Theoretische Physik I Mathematische Grundlagen

http://www.tu-chemnitz.de/physik/THUS/ de/lehre/MM2_SS15.php

Dr. P. Cain

cain@physik.tu-chemnitz.de Raum 2/P310, Telefon 531-33144

F. Teichert

fabian.teichert@physik.tu-chemnitz.de Raum 2/W449, Telefon 531-32314

$\ddot{\mathrm{U}}\mathrm{bung}\ 15$ (13.05.2015)

Koordinatentransformation -

15/1 Gegeben ist die Basis $A = \{\vec{a}_x, \vec{a}_y, \vec{a}_z\}$. Die Vektoren $\{\vec{b}_x, \vec{b}_y, \vec{b}_z\}$ bilden die Basis B. Sie sind in der Basis A gegeben durch:

$$\vec{b}_{\mathrm{x}} = \begin{pmatrix} 1 \\ 1 \\ 0 \end{pmatrix}_{A} \quad , \quad \vec{b}_{\mathrm{y}} = \begin{pmatrix} 0 \\ 1 \\ 1 \end{pmatrix}_{A} \quad , \quad \vec{b}_{\mathrm{z}} = \begin{pmatrix} 1 \\ 0 \\ 1 \end{pmatrix}_{A}$$

- a) Bestimmen Sie die Matrix M, die die Darstellung eines Vektors \vec{r}_A aus Basis Ain Basis B transformiert.
- b) Bestimmen Sie die Determinante von M.
- c) Wie lautet die Darstellung von $(1\ 1\ 1)_A^{\mathrm{T}}$ in der Basis B.
- d) Fertigen Sie eine Skizze an.
- 15/2 Bestimmen Sie die Funktionalmatrix und die Funktionaldeterminante der folgenden Basistransformationen.
 - a) Umrechnung von Zylinderkoordinaten in kartesische Koordinaten
 - b) Umrechnung von Kugelkoordinaten in kartesische Koordinaten
- 15/3 Gegeben sei der Vektor \vec{r} in kartesischen Koordinaten. Bestimmen Sie die Komponenten in Kugel- und Zylinderkoordinaten.

a)
$$\vec{r} = \begin{pmatrix} 1 \\ -1 \\ \sqrt{2} \end{pmatrix}$$
 b) $\vec{r} = \begin{pmatrix} -2 \\ 2 \\ -2 \end{pmatrix}$ c) $\vec{r} = \begin{pmatrix} 4 \\ \sqrt{11} \\ 3 \end{pmatrix}$

b)
$$\vec{r} = \begin{pmatrix} -2\\2\\-2 \end{pmatrix}$$

$$c) \quad \vec{r} = \begin{pmatrix} 4\\\sqrt{11}\\3 \end{pmatrix}$$