PHONON ANOMALIES IN STRAINED SrMnO₃ FILMS

P. Marsik, R. de Andres Prada, F. Lyza and C. Bernhard

Physics Department, Chemin du Musée 3, 1700 Fribourg, University of Fribourg, Switzerland

Using Fourier-transformed far-infrared (FTIR) and Time Domain – Terahertz (TD-THz) ellipsometry, we investigated epitaxial thin films of SrMnO₃ grown by pulsed laser deposition (PLD) on various substrates.

SrMnO₃ in bulk is a cubic perovskite with antiferromagnetic ordering under T_N = ~230-260 K. Under epitaxial strain it is possible to stabilize ferroelectric order caused by off-center displacement of the central magnetic Mn⁴⁺ ion [1]. Such multiferroic state is expected to show large magnetoelectric coupling. The strong interaction between the spin ordering and lattice phonons has been demonstrated on bulk Sr_{1-x}Ba_xMnO₃ (x = 0-0.3) [2,3].

We will present temperature dependent, 10 K – 400 K, THz-FIR optical response of 30 nm SrMnO₃ films with varying epitaxial strain driven by lattice mismatch of SrMnO₃ with respect to substrate. The substrates were chosen accordingly: cubic LaAlO₃ causing small compressive strain (-0.3%), tetragonal SrLaGaO₄ (001) with moderate 1.1% tensile strain and cubic LSAT with tensile strain of 1.8% that should be sufficient for the ferroelectric instability [4].

In our films we observe the three characteristic phonons of cubic perovskite, with dominant lowest-energy mode that shows softening with increasing strain and anomaly at temperature of the antiferromagnetic transition.

Keywords: THz ellipsometry; Ultrathin films; Ferroelectrics

References