

TECHNISCHE UNIVERSITÄT CHEMNITZ

Calculation of inter-molecular transition rates depending on structural parameters with DFTB

Fabian Teichert¹, Robin Silligmann¹, Florian Günther^{2,3}, Angela Thränhardt¹

¹ Institute of Physics, Chemnitz University of Technology, 09107 Chemnitz, Germany

² Departamento de Física, Instituto de Geociências e Ciências Exatas, Universidade Estadual Paulista "Júlio de Mesquita Filho", Rio Claro, Brazil

³ Instituto de Física de São Carlos, Universidade de São Paulo (USP), São Carlos, Brazil

Motivation

- Organic semiconductors: new materials with interesting properties, many possibilities for improvements
- Example application: Organic solar cells elastic, flexible, light, efficient to produce, cheap, adjustable electrical properties over a wide range
- Simulation of electronic properties: charge transport between organic molecules
- Quantum mechanical calculation of transfer rates \rightarrow Basis for consecutive Monte-Carlo simulation of hopping processes

- Determination of the influence of geometric disorder \rightarrow statistically averaged transfer rate
- System of interest: zinc porphyrine [1] as donor material

nuclear coordinate $|H_{AB}| = \langle \varphi^A | H_{AB} | \varphi^B \rangle \dots$ Hamiltonian coupling element Softwa **Density-functional-based tight binding (DFTB):** e^{atom} . i = j $\langle arphi_i^eta | \hat{T} + V^lpha [n^lpha + n^eta] | arphi_i^lpha
angle :$ $\hat{H} \ket{\varphi_i^{lpha}} = \epsilon \ket{\varphi_i^{lpha}}$ with $H_{ii} = \langle$ $\alpha \neq \beta$ otherwise

Validation of coupling element **DFTB** parameter sets • Test system: Two 450 ZnPor layer distance pi-stacked thiophenes 10⁰ own DFTB results: HOMO 400 own DFTB results: LUMO • Thiophene molecules 10^{-1} 350 -DFT reference: HOMO rotated/shifted Ha 10^{-2} DFT reference: LUMO > 300 E 250 Correct qualitative trends 10-3 • Slightly smaller values 10^{-4} |⁸ |⁸ |¹ |¹⁵⁰ (factor 0.8) milto 10^{-5} -• HOMO: anti-symmetric Ha C-C parameter 10^{-6} ightarrow 0 at 90° 100 mio-1-1 (compressed) 10^{-7} • LUMO: symmetric 50 own (uncompressed) \rightarrow maximum at 90° 10^{-8} 10 30 90 120 150 8 60 180 0 • Reference data: Distance in a_0 Rotation angle in degree DFT + PBE + TZDP [3]

- Parameters available, but not suitable for the evaluation of coupling element and for van-der-Waals-bonded systems
 - \rightarrow new parameters neccessary
- Standard: compressed basis set for faster convergence:

$$\left[\hat{T} + \hat{V} + \left(\frac{r}{r_0}\right)^n\right] |\varphi_i^{\alpha}\rangle = \tilde{\epsilon} |\varphi_i^{\alpha}\rangle$$

- Underestimation of Hamiltonian and overlap matrix elements by up to 2 orders of magnitude
- Non-compressed parameters for $|H_{AB}|$ needed
- Electronic parameters created using skprogs

Zinc porphyrine: Hamiltonian coupling element

Zinc porphyrine: reorganisation energy

- Internal degrees of freedom of planar configuration:
 - A...Rotation of outer thiophene rings (1 & 2)
 - B...Rotation of inner thiophene rings (3 & 4)
 - C...Rotation of whole lateral side group (5 & 6)
- D...Rotation of lateral side thiophene rings (7)

- Minimum energy if all sulfur away from oxygen
- \sim 80 meV higher energy for each rotated thiophene
- Sub sets: rotation of outer (71 meV) vs. inner thiophene (88 meV)

- Rotation C & D (5-7): no influence on total energy, but on reorganisation energy
- Very tiny reorganisation energy due to strong delocalization of additionl charge: $\lambda = (1.2...1.5) \,\mathrm{meV}$
- Reorganisation energy for hole transport higher than for electron transport

- Two stacked zinc porphyrine molecules
- Additional geometric degrees of freedom, so far obtained for most stable configurations: In-plane shift in two directions
 - In-plane rotation • Out-off plane tilt

10

-10

-10

shift in Å

 \geq

• Min 2: Zn above acetylene group (C-C tripple bond), pos./neg. partial charges stacked, small interaction between thiophene rings

- Very strong fluctuations of Hamiltonian coupling elements
- Reason: antisymmetric nodes in HOMO/LUMO states overlap with symmetric regions

Conclusion

- Reorganisation energy for hole transport higher than for electron transport
- Very strong fluctuations of Hamiltonian coupling elements
- Mean geometry not sufficient \rightarrow statistical analyis necessary

References

[1] J. Am. Chem. Soc. 137, 7282–7285 (2015) [2] J. Chem. Phys. 152, 124101 (2020) [3] F. Günther: "Theoretical Studies of Structural and Electronic Properties of Donor-Acceptor Polymers" (2018)

Acknowledgement

F. G. acknowledges the funding by FAPESP (2018/15670-5). We thank J. Schuster and S. Gemming for providing access to the HP cluster.

www.tu-chemnitz.de/physik www.tu-chemnitz.de/physik/TPSM www.ifsc.usp.br

fabian.teichert@physik.tu-chemnitz.de florian.gunther@unesp.br