EFFECTS OF PHOSPHOROUS IONS IMPLANTATION IN BULK CdTe CRYSTAL

Przemyslaw Sedzickia, Lukasz Skowronska, Robert Szczesny, Hans-Werner Becker, Detlef Rogalla, Michal Pawlak, Beata Derkowska-Zielinska

aInstitute of Physics, Faculty of Physics, Astronomy and Informatics, Nicolaus Copernicus University, Grudziadzka 5, 87-100 Torun, Poland
bInstitute of Mathematics and Physics, UTP University of Science and Technology, S. Kaliskiego 7, 85-796 Bydgoszcz, Poland
cFaculty of Chemistry, Nicolaus Copernicus University, Gagarina 7, 87-100 Torun, Poland
dRUBION, Central Unit for Ion Beams and Radionuclei, Ruhr-University of Bochum, Germany

The CdTe monocrystals were grown from the melt by the modified high-pressure Bridgman method. The phosphorus particles flux in a range of 5×10^{13} to 5×10^{16} ions per cm2 were used to dope the host material. Ellipsometric azimuths, Ψ and Δ, were measured for three angles of incidence (65°, 70° and 75°) in UV-VIS spectral range (0.5-6.5 eV) by the V-VASE ellipsometer (J.A.Woollam Co., Inc.). The transmittance spectra were recorded applying Cary 5000 spectrophotometer.

The changes in the optical constants of studied materials have been observed with transmittance measurements and spectrometric ellipsometry. Variations in refractive index (n) and extinction coefficient (k), which depends on the implantation of phosphorus ions in CdTe, are shown in Fig. 1.

Fig. 1. Changes in refractive index (n) and extinction coefficient (k) for CdTe:P.

Keywords: bulk CdTe; ions implantation; ellipsometry

* Corresponding author: Beata Derkowska-Zielinska, e-mail address: beata@fizyka.umk.pl, Institute of Physics, Faculty of Physics, Astronomy and Informatics, Nicholas Copernicus University, Grudziadzka 5/7, 87-100 Torun, Poland Tel.: +48 56 611 32 01; Fax: +48 56 622 53 97