Theoretische Physik I Mathematische Grundlagen

http://www.tu-chemnitz.de/physik/THUS/ de/lehre/MM2_SS15.php

Dr. P. Cain

cain@physik.tu-chemnitz.de Raum 2/P310, Telefon 531-33144

F. Teichert

fabian.teichert@physik.tu-chemnitz.de Raum 2/W449, Telefon 531-32314

$\ddot{U}bung 17 \hspace{0.1cm} \hbox{$\scriptstyle (27.05.2015)$} \\ \hspace{0.1cm} - \hspace{0.1cm} \hbox{Raumkurven} \hspace{0.1cm} -$

Bestimmen Sie für die in kartesischen Koordinaten gegebenen, zeitabhängigen Ortsvektoren $\vec{r}(t)$ die Geschwindigkeit $\vec{v}(t)$ und die Beschleunigung $\vec{a}(t)$ sowie deren Beträge zum Zeitpunkt t_1 . Fertigen Sie eine Skizze an.

a)
$$\vec{r} = \begin{pmatrix} t^3 + 2t \\ -3e^{-t} \\ t \end{pmatrix}$$
 $t_1 = 0$ b) $\vec{r} = \begin{pmatrix} t \sin \omega t \\ \cos \omega t \\ \tan \omega t \end{pmatrix}$ $t_1 = \frac{\pi}{\omega}$ c) $\vec{r} = \begin{pmatrix} \alpha \ln t \\ t(\ln t - 1) \\ \alpha e^{1-t} \end{pmatrix}$ $t_1 = 1$

- 17/2 Zeigen Sie, dass die differentiellen Vektoren in den jeweiligen Koordinatensystemen gegeben sind durch
 - a) Zylinderkoordinaten $d\vec{r} = \vec{e}_{\rho}d\rho + \vec{e}_{\varphi}\rho d\varphi + \vec{e}_{z}dz$
 - $d\vec{r} = \vec{e}_r dr + \vec{e}_{\vartheta} r d\vartheta + \vec{e}_{\varphi} r \sin \vartheta d\varphi$ b) Kugelkoordinaten
 - c) Fertigen Sie eine Skizze an.

17/3 Der Ortsvektor \vec{r} eines Punktes sei in Kugelkoordinaten gegeben durch

$$\vec{r} = r \cdot \vec{e}_r = r \begin{pmatrix} \sin \vartheta \cos \varphi \\ \sin \vartheta \sin \varphi \\ \cos \vartheta \end{pmatrix} .$$

Bestimmen Sie die Geschwindigkeit $\vec{v}(r, \vartheta, \varphi)$ und die Beschleunigung $\vec{a}(r, \vartheta, \varphi)$ in Kugelkoordinaten

- Ein Massenpunkt bewegt sich mit konstanter Winkelgeschwindigkeit ω auf einer Ellipse mit den Halbachsen a und b.
 - a) Parametrisieren Sie die Bewegungskurve.
 - b) Berechnen Sie Geschwindigkeit und Beschleunigung in Abhängigkeit von der Zeit.
 - c) Welches Verhältnis müssen die Halbachsen a und b zueinander haben, damit die Geschwindigkeit am Nebenscheitel doppelt so groß ist wie am Hauptscheitel.
 - d) Von welcher Art ist die Beschleunigung?