transformation via A

T

i

the representation of �v be
omes

�vj

�

T

i

= vj

T

i

Æ A

T

i

=

8

<

:

�

0

� b

�

T

+

m

P

i=1

�

i

� Æ

�1=2

i

b

�

E

i

;Æ

i

for i = 0 (i.e. on

�

T )

�

i

� Æ

�1=2

i

b

�

E

i

;Æ

i

for i = 1 : : :m (i.e. on

�

T

i

) :

Hen
e �v depends on �

0

: : : �

m

and Æ

1

: : : Æ

m

, Æ

i

2 (0; 1℄. Note further that Æ

i

in
uen
es

r

0

= k�vk

2

�

T

and r

i

= k�vk

2

�

T

i

but not the other values r

j

.

Next �v is to be 
onsidered over a 
ompa
t set. Thus introdu
e

B :=

n

(�

0

; : : : ; �

m

) :

m

X

i=0

�

2

i

= 1

o

and D :=

n

(Æ

1

; : : : ; Æ

m

) : Æ

i

2 [0; 1℄ 8 i

o

:
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The 
ase Æ

i

= 0 requires additional 
onsideration. While the fun
tion Æ

�1=2

i

b

E

i

;Æ

i

has a well{

de�ned meaning for Æ

i

2 (0; 1℄, this is no longer true for Æ

i

! 0. Then supp (b

E

i

;Æ

i

j

T

i

) =

T

i;E

i

;Æ

i

degenerates, and Æ

�1=2

i

!1. Therefore the value of r

j

= k�vk

2

�

T

j

for Æ

i

= 0 is de�ned

as the limit for Æ

i

! 0:

r

j

(Æ

i

= 0) := lim

Æ

i

!0

r

j

(Æ

i

) :

This limit is well{de�ned sin
e the vanishing support T

i;E

i

;Æ

i

of the squeezed fa
e bubble

fun
tion and its s
aling fa
tor Æ

�1=2

i

are exa
tly balan
ed. For the outer tetrahedra this


an be easily seen by utilizing two transformations, namely via A

T

i

:

�

T ! T

i

and via

F

�1

T

i

;E

i

;Æ

i

: T

i;E

i

;Æ

i

!

�

T

i

. By using jdet(A

T

i

)j = 6jT j and jdet(F

T

i

;E

i

;Æ

i

)j = 6Æ

i

jT j one obtains

r

i

= �

2

i

kÆ

�1=2

i

b

�

E

i

;Æ

i

k

2

�

T

i

A

T

i

= �

2

i

Æ

�1

i

� (6jT j)

�1

kb

E

i

;Æ

i

k

2

T

i

= �

2

i

Æ

�1

i

� (6jT j)

�1

kb

E

i

;Æ

i

k

2

T

i;E

i

;Æ

i

F

�1

T

i

;E

i

;Æ

i

= �

2

i

Æ

�1

i

� (6jT j)

�1

� 6Æ

i

jT j � kb

�

E

i

k

2

�

T

i

=

9

560

�

2

i

� �

2

i

and lim

Æ

i

!0

r

i

=

9

560

�

2

i

:

Hen
e lim

Æ

i

!0

r

i

exists. For r

0

pro
eed similarly.

Consider Maximum and Minimum: As a 
onsequen
e we 
an 
onsider r

i

and r on

B�D, and r

i

; r vary 
ontinuously over that 
ompa
t set. Therefore r attains its maximum

and minimum. To show that this minimum is positive, assume the 
ontrary whi
h implies

r

i

= 0 for all i = 0 : : :m. On the outer tetrahedra T

i

, i = 1 : : :m, pro
eed exa
tly as in the

last paragraph to obtain

0 = r

i

=

9

560

�

2

i

whi
h implies �

i

= 0, i = 1 : : :m. On the main tetrahedron T then �v is redu
ed to �v = �

0

b

�

T

giving

0 = r

0

= k�vk

2

�

T

=

4096

155 925

�

2

0

� �

2

0

and �

0

= 0 too. This 
ontradi
ts

P

m

i=0

�

2

i

= 1, hen
e

min

B�D

r > 0 :

Together with max

B�D

r � 1 we obtain

r � 1

or, equivalently,

kvk

2

!

T

� jT j �

m

X

i=0

�

2

i

: (40)
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Investigation of s: The investigation of s and s

i

relies on the same basi
 ideas as before.

The details however are mu
h more te
hni
al be
ause derivatives are involved (i.e. rv)

and the transformation C

T

i

is applied.

Consider s

i

= kdiag(


1;i

; 


2;i

; 1) �

^

rv̂k

2

^

T

i

� 0 whi
h depends on

^

T

i

, 


j;i

and v̂. The

restri
tions on

^

T

i

and T

i

imply 0 < 


1;i

; 


2;i

� 1 and, for the nodal 
oordinates of

^

T

i

,

0 < x̂

2;T

i

� 1=2; 0 < x̂

3;T

i

< 1; �1 < ŷ

3;T

i

< 1. Similar as before we omit the a
tual

meaning that stands behind s

i

, and view it instead as a purely analyti
al term that depends

on x̂

j;T

i

, ŷ

3;T

i

, 


j;i

, Æ

j

and �

j

. Next 
onsider s

i

over the 
ompa
t set X

i

�G

i

�D�B, with

X

i

:=

n

(x̂

2;T

i

; x̂

3;T

i

; ŷ

3;T

i

) : 0 � x̂

2;T

i

�

1

2

; 0 � x̂

3;T

i

� 1 ; �1 � ŷ

3;T

i

� 1

o

;

G

i

:=

n

(


1;i

; 


2;i

) : 0 � 


1;i

; 


2;i

� 1

o

:

It is obvious that s

i

is 
ontinuous on X

i

; G

i

; B and for Æ

i

2 (0; 1℄. Note again that Æ

i

in
uen
es only s

0

and s

i

. The only 
ause for dis
ontinuity of s

i

is Æ

i

! 0 whi
h may

lead to s

i

! 1 (be
ause Æ

�1=2

i

! 1 and j

^

r

^

b

E

i

;Æ

i

j ! 1, see below). Nevertheless su
h a

dis
ontinuity does not disturb our analysis sin
e we want to bound s

i

from below. For a

pre
ise investigation we de�ne again

s

j

(Æ

i

= 0) := lim

Æ

i

!0

s

j

(Æ

i

)

and 
onsider then the term minf1; s

i

g whi
h is 
ontinuous for Æ

i

2 [0; 1℄.

Sin
e s =

P

m

i=0

s

i

, this term is 
ontinuous as well, and it attains its minimum over the


ompa
t set

K :=

m

�

i=0

X

i

�

m

�

i=0

G

i

� D � B :

In order to show that this minimum is positive assume the 
ontrary, namely s = s

i

= 0 for

all i = 0 : : :m. Start with any of the outer tetrahedra T

i

; i = 1 : : :m. The representation

of v̂ there is v̂j

^

T

i

= �

i

Æ

�1=2

i

�

^

b

E

i

;Æ

i

j

^

T

i

. Then

0 = s

i

= kdiag(


1;i

; 


2;i

; 1) �

^

rv̂k

2

^

T

i

� ke

>

3

�

^

rv̂k

2

^

T

i

= �

2

i

Æ

�1

i

ke

>

3

�

^

r

^

b

E

i

;Æ

i

k

2

^

T

i

;

with e

3

:= (0; 0; 1)

>

. The latter norm is analysed similarly as for r

i

by using two trans-

formations via C

T

i

:

^

T ! T

i

and via F

�1

T

i

;E

i

;Æ

i

: T

i;E

i

;Æ

i

!

�

T

i

. In 
ontrast to r

i

, how-

ever, we 
annot evaluate s

i

exa
tly but bound it instead. From jdet(C

T

i

)j = 6jT j and

jdet(F

T

i

;E

i

;Æ

i

)j = 6Æ

i

jT j one derives

Æ

�1

i

ke

>

3

�

^

r

^

b

E

i

;Æ

i

k

2

^

T

i

C

T

i

= Æ

�1

i

� (6jT j)

�1

ke

>

3

� C

>

T

i

rb

E

i

;Æ

i

k

2

T

i

= Æ

�1

i

� (6jT j)

�1

ke

>

3

� C

>

T

i

rb

E

i

;Æ

i

k

2

T

i;E

i

;Æ

i

F

�1

T

i

;E

i

;Æ

i

= Æ

�1

i

� (6jT j)

�1

� 6Æ

i

jT j � ke

>

3

� C

>

T

i

F

�>

T

i

;E

i

;Æ

i

�

rb

�

E

i

k

2

�

T

i

= k(F

�1

T

i

;E

i

;Æ

i

C

T

i

� e

3

)

>

�

�

rb

�

E

i

k

2

�

T

i

:
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Re
alling the de�nition of C

T

i

from (4) yields C

T

i

e

3

= p

3;T

i

whi
h is a ve
tor from a verti
e

to the opposite fa
e in the tetrahedron T

i

, see Figure 1. Hen
e F

�1

T

i

;E

i

;Æ

i

C

T

i

� e

3

is a ve
tor

from a verti
e to the opposite fa
e in the tetrahedron F

�1

T

i

;E

i

;Æ

i

T

i

. Using T

i

� T

i;E

i

;Æ

i

one

obtains F

�1

T

i

;E

i

;Æ

i

T

i

� F

�1

T

i

;E

i

;Æ

i

T

i;E

i

;Æ

i

�

�

T

i

and thus

jF

�1

T

i

;E

i

;Æ

i

C

T

i

� e

3

j

R

3

� %(

�

T

i

) =

1

3 +

p

3

� 1

where %(

�

T

i

) denotes the diameter of the ins
ribed ball of

�

T

i

. Then

k(F

�1

T

i

;E

i

;Æ

i

C

T

i

� e

3

)

>

�

�

rb

�

E

i

k

2

�

T

i

& min

jqj

R

3

=1

kq

>

�

�

rb

�

E

i

k

2

�

T

i

= 81=280 � 1 :

Summarizing the previous results, we end up with

0 = s

i

� �

2

i

Æ

�1

i

ke

>

3

�

^

r

^

b

E

i

;Æ

i

k

2

^

T

i

& �

2

i

:

This holds for Æ

i

2 (0; 1℄ and therefore also for the limit Æ

i

= 0. Hen
e one 
on
ludes

�

i

= 0 8i = 1 : : :m :

Next 
onsider the main tetrahedron T where v is now redu
ed to v = �

0

� b

T

. Then

0 = s

0

� �

2

0

ke

>

3

�

^

rb

^

T

k

2

^

T

immediately implies �

0

= 0 whi
h 
ontradi
ts the assumption

P

m

i=1

�

2

i

= 1. Therefore the

minimum of s is positive giving

s & 1 � r

whi
h provides the assertion.

T has Neumann fa
es: In this 
ase !

T


onsists of less than �ve tetrahedra, and dimV

T

<

5. Although the representation of v 
hanges as well, the main ideas from above 
an still

be applied to show the assertion. Thus we omit the proof.

It is noteworthy that the 
ase of two or more Neumann boundary fa
es of T gives rise

to a parti
ular phenomenon. If one 
an guarantee Æ

i

� Æ

�

< 1 8 i (with some parameter

Æ

�

whi
h is the same for all elements) then the resulting inequality is as before. Otherwise

the inequality 
onstant in (27) may depend on the angles of the 
orners and edges of 


but do not depend on the triangulation T

h

nor on T , 
f. also [13, Lemma 3.5℄.

Proof of (28): Assume �rst that E

i

is an interior fa
e, and 
onsider the 
orresponding

outer tetrahedron T

i

. Apply (14) with '

E

� 1 to obtain

krb

E

i

;Æ

i

k

T

i

� Æ

1=2

i

� h

1=2

E

i

;T

i

�minfÆ

i

h

E

i

;T

i

; h

min;T

i

g

�1

� jE

i

j

1=2

:

Together with kb

E

i

;Æ

i

k

E

i

= kb

E

i

k

E

i

� jE

i

j

1=2

this yields immediately

kb

E

i

;Æ

i

k

E

i

� Æ

�1=2

i

� h

�1=2

E

i

;T

i

�minfÆ

i

h

E

i

;T

i

; h

min;T

i

g � krb

E

i

;Æ

i

k

T

i

:
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From vj

T

i

= �

i

� b

E

i

;Æ

i

j

T

i

and h

E

i

;T

i

� h

E

i

, h

min;T

i

� h

min;T

one 
on
ludes

kvk

E

i

� Æ

�1=2

i

� h

�1=2

E

i

;T

i

�minfÆ

i

h

E

i

;T

i

; h

min;T

i

g � krvk

T

i

. Æ

�1=2

i

� h

�1=2

E

i

�minfÆ

i

h

E

i

; h

min;T

g � krvk

!

T

whi
h proves the assertion.

If E

i

is a Diri
hlet fa
e then vj

E

i

� 0, and (28) holds trivially. Finally, if E

i

is a

Neumann fa
e then the proof be
omes more te
hni
al sin
e no outer tetrahedron T

i

exists.

Then one has to utilize similar ideas as for proving (27). The details are omitted here.
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