Theoretische Physik I Mathematische Grundlagen

http://www.tu-chemnitz.de/physik/THUS/de/lehre/MM2_SS15.php

Dr. P. Cain

cain@physik.tu-chemnitz.de Raum 2/P310, Telefon 531-33144

F. Teichert

fabian.teichert@physik.tu-chemnitz.de Raum 2/W449, Telefon 531-32314

Übung 19 (17.06.2015)

– Raumkurven & Erhaltungsgrößen –

19/1 Ein Massenpunkt bewege sich auf der Fläche eines Paraboloiden

$$z = a(x^2 + y^2)$$

Zur Zeit t=0 befindet er sich am Scheitelpunkt (x=y=0). Mit konstanter Winkelgeschwindigkeit (in der xy-Ebene) bewegt er sich auf der Fläche nach oben und legt dabei bei einer vollen Umdrehung von 360° eine Höhe von $\Delta z=1$ zurück.

- a) Parametrisieren Sie die Bewegungskurve.
- b) Berechnen Sie Geschwindigkeit und Beschleunigung in Abhängigkeit von der Zeit und nähern Sie die Ergebnisse für große Zeiten t.
- c) Berechnen Sie die Winkelgeschwindigkeit $\omega(\varphi)$ in Abhängigkeit vom Winkel φ für den Fall, dass sich das Teilchen mit konstanter Bahngeschwindigkeit $v_0 = |\vec{v}|$ statt konstanter Winkelgeschwindigkeit bewegt.
- d) Berechnen Sie die Bogenlänge s(t) für große Zeiten t.
- e) Wie kann man die Bogenlänge $s(\varphi)$ in Abhängigkeit vom Winkel φ bestimmen? Geben Sie das Ergebnis für große Zeiten an.
- f) Untersuchen Sie die Bewegung auf Erhaltungsgrößen (Impuls, Energie und Drehimpuls).
- 19/2 Ein Körper wird unter dem Winkel $\alpha > 0$ in einer Höhe h_0 abgeworfen (schiefer Wurf).
 - a) Geben Sie die Parametrisierung der Bewegung an.
 - b) Gibt es Erhaltungsgrößen?
 - c) Berechnen Sie die Bogenlänge s(t).
- 19/3 Ein Massepunkt der Masse m bewegt sich entlang eines Kurvenstücks

$$r(\varphi) = r_0 \cos \varphi$$
 mit $0 \le \varphi \le \frac{\pi}{2}$.

Welche Erhaltungsgrößen gibt es, wenn sich das Teilchen

- a) mit konstanter Bahngeschwindigkeit $v_0 = |\vec{r}|$ bewegt?
- b) mit konstanter Winkelgeschwindigkeit $\omega = \dot{\varphi}$ bewegt?
- c) mit konstanter Abstandsänderung $c = \dot{r}$ zum Koordinatenursprung bewegt?
- d) Welche Gleichung muss $\varphi(t)$ erfüllen, damit Drehimpulserhaltung gilt?