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Abstract

Singularly perturbed problems often yield solutions with strong directional fea-
tures, e.g. with boundary layers. Such anisotropic solutions lend themselves to
adapted, anisotropic discretizations. The quality of the corresponding numerical
solution is a key issue in any computational simulation.

To this end we present a new robust error estimator for a singularly perturbed
reaction—diffusion problem. In contrast to conventional estimators, our proposal is
suitable for anisotropic finite element meshes. The estimator is based on the solution
of a local problem, and yields error bounds uniformly in the small perturbation
parameter. The error estimation is efficient, i.e. a lower error bound holds. The
error estimator is also reliable, i.e. an upper error bound holds, provided that the
anisotropic mesh discretizes the problem sufficiently well.

A numerical example supports the analysis of our anisotropic error estimator.
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1 Introduction

Adaptive algorithms form nowadays an indispensable tool for most finite element simu-
lations. They basically consist of the ingredients Solve — Estimate error — Refine mesh
which are repeated until the desired accuracy is achieved, see also [2, 22]. The present
work is part of a series of related endeavors in a particular field of finite element analy-
sis. While standard finite element meshes employ isotropic (or shape regular) elements,
we investigate so—called anisotropic (or stretched) elements. They are characterized by a
large stretching ratio (also called aspect ratio). Equivalently, the ratio of the diameters of
the circumscribed and inscribed spheres can be arbitrarily large. Such anisotropic meshes
are particularly useful when the differential equation gives rise to a solution with strong
directional features, such as boundary layers or interior layers. Application of anisotropic
meshes as well as theoretical investigations can be found for example in [4, 5, 18, 19, 24, 25]
and [11, 13, 14, 17, 20].

It is a natural desire to incorporate anisotropic meshes into adaptive algorithms. Clearly,
additional ingredients are required then, namely anisotropic information extraction (e.g.
find the (quasi) optimal stretching direction and stretching ratio of the anisotropic ele-
ments), and anisotropic mesh refinement. Less obvious but equally important is the error
estimation part. Unfortunately most of the conventional a posteriori error estimators for
isotropic meshes fail when applied on anisotropic meshes. Therefore the derivation and
analysis of estimators which are suitable for anisotropic elements is of vital importance for
any adaptive anisotropic algorithm.

Fortunately this challenging venture has seen some success recently [20, 13, 14, 15, 17,
11]. In case studies of the Poisson model problem it has been shown that anisotropic error
estimation is possible, and the methodology and analytical tools have been developed,
proposed and refined. Now anisotropic error estimation has to prove its potential for more
realistic settings. Singularly perturbed problems offer ideal test fields since they often
induce boundary layers where anisotropic elements can be employed favourably.

From now on let us consider a singularly perturbed reaction—diffusion model problem,
see (1) below, which usually gives rise to boundary layers whenever a non—vanishing right
hand side meets homogeneous Dirichlet boundary data.

Although (1) forms a comparatively simple model problem, the knowledge of robust
error estimators has been unsatisfactory for a long time. The first estimators with error
bounds that are uniform in the small perturbation parameter ¢ were due to Angermann [3],
Verfiirth [23] and Ainsworth/Babuska [1]; all of them considered isotropic meshes. Anger-
mann measures the error in a somewhat strange norm (which seems to be mainly of theo-
retical interest) whereas Verfiirth and Ainsworth/Babuska concentrate on the energy norm
(which is the most natural norm). For anisotropic meshes Kunert [16] recently succeeded
in deriving a robust residual error estimator, also for the energy norm. A corollary of that
result has been included in [17].

In our present work we propose a new error estimator for the singularly perturbed
reaction—diffusion problem (1) which is suitable for anisotropic meshes, and that is based
on the solution of a local problem. The roots of this local problem error estimator are
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twofold. Firstly it relies on the anisotropic residual error estimator [16] whose results are
partly the foundation for the present analysis. Secondly we utilize the methodology of local
problem error estimation. For the Poisson problem (on isotropic meshes) this is fairly well
understood, see e.g. the exposition in [22]; hence the general framework of the proofs can
be derived relatively easily. The precise definition and analysis of our estimator, however,
are much more difficult and technical. This concerns for example the choice of the local
problem, the careful calibration of all ingredients, or certain equivalence lemmas. Although
we could exploit some experience from anisotropic local problem error estimation for the
Poisson problem [15], the ‘extension’ to the singularly perturbed problem requires several
new ingredients and is by no means straight—forward. Note that in [1] also a local problem
error estimator is derived (for isotropic meshes). However the local problem there is infinite
dimensional whereas our proposal here involves an (at most) five dimensional local space.

When comparing with the anisotropic residual error estimator, our newly proposed
local problem error estimator is certainly more expensive since a local problem has to be
computed and solved. Nonetheless the disadvantage of any residual based estimator is that
the proof of the error bound is based on several intermediate steps, such as interpolation
estimates and the Cauchy Schwarz inequality. In contrast to this the local problem error
estimator requires less auxiliary steps, and thus contains less constants (which are unknown
in general). This can also be observed numerically: The qualitative behaviour of both error
estimators is comparable but the local problem error estimation is much closer to the true
error.

Finally note that all known anisotropic error estimators require that the anisotropy of
the mesh and the anisotropy of the solution correspond sufficiently well. As in previous
work, this correspondence is measured by a so—called matching function which is explained
in our exposition.

The remainder of the paper is organized as follows. After presenting the model problem
in §2, we repeat in §3 some notation, basic tools and lemmas that have been applied suc-
cessfully in previous anisotropic investigations. The transformation technique and several
bubble functions are of particular importance. Furthermore the residual error estimator of
[16] is recalled for self-containment. Next, §4 is devoted to the local problem error estima-
tor and its analysis. Reliable upper and lower error bounds are proven and a stable basis
of the local problem is presented. Additionally a further, face oriented local problem error
estimator is given. Computational aspects are discussed in §5, and the numerical experi-
ments of §6 confirm the analysis. The summary in §7 and a technical proof in appendix A
conclude this work.



2 The model problem and its discretization

Our focus is on a singularly perturbed reaction—diffusion model problem with Dirichlet—
Neumann boundary conditions

—Au +u = f inQ
v = 0 onTp (1)
e-0u/On = g onlyx

in a bounded, polyhedral domain Q ¢ R¢, d = 2,3, with boundary 9Q = T'p U I'x.

Assume f € Ly(Q2), g € Lo(I'x) and meas, 1(I'p) > 0. The Sobolev space of functions
that vanish on I'p is denoted by H}(£2) as usual. The corresponding variational formulation
for (1) becomes:

Find u € HX(Q) : a(u,v) = (f,v) Vv e HYQ
with a(u.0) i= [ £ (Vu) Vo + u / fv+ [ | ®
Q I'n

We utilize a family F = {7,} of triangulations 7, of Q. Let V,, C HX(Q) be the space of
continuous, piecewise linear functions over 7, that vanish on I'n. Then the finite element
solution u;, € V,, is uniquely defined by

a(up,vy) = (f,vn) Vo, € Vo - (3)

Due to the Lax-Milgram Lemma both problems (2) and (3) admit unique solutions.

The main purpose of our analysis is to bound the error v — u; uniformly in the small
perturbation parameter . Here we concentrate on the most natural norm related to (2),
namely the energy norm

2
o]l = a(v, v) = e[| Vo[|* + [lv]]*

which has been used also by other authors [1, 23]. This energy norm is well-suited to
produce appropriately refined meshes. This can be easily verified on some 1D model
problem, e.g. for —eu” +u = 01in Q = (0,1) with »(0) = 1,u(1) = 0. Even the optimal
order of convergence can be achieved.

3 Notation, basic tools and lemmas

In order to analyse error estimators on anisotropic meshes we will now introduce certain
notation as well as important tools, all of which have proven to be advantageous in previous
work [13, 15, 16]. All expositions are given for the more technical three dimensional case.
The application to the simpler 2D case is readily possible.

From now on, let Pk(w) be the space of polynomials of order £ at most over some
domain w C R® or w € R?. Instead of z < ¢ - y or cix <y < cor (with positive constants
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independent of z,y and e, Ty,) we use the abbreviation z < y and = ~ y, respectively. By
|| - ||l we denote the Ly norm of a function over some domain w. For w = Q) the subscript
is omitted. Let |w| := meas (w) be the measure of a domain w. Finally for some vector p

let |p| := +/p"p be its Euclidean norm (i.e. length).

3.1 Tetrahedron — Subdomains — Mesh requirements

Tetrahedron: Let a triangulation 7, be given which satisfies the usual admissibility
conditions (see Ciarlet [10], Chapter 2). The four vertices of an arbitrary tetrahedron T' €
Tr, are denoted by Py, ..., Py such that PyP; is the longest edge of T', meass(APyP1Py) >
measz(APOPng), and measl(Png) 2 measl(POPg).

Additionally define three pairwise orthogonal vectors p; with lengths h;r := |p;|, see
figure 1. Observe hy 1 > hor > hsr and set Ay 7 := hg . The circumscribed hexahedron
may facilitate the visualization.

Figure 1: Notation of tetrahedron 7'

Tetrahedra are denoted by T, T',T" or T;. Faces of a tetrahedron are denoted by E or
E;. Let hgr :=3|T|/|E| be the length of the height over a face E.

Auxiliary subdomains: Let 7" € 7, be an arbitrary tetrahedron. Let wr be that domain
that is formed by 7" and all tetrahedra that have a common face with 7. Note that wr
consists of less than five tetrahedra if 7" has a boundary face.

Let E be an inner face (triangle) of 7Ty, i.e. there are two tetrahedra 77 and Ts having
the common face F. Set the domain wg := Ty UT,. If E is a boundary face set wg := T
with T D F.

Mesh requirements: In addition to the usual conformity conditions of the mesh (see
Ciarlet [10], Chapter 2) we demand the following two assumptions.

1. The number of tetrahedra containing a node z; is bounded uniformly.

2. The dimensions of adjacent tetrahedra must not change rapidly, i.e.

higr ~hir  VT,T with TAT £0,i=1...d
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Remark 1 In certain situations we do not want to use element based quantities (such
as hpin.r) but utilize face related terms instead. For example consider an interior face
E =T; NT,, and define the terms

hE = (hE,Tl + hE,Tg)/2 ) hmin,E‘ = (hmin,Tl + hmin,Tg)/2

Their advantage is that they are no longer related to 77 or T5 but to E. They clearly
satisfy hg ~ hgr, and hpin.g ~ Bpin,r,. For a boundary face £ C 0T NI define similarly
hg = hE‘,T and hmin,E = hmin,T— u

Transformations: The usual transformation technique between a tetrahedron T and
a standard tetrahedron plays a vital role in many proofs (cf. [10]). However, a refined
analysis has shown that two different transformations facilitate matters considerably, see
e.g. [13, 14]. Hence define the matrices Hrp := diag(hy 7, hog, hs7) and Ar, Cr € R**3 by

AT = (POPhPOPQ,POPg ) and Cr:= (p17p27p3) ) (4)

and introduce affine linear mappings

— —
Fa(p) :=Ar-u+ Py and Fe(p) =Cr-u+ Py, p e R

These mappings implicitly define the standard tetrahedron T := F*(T) and the reference
tetrahedron T := FZ'(T). Then T the has vertices Py = (0,0,0)T and P, = e ,i =
1...3, whereas T has vertices at Py = (0,0,0)T, P, = (1,0,0)7, P, = (45,1,0)7 and
Py = (£3,93,1)". The conditions on the P; yield immediately 0 < &, < 1/2, 0 < 23 < 1
and —1 < g3 < 1. Figures 1 and 2 illustrate this definition.

s O P

'pg ]31 H1 po ]51

Figure 2: Standard tetrahedron T and reference tetrahedron T

Variables and operators that are related to the standard tetrahedron 7' and the ref-
erence tetrahedron T are referred to with a bar and a hat, respectively (e.g. V, ©). The
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determinants of both mappings are |det(Ar)| = |det(Cr)| = 6|T|, and the transformed
derivatives satisfy Vo = AJLVv and Vi = C V.

Although C7 is naturally associated with our analysis, it transforms T into T. Inequal-
ity constants would thus depend on T. To overcome this drawback, the transformation
via Ar is used in conjunction with Cr (cf. the compactness arguments in the proof of
Lemma 5).

Finally, H'C] is orthogonal since C}. - Oy = HZ. Hence

|Hz ' CrVolr = [IVollr . (5)

Squeezed tetrahedron Tk s: The concept of the squeezed tetrahedron has been intro-
duced in [16] and originates from [23] (in a simpler, modified form there). Here we repeat
the definition and only state the required results.

Because of the singular perturbation character of the differential equation we can
favourably employ a sub-tetrahedron Tg; C T which depends on a face E of T" and a
real number § € (0,1]. In an attempt to use a vivid name we will refer to Tr; as a
squeezed tetrahedron. For its precise definition, let 7" be an arbitrary but fixed tetrahe-
dron, and enumerate temporarily its vertices such that F = :Q2Q3 and T = OQ1Q-Qs,
cf. Figure 3. Introduce barycentric coordinates such that \j is related to O, and A\, s, A3
correspond to Q1, Q)s, 3, respectively.

Let P be that point with barycentric coordinates

1-9

Mo(P) =14 and )\1(]3):/\Q(P):/\?)(P):T

Then let Tg s be the tetrahedron with vertices P and Qi,Q2, @3, i.e. Tg s has the same
face E as T but the fourth vertex is moved towards E with the rate 9.

An alternative description is as follows. With Sg being the midpoint (i.e. center of
gravity) of face E, point P lies on the line SzO such that [SgP| = é-|SgO|. Note that for
0 =1 one gets Ty 5 = T whereas in the limiting case 6 — 0 the tetrahedron T 5 collapses
to the face E.

Qs

Q1

Figure 3: Tetrahedra T = 0Q1Q2Q)s; and Tr s = PQ1Q2Qs3

In order to utilize T s efficiently, we also require an affine linear transformation Fr g
that maps the standard tetrahedron 7" onto T s. This affine linear mapping is unique (up
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to permutations of the enumeration of the vertices of T and Tg ). In [16] the following
relations has been proven.

Lemma 1 The radius o(Trs) of the largest inscribed sphere of Tg s is equivalent to
o(Tgs) ~ min{d-hpr, hmins} ~ Pmingy s : (6)
The norm of the transformation matriz Ff}za 18 bounded by

||F£}5,5||R3X3 < min{d - hpr, hmin,T}_l

3.2 Bubble functions

Another useful and important tool are so-called bubble functions which are applied, for
example, for defining the local problem and its ansatz space but also for the analysis. The
bubble functions were already partially introduced in [22] and [16].

Denote by Az 1, -, Ar4 the barycentric coordinates of an arbitrary tetrahedron 7'. The
element bubble function by is defined by
bT = 4:4 . )\T,l . )\T72 . )\T,3 . )\TA S P4(T) onT . (7)

For simplicity assume that by is extended by zero outside its original domain of definition.

Further we require face bubble functions. To this end let £ = 717 N715 be an inner
face (triangle) of 7. Enumerate the vertices of Ty and T» such that the vertices of E are
numbered first, and introduce the functions

bE,TZ— = 33 . )\Ti,l . /\Ti,2 . /\Ti,3 on T’i, Z = 1, 2

The standard face bubble function by € C°(wg) is now defined in a piecewise fashion (with
support wg = Ty UT,) by

bE,Tl on Tl
bg = bem, on T, ,
0 otherwise

see also the middle of Figure 4. Note that 0 < bp(x),bp(x) < 1 and ||br||e = [|bE||e0 = 1.
For clarity of notation we also introduce a trivial extension operator F,,; : IP’O(E) —
P°(wg) that maps a constant function over some face E to the same constant function
acting on wg. If E is a boundary face then bg and F,,; are obviously defined only on the
single tetrahedron 7' D E.
The following anisotropic equivalences/inverse inequalities can be derived easily, cf. [13].

Lemma 2 (Inverse inequalities ) Assume that pr € P°(T) and pp € P°(E). Then
lorllz ~ |TM? (8

1677 - orlle ~ ||z (9
IV(br - eor)llr S hinr - ez (10

1647 - ¢elle ~ lesle (11

)
)
)
)
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The bubble functions above suffice to analyse the error estimator for the Poisson equa-
tion, cf. [22, 15]. However, for the singularly perturbed problem considered here we have to
introduce modified face bubble functions, cf. also [13, 23].

Start with some face E and let 71, T5 be its two neighbouring tetrahedra, i.e. wg =T} U
T,. For an arbitrary real number ¢ € (0, 1] consider both squeezed tetrahedra Ty g5 C Ty
and Th g5 C T3, cf. Figures 3 and 4. Now we are ready to present the so—called squeezed
face bubble function bg s which acts only on 11 g s U T g s C wg. Its piecewise definition is

bg o F:,TllE5 on T1 g
bE,g = bE‘ o FE;E,é on TQ,E‘,(s (12)
0 on wg \ (T1.ps UTogys) ;

with bz being the standard face bubble function for the face £ = F:,TlEé(E) of the tetrahe-

dron T = FT’lE(;(TZg(;) Note that the squeezed face bubble function on T; can equivalently
be viewed as the standard face bubble function on the squeezed tetrahedron T; g 5, i.e.

besly, = beT L,
7 E) 3

Figure 4 may facilitate the understanding of the standard/squeezed face bubble function for
the two—dimensional case. For boundary faces one restricts bz 5 to the unique tetrahedron
with 0T D E.

Standard scaling arguments for the transformation Fr, ps: T — T; g4, together with
the essential Lemma 1 yield now the inverse inequalities for the squeezed face bubble
function.

Lemma 3 (Inverse equivalences II) Let E be an arbitrary face of T, assume pp €
P°(E), and let 6 € (0,1] be arbitrary. Then one has

1656 Featlpp)llr ~ 82 b7 - lloslle (13)
IV (e Fear(pp))llr ~ 87 hf - min{d - her, hpinr} ™ - loplle . (14)
Proof: Standard scaling arguments for the transformation Frg;s: T — Tg 4 readily imply

(13).
For (14) we start with the equivalence

INbsllr ~ b+ [ T11?

min, T
which has been proven (in a slightly different form) in [13, Lemma 3.5] and [15, Lemma 5].
Above we have realized that the squeezed face bubble function can also be viewed as
the standard face bubble function on the squeezed tetrahedron. Thus one can utilize
the previous equivalence with the function bg; on the tetrahedron Tx ;. Together with
Lemma 1 and |Tgs| = 6 - |T| this results in

IVbpsllr ~ hp |Tg s

min,Tg s

6 . _
R min{d - her, hinr} " 0Y2 - (her| E)Y

which completes the proof. [ ]
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Ties| T2rs

Figure 4: Top: wg and squeezed triangles T; g5 (2D case)
Middle: standard face bubble function bg
Bottom: squeezed face bubble function bg s

3.3 Matching function and residual error estimator

Parts of the analysis of the local problem error estimator rely on results for the anisotropic
residual error estimator of [16] which are thus repeated now for self-containment. Note that
both estimators have been developed in close collaboration to enable certain equivalence
properties (cf. Theorem 6 below). Related aspects are discussed here as well.

Ley us start with an important difference between error estimation on isotropic and
anisotropic meshes. For isotropic meshes the error bounds hold unconditionally, whereas
this is no longer the case for anisotropic meshes. For such meshes apparently all estimators
require the anisotropy of the mesh to be aligned with the anisotropy of the solution.
Heuristically this means that anisotropic elements (e.g. tetrahedra) are stretched in that
direction where the solution shows little variation.

In order to investigate this matter mathematically, let us recall the proposals from
known (analytically based) anisotropic error estimators. Siebert [20] restricts the set of
treatable anisotropic functions. Kunert [13, 14, 16] introduces a so—called matching func-
tion my (v, T,) that measures the alignment of an anisotropic function v and an anisotropic
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mesh 7,. Lastly, in Dobrowolski/Graf/Pflaum [11] a saturation assumption is necessary
that implies a similar correspondence.

For a rigorous analysis it is advantageous to measure the alignment of mesh and func-
tion. To this end the matching function has been proposed by Kunert [13, 14]:

Definition 1 (Matching function) Let v € H'(Q), and T, € F be a triangulation of
Q. Define the matching function m; : H'(Q) x F — R by

/
m(0.7) = (X hZur- 107 volg) /vl (15)

TeT,

Note that the entries of the vector C7. Vv = (p; Vv, py Vv, ps Vv) ' can also be viewed as
scaled directional derivatives along the orthogonal directions p; (recall |p;| = h;1).

To deepen the understanding of the matching function let us briefly discuss its behaviour
and influence. More details and a comprehensive discussion can be found in [13, 14].

By defining temporarily A, := h1 7, one obtains

Although this crude upper bound is useless for practical purposes it implies m; ~ 1 on
isotropic meshes. Then m; merges with other constants and becomes invisible; in this sense
(15) is an extension of the theory for isotropic meshes. If an anisotropic mesh 7}, is well
aligned with an anisotropic function v then one also obtains my(v,7,) ~ 1. If, however,
the anisotropic meshes are not aligned with the function then the matching function can
be arbitrarily large, mq (v, Tp) > 1.

The influence of the matching function m; can be seen in the error bound (19) of
Lemma 4 and in the discussion afterwards.

Next the residual error estimator will be presented. The methodology to obtain a lower
error bound requires a modification of f and ¢ [22, 13]. Hence we replace f by a function
frn which is piecewise constant over the elements. Analogously ¢ is replaced by ¢, which is
piecewise constant over the Neumann faces. Then the definitions are as follows.

Element and face residual: Define the element residual over an element T by
rr = fn — (—elAuy +up) onT.

For x € E define the face residual rg by

: uy, duy, :
g.tl—lg-lo 6nE($+t E)—%(x—tnp;) it EcCQ\T
() = gn — € - Ouy,/On it £ CI'x

0 it F Clp
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Here ng L E is any of the two unitary normal vectors whereas n | E C 'y denotes the
outer unitary normal vector.

Residual scaling factor: The residuals are often accompanied by the factor
ap :=min{1,e ™% hpinr} : (16)
For some interior face £ = T} N'T, we define the corresponding face related term by

ap = (CL/Tl + CL/T2)/2 . (17)
For boundary faces F set similarly ag := ar for E C JT. Note that the mesh requirements
imply ag ~ ap, ~ ag,, cf. also remark 1.

Local residual error estimator: For a tetrahedron T, define it by

1/2
NeR,T = (043“ rrllz + e'?-ar- Z ||TE||%E> : (18)
ECOT\Tp

Local approximation term: To shorten the notation, introduce

1/2
o= (03I = fill, + e eare D0 lg—alz)

ECOTNI'y

Finally, define the global terms
7752,R = Z 7752,R,T and ng = Z CgZ,T

TeTh TeTy

The following residual error estimation essentially has been proven by Kunert [16]. Here
we have included the treatment of Neumann boundary conditions.

Lemma 4 The error is bounded locally from below for all T € Ty, by

nerr S e = unlll,, + CGr

The error is bounded globally from above by

1/2

llw = unlll < ma(u = wn, Ta) - [125 + ] (19)

Both error bounds are uniform in ¢.

We remark that only the upper error bound contains the matching function m;. Hence
only (19) is influenced by the degree of the alignment of mesh and function, i.e. the global
error estimator 7. g is emphasized by the factor my(u — up, 75). When my ~ 1 the lower
and upper error bound possess the same quality. Obviously, the smaller m; the better the
upper error bound. In the case of m; > 1 however both error bounds differ by a large
factor, thus rendering the error estimation useless.
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Remark 2 Note that the upper error bound of (19) can not be computed exactly as it
contains my(u — up, 7p) and thus the (unknown) error u — u;. As a remedy m; can be
approximated, e.g. by means of a recovered gradient VZ?u, ~ Vu:

miw—unT) = (D Mtz ICT Viu = w) ||T) IV =l

TeT

(Z hoin - |1C7 (VT — Vuy,) ||T) /||VRuh— \|

TET

= mF(up, Tp) , (20)

Q

cf. [14] for a more comprehensive discussion. All numerical experiments so far indicate
that mf is a robust approximation to m;, see also the numerical experiments below. m

4 Local problem error estimators

4.1 Definition of the error estimator 7. p

The main ideas behind local problem error estimation have been known for a long time
[2, 6, 8, 21, 22]. Basically the problem is solved locally but with higher accuracy, and the
difference between the new solution and the original finite element solution serves as error
estimator.

In each one of the aforementioned sources an isotropic mesh is assumed. In contrast to
this the author has shown in [15] that reliable local problem error estimation is possible
on anisotropic meshes as well. There a Poisson model problem has been investigated, the
methodology of the analysis has been presented, and some important new tools and results
have been developed.

In our work here we demonstrate that anisotropic local problem error estimation is not
restricted to the Poisson problem but that it can be extended to the singularly perturbed
reaction—diffusion problem (1). We propose a new error estimator for the latter problem.
Note that the only other local problem error estimator for a singularly perturbed reaction—
diffusion problem is due to [1] where an isotropic mesh is assumed, and where the local
problem is infinite dimensional.

While the general structure of the proofs here is similar to the ones for the local prob-
lem error estimator for the Poisson problem [15], the actual ingredients differ. This mainly
concerns the squeezed tetrahedron and its properties as well as the squeezed face bubble
functions which play a vital role in almost all analysis. The definitions of the error esti-
mators 7. pr and 7. g7 require a very careful balancing of all scaling factors (e.g. az from
(16)) and of the ‘squeezing’ parameter dg from (21). Consequently the proof of the vital
Lemma 5 is even more technical than in [15], see also Appendix A. The derivation of a
stable basis for the local problem is different from [15]. Furthermore special care has to be
taken to obtain a feasible implementation of the estimator. Hence computational aspects
and difficulties are addressed.
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The remainder of this section is devoted to the definition of the local problem and the
error estimator. Then Lemma 5 gives two central inequalities for the local space. Next,
Theorem 6 states the equivalence of the local problem error estimator 7. p 7 and the residual
error estimator 7. g 7. The main results, namely lower and upper bounds of the error, are
given in Theorem 7. In Theorem 8 it is shown that a certain basis of the local space Vr
is stable (i.e. the local Dirichlet problem is well-conditioned). Finally other choices of
local problem error estimators are feasible as well. This is demonstrated exemplarily in
Section 4.4 for a face based estimator.

When deriving the error estimator, the corresponding local problem should be cheap
to solve but simultaneously be rich enough to extract information on the error e := u — wy,.
Here the subdomain of the local problem is chosen to be wp. Let

HYwr) :={ve HY(Q) :supp v Cwy, v=0 on dwr \ I'x}

For an arbitrary function v € H!(wr) the error then satisfies

a(u—uh,v):/f-v+ /g-v—/s(Vuh)TVv—/uhv

OwrNI'n wr wr

The local problem is obtained by approximating the space H!(wr) by some local, finite
dimensional space Vr C H}(wr) which is spanned by an element bubble function and some
squeezed face bubble functions. Their ‘squeezing’ parameters o (cf. 12) are now specified

to be
he " hg '

Note that 0 ~ \/EhglaE. The local space Vr now becomes

0g := min {1,

V= Span{bT, bEng B coTr \ FD} . (22)

Analogously to the residual error estimator one replaces f and ¢ by f, and g, respec-
tively.

Definition 2 (Local Dirichlet problem error estimator)
Find a solution ex € Vi of the local variational problem.:

a(eT, UT) = /6(V6T)TVUT + ervr

L w} fn - vr + / gn - U — /€(Vuh)TVUT — /UhUT (23)

OwrNI'n wr wr

for all vy € V. The local and global error estimators then become

Ne DT = |||€T|||wT and 77?,D = Z n?,D,T . (24)
TeTy
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Note that the particular choice of the local ansatz space Vi (namely vy = 0 on dwr \ OT)
reduces certain boundary integrals and norms. Equivalent formulations of the local problem
are derived by partial integration.

Alternative 1: Find ey € V7 such that

CL(@T,UT) = Z /I’I“TI-’UT + Z /E’I“E"UT VUTGVT . (25)
T'cwr ECOT\T'p

Alternative 2: Find ey € V7 such that

aler,vr) = a(u—up,vr) - / (f = fu)or — / (G- g)or  VYoreVp . (2)

wr oTNI'n

4.2 Equivalence and bounds of the local problem estimator

The methodology of the error estimator partly utilizes ideas that have already been intro-
duced for the anisotropic local problem estimator for the Poisson problem [15], and for the
anisotropic residual estimator for a singularly perturbed reaction-diffusion equation [16].
All the details however are original and new. The first lemma plays a central role in the
analysis of the estimator.

Lemma 5 The following relations below hold for all vy € Vr.
[vrllor S i - [[VOr[|lop (27)

lorlle < hz?65"%  min{hmins. 0p he} - |Vvrlle, VECOT | (28)

with 0 from (21). The inequalities are uniform in 0g.
If T has at least two Neumann boundary faces then the constants can depend on the
angles of the corners and edges of Q (but do not depend on the triangulation T, nor on T ).

Proof: The technical proof is postponed to the appendix. [ ]

Theorem 6 (Equivalence with residual error estimator) The local problem error
estimator n. p,r is equivalent to the residual error estimator n. g in the following sense:

77?,D,T S Z 77§,R,T' (29)
T Cwr

77§,R,T S Z 77?,D,T' . (30)
T Cwr

Both inequalities are uniform in c.

If T has at least two Neumann boundary faces then the constant in (29) can depend on
the angles of the corners and edges of Q@ (but do not depend on the triangulation T, nor
onT).
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Proof: Recall the definition (24) of . p r, observe that er = 0 on dwr \ 9T, and take into
account the modifications for boundary faces. By integration by parts one obtains

25
ior = llerl?, = ater.er) ® Y / roert Y /
’ E

T'ewr ECOT\T'p
1/2
< (Z ||7“T'||2Tf> Nerllor + > lrelle - llerlle.
T Cwr EC@T\FD

Now ||er||lu, and ||er||z, E C 9T, are to be bounded. Recall the definition of ar and 0g
and apply Lemma 5 to obtain

lerllor < ezl
(27) 1y
lerllor S Pming  IVerllor < hming -7 ez,
= erllor < min{l,e V2 hpins} - llerll,, = ar-llerll.,, (31)
(28) -1/2 —1/2 .
and lerlle S hg ' 0g " min{hminr, 05 he} - ||Ver|lw,
~ e al? | Ver|lun
< e Yal? Ylerll,, - (32)

Inserting these inequalities and utilizing cr ~ a7 for neighboring tetrahedra results in

1/2
Epr S ( dooog-llrold + e Pars Y IIT‘EIIE> el

T Cwr EC@T\FD
which, together with [[lez |||, . = 7.pr, proves (29).

For the proof of (30) we require bounds of 7. g 7, and thus of ||rr||r and ||7g||g. The
structure of the proof is similar to our analysis for the Poisson equation [15].

We first bound the term ||rz7||7, with 77 C wr being an arbitrary tetrahedron. Recall
definition (7) of the bubble function by and set vy := by - rv. Then by and vy belong
to the finite element space V7. Hence the local problem related to 7" has to be invoked.
The local problem (25) and equivalence (9) imply

el 2 B2 et = / rpvp since vp € HY(T)
TI

(25)

= aler,vr) < |lew|lp - lorlly

where erw € Vv denotes the solution of the local problem over wz. Inequality (10) results
in

llorlliz = eIV G- re)lige + 1br - o3

10 _ _
O en2 el + el ~ oz el
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Combining both inequalities yields
Il S ozt lllerlly < o' nepr VT €wr (33)

since a» does not change rapidly across adjacent tetrahedra 7.

The norm of 7 € P*(E) for an interior face E C 0T \ T is bounded similarly. Recall
the definition (12) of the squeezed face bubble function bg 5, and set vg := bgs - Fert(1E) €
Vr N H}(wg). Integration by parts and vg =0 on 9T N T imply

11
ez 2 gl —/ TE Ve

(25)
= 6T7 UE E rm Vg
TI

T'Cwg

< |||6T|||WE : |||UE|||wE + Z [rz |l - ||vellr
T Cwg

Now the norms of vg are bounded by means of inverse inequalities, and by using the specific
value of dg from (21). This leads to

(13) 21
losller = bes- Farlr)lle S 042 B2 - Alrelle 2 740l rplls
Vgl = [[V(bgs - Feut(E)) ||
(14)

< 0 hil min{0e - her, hoine Y lrells

(21) _
e Var' - lrellp

—-1/2
= lelle, = EIVERIZ, + losl2)? ~ 7oz ralls

Next one utilizes the previous bound (33) of ||rz||7+ for both tetrahedra 7" C wg. Com-
bining all estimates yields

Irelle < € Z Nepr  VECOIT\I' . (34)

T'Cwg

The norm of rg € P°(E) for a Neumann boundary face E C 9T N 'y is bounded
similarly (cf. [15]) and gives analogously

Irelle < e*ap? - npr VECOTNTy

Collecting all the results for ||rr||r and ||rg||z and inserting them into the definition of
n-r.r gives (30). ]

With the help of Theorem 6 we easily derive the main result, namely upper and lower
error bounds by means of the local problem error estimator.
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Theorem 7 (Local problem error estimation)
The error is bounded locally from below by

Neor < lu—uplll,, +c-Cr  YTET . (35)

The error is bounded globally from above by

1/2
[lu —unlll < mi(u—up, Tp) - [7752,D + ng]

(36)
Both inequalities are uniform in c.
If T has at least two Neumann boundary faces then the constant in (35) can depend on

the angles of the corners and edges of Q (but do not depend on the triangulation Ty, nor on
T).

Note that in analogy to Lemma 4 only the upper error bound is influenced by the matching
function my (v — up, Tr).

Proof: For (35), apply formulation (26) of the local problem, recall how wr and Vr are
modified if 7" has a boundary face, and observe in particular that er = 0 on dwr \ 9T
Then one obtains

2
or = lerlly, = aler,er)

(26

2 aw—ner)— [ (fF=fa)er— [ (9—gn)-er
/wT FNZM"

<l =unlly, - Wezllly, + [1f = fallor - lexllor + 1lg = gnlloxnor - llerllrxnor-

With the previous bounds (31) and (32) one readily obtains the desired estimate (35).
Finally inequality (36) follows immediately from the error bound (19) of the residual error
estimator, and from relation (30) between 7. g r and 7. pr. [

4.3 A stable basis for the local problem

Here we will present a stable basis for the local problem under consideration. An equiv-
alent description of this aim is that the variational problem is well-conditioned, i.e. the
condition number of the corresponding finite element matrix is bounded independently of
the perturbation parameter ¢ and of aspect ratio of the elements.

Recall that the local ansatz space is Vg := span{br,bgs, : E C 0T \I'p}. As a basis
of Vr we choose

® = (br, 65 bps : ECOT\Tp) . (37)

For simplicity of notation enumerate the faces of T such that interior and Neumann faces
come first, and denote them by F;, i = 1,...,m, m < 4. Denote the parameter of the
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squeezed face bubble functions temporarily by d; := dg, . Hence any function vr € Vi can
be expressed as

vr = fBobr + Zﬁi'(si_l/Q'bEi,éi —d.v

i=1

with v = (0,1 Bm)"

The stiffness matrix K7 € RAET™*A+m) o the local problem is given by means of the finite
element isomorphism a(vp, wr) = (Krv,w) for all wr =& -w € Vr.

Theorem 8 (Stable basis) The basis (37) of Vr is stable, i.e. the condition number
k(K1) of the local problem stiffness matriz Kt is bounded uniformly in ¢ and T':

K(Kr)~1 YTET,

Proof: The condition number is given by

K(Kr) = max (KTV,V)/(V,V)]/[min (Krw,w)/(w,w)

w#0
Thus investigate the scalar product (Krv,v) which equals
2
(Krv.v) = a(vr,vr) = |lorll, = ellVorlls, + llvrllZ,

We start by bounding |[lvr||,. from above. The triangle inequality readily implies

wr

m
—1/2
llorll, < 160l - brlll, + D181 - 6 7 llbes,
i=1

Using inverse inequalities (8) and (10) one derives

— (1) _
bz, = ellVbrliF + lbrl7 S ehplr ITI+IT1 '~ a7 - |T]

~ min,T

The second inverse equivalences (13) and (14) and the particular choice of ¢; = dg, from
(21) yield

= 8||VbEi,5i iE

~ ;- |T|- (E min{d; - hgr, buminr} > + 1)

EJE + ||bEi,5i

2
|||bEi,5i wr

~ 0 |T]- (Lt az®) ~ 6+ |T] - oz

Altogether one obtains

m
lforlll, S 160l - ozt T2 + Y 161 a7t [TIV2 ~ az' | TIV2 - |Iv]igum

i=1
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To bound |||vrll|,,. from below, apply Lemma 5 giving

VU |wr

2
and ozl

hminT ||UT||WT

(€ hpin + 1) - llvrllZ, ~ ap® - llvrllZ,

2V VY

In the proof of Lemma 5 in Appendix A it is shown that

||UT||3;T 252 |T| |V||]%1+m

which completes the lower bound of |[||vr |,
Summarizing all results, one ends up with

2 _
(Krv,v) = |lorllls, ~ a7’ [T [[v[[Rien

which immediately yields Apnin(K7) ~ Amae(Kr) ~ a7?|T| and the desired assertion
I{(KT) ~ 1. |

4.4 A further, face based local problem error estimator

With the methodology presented so far one can derive further local problem error estima-
tors. This will be demonstrated here for a face based local problem error estimator. Such
an estimator can be advantageous when other ingredients of an adaptive algorithm are face
based too (e.g. the refinement procedure).

We start again with a corresponding residual error estimator. For an arbitrary but
fixed face E define the face based residual error estimator and the approximation term by

1/2
nae = (0d Y el +e7 2 ap- |rel}) (33)
TC(.UE
Cr = ap|f = filloy + e g —gnllers (39)
respectively (the norm || - ||gary here is to be evaluated only when E C I'y).

Utilizing the techniques and most of the results of [16] one can comparatively easily
prove the following residual error estimation.

Lemma 9 The error is bounded locally from below for all faces E of Ty, by

nere S e —=wll,, + Cp

The error is bounded globally from above by

1/2
lw — unll| S ma(u — un, Tn) - (Z 775RE+<5E> ;

E€Th

where the sum over E € T, includes interior and boundary faces of the triangulation. Both
error bounds are uniform in €.
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Note that the residual error estimator can be modified such that it contains only the face

residual but not the element residuals. Then a very similar result is achieved, cf. [17]. Since

this modification is not suitable for our subsequent analysis, we omit a detailed description.
The local space associated to a face E is now set to

Vg = Span{bEﬁE if £ §Z I'p, br VT C wE} ,
i.e. Vg is three dimensional for interior faces E. The local problem is: Find eg € Vg such

that
a(eg,vp) = /fh'UE +/gh'UE—/€(VUh)TVUE—/UhUE

ENly wWE WE
for all vg € Vg. The local face error estimator then becomes
=5 = [llesll,,

Again two alternative, equivalent descriptions of the local problem are possible and advan-
tageous. Find eg € Vg such that

Alternative 1: aleg,vg) = Z /TT-UE + /TE'UE
T B

Tewr

Alternative 2: aleg,vg) = alu — up,vg) — /(f — fr)ve — / (9 — gn) v

wg Enl'y

holds for all vy € Vg.

Using the techniques and even some results of the previous analysis of the element
based local problem error estimator the following theorem can be shown. Because of the
similarities of the proofs we only state the result.

Theorem 10 (Face based local problem error estimator)
The face based residual error estimator and local problem error estimator are equivalent:

NeD,E ~ T:R.E VE €T,
The error is bounded locally from below for all faces E of Ty, by
nepp < llu—uplll,, + -G
The error is bounded globally from above by

1/2
e = ual]] S ma(w —up, Tn) - (Z p.e+ CEE)

EcTy,

All relations are uniform in €.
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5 Computational implementation

5.1 Difficulties and their solution

It is a major demand that the local problem can be constructed and solved as fast as
possible since usually the error estimation is as expensive as the assembly of the global
finite element stiffness matrix and the solution process for u;,. Therefore one encounters
two main problems when applying our error estimator. Both difficulties are related to the
computation of the local stiffness matrix Kz which arises from the bilinear form a(-, -), see
also Section 4.3.

Problem 1: The support of the squeezed face bubble function bg s is not wg but some
(0—dependent) part of it. For example the computation of a(bg.s, -) implies a comparatively
complicated domain of integration. In particular when evaluating a(bg, 4y, ,bE, 5,) for two
different squeezed face bubble functions, the domain of integration becomes

supp(bg, 55, ) N supp(be, by, )

which might be empty, or a single tetrahedron, or the union of two tetrahedra, depending
on 0, and dg, (cf. also Figures 3 and 4). Even to determine and describe the domain of
integration is not trivial, save the actual integration.

Remedy: We modify the parameter for the squeezed face bubble function to be

N . 1 hmin € . 1
5E — mln{z, hE’E,hLE_‘} = mln{z,éE} ~ 5E

Then all results remain valid, only the inequality constants may be slightly worse (but they
are still uniform in ¢). The main advantage now is that

supp(bEthl) N supp(bE2,5E2) =0

Hence the computation of the modified local matrix K7 is less expensive, as the matrix
now contains several zero entries. Fven more, the sparsity pattern

* %k 3k %k %k

e kT 55000
Kr=KI = | x 0 %

re T x00 %0

* 000 %

allows a particularly fast and simple solution of the local problem.

Problem 2: The basis functions of Vi are polynomials of a relatively high degree.
Hence numerical integration rules to compute a(-,-) are far too expensive and thus unsuit-
able.
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Remedy: Instead we propose a direct computation of the integrals involved. The
procedure is explained exemplarily for a(br,br). Using the transformation technique via
Fy: T — T, one obtains

a(bp,by) = e/(VbT)T-VbT + /bQT
T T
e 5/(VbT)T-AT1ATT-VbT + 6|T|/b2f
T T

with by being the element bubble function for the standard tetrahedron 7. A straight—

forward computation yields
/ 9 4096
bf’ -
7 155925

In order to obtain the remaining integral, define the matrices

M = (mw)zj 1 = 1A ’

and N = (ny) ” 1 /VbT , Le. nj; = 5:6157’"'85:-51’“

and observe that
/T (Vbp)' - A7YALT -Vby = N an mij

The matrices Ar and M are determined by the geometry of T whereas N can be computed
directly giving
211
2048 121
2835

N =
112

Hence one only has to determine Az and |T'| and perform the aforementioned operations
to obtain a(br, br).

The remaining values af(-,-) are computed similarly, thus a brief description of the result
should suffice.
a(br,bgs): Use an affine linear transformation Fj:7T — T such that F = Fgl(E) lies
in the Z;Z» plane. The parameter § € (0, 1] of the squeezed face bubble function can be
arbitrary here. Then

4
br-brs = ——02(—20%4 1562 — 426 + 4
Lbrbes = a2+ 155 — 423+ 41)
_ _ 2¢c ¢ c
/be-(VbEﬂé)T = c 2c c
T ' c ¢ d

; - 4 2 . _ _
with c = 35(5 (0 —4) and d .= 105(6 1)(6% — 76 + 18)
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a(bg,s, br,s): Utilize the same transformation F; as before which implies for arbitrary

d € (0,1]
9
Vi, = —§
/T Eg 560
B B 2c ¢ ¢
VbE,J . (VbE,(;)T = c 2c c
T c ¢ d
ith L ) d d:= (5 +2/9)
w1 cC = 230 an . 140

a(bg, 5,5 bE,,s,): Since we propose to use ¢; := SEi < 1/4, the supports of both squeezed
face bubble functions are distinct, thus a(bg, 5,,bg,.s,) = 0.

Collecting all the previous results, the local stiffness matrix K7 can now be assembled.
The right-hand side is computed similarly (actually, the procedure is even simpler since
the integrals do not involve derivatives). In the next paragraphs we show that this direct
computation of the local problem is indeed much cheaper than the numerical integration
rules.

5.2 Computational effort

The comparison will not investigate every detail and every possible optimization, as the
difference between both approaches will turn out to be overwhelming. Even more, a precise
operation count would be computer dependent. For example present processors may be
able to combine one multiplication and one addition to a single operation.

Computational effort for direct computation

The suggested approach utilizes four different transformations F'; on the element 7" and four
transformations on each neighbouring tetrahedron (i.e. to compute bg s on this neighbour).
Hence |detA| has to be computed five times, and A~" and A~ - A~ T are to be computed
eight times. The operation count is roughly

Operation Operation count Total
det A 5x (9% 54)= (45% 25+)
Al 8 x (19% 9+) = (152%* +)
A1 AT (symmetric) 8 x (18% 12+) = (144* 96+)
Y (341* 193+4)

where 5 x (9% 5+) stands for 9 multiplications and 5 additions which are performed five
times.
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Next, the values of [-b2, [ Vbs - (Vbr)' etc are determined. Some of these values
(which contain bg s) depend on 0. The computational effort is roughly

[ b2 ( 0% 0+)
fT by - bg s 4 x (8 3+) = (32* 12+4)
Jrb%s 4x (1% 04) = (4% 04)
J7 Yoz - (Vbg)T (0% 0+)
J7Vbr - (Vbg )" 4 x (6% 44) = (24* 16+)
J7Vbgs- (Vbgs)" 4x (1% 14) = (16* 4+)

Y (76% 324)

Subsequently N : M is to be determined, with N, M being symmetric matrices. The
computational effort is approximately (7* 54) which has to be repeated 9 times (i.e. once
for each matrix entry of Kr). The final value of a(-,-) is obtained by adding both sub—
integrals and multiplying it by |detA|. This adds 9 x (1* 1+).

Summarizing all results, the total effort required to assemble the local stiffness matrix
is approximately

(341% 193+) + (76% 324) + (63* 454) + (9% 9+) = (489 % 279+)

Computational effort for numerical integration

Here we will exemplarily investigate a(br,br) = [,b% + ¢ [(Vbr)>. Computation by
means of numerical integration is based on

[ = ol [ 4~ oz w tia)
T T -

/T (Vbr)?

6T [ (Vo) - Ay ;T - Vs
T

67| 3 wi- ((Ver) - Ar'ArT - Vbr ) 3

Q

where (w;, Z;); denotes some numerical integration rule for the standard tetrahedron T
with weights w; and evaluation points 7;. FExactly as for the direct computation above,
one requires the matrices Ar and A;' (computational effort is (19* 94)) as well as
6|7'| = |detAr| (which leads to (9* 5+)).

Consider [Tb% next. Since by € P*(T) one requires an integration rule which is exact
for P*(T). The simplest rule that we know of involves 43 evaluation points [9]. The
evaluation of

Ww; - b%(fz) = W; - (256 . /\1/\2/\3)\4)2(fi)

at a single point Z; requires (6* 3+). Hence the total amount for [ b7 is about 43 x
(6% 4+) = (258* 172+). Similarly [.(Vbr)? is investigated where an integration rule
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with 24 evaluation points suffices [12]. After some consideration one ends up with an effort
of roughly (480* 384+). Thus the total effort to compute a(br, br) amounts approximately
to (750* 550+). We expect the other eight scalar products a(-,-) to be cheaper because
of the smaller polynomial degree. Then, however, the computational domain involves Tg 5
which requires more considerations. Altogether the effort to compute the whole matrix of
the local problem is likely to be of order

(O(5000) * ©(4000)+)

Even without a precise calculation of the computational effort for the numerical inte-
gration it is absolutely clear that this approach is far too expensive. Equivalently, if the
computational effort should be of the same size (O(500) x O(300)+) as for the direct com-
putation then only one tenth of the required evaluation points can be used. This would
render the integrals and, subsequently, the matrix to be very inaccurate and thus useless.
Hence direct computation of the local problem is a must.

Furthermore we note that our procedure for the direct computation is very similar to
the computation of the local problem for the Poisson equation, cf. [15]. The computational
effort is roughly the same, i.e. the singularly perturbed character of our differential equation
here is no disadvantage.

6 Numerical experiments

Here we investigate the performance of the local problem error estimator n.pr of (24)
by means of numerical experiments. We utilize a model problem which has already been
applied in [16] to analyse the element based residual error estimator 7. g 7, and which has
been employed in [17] to investigate a face based residual error estimator. Thus even the
interesting comparison between different types of error estimators is possible.

Let us consider the 3D model problem
—eAu+u=0 inQ:=(0,1)° , uw=ug onl'p:= 00

where the perturbation parameter is set to ¢ = 10~*. Prescribe the exact solution

u = 6*50/\/g + 6*34/\/g + 6*2/\/E

which displays typical boundary layers along the planes x = 0, y = 0, and z = 0. The
Dirichlet boundary data uy are chosen accordingly.

We apply the finite element method with a sequence of meshes, each of which is the
tensor product of three one—dimensional Bakhvalov-like meshes [7] with 2% intervals in [0,1],
k=1...6. To describe the 1D nodal distribution properly, denote the transition point of
the boundary layer by 7 := /¢|In\/g|. Then 2*~! nodes are exponentially distributed in
the boundary layer interval [0, 7] whereas the remaining interval [, 1] is divided into 2F~1
equidistant intervals, cf. Figure 5. More precisely, the (1D) nodal coordinate of the m-th
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node is
—fBy/eln [1 - %(1 —677/5/‘/5)] form=0...2"1 3=3/2
Ty =
7'+(1—7')-(%—1) form=2F1+4+1.. 2"

Note that the original (1D) Bakhvalov mesh utilizes a slightly different transition point 7.
Furthermore we do not know whether these tensor product type meshes are optimal (which,
of course, also depends on the optimality criterion).

—

Figure 5: Mesh 2 — Mesh 3

The first table below presents some information about the meshes and their maximum
aspect ratio. The last two columns give the exact value of the matching function m; (u —
up, Tn) as well as its approximation mf(uy, Tp) from (20).

Mesh & # Elements Aspect ratio my(u — up, Tr) mf(un, Tr)

1 48 29.4 1.55 1.68
2 384 69.5 1.62 1.52
3 3072 82.6 1.69 1.69
4 24 576 88.6 1.88 1.86
S 196 608 91.5 2.37 2.03
6 1 572 864 92.9 3.04 2.29

Since the size of my is comparatively small and grows only mildly, the chosen meshes
discretize the problem sufficiently well. Additionally the approximation m¥ is satisfactorily
close to the exact value. Hence the matching function and its approximation are useful
tools for the theoretical analysis as well as for assessing the mesh quality in numerical

computations. This topic has already been discussed for the Poisson equation in [14].

Next our main analytical results are to be confirmed numerically, namely the error
bounds of Theorem 7. Therefore we present the ratios of left-hand side and right-hand
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side of (36) and (35), respectively, in the table below. Note that the approximation terms
C.,r and (. vanish here.

Mesh & flu—uy) ezl DT
My 1D TeTn [llu = unlll,,

1 0.154E 40 1.102 0.411

2 0.536L — 1 0.810 0.568

3 0.229F — 1 0.705 0.611

4 0.110F — 1 0.605 0.607

S 0.553F — 2 0.474 0.597

6 0.282F — 2 0.371 0.582

Start with the second column which yields a convergence rate of the error ||u — usl| of
approximately N=0-32¢_ with N being the number of elements. This is almost the optimal
rate of N~/3 which indicates that the meshes under consideration discretize the singular
problem well. Next, the ratios of the third and fourth column are related to the upper and
lower error bound, respectively. These ratios are bounded from above and thus confirm
the predictions of Theorem 7. Note that from a practical point of view the moderately de-
creasing values of the upper error bound (third column) imply that the error is increasingly
overestimated.

In the last table we examine the equivalence of the local problem error estimator and the
residual error estimator, as described in Theorem 6. Again we compute the ratios related
to (29) and (30). Since all values are bounded from above, this impressively underpins our
analytical results.

Me,D, T Nz, R,T
Mesh £ I%1€a7g§ ) 17 jmeaT); ) 17

( > 775,R,T'> ( > 775,D,T'>
T'Cwr T'Cwr

1 0.266 1.102

2 0.280 4.977

3 0.338 4.889

4 0.293 4.819

5 0.203 4.731

6 0.178 4.743

Since the same numerical example has been considered for the residual error estimator of
[16] we can easily compare both estimator. Qualitatively both estimators behave similarly
whereas from a quantitative viewpoint one observes roughly n.g ~ 4 - n.p. Furthermore
the residual error estimator 7. g overestimates the true error more than the local problem
error estimator 7. p does. This indeed can be expected since the derivation of 7. g requires
more intermediate steps (such as interpolation estimates and Cauchy Schwarz inequalities).
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7 Summary

We have considered a singularly perturbed reaction—diffusion problem and proposed a new
error estimator that can be applied to anisotropic finite element meshes. The rigorous
analysis confirms that the error estimation is uniform in the small perturbation parame-
ter. Furthermore tight error bounds are obtained provided the anisotropic mesh is chosen
according to the anisotropy of the solution. Thus reliable and efficient error estimation is
possible on anisotropic meshes.

Then a stable basis of the local problem has been derived and an additional, face ori-
ented local problem error estimator has been proposed. Finally implementational aspects
have been discussed and analysed. A numerical experiment complements the theory.

A Proof of Lemma 5

First we state Lemma 5 again.

Lemma 5 The following relations below hold for all v € V.

||U||w:r 5 hmin,T'vaHwT (27)
lole < hp"?65"”  min{hmimr. 0 he} - ||[VOllo, VYECOT | (28)

with 0g from (21).
If T has at least two Neumann boundary faces then the constants can depend on the
angles of the corners and edges of Q (but do not depend on the triangulation T, nor on T ).

Proof: The proof here utilizes some key ideas that were already applied in [13, Lemma 3.5]
and [15]. Our exposition here requires several non-trivial extensions which are due to the
singularly perturbed problem, and the use of squeezed face bubble functions in particular.
In order to facilitate the understanding of the proof, each major step will be given a
distinctive name.

Set Ty := T and enumerate the remaining tetrahedra of wr \ T by Ty...Ty. If T has
boundary faces then & < 4. The faces of T are denoted accordingly by F; := T, NT.

Transformation: In order to prove (27) consider the tetrahedron 7; and rewrite ||v||z, by
means of the transformation Ar,, and ||Vv||z, via the transformations Cr,, Hr,. Utilizing
|T| ~ |T;|, and with certain abbreviations given below this yields

iz, = 6T vllz, ~ IT|-r;
k

and  ol3, ~ |T|-) ni = |T|r
1=0
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Similarly the term ||Vv||,,. is transformed to give

(O IR

IVollz, = |H5'C,Vollz, = 6|Ti| - || Hy' - Vol[2
k k

which implies Vo2, = > [IVollz, = > 6|3 - |1 Hy' - Vol%
i=0 i=0

k
= 6 Y |3l hyir, - ldiag(m,, 724, 1) - Vi3,
=0

min,T min,T

k
~ ho AT sio= bt |T) s
i=0

with v = hpinn /M and Yoi = hmint [ho,
k

§; = ||diag(71,ia72,i71)'@ﬁH% >0 and s := Zsi >0.
i=0

A rough outline of the proof is as follows. Realize first that » and s depend on various
variables (e.g. on the geometry of T', the parameters 0; := dg, etc). Then consider r,s
over some compact set of variables. Since both terms turn out to be continuous, one can
investigate their maxima and minima which eventually provide the assertion.

Extend domain of definition to a compact set: Let us start with the case where T
has no Neumann boundary face. Assume further that 7" has m interior faces and 4 — m
Dirichlet faces. The local space Vr is spanned by by and bg, 5,, # = 1...m. For our purpose
we utilize an expansion of v € Vi where the squeezed face bubble functions are additionally
scaled by 5;1/2, namely

v=0br+ Y B0 VPbps  BiER
i=1

Without loss of generality assume v Z 0 and Y_;", 37 = 1. After transformation via Ar,
the representation of ¥ becomes

Bo-bp + > 0+ (5{1/21)3.,52. for i =0 (i.e. on T)
i=1
B; - (5{1/21)3.,52. fori=1...m (i.e. on T})

s =w

3

7, ©Ar, =

i

Hence v depends on fy...0n and d;...d,, 6; € (0,1]. Note further that J; influences
ro = [|0]|% and r; = [|0]|3 but not the other values r;.
Next v is to be considered over a compact set. Thus introduce

B::{(ﬁm...,ﬁm):iﬁf:1} and D::{(él,...,ém):5i€[0,1]Vi}
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The case d; = 0 requires additional consideration. While the function 6;1/21),91.,52. has a well-

defined meaning for ¢; € (0,1], this is no longer true for §; — 0. Then supp (bg, 5,|1,) =
T; i, 5, degenerates, and (5;1/2 — co. Therefore the value of r; = [|9]|% for d; = 0 is defined
J

as the limit for o; — 0:
ri(6; =0) := tilil—% 7;(6;)
This limit is well-defined since the vanishing support T; g, 5, of the squeezed face bubble

function and its scaling factor ¢, Y2 are exactly balanced. For the outer tetrahedra this
can be easily seen by utilizing two transformations, namely via Ay, : T — T; and via
FT:IE“S, : Ty g5, — T;. By using |det(Ar,)| = 6|T'| and |det(Fr, g4, )| = 60;|T| one obtains

T = 51'2 ||5;1/25Ei,5i %
LB (OIT) Mbsal = 207 (BIT]) Mbsal,
Fﬁ% 9% — — 9
=BT (O|T) T 6T bs 7, = == ~ B
: 560
and lim r; = iﬁf
3;—0 560

Hence lims, o r; exists. For ry proceed similarly.

Consider Maximum and Minimum: As a consequence we can consider r; and r on
B x D, and r;, r vary continuously over that compact set. Therefore r attains its maximum
and minimum. To show that this minimum is positive, assume the contrary which implies
r; =0 for alli =0...m. On the outer tetrahedra T}, + = 1...m, proceed exactly as in the
last paragraph to obtain

9

0=ri = 55"
which implies 3; = 0,7 =1...m. On the main tetrahedron 7" then v is reduced to v = [ by
giving
4096

155925

and By = 0 too. This contradicts >_1", 47 = 1, hence

B ~ B

0=ry =0l =

minr > (
BxD
Together with maxr ~ 1 we obtain
BxD

r~1

or, equivalently,

Woli2, ~ IT1-> 88 . (40)
=0
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Investigation of s: The investigation of s and s; relies on the same basic ideas as before.
The details however are much more technical because derivatives are involved (i.e. Vo)
and the transformation C7, is applied.

Consider s; = ||diag(v1.4, V2., 1) - @@H; > () which depends on T}, 7v;; and 0. The

restrictions on Tt and T; imply 0 < 714,72, < 1 and, for the nodal coordinates of TZ-,
0<Zop <1/2, 0< i3y, <1, —1<gsy < 1. Similar as before we omit the actual
meaning that stands behind s;, and view it instead as a purely analytical term that depends

on Z;r,, Ysi. Vi 0; and ;. Next consider s; over the compact set X; X G; x D x B, with
1
2 )
G = {(71,Z~,72,Z~) D 0< Yy 72 < 1}

It is obvious that s; is continuous on X;, G;, B and for §; € (0,1]. Note again that ¢;
influences only sq and s;. The only cause for discontinuity of s; is §; — 0 which may
lead to s; — oo (because 6;1/2 — o0 and |Vbg, 5,| — 00, see below). Nevertheless such a
discontinuity does not disturb our analysis since we want to bound s; from below. For a
precise investigation we define again

sj(éi = 0) = lim Sj((si)

0;—0

X = {(fz,Tiaff?),Ti,?)s,Ti) 0<Zy <5,0< %3, <1, -1<y37, <1 },

and consider then the term min{1, s;} which is continuous for §; € [0, 1].
Since s = Y " s;, this term is continuous as well, and it attains its minimum over the
compact set

K =XX, x XG x D x B
=0 =0

In order to show that this minimum is positive assume the contrary, namely s = s; = 0 for
all ¢ = 0...m. Start with any of the outer tetrahedra 7;,: = 1...m. The representation
of ¥ there is 1|z = 36, - be, s;|7,- Then

0=1s5 = [diag(m72:,1) - VO[3
> leg - Vollg, = 676" lleg - Vbesly
with e3 := (0,0,1)". The latter norm is analysed similarly as for r; by using two trans-
formations via Cp, : T' — T; and via F51E5 : Tip,5, — T;. In contrast to r;, how-
ever, we cannot evaluate s; exactly but bound it instead. From |det(Cr,)| = 6|T| and
|det(Fr, g,5,)| = 66;|T| one derives
.. Cr.
6@'_1 ||e?T : VbEiﬁi % = 61_1 : (6|T|)_1||e;— ’ C;;VbEu& %
— (61T ed - O Vbs sl
Fi}_Ei,‘;i

07"+ (6]T)) " - 66:|T| - [leg - CF,Fr & 5 Vg, |3,
= ||(F;,p,5,Cr - e3)" - Vb,

2
T;
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Recalling the definition of Cr, from (4) yields Cr.e3 = p3 ., which is a vector from a vertice
to the opposite face in the tetrahedron 7;, see Figure 1. Hence Fi,TlE 5,;CT; - €3 is a vector

from a vertice to the opposite face in the tetrahedron FilE,;Tz Using T; D T; g, 5, one
obtains Fj?lE 5:1i D Fj?lE 5:. Lo 50 = T; and thus

1
~ 1
3+43

where o(T;) denotes the diameter of the inscribed ball of T;. Then

||(F:FIEJOT : e3)T : @bEi

FT:i,lEi,éiOTi 'e3|R3 > Q(Tz) =

2 > min [lg" - Vbg |2 = 81/280 ~ 1
|q‘R3:1

Summarizing the previous results, we end up with

0=s; > 512 6;1 ||e;— ) @8Ei75i

7 2B
This holds for ¢; € (0, 1] and therefore also for the limit 6; = 0. Hence one concludes
Bi =0 Vi=1...m
Next consider the main tetrahedron 7" where v is now reduced to v = 3y - by. Then
0=s0 > M l] - byl

immediately implies 8y = 0 which contradicts the assumption Y ;" 32 = 1. Therefore the
minimum of s is positive giving
s 21 ~r

which provides the assertion.

T has Neumann faces: In this case wr consists of less than five tetrahedra, and dim V3 <
5. Although the representation of v changes as well, the main ideas from above can still
be applied to show the assertion. Thus we omit the proof.

It is noteworthy that the case of two or more Neumann boundary faces of T' gives rise
to a particular phenomenon. If one can guarantee §; < d, < 1 Vi (with some parameter
d,. which is the same for all elements) then the resulting inequality is as before. Otherwise
the inequality constant in (27) may depend on the angles of the corners and edges of
but do not depend on the triangulation 7, nor on 7', cf. also [13, Lemma 3.5].

Proof of (28): Assume first that E; is an interior face, and consider the corresponding

outer tetrahedron T;. Apply (14) with ¢ = 1 to obtain

|Ti ~ 51'1/2 ) hllE/fTi ) min{(si hEi,Ti ) hmin»Ti}_l ) |Ei|1/2

Together with ||bg, s, 5 ~ | E;|'/? this yields immediately

E; ™~ 61'_1/2 ) h}_Eil,/TQi ) min{(si hEi,Ti ) hmiani} ’ ||VbEi75i

| | bEi 105 T;
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From |, = B; - bg, 5,

T and hg, 1, ~ hg,, hpina, ~ hmin,e one concludes

||U| E; ™ 5@'_1/2 ’ hg‘il,é“zi ) min{(si hEini ) hmin,Ti} ’ va T;
< 677 hg  min{di b, Bpinr} - [V 0]y

which proves the assertion.

If E; is a Dirichlet face then v|g, = 0, and (28) holds trivially. Finally, if E; is a

Neumann face then the proof becomes more technical since no outer tetrahedron T; exists.
Then one has to utilize similar ideas as for proving (27). The details are omitted here. m
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