Imaging Ellipsometry as a Tool for the Characterization of 2D-Materials on various Substrates

S. Funkea, A. Matkovicb, P. Braeuninger-Weimerc, P. H. Thiesena, S. Hoffmannc, A. Dieboldd, U. Wurstbauere

aAccurion GmbH, Stresemannstraße 30, Göttingen, Germany
bCentre for Solid State Physics and New Materials, Institute of Physics, University of Belgrade, Pregrevica 118, 11080 Belgrade, Serbia
cDepartment of Engineering, University of Cambridge, Cambridge CB3 0FA, United Kingdom
dCollege of Nanoscale Science and Engineering, State University of New York, 253 Fuller Road, Albany, New York 12203
eWalter Schottky Institute and Physics Department, TU München, Am Coulombwall, Garching, Germany

Imaging ellipsometry (IE) allows to measure ellipsometry on microstructured samples with a lateral ellipsometric resolution down to 1 µm. The rising field of research on 2D materials demands for techniques that enable the measurements on micron-sized flakes of 2D materials. These 2D materials often show superior behavior e.g. in optical response when monolayers are compared to multilayers. By stacking up different 2D materials, promising applications are expected. Fig. 1. shows a hetero-structure of WSe\textsubscript{2} and MoS\textsubscript{2}. The poster presentation will show the IE measurements on the regions that can be seen on the SiO\textsubscript{2}/Si substrate. In addition, the flakesearch algorithm is presented as a tool for the fast and accurate localization of flakes [1]. Detailed investigations of MoS2 on a thin, transparent sapphire substrate show the shift in the bandgap [2]. Measurements of Graphene directly on Copper-foil show the capability towards the use of imaging ellipsometry in quality control. To cover the anisotropic 2D-materials imaging Mueller-Matrix measurements are done. The in-plane dispersions for a flake of Black-phosphorous are shown.

Summing up, the poster presentation will show the capabilities of imaging ellipsometry in the field of 2D materials. Flakes of 2D materials can be found, investigated and orientated on various, including thin, transparent, substrates.

\textit{Keywords:} Imaging Ellipsometry; Imaging Mueller Matrix, 2D Materials

\textbf{References}
